1
|
Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 Supplementation Prevents Depressive-Like Behaviors Through Glucocorticoid Receptor and N-Methyl-D-aspartate2b in Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025; 62:7927-7944. [PMID: 39956887 DOI: 10.1007/s12035-025-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Depression is a long-term, related to stress neuropsychiatric disorder, leading to psychological health issues including worthlessness, anhedonia, sleep and appetite disturbances, dysregulated HPA axis, neuronal cell death, and alterations in the gut microbiota (GM). Dysregulated HPA axis increases level of glucocorticoids that induce proinflammatory response with activation of abnormal kynurenine pathway via metabolizing indoleamine-2,3-dioxygenase (IDO). Kynurenine pathway leads to excitotoxicity of N-methyl-D-aspartate (NMDA) receptor responsible for neuronal cell death. Further, probiotics supplementation gained attention from researchers and clinicians to treat neuropsychiatric diseases. GM alteration remains a key reason for depression; however, there is limited information about the role of probiotics on depression involving glucocorticoid receptor and NMDA excitotoxicity through IDO. Chronic unpredictable mild stress (CUMS) model was prepared to check the role of Lactobacillus fermentum ATCC 9338 (LF) and 1-methyl-D-tryptophan (1-MT) in depression. Herein, mice were placed into experimental groups: control, CUMS stressed, CUMS vehicle, CUMS LF, CUMS 1-MT, and CUMS UT (untreated). Results showed that peroral administration of 1 × 108 CFU/day/mouse LF and intraperitoneal dose of 1-MT (15 mg/kg BW/day) alleviate depressive-like behavior and improve motor coordination and walking patterns. Mice supplemented with LF and 1-MT exhibited a decreased expression of GR and NMDAR2b in the cortex, hippocampus, and medulla. Acetylcholinesterase, SOD, and CAT activities were improved in CUMS mice with supplementation of LF and 1-MT. The GM abundance in LF mice was similar to that in control mice. Such study suggests the roles of LF and 1-MT in depression and oxidative stress, and helpful to understand their therapeutic potential through the HPA axis and IDO.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India.
| |
Collapse
|
2
|
Kastelan D, Dusek T. Do adrenal incidentalomas have an impact on mental health? A comprehensive review. Eur J Endocrinol 2025; 192:R1-R6. [PMID: 39891589 DOI: 10.1093/ejendo/lvaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/14/2024] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Adrenal incidentalomas (AIs) are increasingly detected during imaging performed for conditions unrelated to adrenal pathology. Numerous studies have shown that the presence of AI is associated with a higher frequency of hypertension, type 2 diabetes, dyslipidemia, obesity, and osteoporosis. This increased morbidity is mostly related to mild autonomous cortisol secretion, which is the most common hormonal abnormality in these patients. It is well known that glucocorticoid excess affects the hippocampus and prefrontal cortex, brain structures involved in mood regulation and cognitive processes, leading to a wide range of psychiatric symptoms, including depression. While these effects are well documented in patients with Cushing's syndrome, data on mental health changes in patients with AIs remain scarce. Additionally, the few existing studies have several limitations, leaving important clinical questions unanswered. Consequently, the extent to which AIs are associated with impaired mental health and whether patients would benefit from surgical treatment remains unclear. Addressing these challenges is crucial for developing adequate management strategies. This review explores potential psychological and psychiatric implications of AIs. By synthesizing existing literature, we aim to explain the relationship between AIs and mental health disorders, providing a background for future research and clinical practice guidelines.
Collapse
Affiliation(s)
- Darko Kastelan
- Department of Endocrinology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| | - Tina Dusek
- Department of Endocrinology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Hartmann J, Klengel C, Dillmann LJ, Hisey EE, Hafner K, Shukla R, Soliva Estruch M, Bajaj T, Ebert T, Mabbott KG, Rostin L, Philipsen A, Carlezon WA, Gisabella B, McCullumsmith RE, Vergis JM, Klengel T, Berretta S, Daskalakis NP, Pantazopoulos H, Gassen NC, Ressler KJ. SKA2 enhances stress-related glucocorticoid receptor signaling through FKBP4-FKBP5 interactions in neurons. Proc Natl Acad Sci U S A 2024; 121:e2417728121. [PMID: 39705315 DOI: 10.1073/pnas.2417728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024] Open
Abstract
Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, SKA2, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear. Here, we demonstrate, using diverse in vitro cell assays, a mechanism by which SKA2 promotes GR signaling through enhancing GR-FKBP4 interaction leading to dissociation of FK506-bindingprotein 51 (FKBP5) from the complex. FKBP4 and FKBP5 are cochaperones known to regulate GR function in opposite directions. Notably in mice, SKA2 in Crh+ neurons of the paraventricular nucleus of the hypothalamus is crucial for HPA axis responsiveness and for maintaining the negative feedback loop underlying allostasis. Moreover, we show that SKA2 expression is increased in postmortem human hippocampus and amygdala from individuals with BD. Our study highlights a critical role of SKA2 in HPA axis function, adds to the understanding of the molecular basis of stress-related psychiatric disorders, and points to potential targets for intervention.
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Larissa J Dillmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Erin E Hisey
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Rammohan Shukla
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071
| | - Marina Soliva Estruch
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Katharine G Mabbott
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Luise Rostin
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital, Bonn 53127, Germany
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | | | - John M Vergis
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Department of Psychiatry and Psychotherapy, Research Group Neurohomeostasis, University Hospital, Boon 53127, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| |
Collapse
|
4
|
Castillo-Ramírez LA, Herget U, Ryu S, De Marco RJ. Early-life challenge enhances cortisol regulation in zebrafish larvae. Biol Open 2024; 13:bio061684. [PMID: 39607018 PMCID: PMC11625891 DOI: 10.1242/bio.061684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems that adapt to the environment during development. Little is known about how this adaptation begins and regulates early stress responses. We used larval zebrafish to examine the impact of prolonged forced swimming at 5 days post-fertilization (dpf), termed early-life challenge (ELC), on cortisol responses, neuropeptide expression in the nucleus preopticus (NPO), and gene transcript levels. At 6 dpf, ELC-exposed larvae showed normal baseline cortisol but reduced reactivity to an initial stressor. Conversely, they showed increased reactivity to a second stressor within the 30-min refractory period, when cortisol responses are typically suppressed. ELC larvae had fewer corticotropin-releasing hormone (crh), arginine vasopressin (avp), and oxytocin (oxt)-positive cells in the NPO, with reduced crh and avp co-expression. Gene expression analysis revealed upregulation of genes related to cortisol metabolism (hsd11b2, cyp11c1), steroidogenesis (star), and stress modulation (crh, avp, oxt). These results suggest that early environmental challenge initiates adaptive plasticity in the HPI axis, tuning cortisol regulation to balance responsiveness and protection during repeated stress. Future studies should explore the broader physiological effects of prolonged forced swimming and its long-term impact on cortisol regulation and stress-related circuits.
Collapse
Affiliation(s)
- Luis A. Castillo-Ramírez
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road EX4 4QD, Exeter, UK
| | - Rodrigo J. De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, UK
| |
Collapse
|
5
|
Rajeswari JJ, Faught E, Santos H, Vijayan MM. Mineralocorticoid receptor activates postnatal adiposity in zebrafish lacking proopiomelanocortin. J Cell Physiol 2024; 239:e31428. [PMID: 39238189 PMCID: PMC11649959 DOI: 10.1002/jcp.31428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The proopiomelanocortin (Pomc)-derived peptides, including adrenocorticotropic hormone and α-melanocyte stimulating hormone (α-Msh), play both a central and a peripheral role in modulating the stress response. The central role is predominantly associated with nutrient homeostasis, while peripherally they play an important role in the synthesis of glucocorticoids (GCs) in response to stress. Pomc mutations are a major risk factor in the development of early-onset childhood obesity in humans. This is attributed primarily to their central effects on melanocortin receptor dysfunction leading to hyperphagia and reduced energy expenditure, while the peripheral mechanism contributing to obesity has largely been unexplored. Here, we tested the hypothesis that Pomc mutation-mediated adrenal insufficiency and the associated changes in GC signaling contribute to postnatal adiposity using zebrafish as a model. We generated a ubiquitous Pomc knockout zebrafish that mimicked the mammalian mutant phenotype of adrenal insufficiency and enhanced adiposity. The loss of Pomc inhibited stress-induced cortisol production and reprogrammed GC signaling by reducing glucocorticoid receptor responsiveness, whereas the mineralocorticoid receptor (Mr) signaling was enhanced. Larval feeding led to enhanced growth and adipogenesis in the Pomc mutants, and this was inhibited by eplerenone, an Mr antagonist. Altogether, our results underscore a key role for Mr signaling in early developmental adipogenesis and a possible target for therapeutic intervention for early-onset childhood obesity due to Pomc dysfunction.
Collapse
Affiliation(s)
| | - Erin Faught
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Helio Santos
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Laboratório de Processamento de TecidosUniversidade Federal de São João Del Rei, Avenida Sebastião Gonçalves CoelhoDivinópolisBrazil
| | | |
Collapse
|
6
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
7
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
8
|
Kim JS, Kim JH, Eo H, Ju IG, Son SR, Kim JW, Jang DS, Oh MS. Inulae Flos has Anti-Depressive Effects by Suppressing Neuroinflammation and Recovering Dysfunction of HPA-axis. Mol Neurobiol 2024; 61:8038-8050. [PMID: 38457106 DOI: 10.1007/s12035-024-04094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Depression is a debilitating mood disorder that causes persistent feelings of sadness, emptiness, and a loss of joy. However, the clinical efficacy of representative drugs for depression, such as selective serotonin reuptake inhibitors, remains controversial. Therefore, there is an urgent need for more effective therapies to treat depression. Neuroinflammation and the hypothalamic-pituitary-adrenal (HPA) axis are pivotal factors in depression. Inulae Flos (IF), the flower of Inula japonica Thunb, is known for its antioxidant and anti-inflammatory effects. This study explored whether IF alleviates depression in both in vitro and in vivo models. For in vitro studies, we treated BV2 and PC12 cells damaged by lipopolysaccharides or corticosterone (CORT) with IF to investigate the mechanisms of depression. For in vivo studies, C57BL/6 mice were exposed to chronic restraint stress and were administered IF at doses of 0, 100, and 300 mg/kg for 2 weeks. IF inhibited pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and interleukins in BV2 cells. Moreover, IF increased the viability of CORT-damaged PC12 cells by modulating protein kinase B, a mammalian target of the rapamycin pathway. Behavioral assessments demonstrated that IF reduced depression-like behaviors in mice. We found that IF reduced the activation of microglia and astrocytes, and regulated synapse plasticity in the mice brains. Furthermore, IF lowered elevated CORT levels in the plasma and restored glucocorticoid receptor expression in the hypothalamus. Collectively, these findings suggest that IF can alleviate depression by mitigating neuroinflammation and recovering dysfunction of the HPA-axis.
Collapse
Affiliation(s)
- Jin Se Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Castillo-Ramírez LA, Ryu S, De Marco RJ. Cortisol dynamics and GR-dependent feedback regulation in zebrafish larvae exposed to repeated stress. Biol Open 2024; 13:bio061683. [PMID: 39450931 PMCID: PMC11583980 DOI: 10.1242/bio.061683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Zebrafish larvae show a rapid increase in cortisol in response to acute stressors, followed by a decline. While these responses are documented, both the duration of the refractory period to repeated stressors and the role of glucocorticoid receptors (GR) in specific phases of the glucocorticoid negative feedback are still being clarified. We explored these questions using water vortices as stressors, combined with GR blockage and measurements of whole-body cortisol in zebrafish larvae subjected to single and repeated stress protocols. Cortisol levels were elevated 10 min after stress onset and returned to baseline within 30-40 min, depending on the stressor strength. In response to homotypic stress, cortisol levels rose above baseline if the second stressor occurred 60 or 120 min after the first, but not with a 30-min interval. This suggests a rapid cortisol-mediated feedback loop with a refractory period of at least 30 min. Treatment with a GR blocker delayed the return to baseline and suppressed the refractory period, indicating GR-dependent early-phase feedback regulation. These findings are consistent with mammalian models and provide a framework for further analyses of early-life cortisol responses and feedback in zebrafish larvae, ideal for non-invasive imaging and high-throughput screening.
Collapse
Affiliation(s)
- Luis A. Castillo-Ramírez
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Soojin Ryu
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
- Living Systems Institute, College of Medicine and Health, University of Exeter, Stocker Road EX4 4QD Exeter, UK
| | - Rodrigo J. De Marco
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Developmental Neurobiology of Resilience, German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
- School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AFUK
| |
Collapse
|
10
|
Meshkat S, Edalatkhah M, Di Luciano C, Martin J, Kaur G, Hee Lee G, Park H, Torres A, Mazalek A, Kapralos B, Dubrowski A, Bhat V. Virtual Reality and Stress Management: A Systematic Review. Cureus 2024; 16:e64573. [PMID: 39144853 PMCID: PMC11323791 DOI: 10.7759/cureus.64573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 08/16/2024] Open
Abstract
Amidst the growing prevalence of chronic stress and its potential negative impacts on mental health, this review explores the use of virtual reality (VR) as a stress management solution, aiming to assess its viability and effectiveness in this context. A comprehensive search was conducted on MEDLINE, PsycINFO, and Embase from inception until February 2024. Eligible studies were primary research papers that focused on the use of VR as an intervention to mitigate psychological stress and/or distress. We included studies where the assessment of stress levels primarily relied on self-report measures. A total of 50 studies involving 2885 participants were included in our systematic review. VR-based interventions varied across studies, implementing tools such as cognitive behavioural therapy, exposure therapy, mindfulness and relaxation, repetition tasks, and psychoeducation. The reviewed studies yielded mixed results; however, a strong indication was present in highlighting the promising potential of VR-based interventions. Many studies observed a decrease in psychiatric symptoms in participants and reported increased quality of life. Various studies also found VR to be a valuable tool in promoting stress reduction and relaxation. VR was proven useful in exposing participants to stressors in a safe, controlled way. These potential benefits appear to come with no risk of harm to the participants. Although the findings are heterogenous, there is sufficient evidence supporting the use of VR for stress management across a range of contexts and populations. Overall, VR appears to be a generally low-risk, feasible intervention for those struggling with stress.
Collapse
Affiliation(s)
- Shakila Meshkat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, CAN
| | | | | | - Josh Martin
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, CAN
| | - Gursharanjit Kaur
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, CAN
| | - Gyu Hee Lee
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, CAN
| | - Haley Park
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, CAN
| | - Andrei Torres
- maxSIMhealth Laboratory, Faculty of Health Sciences, Ontario Tech University, Toronto, CAN
| | - Ali Mazalek
- Synaesthetic Media Lab, Toronto Metropolitan University, Toronto, CAN
| | - Bill Kapralos
- maxSIMhealth Group, Ontario Tech University, Oshawa, CAN
| | | | - Venkat Bhat
- Psychiatry, University of Toronto/St. Michael's Hospital, Toronto, CAN
| |
Collapse
|
11
|
Lee HB, Shams S, Dang Thi VH, Boyum GE, Modhurima R, Hall EM, Green IK, Cervantes EM, Miguez FE, Clark KJ. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci Rep 2024; 14:7759. [PMID: 38565594 PMCID: PMC10987622 DOI: 10.1038/s41598-024-57707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.
Collapse
Affiliation(s)
- Han B Lee
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Soaleha Shams
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Viet Ha Dang Thi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Grace E Boyum
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Rodsy Modhurima
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Emma M Hall
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Izzabella K Green
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Karl J Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Do BK, Jang JH, Park GH. Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells. Biomol Ther (Seoul) 2024; 32:77-83. [PMID: 38148553 PMCID: PMC10762270 DOI: 10.4062/biomolther.2023.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 12/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.
Collapse
Affiliation(s)
- Bo Kyeong Do
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Zhan Q, Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front Neurol 2023; 14:1274709. [PMID: 38020612 PMCID: PMC10651767 DOI: 10.3389/fneur.2023.1274709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Stroke is one of the most common cerebrovascular diseases, which is the cause of long-term mental illness and physical disability, Post-stroke depression (PSD) is the most common neuropsychiatric complication after stroke, and its mechanisms are characterized by complexity, plurality, and diversity, which seriously affects the quality of survival and prognosis of patients. Studies have focused on and recognized neurotransmitter-based mechanisms and selective serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may affect neurotransmitters. Thus the mechanisms of PSD have been increasingly studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin D, ect, which have been confirmed to have better efficacy by clinical studies. Currently, there is an increasing number of studies related to the mechanisms of PSD. However, the mechanisms and pharmacologic treatment of PSD is still unclear. In the future, in-depth research on the mechanisms and treatment of PSD is needed to provide a reference for the prevention and treatment of clinical PSD.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fanyi Kong
- Neurosurgery, Affiliated First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Hisada C, Kajimoto K, Tsugane H, Mitsuo I, Azuma K, Kubo KY. Maternal chewing alleviates prenatal stress-related neuroinflammation mediated by microglia in the hippocampus of the mouse offspring. J Prosthodont Res 2023; 67:588-594. [PMID: 36792221 DOI: 10.2186/jpr.jpr_d_22_00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Prenatal stress affects the hippocampal structure and function in pups. Maternal chewing ameliorates hippocampus-dependent cognitive impairments induced by prenatal stress. In this study, we investigated hippocampal microglia-mediated neuroinflammation in pups of dams exposed to prenatal stress with or without chewing during gestation. METHODS Pregnant mice were randomly assigned to control, stress, and stress/chewing groups. Stress and stress/chewing animals were subjected to restraint stress for 45 min three times daily from gestation day 12 to parturition, and were given a wooden stick to chew during the stress period. Four-month-old male pups were intraperitoneally administered with lipopolysaccharide (LPS). Serum corticosterone levels were determined 24 h after administration. The expression levels of hippocampal inflammatory cytokines were measured, and the microglia were analyzed morphologically. RESULTS Prenatal stress increased serum corticosterone levels, induced hippocampal microglia priming, and facilitated the release of interleukin-1β and tumor necrosis factor-α in the offspring. LPS treatment significantly increased the effects of prenatal stress on serum corticosterone levels, hippocampal microglial activation, and hippocampal neuroinflammation. Maternal chewing significantly inhibited the increase in serum corticosterone levels, suppressed microglial overactivation, and normalized inflammatory cytokine levels under basal prenatal stress conditions as well as after LPS administration. CONCLUSIONS Our findings indicate that maternal chewing can alleviate the increase in corticosterone levels and inhibit hippocampal microglia-mediated neuroinflammation induced by LPS administration and prenatal stress in adult offspring.
Collapse
Affiliation(s)
- Chie Hisada
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kyoko Kajimoto
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Hiroko Tsugane
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Iinuma Mitsuo
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
17
|
De Alcubierre D, Ferrari D, Mauro G, Isidori AM, Tomlinson JW, Pofi R. Glucocorticoids and cognitive function: a walkthrough in endogenous and exogenous alterations. J Endocrinol Invest 2023; 46:1961-1982. [PMID: 37058223 PMCID: PMC10514174 DOI: 10.1007/s40618-023-02091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE The hypothalamic-pituitary-adrenal (HPA) axis exerts many actions on the central nervous system (CNS) aside from stress regulation. Glucocorticoids (GCs) play an important role in affecting several cognitive functions through the effects on both glucocorticoid (GR) and mineralocorticoid receptors (MR). In this review, we aim to unravel the spectrum of cognitive dysfunction secondary to derangement of circulating levels of endogenous and exogenous glucocorticoids. METHODS All relevant human prospective and retrospective studies published up to 2022 in PubMed reporting information on HPA disorders, GCs, and cognition were included. RESULTS Cognitive impairment is commonly found in GC-related disorders. The main brain areas affected are the hippocampus and pre-frontal cortex, with memory being the most affected domain. Disease duration, circadian rhythm disruption, circulating GCs levels, and unbalanced MR/GR activation are all risk factors for cognitive decline in these patients, albeit with conflicting data among different conditions. Lack of normalization of cognitive dysfunction after treatment is potentially attributable to GC-dependent structural brain alterations, which can persist even after long-term remission. CONCLUSION The recognition of cognitive deficits in patients with GC-related disorders is challenging, often delayed, or mistaken. Prompt recognition and treatment of underlying disease may be important to avoid a long-lasting impact on GC-sensitive areas of the brain. However, the resolution of hormonal imbalance is not always followed by complete recovery, suggesting irreversible adverse effects on the CNS, for which there are no specific treatments. Further studies are needed to find the mechanisms involved, which may eventually be targeted for treatment strategies.
Collapse
Affiliation(s)
- D De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - D Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - G Mauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - J W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - R Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK.
| |
Collapse
|
18
|
Lee H, Shams S, Dang Thi VH, Boyum G, Modhurima R, Hall E, Green I, Cervantes E, Miguez F, Clark K. The canonical HPA axis facilitates and maintains light adaptive behavior. RESEARCH SQUARE 2023:rs.3.rs-3240080. [PMID: 37720015 PMCID: PMC10503838 DOI: 10.21203/rs.3.rs-3240080/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. The glucocorticoid receptor (nr3c1) was necessary to maintain basal locomotor activity in light and darkness. The HPA axis was required to adapt to light more efficiently but became dispensable when longer illumination was provided. Light adaptation was more efficient in dimmer light and did not require the mineralocorticoid receptor (nr3c2). Our findings show that the HPA axis contributes to the SR at various stages, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPA axis activity.
Collapse
|
19
|
Jiang H, Li Z, Sun Y, Ren J, Yan F, Sun Q, Wei H, Bian L. Irreversible Alterations of Susceptibility in Cushing's Disease: A Longitudinal QSM Study. J Clin Endocrinol Metab 2023; 108:2007-2015. [PMID: 36722202 DOI: 10.1210/clinem/dgad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Chronic exposure to hypercortisolism is associated with accelerated aging and neurodegenerative diseases, while Cushing's disease (CD) is the most common form of endogenous hypercortisolism exposure. This study aimed to assess longitudinal susceptibility changes in CD using quantitative susceptibility mapping (QSM) before and after resolution of hypercortisolism. METHODS In this study, 24 CD patients and 24 healthy controls underwent magnetic resonance imaging (MRI) with QSM. All CD patients underwent MRI scans before and after the curative operation. RESULTS After resolution of hypercortisolism, irreversibly altered susceptibility values were found in the anterior cingulate cortex, frontal lobe, caudate, and red nucleus. These alterations were significantly correlated with the changes in gray matter/white matter volumes and clinical features. Additionally, decreased susceptibility was found in several regions in CD patients. CONCLUSION Chronic exposure to hypercortisolism may be related to susceptibility alterations and significantly correlated with altered brain volumes and clinical features. in CD patients. The decrease of susceptibility might suggest the involvement of the calcium deregulation in these alterations.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Stevenson JR, McMahon EK, McNeely TL, Haussmann MF. Oxytocin prevents dysregulation of the acute stress response and glucocorticoid-induced oxidative stress in chronically isolated prairie voles. Psychoneuroendocrinology 2023; 153:106121. [PMID: 37120947 PMCID: PMC10225351 DOI: 10.1016/j.psyneuen.2023.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Chronic social isolation can lead to dysregulation of many physiological and psychological processes, including the ability to respond to acute stressors. Previous work in our lab reported that six weeks of social isolation in prairie voles (Microtus ochrogaster) caused increased glucocorticoid levels, oxidative damage, telomere degradation and anhedonia, and that oxytocin treatment prevented all of these changes. Following these results, we investigated how chronic social isolation with and without oxytocin treatment affected glucocorticoid (CORT) and oxidative stress responses to an acute stressor, a 5-min resident-intruder (R-I) test at the end of the social isolation period. To investigate the effect of a brief acute stressor on CORT and oxidative stress, baseline blood samples were collected following six weeks of social isolation, 24-hrs before the R-I test. Two more blood samples were collected 15-min after the end of the R-I test, and again 25-min later to measure peak and recovery responses, respectively. Isolated animals had higher baseline, peak, recovery, and integrated levels of CORT and reactive oxygen metabolites (ROMs, a measure of oxidative stress), compared to animals that did not experience isolation. Importantly, oxytocin treatment throughout the isolation period prevented these elevations in CORT and ROMs. No significant changes were observed in total antioxidant capacity (TAC). Levels of CORT and ROMs at the peak and recovery time points were positively correlated. These data show that acute stress in chronically isolated prairie voles, then, is associated with increased glucocorticoid-induced oxidative stress (GiOS), and that oxytocin mitigates isolation-induced dysregulation of glucocorticoid and oxidative stress acute stress responses.
Collapse
Affiliation(s)
- Jennie R Stevenson
- Dept. of Psychology, Neuroscience Program, Bucknell University, Lewisburg, PA, USA
| | | | | | | |
Collapse
|
21
|
Nakamura M, Kawata Y, Hirosawa M, Ota T, Shibata N. Differential effects of acute exercise on emotional memory in men and women. Front Sports Act Living 2023; 5:1062051. [PMID: 37234750 PMCID: PMC10208400 DOI: 10.3389/fspor.2023.1062051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Exercise may change emotional memory, which is associated with the induction of mental disorders such as depression and anxiety. This effect of exercise may be influenced by exercise-induced cortisol release. Depending on sex, cortisol exerts differential effects on emotional memory consolidation. However, whether acute exercise and exercise-induced cortisol release have sex-dependent effects on emotional memory has not been established. Therefore, first, we aimed to determine the effects of acute exercise on emotional memory, separately for men and women, in a within-subjects design. Second, we aimed to examine whether the effects of acute exercise on emotional memory are related to the effects of exercise-induced cortisol release, separately for men and women. Sixteen healthy men and 15 healthy women were presented with positive and negative emotional images, followed by either rest or a vigorous-intensity cycling exercise condition using a within-subjects design on separate days. Salivary cortisol was measured before presenting the emotional images presentation and 20 min after each intervention. Emotional memory was assessed two days later. Vigorous-intensity exercise decreased emotional memory in women, whereas there was no change in men after rest or exercise. Cortisol levels increased after exercise intervention in both men and women, although there was no association between cortisol levels and emotional memory. These findings demonstrate that the effect of a single bout of vigorous-intensity exercise on emotional memory differs between men and women and is associated with decreased emotional memory in women.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Yujiro Kawata
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Masataka Hirosawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Tsuneyoshi Ota
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Faculty of Health and Sports Science, Juntendo University, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Nobuto Shibata
- Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| |
Collapse
|
22
|
Deer LK, Su C, Thwaites NA, Davis EP, Doom JR. A framework for testing pathways from prenatal stress-responsive hormones to cardiovascular disease risk. Front Endocrinol (Lausanne) 2023; 14:1111474. [PMID: 37223037 PMCID: PMC10200937 DOI: 10.3389/fendo.2023.1111474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with the prevalence projected to keep rising. Risk factors for adult CVD emerge at least as early as the prenatal period. Alterations in stress-responsive hormones in the prenatal period are hypothesized to contribute to CVD in adulthood, but little is known about relations between prenatal stress-responsive hormones and early precursors of CVD, such as cardiometabolic risk and health behaviors. The current review presents a theoretical model of the relation between prenatal stress-responsive hormones and adult CVD through cardiometabolic risk markers (e.g., rapid catch-up growth, high BMI/adiposity, high blood pressure, and altered blood glucose, lipids, and metabolic hormones) and health behaviors (e.g., substance use, poor sleep, poor diet and eating behaviors, and low physical activity levels). Emerging evidence in human and non-human animal literatures suggest that altered stress-responsive hormones during gestation predict higher cardiometabolic risk and poorer health behaviors in offspring. This review additionally highlights limitations of the current literature (e.g., lack of racial/ethnic diversity, lack of examination of sex differences), and discusses future directions for this promising area of research.
Collapse
Affiliation(s)
- LillyBelle K. Deer
- Department of Psychology, University of Denver, Denver, CO, United States
| | - Chen Su
- Department of Psychology, University of Denver, Denver, CO, United States
| | | | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jenalee R. Doom
- Department of Psychology, University of Denver, Denver, CO, United States
| |
Collapse
|
23
|
Yang H, Narayan S, Schmidt MV. From Ligands to Behavioral Outcomes: Understanding the Role of Mineralocorticoid Receptors in Brain Function. Stress 2023; 26:2204366. [PMID: 37067948 DOI: 10.1080/10253890.2023.2204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
24
|
Liu MY, Wei LL, Zhu XH, Ding HC, Liu XH, Li H, Li YY, Han Z, Li LD, Du ZW, Zhou YP, Zhang J, Meng F, Tang YL, Liu X, Wang C, Zhou QG. Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor. Mol Psychiatry 2023; 28:1383-1395. [PMID: 36481932 PMCID: PMC10005958 DOI: 10.1038/s41380-022-01898-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.
Collapse
Affiliation(s)
- Meng-Ying Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu-Lu Wei
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xian-Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hua-Chen Ding
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang-Hu Liu
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan Li
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan-Yuan Li
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhou Han
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lian-Di Li
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zi-Wei Du
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ya-Ping Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fan Meng
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Lin Tang
- Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chun Wang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi-Gang Zhou
- State Key Laboratory of Reproductive Medicine, Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Department of Clinical Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China. .,The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Fan X, Zhao Z, Huang Z, Wu M, Wang D, Xiao J. Mineralocorticoid receptor agonist aldosterone rescues hippocampal neural stem cell proliferation defects and improves postoperative cognitive function in aged mice. World J Biol Psychiatry 2023; 24:149-161. [PMID: 35615969 DOI: 10.1080/15622975.2022.2082524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Hippocampal neurogenesis is closely related to learning and memory, and hippocampal neurogenesis disorders are involved in the development of many neurodegenerative diseases. Mineralocorticoid receptor (MR) plays a vital role in regulating stress response, neuroendocrine and cognitive functions, and is involved in regulating the integrity and stability of neural networks. However, the potential role of MR in the pathogenesis of postoperative cognitive dysfunction (POCD) is unclear. Therefore, this study evaluated the effect and mechanism of MR activation on postoperative hippocampal neurogenesis and cognitive function in aged mice. METHODS 18-month-old male Kunming mice were randomly divided into Control group (C group), Surgery group (S group), Surgery+ Aldosterone group (S+Aldo group), Surgery + Wortmannin group (S+Wort group), Surgery + Aldosterone + Wortmannin group (S+Aldo+Wort group). Laparotomy was used to establish an animal model of postoperative cognitive dysfunction. After surgery, mice were intraperitoneally injected with aldosterone (100 ug/kg,150 ug/kg,200 ug/kg) and / or wortmannin (1 mg/kg); One day before the sacrifice, mice were injected intraperitoneally with BrdU (100 mg / kg / time, 3 times in total). Mice were subjected to Morris water maze and field tests at 1, 3, 7, and 14 days after surgery. Immunofluorescence was used to detect the number of BrdU +, Nestin +, BrdU/Nestin + positive cells in the hippocampal dentate gyrus of mice at 1, 3, 7 and 14 days after surgery. Western-blot was used to detect PI3K/Akt/GSK-3β signaling pathway related proteins Akt, p-Akt, GSK-3β, P-GSK-3β expression. RESULTS Stress impairs the performance of aged mice in water maze and open field tests, reduces the number of BrdU/Nestin+ cells in the hippocampal dentate gyrus, and inhibits the phosphorylation of Akt and GSK-3β proteins in the hippocampus. Aldosterone treatment promotes P-Akt, P-GSK-3β protein expression and hippocampal neural stem cell proliferation, and improves postoperative cognitive dysfunction. However, wortmannin treatment significantly reversed these effects of aldosterone. CONCLUSIONS The mineralocorticoid receptor agonist aldosterone promotes the proliferation of hippocampal neural stem cells and improves cognitive dysfunction in aged mice after surgery, and the mechanism may be related to activation of PI3K/Akt/GSK-3β signaling.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zixia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mingyue Wu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
26
|
Farrar VS, Morales Gallardo J, Calisi RM. Prior parental experience attenuates hormonal stress responses and alters hippocampal glucocorticoid receptors in biparental rock doves. J Exp Biol 2022; 225:285344. [PMID: 36448917 DOI: 10.1242/jeb.244820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
In the face of challenges, animals must balance investments in reproductive effort versus their own survival. Physiologically, this trade-off may be mediated by glucocorticoid release by the hypothalamic-pituitary-adrenal axis and prolactin release from the pituitary to maintain parental care. The degree to which animals react to and recover from stressors likely affects maintenance of parental behavior and, ultimately, fitness. However, less is known about how gaining parental experience may alter hormonal stress responses and their underlying neuroendocrine mechanisms. To address this gap, we measured the corticosterone (CORT) and prolactin (PRL) stress response in individuals of both sexes of the biparental rock dove (Columba livia) that had never raised chicks versus birds that had fledged at least one chick. We measured both CORT and PRL at baseline and after an acute stressor (30 min restraint). We also measured negative feedback ability by administering dexamethasone, a synthetic glucocorticoid that suppresses CORT release, and measured CORT and PRL after 60 min. All hormones were measured when birds were not actively nesting to assess whether effects of parental experience extend beyond the breeding bout. Experienced birds had lower stress-induced and negative-feedback CORT, and higher stress-induced PRL than inexperienced birds. In a separate experiment, we measured glucocorticoid receptor subtype expression in the hippocampus, a key site of negative feedback regulation. Experienced birds showed higher glucocorticoid receptor expression than inexperienced controls, which may mediate their ability to attenuate CORT release. Together, these results shed light on potential mechanisms by which gaining experience may improve parental performance and fitness.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Jaime Morales Gallardo
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
27
|
Hong JY. Developmental Programming by Perinatal Glucocorticoids. Mol Cells 2022; 45:685-691. [PMID: 36254710 PMCID: PMC9589377 DOI: 10.14348/molcells.2022.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
28
|
Gimsa U, Brückmann R, Tuchscherer A, Tuchscherer M, Kanitz E. Early-life maternal deprivation affects the mother-offspring relationship in domestic pigs, as well as the neuroendocrine development and coping behavior of piglets. Front Behav Neurosci 2022; 16:980350. [PMID: 36275850 PMCID: PMC9582528 DOI: 10.3389/fnbeh.2022.980350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Early-life adversity may have programming effects on the psychological and physiological development of offspring. Domestic pigs (Sus scrofa) are an excellent model species for studying these effects because of their many physiological similarities to humans. Piglets from 10 sows were subjected to daily 2-h maternal deprivation on postnatal days (PND) 2–15 alone (DA) or in a group of littermates (DG). Control piglets (C) from 10 sows stayed with their mothers. Mother-offspring interaction, milk oxytocin, and cortisol were analyzed. An open-field/novel-object (OF/NO) test was performed with piglets on PNDs 16 and 40. Plasma cortisol and immune parameters were determined on PND 5 and 16. Two piglets from each group and sow were sacrificed on PND 20 and stress-related gene expression in the limbic system and prefrontal cortex (PFC), as well as splenic lymphocyte proliferative abilities, were examined. The milk cortisol of sows increased during the first separation of mother and offspring on the second day of lactation, whereas milk oxytocin did not change. The increase in cortisol by the OF/NO test on PND 16 was greater in C piglets than in DA and DG ones. DA piglets showed less agitated behavior than DG and C piglets in the OF/NO test at PND 16, but appeared more fearful. On PND 40, DA piglets showed more arousal than DG and C piglets in the OF/NO test. Neither plasma IgA nor N/L ratios in blood nor mitogen-induced proliferation of spleen lymphocytes were affected by deprivation. We found a higher mRNA expression of CRHR1 in the hypothalamus and a higher expression of MR in the hippocampus in DA piglets than in DG ones. The expression of GR, MR, and CRHR1 genes in the PFC was reduced by maternal deprivation, however, the expression of arginine vasopressin and oxytocin receptors was not affected. Repeated maternal deprivation induces sustained effects on stress reactivity and behavior of domestic piglets. Some of these effects were buffered by the presence of littermates. In addition, we found sex-specific differences in behavior and gene expression.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Ulrike Gimsa,
| | - Roberto Brückmann
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Armin Tuchscherer
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ellen Kanitz
- Psychophysiology Group, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
29
|
The infralimbic mineralocorticoid blockage prevents the stress-induced impairment of aversive memory extinction in rats. Transl Psychiatry 2022; 12:343. [PMID: 35999226 PMCID: PMC9399104 DOI: 10.1038/s41398-022-02118-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Individuals deal with adversity and return to a normal lifestyle when adversity ends. Nevertheless, in specific cases, traumas may be preceded by memory distortions in stress-related malaises, and memory extinction impairment is strictly associated with the symptoms of post-traumatic stress disorder. Glucocorticoids (GCs), the central stress mediator, target mineralocorticoid (MR) and glucocorticoid (GR) receptors and coordinate stress responses. Despite MRs being present in brain regions essential to cognition, emotions, and initial stress processing, such as the medial prefrontal cortex (mPFC), most studies attempt to elucidate the stress-induced deleterious actions of GCs via GR. Therefore, it is necessary to understand the relationship between stress, infralimbic mPFC (IL), and memory and how MR-mediated intracellular signaling influences this relationship and modulates memory extinction. We observed that acutely restraint-stressed male Wistar rats showed high corticosterone (CORT) levels, and previous intra-IL-spironolactone administration (a selective MR antagonist) decreased it 60 min after the stress started. Intra-IL-CORT118335, a novel mixed MR/GR selective modulator, increased CORT throughout stress exposure. Ten days after stress, all rats increased freezing in the memory retrieval test and acquired the aversive contextual memory. During the extinction test, intra-IL injection of spironolactone, but not CORT118335, prevented the stress-impaired memory extinction, suggesting that the IL-MR activity controls CORT concentration, and it is crucial to the establishment of late extinction impairment. Also, the concomitant GR full activation overrode MR blockage. It increased CORT levels leading to the stress-induced extinction memory impairment, reinforcing that the MR/GR balance is crucial to predicting stress-induced behavioral outcomes.
Collapse
|
30
|
Dai W, Yang M, Xia P, Xiao C, Huang S, Zhang Z, Cheng X, Li W, Jin J, Zhang J, Wu B, Zhang Y, Wu PH, Lin Y, Wu W, Zhao H, Zhang Y, Lin WJ, Ye X. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 2022; 13:4825. [PMID: 35974004 PMCID: PMC9381547 DOI: 10.1038/s41467-022-32556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder is one of the most common mental health conditions. Meningeal lymphatics are essential for drainage of molecules in the cerebrospinal fluid to the peripheral immune system. Their potential role in depression-like behaviour has not been investigated. Here, we show in mice, sub-chronic variable stress as a model of depression-like behaviour impairs meningeal lymphatics in females but not in males. Manipulations of meningeal lymphatics regulate the sex difference in the susceptibility to stress-induced depression- and anxiety-like behaviors in mice, as well as alterations of the medial prefrontal cortex and the ventral tegmental area, brain regions critical for emotional regulation. Together, our findings suggest meningeal lymphatic impairment contributes to susceptibility to stress in mice, and that restoration of the meningeal lymphatics might have potential for modulation of depression-like behaviour.
Collapse
Affiliation(s)
- Weiping Dai
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqian Yang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuying Huang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyun Zhang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Binghuo Wu
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yingying Zhang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei-Hui Wu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Chin JSR, Phan TAN, Albert LT, Keene AC, Duboué ER. Long lasting anxiety following early life stress is dependent on glucocorticoid signaling in zebrafish. Sci Rep 2022; 12:12826. [PMID: 35896563 PMCID: PMC9329305 DOI: 10.1038/s41598-022-16257-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic adversity in early childhood is associated with increased anxiety and a propensity for substance abuse later in adulthood, yet the effects of early life stress (ELS) on brain development remain poorly understood. The zebrafish, Danio rerio, is a powerful model for studying neurodevelopment and stress. Here, we describe a zebrafish model of ELS and identify a role for glucocorticoid signaling during a critical window in development that leads to long-term changes in brain function. Larval fish subjected to chronic stress in early development exhibited increased anxiety-like behavior and elevated glucocorticoid levels later in life. Increased stress-like behavior was only observed when fish were subjected to ELS within a precise time window in early development, revealing a temporal critical window of sensitivity. Moreover, enhanced anxiety-like behavior only emerges after two months post-ELS, revealing a developmentally specified delay in the effects of ELS. ELS leads to increased levels of baseline cortisol, and resulted in a dysregulation of cortisol receptors' mRNA expression, suggesting long-term effects on cortisol signaling. Together, these findings reveal a 'critical window' for ELS to affect developmental reprogramming of the glucocorticoid receptor pathway, resulting in chronic elevated stress.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Tram-Anh N Phan
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Lydia T Albert
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Alex C Keene
- College of Arts and Sciences, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA.
| |
Collapse
|
32
|
Vitousek MN, Houtz JL, Pipkin MA, Chang van Oordt DA, Hallinger KK, Uehling JJ, Zimmer C, Taff CC. Natural and experimental cold exposure in adulthood increase the sensitivity to future stressors in a free‐living songbird. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maren N. Vitousek
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Jennifer L. Houtz
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Monique A. Pipkin
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - David A. Chang van Oordt
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Kelly K. Hallinger
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
- Department of Biology Albion College Albion MI USA
| | - Jennifer J. Uehling
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Laboratoire d’Ethologie Expérimentale et Comparée, LEEC Université Sorbonne Paris Nord UR Villetaneuse France
| | - Conor C. Taff
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| |
Collapse
|
33
|
Kelly KR, Arrington LJ, Bernards JR, Jensen AE. Prolonged Extreme Cold Water Diving and the Acute Stress Response During Military Dive Training. Front Physiol 2022; 13:842612. [PMID: 35874531 PMCID: PMC9304957 DOI: 10.3389/fphys.2022.842612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cold water exposure poses a unique physiological challenge to the human body. Normally, water submersion increases activation of parasympathetic tone to induce bradycardia in order to compensate for hemodynamic shifts and reduce oxygen consumption by peripheral tissues. However, elevated stress, such as that which may occur due to prolonged cold exposure, may shift the sympatho-vagal balance towards sympathetic activation which may potentially negate the dive reflex and impact thermoregulation. Objective: To quantify the acute stress response during prolonged extreme cold water diving and to determine the influence of acute stress on thermoregulation. Materials and Methods: Twenty-one (n = 21) subjects tasked with cold water dive training participated. Divers donned standard diving equipment and fully submerged to a depth of ≈20 feet, in a pool chilled to 4°C, for a 9-h training exercise. Pre- and post-training measures included: core and skin temperature; salivary alpha amylase (AA), cortisol (CORT), osteocalcin (OCN), testosterone (TEST) and dehydroepiandosterone (DHEA); body weight; blood glucose, lactate, and ketones. Results: Core, skin, and extremity temperature decreased (p < 0.001) over the 9-h dive; however, core temperature was maintained above the clinical threshold for hypothermia and was not correlated to body size (p = 0.595). There was a significant increase in AA (p < 0.001) and OCN (p = 0.021) and a significant decrease in TEST (p = 0.003) over the duration of the dive. An indirect correlation between changes in cortisol concentrations and changes in foot temperature (ρ = -0.5,p = 0.042) were observed. There was a significant positive correlation between baseline OCN and change in hand temperature (ρ = 0.66, p = 0.044) and significant indirect correlation between changes in OCN concentrations and changes in hand temperature (ρ = -0.59, p = 0.043). Conclusion: These data suggest that long-duration, cold water diving initiates a stress response—as measurable by salivary stress biomarkers—and that peripheral skin temperature decreases over the course of these dives. Cumulatively, these data suggest that there is a relationship between the acute stress response and peripheral thermoregulation.
Collapse
Affiliation(s)
- Karen R. Kelly
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- *Correspondence: Karen R. Kelly,
| | - Laura J. Arrington
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| | - Jake R. Bernards
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| | - Andrew E. Jensen
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| |
Collapse
|
34
|
Jõgi AL, Pakarinen E, Lerkkanen MK. Teachers' physiological and self-reported stress, teaching practices and students' learning outcomes in Grade 1. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2022; 93 Suppl 1:211-226. [PMID: 35774026 DOI: 10.1111/bjep.12529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Teachers' self-reported stress is related to the quality of teacher-student interactions and students' learning outcomes. However, it is unclear if teachers' physiological stress is related to child-centred teaching practices in the classroom and whether teaching practices mediate the link between teachers' stress and students' learning outcomes. AIMS We studied the effect of teachers' physiological stress and self-reported stress on their teaching practices and thereby on students' learning outcomes in math. SAMPLE A total of 53 classroom teachers and 866 Grade 1 students participated in the study. METHODS Salivary cortisol in the middle of the school day and cortisol slope from morning peak to evening were used as indicators of teachers' physiological stress, in addition to self-reported teaching-related stress. Teaching practices were observed with the ECCOM instrument. Students' math skills controlled for gender and previous skills were used as a measure of learning outcomes. Data were analysed with a two-level SEM. RESULTS Teachers' physiological stress did not have an effect on teaching practices or students' math skills. Teachers reporting less stress used relatively more child-centred teaching practices compared with teacher-directed ones. These practices had a marginal effect on classroom-level differences in the gain of students' math skills in Grade 1. There was neither a direct nor indirect effect from teachers' stress on students' math skills. Altogether, our model explained 77% of classroom-level variance in math skills. CONCLUSIONS Teachers' self-reported stress has an effect on their teaching practices, which, in turn, have a marginal effect on students' learning outcomes.
Collapse
Affiliation(s)
- Anna-Liisa Jõgi
- Department of Teacher Education, University of Jyväskylä, Jyväskylä, Finland.,School of Educational Sciences, Tallinn University, Tallinn, Estonia
| | - Eija Pakarinen
- Department of Teacher Education, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
35
|
Pharmacological Implications of Adjusting Abnormal Fear Memory: Towards the Treatment of Post-Traumatic Stress Disorder. Pharmaceuticals (Basel) 2022; 15:ph15070788. [PMID: 35890087 PMCID: PMC9322538 DOI: 10.3390/ph15070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a unique clinical mental abnormality presenting a cluster of symptoms in which patients primarily experience flashbacks, nightmares and uncontrollable thoughts about the event that triggered their PTSD. Patients with PTSD may also have comorbid depression and anxiety in an intractable and long-term course, which makes establishing a comprehensive treatment plan difficult and complicated. The present article reviews current pharmacological manipulations for adjusting abnormal fear memory. The roles of the central monoaminergic systems (including serotonin, norepinephrine and dopamine) within the fear circuit areas and the involvement of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) are explored based on attempts to integrate current clinical and preclinical basic studies. In this review, we explain how these therapeutic paradigms function based on their connections to stages of the abnormal fear memory process from condition to extinction. This may provide useful translational interpretations for clinicians to manage PTSD.
Collapse
|
36
|
Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022; 16:782154. [PMID: 35573445 PMCID: PMC9097078 DOI: 10.3389/fnint.2022.782154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Bullying victimization is a form of psychological stress that is associated with poor outcomes in the areas of mental health and learning. Although the emotional maladjustment and memory impairment following interpersonal stress are well documented, the mechanisms of complex cerebral dysfunctions have neither been outlined nor studied in depth in the context of childhood bullying victimization. As a contribution to the cross-disciplinary field of developmental psychology and neuroscience, we review the neuropathophysiology of early life stress, as well as general psychological stress to synthesize the data and clarify the versatile dynamics within neuronal networks linked to bullying victimization. The stress-induced neuropsychological cascade and associated cerebral networks with a focus on cognitive and emotional convergence are described. The main findings are that stress-evoked neuroendocrine reactivity relates to neuromodulation and limbic dysregulation that hinder emotion processing and executive functioning such as semantic cognition, cognitive flexibility, and learning. Developmental aspects and interacting neural mechanisms linked to distressed cognitive and emotional processing are pinpointed and potential theory-of-mind nuances in targets of bullying are presented. The results show that childhood stress psychopathology is associated with a complex interplay where the major role belongs to, but is not limited to, the amygdala, fusiform gyrus, insula, striatum, and prefrontal cortex. This interplay contributes to the sensitivity toward facial expressions, poor cognitive reasoning, and distress that affect behavioral modulation and emotion regulation. We integrate the data on major brain dynamics in stress neuroactivity that can be associated with childhood psychopathology to help inform future studies that are focused on the treatment and prevention of psychiatric disorders and learning problems in bullied children and adolescents.
Collapse
|
37
|
Bioletto F, Bollati M, Lopez C, Arata S, Procopio M, Ponzetto F, Ghigo E, Maccario M, Parasiliti-Caprino M. Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight. Int J Mol Sci 2022; 23:ijms23094803. [PMID: 35563192 PMCID: PMC9100181 DOI: 10.3390/ijms23094803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Primary aldosteronism (PA) is a pathological condition characterized by an excessive aldosterone secretion; once thought to be rare, PA is now recognized as the most common cause of secondary hypertension. Its prevalence increases with the severity of hypertension, reaching up to 29.1% in patients with resistant hypertension (RH). Both PA and RH are "high-risk phenotypes", associated with increased cardiovascular morbidity and mortality compared to non-PA and non-RH patients. Aldosterone excess, as occurs in PA, can contribute to the development of a RH phenotype through several mechanisms. First, inappropriate aldosterone levels with respect to the hydro-electrolytic status of the individual can cause salt retention and volume expansion by inducing sodium and water reabsorption in the kidney. Moreover, a growing body of evidence has highlighted the detrimental consequences of "non-classical" effects of aldosterone in several target tissues. Aldosterone-induced vascular remodeling, sympathetic overactivity, insulin resistance, and adipose tissue dysfunction can further contribute to the worsening of arterial hypertension and to the development of drug-resistance. In addition, the pro-oxidative, pro-fibrotic, and pro-inflammatory effects of aldosterone may aggravate end-organ damage, thereby perpetuating a vicious cycle that eventually leads to a more severe hypertensive phenotype. Finally, neither the pathophysiological mechanisms mediating aldosterone-driven blood pressure rise, nor those mediating aldosterone-driven end-organ damage, are specifically blocked by standard first-line anti-hypertensive drugs, which might further account for the drug-resistant phenotype that frequently characterizes PA patients.
Collapse
|
38
|
Finger JW, Kelley MD, Zhang Y, Ka C, Hamilton MT, Elsey RM, Kavazis A, Mendonca MT. Relationships of Brain Glucocorticoid Receptors and Commonly Used Stress Parameters with Body Condition of Juvenile American Alligators (Alligator mississippiensis). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2022. [DOI: 10.2994/sajh-d-20-00008.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- John W. Finger
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Meghan D. Kelley
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yufeng Zhang
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Cheikhouna Ka
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Matthew T. Hamilton
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - Andreas Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Mary T. Mendonca
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
39
|
Lobo JJ, Ayoub LJ, Moayedi M, Linnstaedt SD. Hippocampal volume, FKBP5 genetic risk alleles, and childhood trauma interact to increase vulnerability to chronic multisite musculoskeletal pain. Sci Rep 2022; 12:6511. [PMID: 35444168 PMCID: PMC9021300 DOI: 10.1038/s41598-022-10411-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic multisite musculoskeletal pain (CMP) is common and highly morbid. However, vulnerability factors for CMP are poorly understood. Previous studies have independently shown that both small hippocampal brain volume and genetic risk alleles in a key stress system gene, FKBP5, increase vulnerability for chronic pain. However, little is known regarding the relationship between these factors and CMP. Here we tested the hypothesis that both small hippocampal brain volume and FKBP5 genetic risk, assessed using the tagging risk variant, FKBP5rs3800373, increase vulnerability for CMP. We used participant data from 36,822 individuals with available genetic, neuroimaging, and chronic pain data in the UK Biobank study. Although no main effects were observed, the interaction between FKBP5 genetic risk and right hippocampal volume was associated with CMP severity (β = -0.020, praw = 0.002, padj = 0.01). In secondary analyses, severity of childhood trauma further moderated the relationship between FKBP5 genetic risk, right hippocampal brain volume, and CMP (β = -0.081, p = 0.016). This study provides novel evidence that both FKBP5 genetic risk and childhood trauma moderate the relationship between right hippocampal brain volume and CMP. The data increases our understanding of vulnerability factors for CMP and builds a foundation for further work assessing causal relationships that might drive CMP development.
Collapse
Affiliation(s)
- Jarred J Lobo
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Massieh Moayedi
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, 123 Edward Street, Suite 501B, Toronto, ON, M5G 1G6, Canada.
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
41
|
Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry 2022; 12:109. [PMID: 35296634 PMCID: PMC8927334 DOI: 10.1038/s41398-022-01864-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Collapse
|
42
|
Huang Y, Li D, Wang C, Sun N, Zhou WX. Stachyose Alleviates Corticosterone-Induced Long-Term Potentiation Impairment via the Gut–Brain Axis. Front Pharmacol 2022; 13:799244. [PMID: 35370743 PMCID: PMC8965576 DOI: 10.3389/fphar.2022.799244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Stress can induce learning and memory impairment; corticosterone is often used to study the effects and mechanisms of stress in animal models. Long-term potentiation (LTP) has been widely used for tackling the mechanisms of memory. Liuwei Dihuang decoction-active fraction combination (LW-AFC) can improve stress-induced LTP and cognition impairment; stachyose is an oligosaccharide in LW-AFC. The effects and mechanisms of stachyose on stress are unknown. In this study, stachyose showed protective effects against LTP impairment by corticosterone in vivo only via intragastric administration for 7 consecutive days, but there was little effect even after direct intracerebroventricular injection; the protective effect of stachyose could be canceled by non-absorbable antibiotics (ATB) which disturbed gut flora. 16S rRNA sequencing, alpha diversity, and principal coordinate analysis (PCoA) revealed that the gut flora in corticosterone-treated mice was disturbed and stachyose could improve corticosterone-induced gut flora disturbance. Bacteroidetes were decreased and Deferribacteres were increased significantly in corticosterone-treated mice, and stachyose restored Bacteroidetes and Deferribacteres to the normal level. D-serine, a coactivator of NMDA receptors, plays an important role in synaptic plasticity and cognition. Here, corticosterone had little effect on the content of D-serine and L-serine (the precursor of D-serine), but it reduced the D-serine release-related proteins, Na+-independent alanine–serine–cysteine transporter-1 (ASC-1), and vesicle-associated membrane protein 2 (VAMP2) significantly in hippocampus; stachyose significantly increased ASC-1 and VAMP2 in corticosterone-treated mice, and ATB blocked stachyose’s effects on ASC-1 and VAMP2. NMDA receptors co-agonists L-serine, D-serine, and glycine significantly improved LTP impairment by corticosterone. These results indicated that stachyose might indirectly increase D-serine release through the gut–brain axis to improve LTP impairment by corticosterone in the hippocampus in vivo.
Collapse
Affiliation(s)
- Yan Huang
- *Correspondence: Yan Huang, ; Wen-Xia Zhou,
| | | | | | | | | |
Collapse
|
43
|
Kostrzewa-Nowak D, Nowak R, Kubaszewska J, Gos W. Interdisciplinary Approach to Biological and Health Implications in Selected Professional Competences. Brain Sci 2022; 12:brainsci12020236. [PMID: 35203999 PMCID: PMC8870650 DOI: 10.3390/brainsci12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023] Open
Abstract
Everyday life’s hygiene and professional realities, especially in economically developed countries, indicate the need to modify the standards of pro-health programs as well as modern hygiene and work ergonomics programs. These observations are based on the problem of premature death caused by civilization diseases. The biological mechanisms associated with financial risk susceptibility are well described, but there is little data explaining the biological basis of neuroaccounting. Therefore, the aim of the study was to present relationships between personality traits, cognitive competences and biological factors shaping behavioral conditions in a multidisciplinary aspect. This critical review paper is an attempt to compile biological and psychological factors influencing the development of professional competences, especially decent in the area of accounting and finance. We analyzed existing literature from wide range of scientific disciplines (including economics, psychology, behavioral genetics) to create background to pursuit multidisciplinary research models in the field of neuroaccounting. This would help in pointing the best genetically based behavioral profile of future successful financial and accounting specialists.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
- Correspondence:
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Joanna Kubaszewska
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Waldemar Gos
- Institute of Economy and Finance, University of Szczecin, 64 Mickiewicza St., 71-101 Szczecin, Poland;
| |
Collapse
|
44
|
Baldwin S, Bennell C, Blaskovits B, Brown A, Jenkins B, Lawrence C, McGale H, Semple T, Andersen JP. A Reasonable Officer: Examining the Relationships Among Stress, Training, and Performance in a Highly Realistic Lethal Force Scenario. Front Psychol 2022; 12:759132. [PMID: 35111100 PMCID: PMC8803048 DOI: 10.3389/fpsyg.2021.759132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Under conditions of physiological stress, officers are sometimes required to make split-second life-or-death decisions, where deficits in performance can have tragic outcomes, including serious injury or death and strained police-community relations. The current study assessed the performance of 122 active-duty police officers during a realistic lethal force scenario to examine whether performance was affected by the officer's level of operational skills training, years of police service, and stress reactivity. Results demonstrated that the scenario produced elevated heart rates (i.e., 150 beats per minute), as well as perceptual and cognitive distortions, such as tunnel vision, commensurate with those observed in naturalistic use of force encounters. The average performance rating from the scenario was 59%, with 27% of participants making at least one lethal force error. Elevated stress reactivity was a predictor of poorer performance and increased lethal force errors. Level of training and years of police service had differential and complex effects on both performance and lethal force errors. Our results illustrate the need to critically reflect on police training practices and continue to make evidence-based improvements to training. The findings also highlight that while training may significantly improve outcomes, flawless performance is likely not probable, given the limits of human performance under stress. Implications for the objective reasonableness standard, which is used to assess the appropriateness of force in courts of law, are discussed.
Collapse
Affiliation(s)
- Simon Baldwin
- Department of Psychology, Carleton University, Ottawa, ON, Canada
- Royal Canadian Mounted Police, Ottawa, ON, Canada
| | - Craig Bennell
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | | | - Andrew Brown
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Bryce Jenkins
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Chris Lawrence
- Police Research Lab, Carleton University, Ottawa, ON, Canada
| | - Heather McGale
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Tori Semple
- Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Judith P. Andersen
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
45
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
46
|
Faught E, Vijayan MM. Coordinated Action of Corticotropin-Releasing Hormone and Cortisol Shapes the Acute Stress-Induced Behavioural Response in Zebrafish. Neuroendocrinology 2022; 112:74-87. [PMID: 33503614 DOI: 10.1159/000514778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stress response mediated by the hypothalamus-pituitary-adrenal (HPA) axis activation is highly conserved in vertebrates. Hyperactivity is one such established acute stress response, and corticotropin-releasing hormone (CRH), the primary step in HPA activation, signalling has been implicated in this stressor-mediated behaviour. However, whether CRH mediates the acute behavioural effects either alone or in conjunction with glucocorticoids (GCs) are far from clear. We hypothesized that the CRH receptor 1 (CRHR1)-mediated rise in GCs post-stress is necessary for the initiation and maintenance of the acute stress-related behaviour. METHODS We first generated zebrafish (Danio rerio) with a mutation in the CRHR1 gene (CRHR1-KO) to assess the function of CRH. The behavioural readout utilized for this study was the locomotor activity of larval zebrafish in response to an acute light exposure, a protocol that freezes the larvae in response to the light stimulus. To test whether cortisol signalling is involved in the stress-mediated hyperactivity, we treated wildtype fish with metyrapone (MET), an inhibitor of 11β-hydroxylase, to suppress cortisol production. The temporal role for cortisol signalling in the stress-related hyperactivity was tested using the glucocorticoid receptor knockout (GRKO) and mineralocorticoid receptor knockout (MRKO) zebrafish mutants. RESULTS CRHR1-KO larvae did not increase cortisol, the principal GC in teleosts, post-stress, confirming a functional knockout. An acute stress resulted in the hyperactivity of the larvae in light at 15, 60, and 240 min post-stress, and this was absent in CRHR1-KO larvae. Addition of MET effectively blocked the attendant rise in cortisol post-stress; however, the stress-mediated hyperactivity was inhibited only at 60 and 240 min but not at 15 min post-stress. Addition of human CRH peptide caused hyperactivity at 15 min, and this response was also abolished in the CRHR1-KO mutants. The stress-induced hyperactivity was absent in the MRKO fish, while GRKO mutants showed transient effects. CONCLUSIONS The results suggest that the stress-induced hyperactivity is induced by the CRH/CRHR1 system, while the temporal activation of cortisol production and the associated GR/MR signalling is essential for prolonging the stressor-induced hyperactivity. This study underscores the importance of systems-level analysis to assess stress responsivity.
Collapse
Affiliation(s)
- Erin Faught
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
47
|
Keil MF, Leahu A, Rescigno M, Myles J, Stratakis CA. Family environment and development in children adopted from institutionalized care. Pediatr Res 2022; 91:1562-1570. [PMID: 34040161 PMCID: PMC8617065 DOI: 10.1038/s41390-020-01325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND After adoption, children exposed to institutionalized care show significant improvement, but incomplete recovery of growth and developmental milestones. There is a paucity of data regarding risk and protective factors in children adopted from institutionalized care. This prospective study followed children recently adopted from institutionalized care to investigate the relationship between family environment, executive function, and behavioral outcomes. METHODS Anthropometric measurements, physical examination, endocrine and bone age evaluations, neurocognitive testing, and behavioral questionnaires were evaluated over a 2-year period with children adopted from institutionalized care and non-adopted controls. RESULTS Adopted children had significant deficits in growth, cognitive, and developmental measurements compared to controls that improved; however, residual deficits remained. Family cohesiveness and expressiveness were protective influences, associated with less behavioral problems, while family conflict and greater emphasis on rules were associated with greater risk for executive dysfunction. CONCLUSIONS Our data suggest that a cohesive and expressive family environment moderated the effect of pre-adoption adversity on cognitive and behavioral development in toddlers, while family conflict and greater emphasis on rules were associated with greater risk for executive dysfunction. Early assessment of child temperament and parenting context may serve to optimize the fit between parenting style, family environment, and the child's development. IMPACT Children who experience institutionalized care are at increased risk for significant deficits in developmental, cognitive, and social functioning associated with a disruption in the development of the prefrontal cortex. Aspects of the family caregiving environment moderate the effect of early life social deprivation in children. Family cohesiveness and expressiveness were protective influences, while family conflict and greater emphasis on rules were associated with a greater risk for executive dysfunction problems. This study should be viewed as preliminary data to be referenced by larger studies investigating developmental and behavioral outcomes of children adopted from institutional care.
Collapse
Affiliation(s)
- Margaret F. Keil
- grid.94365.3d0000 0001 2297 5165Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Adela Leahu
- grid.94365.3d0000 0001 2297 5165Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Megan Rescigno
- grid.266818.30000 0004 1936 914XUniversity of Nevada School of Medicine, Reno, NV USA
| | - Jennifer Myles
- grid.94365.3d0000 0001 2297 5165Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Constantine A. Stratakis
- grid.94365.3d0000 0001 2297 5165Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
48
|
Zheng Y, Garrett ME, Sun D, Clarke-Rubright EK, Haswell CC, Maihofer AX, Elman JA, Franz CE, Lyons MJ, Kremen WS, Peverill M, Sambrook K, McLaughlin KA, Davenport ND, Disner S, Sponheim SR, Andrew E, Korgaonkar M, Bryant R, Varkevisser T, Geuze E, Coleman J, Beckham JC, Kimbrel NA, Sullivan D, Miller M, Hayes J, Verfaellie M, Wolf E, Salat D, Spielberg JM, Milberg W, McGlinchey R, Dennis EL, Thompson PM, Medland S, Jahanshad N, Nievergelt CM, Ashley-Koch AE, Logue MW, Morey RA. Trauma and posttraumatic stress disorder modulate polygenic predictors of hippocampal and amygdala volume. Transl Psychiatry 2021; 11:637. [PMID: 34916497 PMCID: PMC8677780 DOI: 10.1038/s41398-021-01707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The volume of subcortical structures represents a reliable, quantitative, and objective phenotype that captures genetic effects, environmental effects such as trauma, and disease effects such as posttraumatic stress disorder (PTSD). Trauma and PTSD represent potent exposures that may interact with genetic markers to influence brain structure and function. Genetic variants, associated with subcortical volumes in two large normative discovery samples, were used to compute polygenic scores (PGS) for the volume of seven subcortical structures. These were applied to a target sample enriched for childhood trauma and PTSD. Subcortical volume PGS from the discovery sample were strongly associated in our trauma/PTSD enriched sample (n = 7580) with respective subcortical volumes of the hippocampus (p = 1.10 × 10-20), thalamus (p = 7.46 × 10-10), caudate (p = 1.97 × 10-18), putamen (p = 1.7 × 10-12), and nucleus accumbens (p = 1.99 × 10-7). We found a significant association between the hippocampal volume PGS and hippocampal volume in control subjects from our sample, but was absent in individuals with PTSD (GxE; (beta = -0.10, p = 0.027)). This significant GxE (PGS × PTSD) relationship persisted (p < 1 × 10-19) in four out of five threshold peaks (0.024, 0.133, 0.487, 0.730, and 0.889) used to calculate hippocampal volume PGSs. We detected similar GxE (G × ChildTrauma) relationships in the amygdala for exposure to childhood trauma (rs4702973; p = 2.16 × 10-7) or PTSD (rs10861272; p = 1.78 × 10-6) in the CHST11 gene. The hippocampus and amygdala are pivotal brain structures in mediating PTSD symptomatology. Trauma exposure and PTSD modulate the effect of polygenic markers on hippocampal volume (GxE) and the amygdala volume PGS is associated with PTSD risk, which supports the role of amygdala volume as a risk factor for PTSD.
Collapse
Affiliation(s)
- Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Delin Sun
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Emily K Clarke-Rubright
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Courtney C Haswell
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Adam X Maihofer
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kelly Sambrook
- Department of Psychology, Harvard University, Boston, MA, USA
| | | | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Tim Varkevisser
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Jonathan Coleman
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Jean C Beckham
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Nathan A Kimbrel
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Danielle Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Jasmeet Hayes
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mieke Verfaellie
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Erika Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Salat
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jeffrey M Spielberg
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Rajendra A Morey
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
49
|
Bastianini S, Lo Martire V, Alvente S, Berteotti C, Matteoli G, Rullo L, Stamatakos S, Silvani A, Candeletti S, Romualdi P, Cohen G, Zoccoli G. Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice. Sci Rep 2021; 11:23897. [PMID: 34903845 PMCID: PMC8668915 DOI: 10.1038/s41598-021-03468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life.
Collapse
Affiliation(s)
- Stefano Bastianini
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Viviana Lo Martire
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Sara Alvente
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Chiara Berteotti
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Gabriele Matteoli
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Laura Rullo
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Serena Stamatakos
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- grid.6292.f0000 0004 1757 1758PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Sanzio Candeletti
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gary Cohen
- grid.4714.60000 0004 1937 0626Department of Women and Child Health, Karolinska Institutet, Stockholm, Sweden ,grid.412703.30000 0004 0587 9093Centre for Sleep Health and Research, Sleep Investigation Laboratory, Royal North Shore Hospital, Sydney, Australia
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
50
|
Tan X, Zhang L, Wang D, Guan S, Lu P, Xu X, Xu H. Influence of early life stress on depression: from the perspective of neuroendocrine to the participation of gut microbiota. Aging (Albany NY) 2021; 13:25588-25601. [PMID: 34890365 PMCID: PMC8714134 DOI: 10.18632/aging.203746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Depression is the most common mental disorder and has become a heavy burden in modern society. Clinical studies have identified early life stress as one of the high-risk factors for increased susceptibility to depression. Alteration of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress is one of the key risk factors for depression susceptibility related to early life stress. Laboratory animal studies have demonstrated that maternal separation (MS) for extended periods elicits HPA axis changes. These changes persist into adulthood and resemble those present in depressed adult individuals, including hyperactivity of the HPA axis. In addition, there is growing evidence that inflammation plays an important role in depression susceptibility concerned with early life stress. Individuals that have experienced MS have higher levels of pro-inflammatory cytokines and are susceptible to depression. Recently, it has been found that the gut microbiota plays an important role in regulating behavior and is also associated with depression. The translocation of gut microbiota and the change of gut microbiota composition caused by early stress may be a reason. In this review, we discussed the mechanisms by which early life stress contributes to the development of depression in terms of these factors. These studies have facilitated a systematic understanding of the pathogenesis of depression related to early life stress and will provide new ideas for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaodi Guan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|