1
|
Hu S, Hu Y, Tan Z, Zhou C, Zhang C, Yin S, Chen X, Chen K, Wang L, Chen L. Repurposing the multiple sclerosis drug Siponimod for osteoporosis treatment. Eur J Pharmacol 2024; 974:176630. [PMID: 38692426 DOI: 10.1016/j.ejphar.2024.176630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sitao Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangyang Hu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zenglin Tan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengyu Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheng Yin
- School of Molecular Sciences, The University of Western Australia, Perth, Australia; The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojun Chen
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Kai Chen
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lei Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
3
|
Lee SH, Kim JS, Koh JM. The Fracture Risk Assessment Tool Probability and Trabecular Bone Score Mediate the Relationship between Sphingosine 1-phosphate Levels and Fracture Risk. J Bone Metab 2023; 30:355-364. [PMID: 38073269 PMCID: PMC10721379 DOI: 10.11005/jbm.2023.30.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The sphingosine 1-phosphate (S1P) concentration is a potential biomarker of osteoporotic fracture and is associated with both the fracture risk assessment tool (FRAX) probability and trabecular bone score (TBS), which are well-known predictors of fracture. We sought to estimate the effect of the S1P concentration on fracture risk using the FRAX probability and TBS as mediators. METHODS Plasma S1P concentrations, FRAX variables, and TBSs were measured in 66 postmenopausal women with fractures and 273 postmenopausal women without fractures. Associations between S1P concentration, FRAX probability, TBS, and fracture risk were analyzed using correlation, logistic regression, and mediation analyses. RESULTS Subjects in the highest S1P concentration tertile had a higher fracture risk (odds ratio [OR], 5.09; 95% confidence interval [CI], 2.22-11.67) than those in the lowest S1P concentration tertile before adjustment. Subjects in the highest FRAX probability tertile had a higher fracture risk (OR, 14.59; 95% CI, 5.01-42.53) than those in the lowest FRAX probability tertile before adjustment. Subjects in the lowest TBS tertile had a higher fracture risk (OR, 4.76; 95% CI, 2.28-9.93) than those in the highest TBS tertile before adjustment. After adjustment for FRAX probability and TBS, the highest S1P concentration tertile was still associated with a higher fracture risk (OR, 3.13; 95% CI, 1.28-7.66). The FRAX probability and TBS accounted for 32.6% and 21.7%, respectively, of the relationship between the S1P concentration and fracture risk. CONCLUSIONS The relationship between the circulating S1P concentration and fracture risk was partly mediated by the FRAX probability, bone microarchitecture, and other factors.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
4
|
Grewe JM, Knapstein PR, Donat A, Jiang S, Smit DJ, Xie W, Keller J. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res 2022; 10:34. [PMID: 35396384 PMCID: PMC8993882 DOI: 10.1038/s41413-022-00205-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic bone disease that affects more than 200 million people worldwide and is caused by the disruption of the equilibrium between osteoclastic bone resorption and osteoblastic bone formation. Sphingosine-1-phosphate (S1P) is a natural, bioactive sphingolipid that has been shown to play a major role in cardiovascular and immunological pathologies by regulating biological and cellular processes, including migration, differentiation, proliferation and survival. Recent studies also suggest a central role for S1P in bone diseases, including osteoporosis; however, the effects of S1P, particularly in bone metabolism, remain to be further elucidated. In this review, we summarize the available literature on the role of S1P in bone metabolism with a focus on osteoporosis. On the cellular level, S1P acts as an osteoclast-osteoblast coupling factor to promote osteoblast proliferation and bone formation. Moreover, the recruitment of osteoclast precursors to resorption sites is regulated by the interplay of S1P gradients and S1P receptor expression. From a clinical perspective, increasing evidence suggests that systemically elevated S1P blood levels may serve as an independent risk factor for osteoporosis-related fractures. Taken together, S1P signaling is a potential therapeutic target and may serve as a novel biomarker in patients with systemic bone disease.
Collapse
Affiliation(s)
- Justus M Grewe
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Clinic and Polyclinic for Vascular Medicine, University Heart Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paul-Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders. Int J Mol Sci 2022; 23:ijms23073427. [PMID: 35408784 PMCID: PMC8998661 DOI: 10.3390/ijms23073427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.
Collapse
|
6
|
Lee SH, Lee JY, Lim KH, Lee YS, Kim SH, Choi S, Cho SH, Kim JS, Koh JM. Associations of Circulating Levels of Sphingosine 1-Phosphate with the Trabecular Bone Score and Bone Mineral Density in Postmenopausal Women. J Clin Densitom 2021; 24:414-421. [PMID: 33846060 DOI: 10.1016/j.jocd.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
Despite the potential roles of sphingosine 1-phosphate (S1P) as a biomarker of osteoporotic fracture (OF), independent of bone mineral density (BMD) and clinical risk factors (CRFs), its association with bone microarchitecture, a key determinant of bone quality, have not been studied yet. We here investigated the association of S1P with the trabecular bone score (TBS), an index of the bone microarchitecture. The plasma S1P concentrations, TBS, and BMD were measured in the 339 postmenopausal women. The S1P level was inversely correlated with the TBS (γ=-0.096, p=0.049) and BMD at the femur neck (FN-BMD: γ=-0.122, p=0.025) and tended to be inversely correlated the BMD at the total hip (TH-BMD: γ=-0.096, p=0.079), but not at the lumbar spine (LS-BMD). After adjusting for fracture risk assessment tool probabilities of major OF from CRFs, the S1P level was inversely associated with the TBS (β=-0.096, p=0.049) and FN-BMD (β=-0.118, p=0.025) and tended to be inversely associated with the TH-BMD (β=-0.092, p=0.083). Compared with subjects in the lowest S1P tertile, those in the highest S1P tertile had a significantly lower TBS (p=0.032) and BMD at femur (p=0.004-0.036). These findings indicated that a high S1P level in postmenopausal women was inversely associated with the both bone mass and microarchitecture, reflecting the compromised bone strength.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul 05505, Republic of Korea
| | - Seong-Hee Kim
- SEJONG BIOMED CO., LTD., Paju 10880, Republic of Korea
| | - Sooyoung Choi
- SEJONG BIOMED CO., LTD., Paju 10880, Republic of Korea
| | | | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
7
|
Matsuzaki E, Minakami M, Matsumoto N, Anan H. Dental regenerative therapy targeting sphingosine-1-phosphate (S1P) signaling pathway in endodontics. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:127-134. [PMID: 33088365 PMCID: PMC7567953 DOI: 10.1016/j.jdsr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The establishment of regenerative therapy in endodontics targeting the dentin-pulp complex, cementum, periodontal ligament tissue, and alveolar bone will provide valuable information to preserve teeth. It is well known that the application of stem cells such as induced pluripotent stem cells, embryonic stem cells, and somatic stem cells is effective in regenerative medicine. There are many somatic stem cells in teeth and periodontal tissues including dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal ligament stem cells. Particularly, several studies have reported the regeneration of clinical pulp tissue and alveolar bone by DPSCs transplantation. However, further scientific issues for practical implementation remain to be addressed. Sphingosine-1-phosphate (S1P) acts as a bioactive signaling molecule that has multiple biological functions including cellular differentiation, and has been shown to be responsible for bone resorption and formation. Here we discuss a strategy for bone regeneration and a possibility for regenerative endodontics targeting S1P signaling pathway as one of approaches for induction of regeneration by improving the regenerative capacity of endogenous cells. SCIENTIFIC FIELD OF DENTAL SCIENCE Endodontology.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
8
|
Lee SH, Lee JY, Lim KH, Lee YS, Kim SH, Choi S, Cho SH, Koh JM. High Circulating Sphingosine 1-Phosphate is a Risk Factor for Osteoporotic Fracture Independent of Fracture Risk Assessment Tool. Calcif Tissue Int 2020; 107:362-370. [PMID: 32719936 DOI: 10.1007/s00223-020-00731-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023]
Abstract
Circulating sphingosine 1-phosphate (S1P) levels may be a biomarker for osteoporotic fracture (OF). This study assessed whether the addition of S1P levels to the fracture risk assessment tool (FRAX) could improve predictability of OF risk. Plasma S1P concentrations and FRAX variables were measured in 81 subjects with and 341 subjects without OF. S1P levels were higher in subjects with than those without OF (3.11 ± 0.13 μmol/L vs. 2.65 ± 0.61 μmol/L, P = 0.001). Higher S1P levels were associated with a higher likelihood of OF (odds ratio [OR] = 1.33, 95% confidence interval [CI] = 1.05-1.68), even after adjusting for FRAX probabilities. Compared with the lowest S1P tertile, subjects in the middle (OR = 3.37, 95% CI = 1.58-7.22) and highest (OR = 3.65, 95% CI = 1.66-8.03) S1P tertiles had higher rates of OF after adjustment. The addition of S1P levels to FRAX probabilities improved the area under the receiver-operating characteristics curve (AUC) for OF, from 0.708 to 0.769 (P = 0.013), as well as enhancing category-free net reclassification improvement (NRI = 0.504, 95% CI = 0.271-0.737, P < 0.001) and integrated discrimination improvement (IDI = 0.044, 95% CI = 0.022-0.065, P < 0.001). Adding S1P levels to FRAX probabilities especially in 222 subjects with osteopenia having a FRAX probability of 3.66-20.0% markedly improved the AUC for OF from 0.630 to 0.741 (P = 0.012), as well as significantly enhancing category-free NRI (0.571, 95% CI = 0.221-0.922, P = 0.001) and IDI (0.060, 95% CI = 0.023-0.097, P = 0.002). S1P is a consistent and significant risk factor of OF independent of FRAX, especially in subjects with osteopenia and low FRAX probability.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
| | - Seong-Hee Kim
- Sejong Biomed Co., Ltd., Paju, 10880, Republic of Korea
| | - Sooyoung Choi
- Sejong Biomed Co., Ltd., Paju, 10880, Republic of Korea
| | | | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Song HE, Lee SH, Kim SJ, Kim BJ, Yoo HJ, Koh JM. Association of circulating levels of total and protein-bound sphingosine 1-phosphate with osteoporotic fracture. J Investig Med 2020; 68:1295-1299. [DOI: 10.1136/jim-2020-001322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 11/03/2022]
Abstract
The biological activity and effects of circulating sphingosine 1-phosphate (S1P) might be dependent on the carrier protein. Although S1P is known to be a biomarker for osteoporotic fracture (OF), its role according to its carrier protein (high-density lipoprotein (HDL), low-density lipoprotein (LDL), or albumin) has not yet been studied. We measured the protein-bound S1P levels and bone mineral density (BMD) in 58 postmenopausal women with OF and 58 age-matched and body mass index–matched postmenopausal women without OF. Albumin-bound S1P was the most abundant. Before adjustment, women with OF had higher total S1P (p=0.046) and albumin-bound S1P (p=0.026) levels than those without OF, but there was no difference in the levels of HDL-bound or LDL-bound S1P. After adjustment for confounders including BMD, women with OF had only higher levels of total S1P than those without OF (p=0.047). Before adjustment, the OR for OF was higher in subjects in the highest quartile for total S1P (OR 5.36, 95% CI 1.22 to 23.63) or albumin-bound S1P (OR 4.48, 95% CI 1.22 to 16.42). After adjustment for confounders including BMD, statistical significance persisted only for total S1P (OR 2.23, 95% CI 1.12 to 4.81). These findings suggest that the positive association of S1P with OF is mainly due to level of total plasma S1P and not due to the differing contributions from specific carrier protein-bound fractions.
Collapse
|
10
|
Wu XN, Ma YY, Hao ZC, Wang H. [Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:324-329. [PMID: 32573143 DOI: 10.7518/hxkq.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that is present in all eukaryotic tissues and blood plasma. As an extracellular signaling molecule, LPA mediates many cellular functions by binding to six known G protein-coupled receptors and activating their downstream signaling pathways. These functions indicate that LPA may play important roles in many biological processes that include organismal development, wound healing, and carcinogenesis. Recently, many studies have found that LPA has various biological effects in different kinds of bone cells. These findings suggest that LPA is a potent regulator of bone development and remodeling and holds promising application potential in bone tissue engineering. Here, we review the recent progress on the biological regulatory function of LPA in bone tissue cells.
Collapse
Affiliation(s)
- Xiang-Nan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuan-Yuan Ma
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhi-Chao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Lin KH, Chiang JC, Ho YH, Yao CL, Lee H. Lysophosphatidic Acid and Hematopoiesis: From Microenvironmental Effects to Intracellular Signaling. Int J Mol Sci 2020; 21:ijms21062015. [PMID: 32188052 PMCID: PMC7139687 DOI: 10.3390/ijms21062015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vertebrate hematopoiesis is a complex physiological process that is tightly regulated by intracellular signaling and extracellular microenvironment. In recent decades, breakthroughs in lineage-tracing technologies and lipidomics have revealed the existence of numerous lipid molecules in hematopoietic microenvironment. Lysophosphatidic acid (LPA), a bioactive phospholipid molecule, is one of the identified lipids that participates in hematopoiesis. LPA exhibits various physiological functions through activation of G-protein-coupled receptors. The functions of these LPARs have been widely studied in stem cells, while the roles of LPARs in hematopoietic stem cells have rarely been examined. Nonetheless, mounting evidence supports the importance of the LPA-LPAR axis in hematopoiesis. In this article, we have reviewed regulation of hematopoiesis in general and focused on the microenvironmental and intracellular effects of the LPA in hematopoiesis. Discoveries in these areas may be beneficial to our understanding of blood-related disorders, especially in the context of prevention and therapy for anemia.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Angiogenesis Research Center, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +8862-3366-2499; Fax: +8862-2363-6837
| |
Collapse
|
12
|
Zhang L, Dong Y, Wang Y, Hu W, Dong S, Chen Y. Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. J Cell Mol Med 2020; 24:4389-4401. [PMID: 32155312 PMCID: PMC7176849 DOI: 10.1111/jcmm.15155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a natural bioactive lipid molecule and a common first or second messenger in the cardiovascular and immune systems. By binding with its receptors, S1P can serve as mediator of signalling during cell migration, differentiation, proliferation and apoptosis. Although the predominant role of S1P in bone regeneration has been noted in many studies, this role is not as well-known as its roles in the cardiovascular and immune systems. In this review, we summarize previous research on the role of S1P receptors (S1PRs) in osteoblasts and osteoclasts. In addition, S1P is regarded as a bridge between bone resorption and formation, which brings hope to patients with bone-related diseases. Finally, we discuss S1P and its receptors as therapeutic targets for treating osteoporosis, inflammatory osteolysis and bone metastasis based on the biological effects of S1P in osteoclastic/osteoblastic cells, immune cells and tumour cells.
Collapse
Affiliation(s)
- Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Kim BJ, Lee SH, Koh JM. Potential Biomarkers to Improve the Prediction of Osteoporotic Fractures. Endocrinol Metab (Seoul) 2020; 35:55-63. [PMID: 32207264 PMCID: PMC7090300 DOI: 10.3803/enm.2020.35.1.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022] Open
Abstract
Osteoporotic fracture (OF) is associated with high disability and morbidity rates. The burden of OF may be reduced by early identification of subjects who are vulnerable to fracture. Although the current fracture risk assessment model includes clinical risk factors (CRFs) and bone mineral density (BMD), its overall ability to identify individuals at high risk for fracture remains suboptimal. Efforts have therefore been made to identify potential biomarkers that can predict the risk of OF, independent of or combined with CRFs and BMD. This review highlights the emerging biomarkers of bone metabolism, including sphongosine-1-phosphate, leucine-rich repeat-containing 17, macrophage migration inhibitory factor, sclerostin, receptor activator of nuclear factor-κB ligand, and periostin, and the importance of biomarker risk score, generated by combining these markers, in enhancing the accuracy of fracture prediction.
Collapse
Affiliation(s)
- Beom Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Xiong X, Yang X, Dai H, Feng G, Zhang Y, Zhou J, Zhou W. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther 2019; 10:396. [PMID: 31852539 PMCID: PMC6921428 DOI: 10.1186/s13287-019-1483-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) are one of the most promising types of seed cells in periodontal tissue regeneration. Suitable biomaterials are additional essential components that must cooperate with seed cells for in vivo expansion or in vitro implantation. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) was recently reported to be a promising substrate with which to culture MSCs that could be applied in biomaterial scaffolds or bioink. Human urine-derived stem cells (hUSCs) have several advantages; their collection is non-invasive and easy, and hUSCs are low in cost, potentially making them a suitable and efficient source of ECM. The purpose of this study was to characterize the biological properties of ECM derived from hUSCs (UECM) and evaluate the effects of UECM on hPDLSCs. Methods hPDLSCs grown on ECM derived from hPDLSCs (PECM) and fibronectin-coated tissue culture plastic (TCP) served as control groups. Both hUSCs and hPDLSCs were seeded on TCP and stimulated to produce ECM. After 8 days of stimulation, the samples were decellularized, leaving only ECM. Then, hPDLSCs were seeded onto UECM-, PECM-, and fibronectin-coated TCP and untreated TCP. Results UECM consists of dense bundles of fibers which contain abundant fibronectin. Both UECM and PECM promoted hPDLSC proliferation, attachment, spreading, and differentiation. Between UECM and PECM, UECM enhanced proliferation, osteogenesis, and angiogenesis to a greater extent. Though fibronectin appeared to be the abundant component of UECM, its performance was inferior to that of UECM. Conclusions Our study provides an original perspective on different cell-specific ECMs and suggests UECM as a suitable biomaterial in which to culture hPDLSCs as UECM enhances their biological functions.
Collapse
Affiliation(s)
- Xue Xiong
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiao Yang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongwei Dai
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Gang Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Zhang
- The Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jianping Zhou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Wenwen Zhou
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
15
|
Weske S, Vaidya M, von Wnuck Lipinski K, Keul P, Manthe K, Burkhart C, Haberhauer G, Heusch G, Levkau B. Agonist-induced activation of the S1P receptor 2 constitutes a novel osteoanabolic therapy for the treatment of osteoporosis in mice. Bone 2019; 125:1-7. [PMID: 31028959 DOI: 10.1016/j.bone.2019.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Osteoporosis is a worldwide epidemic but pharmacological agents to stimulate new bone formation are scarce. We have shown that increasing tissue levels of sphingosine-1-phosphate (S1P) by blocking its degradation by the S1P lyase has pronounced osteoanabolic effect in mouse osteoporosis models by stimulating osteoblast differentiation through the S1P receptor 2 (S1P2). However, S1P lyase inhibitors have side effects complicating potential clinical use. Here, we tested whether direct S1P2 engagement by the S1P2 agonist CYM5520 exerted osteoanabolic potential in estrogen deficiency-induced osteopenia in mice. We compared its efficacy to LX2931, a novel S1P lyase inhibitor currently tested in rheumatoid arthritis. EXPERIMENTAL APPROACH CYM5520, LX2931 or vehicle were administered to ovariectomized mice for 6 weeks beginning 5 weeks after ovariectomy, Bone mass, cellular composition and mechanical strength were assessed by microCT, histomorphometry and three point bending tests. Plasma markers of bone metabolism were analyzed by ELISA. KEY RESULTS Therapeutic treatment with CYM5520 and LX2931 clearly increased long bone and vertebral bone mass to impressive 3-5 fold over vehicle in osteopenic ovariectomized mice. As expected, lymphopenia was a side effect of LX2931, whereas none occurred with CYM5520. Consistent with an osteoanabolic effect, CYM5520 increased osteoblast number, osteoid surface and alkaline phosphatase area 2-3 fold over vehicle. Plasma concentrations of the osteoanabolic marker procollagen I C-terminal propeptide were also elevated by CYM5520 and LX2931. LX2931 but not yet CYM5520 increased cortical thickness and mechanical strength without affecting mineral density. CONCLUSION AND IMPLICATIONS Treatment with a pharmacological S1P2 agonist corrected ovariectomy-induced osteopenia in mice by inducing new bone formation thus constituting a novel osteoanabolic approach to osteoporosis.
Collapse
Affiliation(s)
- Sarah Weske
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Mithila Vaidya
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | | | - Petra Keul
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Kristina Manthe
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | | | | | - Gerd Heusch
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Germany.
| |
Collapse
|
16
|
Wu X, Ma Y, Su N, Shen J, Zhang H, Wang H. Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration. Prostaglandins Other Lipid Mediat 2019; 143:106335. [PMID: 31054330 DOI: 10.1016/j.prostaglandins.2019.106335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid that exerts pleiotropic effects on numerous cell types by activating its family of cognate G protein-coupled receptors (GPCRs) and participates in many biological processes, including organismal development, wound healing, and carcinogenesis. Bone cells, such as bone marrow mesenchymal stromal (stem) cells (BMSCs), osteoblasts, osteocytes and osteoclasts play essential roles in bone homeostasis and repair. Previous studies have identified the presence of specific LPA receptors in these bone cells. In recent years, an increasing number of cellular effects of LPA, such as the induction of cell proliferation, survival, migration, differentiation and cytokine secretion, have been found in different bone cells. Moreover, some biomaterials containing LPA have shown the ability to enhance osteogenesis. This review will focus on findings associated with LPA functions in these bone cells and present current studies related to the application of LPA in bone regenerative medicine. Further understanding this information will help us develop better strategies for bone healing.
Collapse
Affiliation(s)
- Xiangnan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Naichuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Wu J, Ma S, Sandhoff R, Ming Y, Hotz-Wagenblatt A, Timmerman V, Bonello-Palot N, Schlotter-Weigel B, Auer-Grumbach M, Seeman P, Löscher WN, Reindl M, Weiss F, Mah E, Weisshaar N, Madi A, Mohr K, Schlimbach T, Velasco Cárdenas RMH, Koeppel J, Grünschläger F, Müller L, Baumeister M, Brügger B, Schmitt M, Wabnitz G, Samstag Y, Cui G. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8 + T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity 2019; 50:1218-1231.e5. [PMID: 30952607 DOI: 10.1016/j.immuni.2019.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.
Collapse
Affiliation(s)
- Jingxia Wu
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yanan Ming
- Internal Medicine IV, University Heidelberg Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, B-2610, University of Antwerp, Antwerpen, Belgium
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Children Timone Hospital, 264 Rue Saint Pierre & Aix Marseille University, INSERM, MMG, U1251, 13385 Marseille, France
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institut, Neurologische Klinik and Poliklinik Ludwig-Maximilians-Universität, 80336 München, Germany
| | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Pavel Seeman
- DNA Laboratory, Department of Child Neurology, 2nd Medical School, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Wolfgang N Löscher
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Florian Weiss
- Department of Psychiatry and Psychotherapy, University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern, Germany
| | - Eric Mah
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nina Weisshaar
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alaa Madi
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rubí M-H Velasco Cárdenas
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jonas Koeppel
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian Grünschläger
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisann Müller
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maren Baumeister
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Michael Schmitt
- Internal Medicine V, University Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci 2019; 76:1243-1253. [PMID: 30515522 PMCID: PMC11105749 DOI: 10.1007/s00018-018-2981-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Coupling during bone remodeling refers to the spatial and temporal coordination of bone resorption with bone formation. Studies have assessed the subtle interactions between osteoclasts and osteoblasts to preserve bone balance. Traditionally, coupling research related to osteoclast function has focused on bone resorption activity causing the release of growth factors embedded in the bone matrix. However, considerable evidence from in vitro, animal, and human studies indicates the importance of the osteoclasts themselves in coupling phenomena, and many osteoclast-derived coupling factors have been identified. These include sphingosine-1-phosphate, vesicular-receptor activator of nuclear factor-κB, collagen triple helix repeat containing 1, and cardiotrophin-1. Interestingly, neuronal guidance molecules, such as slit guidance ligand 3, semaphorin (SEMA) 3A, SEMA4D, and netrin-1, originally identified as instructive cues allowing the navigation of growing axons to their targets, have been shown to be involved in the intercellular cross-talk among bone cells. This review discusses osteoclast-osteoblast coupling signals, including recent advances and the potential roles of these signals as therapeutic targets for osteoporosis and as biomarkers predicting human bone health.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
19
|
Chen X, Song Z, Chen R, Tan S, Huang C, Liu Y, Cheng B, Fu Q. Lysophosphatidic acid enhanced the osteogenic and angiogenic capability of osteoblasts via LPA1/3 receptor. Connect Tissue Res 2019; 60:85-94. [PMID: 29447019 DOI: 10.1080/03008207.2018.1439485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lysophosphatidic acid is a serum-derived growth factor that is involved in wound healing. Although in its infancy, a growing body of evidence has demonstrated that lysophosphatidic acid exerts a potentially significant role in regulating bone cell biology. However, previous studies mainly focused on the osteoinductive potential of lysophosphatidic acid, its effects on bone tissue vascularization, another essential element during bone regeneration, remains ill-defined so far. Here in this study, we examined the effects of lysophosphatidic acid on osteogenic differentiation as well as the angiogenesis-inducing capacity of pre-osteoblasts, a cell population that coordinates osteogenic and angiogenic processes in bone regenerating niche. Our results showed that treatment of MC3T3-E1 pre-osteoblastic cells with lysophosphatidic acid enhanced alkaline phosphatase activity and matrix mineralization, demonstrating in vitro osteoblastic differentiation. Of particular importance was the finding that vascular endothelial growth factor secretion also increased after lysophosphatidic acid treatment. Lysophosphatidic acid conditioned media of MC3T3-E1 cells was capable of promoting angiogenic behavior of endothelial cells, as evidenced by stimulating proliferation, migration, and tube formation. Besides, inhibition of LPA1/3 receptor abolished lysophosphatidic acid-induced elevation of the osteogenic and angiogenic capability of pre-osteoblasts. Our research demonstrated the important role of lysophosphatidic acid in coupling osteogenesis and angiogenesis during bone remodeling through orchestrating pre-osteoblast behavior, and implications therein for novel and effective treatment strategies for bone regeneration success.
Collapse
Affiliation(s)
- Xiaodan Chen
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China
| | - Zijun Song
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China
| | - Rui Chen
- b Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong , P.R. China
| | - Shuyi Tan
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China.,c The Affiliated Stomatological Hospital of Southern Medical University & Guangdong Provincial Stomatological Hospital , Guangzhou , Guangdong , P.R. China
| | - Chunhuang Huang
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China
| | - Yanhui Liu
- d The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Bin Cheng
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China
| | - Qiang Fu
- a Guanghua School of Stomatology, Hospital of Stomatology , Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , Guangdong , P.R. China
| |
Collapse
|
20
|
Ardawi MSM, Rouzi AA, Al-Senani NS, Qari MH, Elsamanoudy AZ, Mousa SA. High Plasma Sphingosine 1-phosphate Levels Predict Osteoporotic Fractures in Postmenopausal Women: The Center of Excellence for Osteoporosis Research Study. J Bone Metab 2018; 25:87-98. [PMID: 29900158 PMCID: PMC5995758 DOI: 10.11005/jbm.2018.25.2.87] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 11/11/2022] Open
Abstract
Background Higher sphingosine 1-phosphate (S1P) plasma levels are associated with decreased bone mineral density (BMD), and increased risk of prevalent vertebral fracture. So, we hypothesized that postmenopausal women with increased baseline plasma S1P levels have a greater risk for future incident fracture (osteoporosis-related fractures [ORFs]). Methods This study was conducted in a prospective longitudinal cohort of 707 women recruited in 2004 and followed up annually for a mean period of 5.2±1.3 years. They were postmenopausal (aged ≥50 years). The primary outcome measure was the time to the first confirmed ORF event using radiographs and/or a surgical report. Results The plasma S1P levels (µmol/L) were significantly higher in the women with incident fracture (7.23±0.79) than in those without ORFs (5.02±0.51; P<0.001). High S1P levels were strongly associated with increased fracture risk. After adjustment for age and other confounders, the hazard ratio (HR) was 6.12 (95% confidence interval [CI], 4.92−7.66) for each 1-standard deviation increase in plasma S1P levels. The women in the highest quartile of S1P levels had a significant increase in fracture risk (HR, 9.89; 95% CI, 2.83−34.44). Results were similar when we compared plasma S1P levels at the 1-year visit. Conclusions The associations between plasma S1P levels and fracture risk were independent of BMD and other confounders. These findings demonstrate that high plasma S1P level at baseline and at years 1 to 5 is a strong and independent risk factor for future [ORFs] among postmenopausal women and could be a useful biomarker for fracture risk assessment in this population.
Collapse
Affiliation(s)
- Mohammed-Salleh M Ardawi
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim A Rouzi
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal S Al-Senani
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Qari
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Hematology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Z Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaker A Mousa
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
21
|
Lysophosphatidic Acid Analogue rather than Lysophosphatidic Acid Promoted the Bone Formation In Vivo. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7537630. [PMID: 30003106 PMCID: PMC5996417 DOI: 10.1155/2018/7537630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA), a bioactive lipid molecule, has recently emerged as physiological and pathophysiological regulator in skeletal biology. Here we evaluate the effects of LPA on bone formation in vivo in murine femoral critical defect model. Primary femoral osteoblasts were isolated and treated with osteogenic induction conditional media supplemented with 20 μM LPA or LPA analogue. Mineralized nodules were visualized by Alizarin Red S staining. Forty-five C57BL/6 mice underwent unilateral osteotomy. The femoral osteotomy gap was filled with porous scaffolds of degradable chitosan/beta-tricalcium phosphate containing PBS, LPA, or LPA analogue. 2, 5, and 10 weeks after surgery, mice were sacrificed and femurs were harvested and prepared for Micro-Computed Tomography (Micro-CT) and histological analysis. Alizarin Red S staining showed that LPA and LPA analogue significantly enhanced the mineral deposition in osteoblasts. Micro-CT 3D reconstruction images and HE staining revealed that significantly more newly formed bone in osteotomy was treated with LPA analogue when compared to control and LPA group, which was verified by histological analysis and biomechanical characterization testing. In summary, our study demonstrated that although LPA promotes mineralized matrix formation in vitro, the locally administrated LPA was not effective in promoting bone formation in vivo. And bone formation was enhanced by LPA analogue, administrated locally in vivo. LPA analogue was a potent stimulating factor for bone formation in vivo due to its excellent stability.
Collapse
|
22
|
The effect of lysophosphatidic acid using a hydrogel or collagen sponge carrier on bone healing in dogs. Vet Comp Orthop Traumatol 2017; 29:306-13. [DOI: 10.3415/vcot-15-08-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/21/2016] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: The purposes of this study were to determine: 1) the efficacy of polycaprolac-tone-g-polyethylene glycol (PCL-g-PEG) and polylactic-co-glycolic acid (PLGA-g-PEG) hydrogels and an absorbable collagen sponge (ACS) as carriers for lysophosphatidic acid (LPA), 2) the effect of LPA on bone healing in dogs, and 3) the ideal dose of LPA to maximally stimulate bone healing.Methods: Bilateral ulnar ostectomies were performed on purpose bred dogs. Control defects were filled with a PCL-g-PEG or PLGA-g-PEG hydrogel, or a saline soaked ACS. Contralateral defects were filled with a PCL-g-PEG or PLGA-g-PEG hydrogel, or an ACS with each carrying differing concentrations of an LPA solution. Dual-energy X-ray absorptiometry (DXA) was performed. Total bone area (TBA), mineral density (BMD), and mineral content (BMC) were determined at each time point. Relationships between the effect of treatment over time on TBA, BMC and BMD were determined.Results: Phase 1 - There was no significant difference in DXA-based TBA (p = 0.09), BMC (p = 0.33), or BMD (p = 0.74) over time between LPA treatments, or between the LPA treated and control groups TBA (p = 0.95), BMC (p = 0.99), or BMD (p = 0.46). Phase 2 - There was no significant difference over time between LPA treatments in DXA-based TBA (p = 0.33), BMC (p = 0.45), or BMD (p = 0.43), or between the LPA treated and control groups TBA (p = 0.94), BMC (p = 0.38), or BMD (p = 0.17). Phase 3 - There was no significant difference over time between LPA treatments in DXA-based TBA (p = 0.78), BMC (p = 0.88), or BMD (p = 0.35), or between the LPA treated and control groups TBA (p = 0.07), BMC (p = 0.85), or BMD (p = 0.06). There was a significant increase in TBA (p <0.0001) and BMC (p = 0.0014), but a significant decrease in BMD (p <0.0001) was noted over time when all groups were combined.Clinical significance: Although LPA has shown promise as an osteoinductive agent in research, its performance as a bone graft substitute, as utilized in this study, is unsupported. Further studies are necessary to determine the incorporation and elution kinetics of LPA from the PLGA-g-PEG hydrogel and from an ACS. Hydrogels may have clinical applications for delaying or preventing bone formation.
Collapse
|
23
|
Bosetti M, Borrone A, Leigheb M, Shastri VP, Cannas M. * Injectable Graft Substitute Active on Bone Tissue Regeneration. Tissue Eng Part A 2017; 23:1413-1422. [PMID: 28530130 DOI: 10.1089/ten.tea.2016.0554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the aim to obtain an injectable bioactive scaffold that can accelerate bone formation in sinus lift augmentation, in bony void and fracture repair, we have developed a three-dimensional (3D) jelly collagen containing lysophosphatidic acid (LPA) and 1α,25-dihydroxyvitamin D3 (1,25D3). Using an in vitro 3D culture model of bone fracture, we show that the contraction of the collagen gel is mediated by Rho-kinase activation in osteoblasts. The gel contraction showed dependence on cell concentration and was increased by LPA, which favored apposition and fastening of bone fragments approach. LPA was shown to act through actin cytoskeleton reorganization and myosin light chain phosphorylation of human primary osteoblasts (hOB). Moreover, LPA conferred osteoconductive properties as evidenced by the induction of proliferation, differentiation, and migration of hOB. The addition of 1,25D3 did not enhance cell-mediated gel contraction, but stimulated the maturation of hOB in vitro through the production of extracellular matrix of higher quality. On the basis of these observations, the collagen gel enriched with LPA and 1,25D3 described herein can be considered an injectable natural scaffold that allows the migration of cells from the side of bone defect and a promising candidate to accelerate bone growth and fracture healing.
Collapse
Affiliation(s)
- Michela Bosetti
- 1 Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Novara, Italy
| | - Alessia Borrone
- 1 Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Novara, Italy
| | - Massimiliano Leigheb
- 2 Department of Orthopaedics and Traumatology, Azienda Ospedaliero-Universitaria Maggiore della Carità , Novara, Italy
| | - V Prasad Shastri
- 3 Institute for Macromolecular Chemistry, University of Freiburg , Freiburg, Germany
| | - Mario Cannas
- 4 Dipartimento di Scienze della Salute, Università del Piemonte Orientale , Novara, Italy
| |
Collapse
|
24
|
Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair. Pharmacol Res 2017; 125:232-245. [PMID: 28855094 DOI: 10.1016/j.phrs.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
The lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair. Indeed, S1P is implicated in many osteogenesis-related processes including stem cell recruitment and subsequent differentiation, differentiation and survival of osteoblasts, and coupling of the latter cell type with osteoclasts. In addition, S1P's role in promoting angiogenesis is well-established. The pleiotropic effects of S1P on bone and blood vessels have significant potential therapeutic implications, as current therapeutic approaches for critical bone defects show significant limitations. Because of the complex effects of S1P on bone, the pharmacology of S1P-like agents and their physico-chemical properties, it is likely that therapeutic delivery of S1P agents will offer significant advantages compared to larger molecular weight factors. Hence, it is important to explore novel methods of utilizing S1P agents therapeutically, and improve our understanding of how S1P and its receptors modulate bone physiology and repair.
Collapse
|
25
|
Meshcheryakova A, Mechtcheriakova D, Pietschmann P. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. Expert Opin Ther Targets 2017; 21:725-737. [PMID: 28524744 PMCID: PMC5470107 DOI: 10.1080/14728222.2017.1332180] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Sphingolipids belong to a complex class of lipid molecules that are crucially involved in the regulation of important biological processes including proliferation, migration and apoptosis. Given the significant progress made in understanding the sphingolipid pathobiology of several diseases, sphingolipid-related checkpoints emerge as attractive targets. Recent data indicate the multifaceted contribution of the sphingolipid machinery to osteoclast – osteoblast crosstalk, representing one of the pivotal interactions underlying bone homeostasis. Imbalances in the interplay of osteoblasts and osteoclasts might lead to bone-related diseases such as osteoporosis, rheumatoid arthritis, and bone metastases. Areas covered: We summarize and analyze the progress made in bone research in the context of the current knowledge of sphingolipid-related mechanisms regulating bone remodeling. Particular emphasis was given to bioactive sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs). Moreover, the mechanisms of how dysregulations of this machinery cause bone diseases, are covered. Expert opinion: In the context of bone diseases, pharmacological interference with sphingolipid machinery may lead to novel directions in therapeutic strategies. Implementation of knowledge derived from in vivo animal models and in vitro studies using pharmacological agents to manipulate the S1P/S1PRs axes suggests S1PR2 and S1PR3 as potential drug targets, particularly in conjunction with technology for local drug delivery.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| | - Diana Mechtcheriakova
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| | - Peter Pietschmann
- a Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
26
|
|
27
|
Bae SJ, Lee SH, Ahn SH, Kim HM, Kim BJ, Koh JM. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal women: a 3.5-year follow-up observation study. Osteoporos Int 2016; 27:2533-41. [PMID: 26984570 DOI: 10.1007/s00198-016-3565-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED A high level of circulating sphingosine-1-phosphate (S1P) is associated with a high incidence of osteoporotic fracture and a high rate of an insufficient response to bisphosphonate therapy. INTRODUCTION Sphingosine-1-phosphate (S1P) is a significant regulator of bone metabolism. Recently, we found that a high plasma S1P level is associated with low bone mineral density (BMD), high levels of bone resorption markers (BRMs), and a high risk of prevalent vertebral fracture in postmenopausal women. We investigated the possibility that S1P is a predictor of incident fracture. METHODS A total of 248 postmenopausal women participated in this longitudinal study and were followed up for a mean duration of 3.5 years (untreated [n = 76] or treated with bisphosphonate or hormone replacement therapy [n = 172]). The baseline plasma S1P level and prevalent and incident fracture occurrence were assessed. RESULTS A high S1P level was significantly associated with a higher rate of prevalent fracture after adjusting for femoral neck (FN) BMD, BRM, and potential confounders (odds ratio = 2.05; 95 % confidence interval [CI] = 1.03-4.00). Incident fractures occurred more frequently in the highest S1P tertile (T3) than in the lower two tertiles (T1-2) after adjusting for confounders, including baseline FN BMD, prevalent fracture, antiosteoporotic medication, annualized changes in FN BMD, BRM, and potential confounders (hazard ratio = 5.52; 95 % CI = 1.04-56.54). Insufficient response to bisphosphonate therapy occurred more frequently in T3 than T1-2 (odds ratio = 4.43; 95 % CI = 1.02-21.25). CONCLUSIONS The plasma S1P level may be a potential predictor of fracture occurrence and an insufficient response to bisphosphonate therapy in postmenopausal women.
Collapse
Affiliation(s)
- S J Bae
- Health Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Ulsan, Seoul, 05505, South Korea
| | - S H Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - S H Ahn
- Department of Endocrinology, Inha University School of Medicine, 27 Inhang-ro, Jung-Gu, Songpa-gu, Incheon, 22332, South Korea
| | - H-M Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - B-J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - J-M Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
28
|
Yao S, Zhang Y, Wang X, Zhao F, Sun M, Zheng X, Dong H, Guo K. Pigment Epithelium-Derived Factor (PEDF) Protects Osteoblastic Cell Line from Glucocorticoid-Induced Apoptosis via PEDF-R. Int J Mol Sci 2016; 17:ijms17050730. [PMID: 27187377 PMCID: PMC4881552 DOI: 10.3390/ijms17050730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023] Open
Abstract
Pigment epithelial-derived factor (PEDF) is known as a widely expressed multifunctional secreted glycoprotein whose biological actions are cell-type dependent. Recent studies demonstrated that PEDF displays cytoprotective activity in several cell types. However, it remains unknown whether PEDF is involved in glucocorticoid-induced osteoblast death. The aim of this study was to examine the role of PEDF in osteoblast survival in response to dexamethasone, an active glucocorticoid analogue, and explore the underlying mechanism. In the present study, dexamethasone (DEX) was used to induce MC3T3-E1 pre-osteoblast apoptosis. PEDF mRNA and protein levels and cell apoptosis were determined respectively. Then PEDF receptor (PEDF-R)- and lysophosphatidic acid (LPA)-related signal transductions were assessed. Here we show that DEX down-regulates PEDF expression, which contributes to osteoblast apoptosis. As a result, exogenous recombinant PEDF (rPEDF) inhibited DEX-induced cell apoptosis. We confirmed that PEDF-R was expressed on MC3T3-E1 pre-osteoblast membrane and could bind to PEDF which increased the level of LPA and activated the phosphorylation of Akt. Our results suggest that PEDF attenuated DEX-induced apoptosis in MC3T3-E1 pre-osteoblasts through LPA-dependent Akt activation via PEDF-R.
Collapse
Affiliation(s)
- Shengcheng Yao
- Department of Orthopaedic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Yingnan Zhang
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Xiaoyu Wang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Maji Sun
- Department of Orthopaedic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Xin Zheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kaijin Guo
- Department of Orthopaedic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
29
|
Kim BJ, Shin KO, Kim H, Ahn SH, Lee SH, Seo CH, Byun SE, Chang JS, Koh JM, Lee YM. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. J Endocrinol Invest 2016. [PMID: 26219613 DOI: 10.1007/s40618-015-0364-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although recent studies provide clinical evidence that sphingosine-1-phosphate (S1P) may primarily affect bone resorption in humans, rather than bone formation or the osteoclast-osteoblast coupling phenomenon, those studies could not determine which bone resorption mechanism is more important, i.e., chemorepulsion of osteoclast precursors via the blood to bone marrow S1P gradient or receptor activator of NF-κB ligand (RANKL) elevation in osteoblasts via local S1P. AIM To investigate how S1P mainly contributes to increased bone resorption in humans, we performed this case-control study at a clinical unit in Korea. METHODS Blood and bone marrow samples were contemporaneously collected from 70 patients who underwent hip surgery due to either osteoporotic hip fracture (HF) (n = 10) or other causes such as osteoarthritis (n = 60). RESULTS After adjusting for sex, age, BMI, smoking, alcohol, previous fracture, diabetes, and stroke, subjects with osteoporotic HF demonstrated a 3.2-fold higher plasma/bone marrow S1P ratio than those without HF, whereas plasma and bone marrow S1P levels were not significantly different between these groups. Consistently, the risk of osteoporotic HF increased 1.38-fold per increment in the plasma/bone marrow S1P ratio in a multivariate adjustment model. However, the odds ratios for prevalent HF according to the increment in the plasma and bone marrow S1P level were not statistically significant. CONCLUSION Our current results using simultaneously collected blood and bone marrow samples suggest that the detrimental effects of S1P on bone metabolism in humans may depend on the S1P gradient between the peripheral blood and bone marrow cavity.
Collapse
Affiliation(s)
- B-J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - K-O Shin
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea
| | - H Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - S H Ahn
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - S H Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - C-H Seo
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea
| | - S-E Byun
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, 463-712, Korea
| | - J S Chang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - J-M Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea.
| | - Y-M Lee
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, 361-763, Korea.
| |
Collapse
|
30
|
Binder BYK, Williams PA, Silva EA, Leach JK. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:531-42. [PMID: 26035484 DOI: 10.1089/ten.teb.2015.0107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Priscilla A Williams
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - J Kent Leach
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,2 Department of Orthopaedic Surgery, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
31
|
Khavandgar Z, Murshed M. Sphingolipid metabolism and its role in the skeletal tissues. Cell Mol Life Sci 2015; 72:959-69. [PMID: 25424644 PMCID: PMC11114007 DOI: 10.1007/s00018-014-1778-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
The regulators affecting skeletal tissue formation and its maintenance include a wide array of molecules with very diverse functions. More recently, sphingolipids have been added to this growing list of regulatory molecules in the skeletal tissues. Sphingolipids are integral parts of various lipid membranes present in the cells and organelles. For a long time, these macromolecules were considered as inert structural elements. This view, however, has radically changed in recent years as sphingolipids are now recognized as important second messengers for signal-transduction pathways that affect cell growth, differentiation, stress responses and programmed death. In the current review, we discuss the available data showing the roles of various sphingolipids in three different skeletal cell types-chondrocytes in cartilage and osteoblasts and osteoclasts in bone. We provide an overview of the biology of sphingomyelin phosphodiesterase 3 (SMPD3), an important regulator of sphingolipid metabolism in the skeleton. SMPD3 is localized in the plasma membrane and has been shown to cleave sphingomyelin to generate ceramide, a bioactive lipid second messenger, and phosphocholine, an essential nutrient. SMPD3 deficiency in mice impairs the mineralization in both cartilage and bone extracellular matrices leading to severe skeletal deformities. A detailed understanding of SMPD3 function may provide a novel insight on the role of sphingolipids in the skeletal tissues.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec Canada
- Department of Medicine, McGill University, Montreal, Quebec Canada
- Shriners Hospital for Children, McGill University, Montreal, Quebec Canada
| |
Collapse
|
32
|
Langeslag M, Quarta S, Leitner MG, Kress M, Mair N. Sphingosine 1-phosphate to p38 signaling via S1P1 receptor and Gαi/o evokes augmentation of capsaicin-induced ionic currents in mouse sensory neurons. Mol Pain 2014; 10:74. [PMID: 25431213 PMCID: PMC4280769 DOI: 10.1186/1744-8069-10-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
The perception of painful thermal stimuli by sensory neurons is largely mediated by TRPV1. Upon tissue injury or inflammation, S1P is secreted by thrombocytes as part of an inflammatory cocktail, which sensitizes nociceptive neurons towards thermal stimuli. S1P acts on G-protein coupled receptors that are expressed in sensory neurons and sensitize TRPV1 channels towards thermal stimuli. In this study, the S1P mediated signaling pathway required for sensitization of TRPV1 channels was explored.The capsaicin induced peak inward current (ICAPS) of sensory neurons was significantly increased after S1P stimulation within minutes after application. The potentiation of ICAPS resulted from activation of Gαi through G-protein coupled receptors for S1P. Consequently, Gαi led to a signaling cascade, involving phosphoinositide-3-kinase (PI3K) and protein kinase C, which augmented ICAPS in nociceptive neurons. The S1P1 receptor agonist SEW2871 resulted in activation of the same signaling pathway and potentiation of ICAPS. Furthermore, the mitogen-activated protein kinase p38 was phosphorylated after S1P stimulation and inhibition of p38 signaling by SB203580 prevented the S1P-induced ICAPS potentiation. The current data suggest that S1P sensitized ICAPS through G-protein coupled S1P1 receptor activation of Gαi-PI3K-PKC-p38 signaling pathway in sensory neurons.
Collapse
Affiliation(s)
- Michiel Langeslag
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Serena Quarta
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Michael G Leitner
- />Department of Neurophysiology, Institute for Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Michaela Kress
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Norbert Mair
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Garnero P. New developments in biological markers of bone metabolism in osteoporosis. Bone 2014; 66:46-55. [PMID: 24909537 DOI: 10.1016/j.bone.2014.05.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/28/2022]
Abstract
Over the last 15 years several biological markers of bone turnover have been developed with increased specificity and sensitivity. In osteoporosis clinical studies, the IOF and IFCC organizations have recently recommended the measurements of serum type I collagen N-propeptide (PINP) and the crosslinked C-terminal telopeptide (serum CTX) as markers of bone formation and bone resorption, respectively. However these markers have some limitations including a lack of specificity for bone tissue, their inability to reflect osteocyte activity or periosteal apposition. In addition they do not allow the investigation of bone tissue quality an important determinant of skeletal fragility. To address these limitations, new developments in markers of bone metabolism have been recently achieved. These include assays for periostin, a matricellular protein preferentially localized in the periosteal tissue, sphingosine 1-phosphate, a lipid mediator which acts mainly on osteoclastogenesis and the osteocyte factors such as sclerostin and FGF-23. Recent studies have shown an association between the circulating levels of these biological markers and fracture risk in postmenopausal women or elderly men, although data require confirmation in additional prospective studies. Finally, recent studies suggest that the measurements of circulating microRNAs may represent a novel class of early biological markers in osteoporosis. It is foreseen that with the use of genomics and proteomics, new markers will be developed to ultimately improve the management of patients with osteoporosis.
Collapse
Affiliation(s)
- Patrick Garnero
- INSERM Research Unit 1033, University of Lyon, France and Cisbio Bioassays, Codolet, France.
| |
Collapse
|
34
|
Hwang YS, Ma GT, Park KK, Chung WY. Lysophosphatidic acid stimulates osteoclast fusion through OC-STAMP and P2X7 receptor signaling. J Bone Miner Metab 2014; 32:110-22. [PMID: 23624721 DOI: 10.1007/s00774-013-0470-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/29/2013] [Indexed: 10/26/2022]
Abstract
Bone is continuously remodeled by bone formation and resorption, and cooperative bone metabolism is precisely regulated to maintain homeostasis. Osteoclasts, which are responsible for bone resorption, are differentiated through multiple steps that include cell fusion at the last step of differentiation, yielding multinuclear cells. However, the factors involved in and the precise mechanism of cell fusion are still unknown. To determine the molecules involved in osteoclast fusion, we examined the effect of lysophosphatidic acid (LPA), which has been reported to participate in the progression of cancer bone metastasis. LPA had no effect on osteoclast formation and bone resorption under receptor activator of nuclear factor kappa B ligand (RANKL) conditions, whereas LPA stimulated osteoclast fusion, thereby causing increased osteoclast diameter and bone resorptive capacity under a RANKL-limited condition. This result encouraged us to assess what molecules are needed for LPA-stimulated osteoclast fusion. Interestingly, LPA stimulated osteoclast stimulatory transmembrane protein (OC-STAMP) and P2X7 receptor mRNA expression during osteoclast fusion under a RANKL limiting condition. siRNA-induced OC-STAMP or P2X7 receptor knockdown significantly suppressed the LPA-stimulated increase in osteoclast diameter and bone resorptive capacity in differentiating cultures. Using cyclosporin A as an inhibitor, we revealed that NF-ATc1 directly regulates OC-STAMP and P2X7 receptor expression during LPA-stimulated osteoclast fusion. These results suggest that LPA is a critical regulator of osteoclast fusion by inducing the OC-STAMP and P2X7 receptor. Therefore, LPA signaling might be useful to help understand their effects on osteoclast formation and as a therapeutic target for patients with pathologically increased osteoclast formation.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam, 461-713, Republic of Korea,
| | | | | | | |
Collapse
|
35
|
Castells M, Milhas D, Gandy C, Thibault B, Rafii A, Delord JP, Couderc B. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation. Cell Death Dis 2013; 4:e887. [PMID: 24176845 PMCID: PMC3824693 DOI: 10.1038/cddis.2013.384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 01/29/2023]
Abstract
Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy.
Collapse
Affiliation(s)
- M Castells
- 1] EA4553, Institut Claudius Regaud, Toulouse F-31052, France [2] University of Toulouse III, Toulouse F-31062, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling. Pharmaceuticals (Basel) 2013; 6:1145-69. [PMID: 24276423 PMCID: PMC3818832 DOI: 10.3390/ph6091145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations.
Collapse
|
37
|
Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone 2013; 55:315-24. [PMID: 23612487 DOI: 10.1016/j.bone.2013.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a well-known signaling sphingolipid and bioactive lipid mediator. Recently, it was reported that S1P inhibits osteoclast differentiation and bone resorption. On the other hand, S1P effects on osteoblasts and bone formation are little known. In this study, we investigated the effects of S1P on osteoblasts, using two osteoblast-like cell lines, SaOS-2 and MC3T3-E1. S1P activated phosphatidylinositol 3-kinase (PI3K)/Akt signaling, leading to the inhibition of glycogen synthase kinase-3β and the nuclear translocation of β-catenin, followed by the increase of the transcriptional activity by β-catenin/T-cell factor complex formation in both SaOS-2 cells and MC3T3-E1 cells. The inhibitors of PI3K and Akt suppressed S1P-induced nuclear localization of β-catenin. We further investigated the effects of PI3K/Akt signaling on the Wnt/β-catenin signaling pathway, since β-catenin takes a central role in this signaling pathway. Both inhibitors for PI3K and Akt suppressed the nuclear localization of β-catenin and T-cell factor transcriptional activity induced by Wnt-3a. S1P increased the amount of osteoprotegerin at both mRNA and protein levels, and increased the activity of alkaline phosphatase, leading to the mineralization. These findings suggest that S1P activates the PI3K/Akt signaling pathway leading to the promotion of nuclear translocation of β-catenin in osteoblast-like cells, resulting in the upregulation of osteoptotegerin and osteoblast differentiation markers including alkaline phosphatase, probably relating to the inhibition of osteoclast formation and the mineralization, respectively.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
40
|
Lancaster S, Mansell JP. The role of lysophosphatidic acid on human osteoblast formation, maturation and the implications for bone health and disease. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.12.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Mansell JP, Blackburn J. Lysophosphatidic acid, human osteoblast formation, maturation and the role of 1α,25-Dihydroxyvitamin D3 (calcitriol). Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:105-8. [DOI: 10.1016/j.bbalip.2012.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/30/2022]
|
42
|
Peyruchaud O, Leblanc R, David M. Pleiotropic activity of lysophosphatidic acid in bone metastasis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:99-104. [DOI: 10.1016/j.bbalip.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 12/12/2022]
|
43
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
44
|
Blackburn J, Mansell JP. The emerging role of lysophosphatidic acid (LPA) in skeletal biology. Bone 2012; 50:756-62. [PMID: 22193551 DOI: 10.1016/j.bone.2011.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA) is the simplest signalling lipid eliciting pleiotropic actions upon most mammalian cell types. Although LPA has an established role in many biological processes, particularly wound healing and cancer, the participation of LPA in skeletal biology is just beginning to emerge. Early studies, identified in this review, gave a solid indication that LPA, via binding to one of several cell surface receptors, activated multiple intracellular systems culminating in altered cell morphology, growth, motility and survival. More recently the ablation of murine LPA1 and 4 receptors implies that this lipid has a role in skeletal development and post natal bone accrual. Greater understanding of the ability of LPA to influence, for example, osteoblast growth, maturation and survival could be advantageous in developing novel strategies aimed at improving skeletal tissue repair and regeneration. Herein this review provides an insight into the diversity of studies exploring the actions of a small lipid on those major cell types key to skeletal tissue health and homeostasis.
Collapse
Affiliation(s)
- Julia Blackburn
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | | |
Collapse
|
45
|
Das A, Botchwey E. Evaluation of angiogenesis and osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:403-14. [PMID: 21902609 DOI: 10.1089/ten.teb.2011.0190] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone regeneration has long been a major focus for tissue engineers and the importance of vascularization to the bone regeneration process has been well documented. Over the past decade, technological advances in the areas of stem cell biology, scaffold fabrication, and protein engineering have significantly enhanced our understanding of the interplay between vascularization and bone growth. This review, therefore, describes the commonly used models for investigating the complex interactions between osteoblastic cells and endothelial cells, evaluates the different tools utilized to investigate the relationship between vascularization and bone growth in vivo, and finally, summarizes possible areas of research related to therapeutic development.
Collapse
Affiliation(s)
- Anusuya Das
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
46
|
Waters KM, Jacobs JM, Gritsenko MA, Karin NJ. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth. Bone 2011; 48:1328-35. [PMID: 21356339 PMCID: PMC3095666 DOI: 10.1016/j.bone.2011.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/18/2011] [Accepted: 02/23/2011] [Indexed: 01/19/2023]
Abstract
Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24h in the presence or absence of LPA. We identified 932 transcripts that displayed statistically significant changes in abundance of at least 1.25-fold in response to LPA treatment. Gene ontology (GO) analysis revealed that the regulated gene products were linked to diverse cellular processes, including DNA repair, response to unfolded protein, ossification, protein-RNA complex assembly, and amine biosynthesis. Gene products associated with the regulation of actin microfilament dynamics displayed the most robust expression changes, and LPA-induced dendritogenesis in vitro was blocked by the stress fiber inhibitor cytochalasin D. Mass spectrometry-based proteomic analysis of MLO-Y4 cells revealed significant LPA-induced changes in the abundance of 284 proteins at 6h and 844 proteins at 24h. GO analysis of the proteomic data linked the effects of LPA to cell processes that control of protein distribution and membrane outgrowth, including protein localization, protein complex assembly, Golgi vesicle transport, cytoskeleton-dependent transport, and membrane invagination/endocytosis. Dendrites were isolated from LPA-treated MLO-Y4 cells and subjected to proteomic analysis to quantitatively assess the subcellular distribution of proteins. Sets of 129 and 36 proteins were enriched in the dendrite fraction as compared to whole cells after 6h and 24h of LPA exposure, respectively. Protein markers indicated that membranous organelles were largely excluded from the dendrites. Highly represented among the proteins with elevated abundances in dendrites were molecules that regulate cytoskeletal function, cell motility and membrane adhesion. Our combined transcriptomic/proteomic analysis of the response of MLO-Y4 osteocytic cells to LPA indicates that dendritogenesis is a membrane- and cytoskeleton-driven process with actin dynamics playing a particularly critical role.
Collapse
Affiliation(s)
- Katrina M. Waters
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland WA 99352, USA
| | - Jon M. Jacobs
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marina A. Gritsenko
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Norman J. Karin
- Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland WA 99352, USA
- Corresponding author: Norman J. Karin, Ph.D., Cell Biology and Biochemistry, Pacific Northwest National Laboratory, P.O. Box 999, J4-02, Richland, WA 99352, Tel: (509) 371-7303, Fax: (509) 371-7304,
| |
Collapse
|
47
|
Mansell JP, Nowghani M, Pabbruwe M, Paterson IC, Smith AJ, Blom AW. Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: requirement of albumin-bound LPA. Prostaglandins Other Lipid Mediat 2011; 95:45-52. [PMID: 21664483 DOI: 10.1016/j.prostaglandins.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA), a pleiotropic signalling lipid is assuming growing significance in osteoblast biology. Although committed osteoblasts from several mammalian species are receptive to LPA far less is known about the potential for LPA to influence osteoblast formation from their mesenchymal progenitors. An essential factor for both bone development and post-natal bone growth and homeostasis is the active metabolite of vitamin D3, calcitriol (D3). Previously we reported how a combination of LPA and D3 synergistically co-operated to enhance the differentiation of immature human osteoblasts. Herein we provide evidence for the formation of human osteoblasts from multiple, primary human bone marrow derived stromal (stem) cells (hBMSCs). Importantly osteoblast development from hBMSCs only occurred when LPA was administered as a complex with albumin, its natural carrier. Collectively our findings support a co-operative role of LPA and D3 in osteoblastogenesis, findings which may aid the development of novel treatment strategies for bone repair.
Collapse
Affiliation(s)
- J P Mansell
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Zhong M, Carney DH, Jo H, Boyan BD, Schwartz Z. Inorganic phosphate induces mammalian growth plate chondrocyte apoptosis in a mitochondrial pathway involving nitric oxide and JNK MAP kinase. Calcif Tissue Int 2011; 88:96-108. [PMID: 21104071 DOI: 10.1007/s00223-010-9433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Chondrocytes in the hypertrophic zone of the growth plate undergo apoptosis during endochondral bone development via mechanisms that involve inorganic phosphate (Pi) and nitric oxide (NO). Recent evidence suggests that Pi-dependent NO production plays a role in apoptosis of cells in the resting zone as well. This study examined the mechanism by which Pi induces NO production and the signaling pathways by which NO mediates its effects on apoptosis in these cells. Pi decreased the number of viable cells based on MTT activity; the number of TUNEL-positive cells and the level of DNA fragmentation were increased, indicating an increase in apoptosis. Blocking NO production using the NO synthase (NOS) inhibitor L: -NAME or cells from eNOS(-/-) mice blocked Pi-induced chondrocyte apoptosis, indicating that NO production is necessary. NO donors NOC-18 and SNOG both induced chondrocyte apoptosis. SNOG also upregulated p53 expression, the Bax/Bcl-2 expression ratio, and cytochrome c release from mitochondria, as well as caspase-3 activity, indicating that NO induces apoptosis via a mitochondrial pathway. Inhibition of JNK, but not of p38 or ERK1/2, MAP kinase was able to block NO-induced apoptosis, indicating that JNK is necessary in this pathway. Pi elevates NO production via eNOS in resting zone chondrocytes, which leads to a mitochondrial apoptosis pathway dependent on JNK.
Collapse
Affiliation(s)
- M Zhong
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | | | | | | | | |
Collapse
|
49
|
LUO J, QIAO F, YIN X. Hypoxia Induces FGF2 Production by Vascular Endothelial Cells and Alters MMP9 and TIMP1 Expression in Extravillous Trophoblasts and Their Invasiveness in a Cocultured Model. J Reprod Dev 2011; 57:84-91. [DOI: 10.1262/jrd.10-008k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jianying LUO
- Department of Obstetrics and Gynecology, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University
| | - Fuyuan QIAO
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology
| | - Xianghua YIN
- Department of Obstetrics and Gynecology, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University
| |
Collapse
|
50
|
Regulation of phosphatidic Acid metabolism by sphingolipids in the central nervous system. J Lipids 2010; 2011:342576. [PMID: 21490799 PMCID: PMC3068476 DOI: 10.1155/2011/342576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022] Open
Abstract
This paper explores the way ceramide, sphingosine, ceramide 1-phosphate, and sphingosine 1-phosphate modulate the generation of second lipid messengers from phosphatidic acid in two experimental models of the central nervous system: in vertebrate rod outer segments prepared from dark-adapted retinas as well as in rod outer segments prepared from light-adapted retinas and in rat cerebral cortex synaptosomes under physiological aging conditions. Particular attention is paid to lipid phosphate phosphatase, diacylglycerol lipase, and monoacylglycerol lipase. Based on the findings reported in this paper, it can be concluded that proteins related to phototransduction phenomena are involved in the effects derived from sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide and that age-related changes occur in the metabolism of phosphatidic acid from cerebral cortex synaptosomes in the presence of either sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide. The present paper demonstrates, in two different models of central nervous system, how sphingolipids influence phosphatidic acid metabolism under different physiological conditions such as light and aging.
Collapse
|