1
|
Dong Z, Peng X, Song X, Li X, Li Y, You B, Dong D, Jianbo Y. Leptin affects spermatogenic function via activation of the Akt/ERK/AMPK signaling pathway. Hormones (Athens) 2025:10.1007/s42000-025-00667-x. [PMID: 40394418 DOI: 10.1007/s42000-025-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/17/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Obesity is often associated with elevated leptin levels and leptin resistance, which can lead to impaired reproductive function. While exogenous leptin is known to enhance reproductive capacity in leptin-deficient male mice, its effects on reproductive function in obese male mice and the underlying mechanisms remain unclear. This study aims to elucidate the effects of leptin on testicular tissue, semen, and associated signaling pathways in both normal and obese male mice. METHODS A high-fat diet-induced obesity model was established in male C57BL/6 J mice, followed by the administration of exogenous leptin. Histological changes in testicular tissue were observed using HE staining, while RT-PCR was employed to investigate mRNA expression levels of leptin and its receptor. The expression of proteins involved in leptin-related signaling pathways was analyzed by Western blotting. RESULTS Both high-fat diet-induced obesity and exogenous leptin administration led to significant alterations in testicular histomorphology, semen parameters, and reproductive hormones, ultimately impairing fertility. Leptin intervention significantly decreased FSH and LH levels, along with a reduction in serum leptin levels and the expression of leptin and its receptor mRNA. Moreover, exogenous leptin promoted the phosphorylation of STAT3, ERK, and AMPK, suggesting activation of these signaling pathways. CONCLUSIONS Normal mice exhibited negligible responses to exogenous leptin, whereas obese mice showed significant leptin resistance, likely due to the opposing signaling pathways that modulate leptin's effects. This study highlights the differential impact of leptin on reproductive function between normal and obese mice, with leptin resistance in obese mice potentially serving as a protective mechanism against reproductive damage.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Urology, Hai'an People's Hospital, Hai'an, Jiangsu, China
| | - Xingshun Peng
- Department of Urology, Dongping County People's Hospital, Taian, Shandong, China
| | - Xin Song
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yang Li
- Department of Urology, Dongping County People's Hospital, Taian, Shandong, China.
| | - Bo You
- Department of Urology, Tai'an Traditional Chinese Medicine Hospital, Shandong, China.
| | - Deping Dong
- Department of Urology, Hai'an People's Hospital, Hai'an, Jiangsu, China.
| | - Yang Jianbo
- Nantong Haimen People's Hospital, Nantong City Province, 226100, Jiangsu, China.
| |
Collapse
|
2
|
Zhang L, Li Y, Gao W, Li Z, Wu T, Lang C, Rui L, Zhang W. Deficiency of neuronal LGR4 increases energy expenditure and inhibits food intake via hypothalamic leptin signaling. EMBO Rep 2025; 26:2098-2120. [PMID: 40069508 PMCID: PMC12018946 DOI: 10.1038/s44319-025-00398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 04/25/2025] Open
Abstract
The metabolic effects of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) remain largely unknown. Here, we showed that knockdown of Lgr4 in nestin progenitor or Sp1 mature neurons reduced high fat diet (HFD)-induced obesity by increasing energy expenditure and inhibiting food intake. Deficiency of LGR4 in AgRP neurons increased energy expenditure, and inhibited food intake, leading to alterations in glucose and lipid metabolism. Knock-down of Lgr4 in Sf1 neurons enhanced energy expenditure, reduced adiposity, and improved glucose and lipid metabolism. The metabolic benefits of neuronal LGR4 occurred via improvement of leptin signaling in AgRP and Sf1 neurons. Knockdown of Lgr4 in nestin, Sp1, AgRP or Sf1 neurons decreased hypothalamic levels of SOCS-3, and increased phosphorylation of STAT3. These alterations were associated with a significant reduction in the hypothalamic levels of β-catenin. Inhibition of β-catenin signaling by Dkk1 significantly attenuated the decrement of phospho-STAT3 and concurrent increase of SOCS-3 induced by Rspondin 3, an endogenous ligand for LGR4. Our results thus demonstrate that hypothalamic LGR4 may promote energy conversation by increasing food intake and decreasing energy expenditure. Deficiency of neuronal LGR4 improves hypothalamic leptin sensitivity via suppression of β-catenin signaling.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yuan Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tong Wu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Chunhui Lang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Liangyou Rui
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Francois M, Kaiser L, He Y, Xu Y, Salbaum JM, Yu S, Morrison CD, Berthoud HR, Münzberg H. Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss. Metabolism 2025; 163:156100. [PMID: 39672257 PMCID: PMC11700787 DOI: 10.1016/j.metabol.2024.156100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
The dorsomedial hypothalamus (DMH) receives inputs from the preoptic area (POA), where ambient temperature mediates physiological adaptations of energy expenditure and food intake. Warm-activated POA neurons suppress energy expenditure via brown adipose tissue (BAT) projecting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA). Our earlier work identified leptin receptor (Lepr)-expressing, BAT-projecting dDMH/DHA neurons that mediate metabolic leptin effects. Yet, the neurotransmitter (glutamate or GABA) used by dDMH/DHALepr neurons remains unexplored and was investigated in this study using mice. We report that dDMH/DHALepr neurons represent equally glutamatergic and GABAergic neurons. Surprisingly, chemogenetic activation of glutamatergic and/or GABAergic dDMH/DHA neurons were capable to increase energy expenditure and locomotion, but neither reproduced the beneficial metabolic effects observed after chemogenetic activation of dDMH/DHALepr neurons. We clarify that BAT-projecting dDMH/DHA neurons that innervate the raphe pallidus (RPa) are exclusively glutamatergic Lepr neurons. In contrast, projections of GABAergic or dDMH/DHALepr neurons overlapped in the ventromedial arcuate nucleus (vmARC), suggesting distinct energy expenditure pathways. Brain slice patch clamp recordings further demonstrate a considerable proportion of leptin-inhibited dDMH/DHALepr neurons, while removal of pre-synaptic (indirect) effects with synaptic blocker increased the proportion of leptin-activated dDMH/DHALepr neurons, suggesting that pre-synaptic Lepr neurons inhibit dDMH/DHALepr neurons. We conclude that stimulation of BAT-related, GABA- and glutamatergic dDMH/DHALepr neurons in combination mediate the beneficial metabolic effects. Our data support the idea that dDMH/DHALepr neurons integrate upstream Lepr neurons (e.g., originating from POA and ARC). We speculate that these neurons manage dynamic adaptations to a variety of environmental changes including ambient temperature and energy state. SIGNIFICANCE STATEMENT: Our earlier work identified leptin receptor expressing neurons in the dDMH/DHA as an important thermoregulatory site. Dorsomedial hypothalamus (DMH) Lepr neurons participate in processing and integration of environmental exteroceptive signals like ambient temperature and circadian rhythm, as well as interoceptive signals including leptin and the gut hormone glucagon-like-peptide-1 (GLP1). The present work further characterizes dDMH/DHALepr neurons as a mixed glutamatergic and GABAergic population, but with distinct axonal projection sites. Surprisingly, select activation of glutamatergic and/or GABAergic populations are all able to increase energy expenditure, but are unable to replicate the beneficial metabolic effects observed by Lepr activation. These findings highlighting dDMH/DHA Lepr neurons as a distinct subgroup of glutamatergic and GABAergic neurons that are under indirect and direct influence of the interoceptive hormone leptin and if stimulated are uniquely capable to mediate beneficial metabolic effects. Our work significantly expands our knowledge of thermoregulatory circuits and puts a spotlight onto DMH-Lepr neurons for the integration into whole body energy and body weight homeostasis.
Collapse
Affiliation(s)
- Marie Francois
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Laura Kaiser
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Yanlin He
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J Michael Salbaum
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
6
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
7
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
8
|
Sáenz de Miera C, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. eLife 2024; 13:RP93204. [PMID: 39007235 PMCID: PMC11249761 DOI: 10.7554/elife.93204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan–Ann ArborAnn ArborUnited States
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Obstetrics and Gynecology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
9
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
10
|
Rizwan MZ, Kamstra K, Pretz D, Shepherd PR, Tups A, Grattan DR. Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity. J Neurosci 2024; 44:e1666232024. [PMID: 38395612 PMCID: PMC10993030 DOI: 10.1523/jneurosci.1666-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Dominik Pretz
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Alexander Tups
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
12
|
de Miera CS, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558865. [PMID: 37790549 PMCID: PMC10542178 DOI: 10.1101/2023.09.21.558865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Susan J. Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
13
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
14
|
Tamir-Hostovsky L, Ivanovska J, Parajón E, Patel R, Wang H, Biouss G, Ivanovski N, Belik J, Pierro A, Montandon G, Gauda EB. Maturational effect of leptin on CO 2 chemosensitivity in newborn rats. Pediatr Res 2023; 94:971-978. [PMID: 37185965 DOI: 10.1038/s41390-023-02604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Leptin augments central CO2 chemosensitivity and stabilizes breathing in adults. Premature infants have unstable breathing and low leptin levels. Leptin receptors are on CO2 sensitive neurons in the Nucleus Tractus Solitarius (NTS) and locus coeruleus (LC). We hypothesized that exogenous leptin improves hypercapnic respiratory response in newborn rats by improving central CO2 chemosensitivity. METHODS In rats at postnatal day (p)4 and p21, hyperoxic and hypercapnic ventilatory responses, and pSTAT and SOCS3 protein expression in the hypothalamus, NTS and LC were measured before and after treatment with exogenous leptin (6 µg/g). RESULTS Exogenous leptin increased the hypercapnic response in p21 but not in p4 rats (P ≤ 0.001). At p4, leptin increased pSTAT expression only in the LC, and SOCS3 expression in the NTS and LC; while at p21 pSTAT and SOCS3 levels were higher in the hypothalamus, NTS, and LC (P ≤ 0.05). CONCLUSIONS We describe the developmental profile of the effect of exogenous leptin on CO2 chemosensitivity. Exogenous leptin does not augment central CO2 sensitivity during the first week of life in newborn rats. The translational implication of these findings is that low plasma leptin levels in premature infants may not be contributing to respiratory instability. IMPACT Exogenous leptin does not augment CO2 sensitivity during the first week of life in newborn rats, similar to the developmental period when feeding behavior is resistant to leptin. Exogenous leptin increases CO2 chemosensitivity in newborn rats after the 3rd week of life and upregulates the expression of pSTAT and SOC3 in the hypothalamus, NTS and LC. Low plasma leptin levels in premature infants are unlikely contributors to respiratory instability via decreased CO2 sensitivity in premature infants. Thus, it is highly unlikely that exogenous leptin would alter this response.
Collapse
Affiliation(s)
- Liran Tamir-Hostovsky
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Julijana Ivanovska
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Eleana Parajón
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rachana Patel
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Huanhuan Wang
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, Developmental and Stem Cell Biology Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nikola Ivanovski
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jaques Belik
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Developmental and Stem Cell Biology Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Gaspard Montandon
- Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Program, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
16
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
17
|
Zhu S, Feng X, Feng X, Xie K, Li Y, Chen L, Mo Y, Liang J, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Zhu C, Jiang Q, Wang L. Diet containing stearic acid increased food intake in mice by reducing serum leptin compared with oleic acid. Food Funct 2023; 14:990-1002. [PMID: 36545693 DOI: 10.1039/d2fo03051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In today's society, obesity is becoming increasingly serious, and controlling food intake and maintaining weight balance have become increasingly important. Here, we found that a stearic acid diet can increase food intake without causing obesity in mice compared with an oleic acid diet. Stearic acid increases food intake in mice by reducing serum leptin and increasing NPY neuronal excitability through the JAK2/STAT3 pathway. The impaired anorexic effect of leptin is probably due to repressive cholesterol-oxysterol-LXR-α/SREBP-1c-mediated leptin expression in mouse iWAT. At the same time, we found that stearic acid was not only poorly absorbed by itself in the small intestine but also reduced the entire absorption system of the small intestine. In conclusion, we have proven that a stearic acid diet can increase food intake in mice and avoid obesity, but whether a stearic acid diet could cause adverse reactions in the body remains to be studied.
Collapse
Affiliation(s)
- Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaohua Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Room 8070, Houston, TX 77030, USA.
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingfen Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingwen Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China.,National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
18
|
Abend Bardagi A, Dos Santos Paschoal C, Favero GG, Riccetto L, Alexandrino Dias ML, Guerra Junior G, Degasperi G. Leptin's Immune Action: A Review Beyond Satiety. Immunol Invest 2023; 52:117-133. [PMID: 36278927 DOI: 10.1080/08820139.2022.2129381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue is an endocrine organ that secretes adipokines such as leptin, which is one of the most important hormones for controlling satiety, metabolism, and energy homeostasis. This hormone acts in the regulation of innate and adaptive immune responses since immune cells have leptin receptors from which this hormone initiates its biological action. These receptors have been identified in hematopoietic stem cells in the bone marrow and mature immune cells, inducing signaling pathways mediated by JAK/STAT, PI3K, and ERK 1/2. It is known that the bone marrow also contains leptin-producing adipocytes, which are crucial for regulating hematopoiesis through largely unknown mechanisms. Therefore, we have reviewed the roles of leptin inside and outside the bone marrow, going beyond its action in the control of satiety.
Collapse
Affiliation(s)
- Alice Abend Bardagi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Clarissa Dos Santos Paschoal
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Giovanna Ganem Favero
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Luisa Riccetto
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Maria Luisa Alexandrino Dias
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Gil Guerra Junior
- Center for Investigation in Pediatrics (CIPED), School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Giovanna Degasperi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| |
Collapse
|
19
|
Anti-hypothalamus autoantibodies in anorexia nervosa: a possible new mechanism in neuro-physiological derangement? Eat Weight Disord 2022; 27:2481-2496. [PMID: 35297008 PMCID: PMC9556421 DOI: 10.1007/s40519-022-01388-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/26/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Anorexia nervosa (AN) is a serious and complex mental disorder affecting mainly young adult women. AN patients are characterized by low body weight in combination with self-induced starvation, intense fear of gaining weight, and distortion of body image. AN is a multifactorial disease, linked by recent evidence to a dysregulation of the immune system. METHODS In this pilot study, 22 blood serums from AN patients were tested for the presence of autoantibodies against primate hypothalamic periventricular neurons by immunofluorescence and by a home-made ELISA assay. Cellular fluorescence suggests the presence of autoantibodies which are able to recognize these neurons (both to body cell and fiber levels). By means of ELISA, these autoantibodies are quantitatively evaluated. In addition, orexigenic and anorexigenic molecules were measured by ELISA. As control, 18 blood serums from healthy age matched woman were analysed. RESULTS All AN patients showed a reactivity against hypothalamic neurons both by immunofluorescence and ELISA. In addition, ghrelin, pro-opiomelanocortin (POMC), and agouti-related peptide (AGRP) were significantly higher than in control serums (p < 0.0001). In contrast, leptin was significantly lower in AN patients than controls (p < 0.0001). CONCLUSIONS Immunoreaction and ELISA assays on AN blood serum suggest the presence of autoantibodies AN related. However, it is not easy to determine the action of these antibodies in vivo: they could interact with specific ligands expressed by hypothalamic cells preventing their physiological role, however, it is also possible that they could induce an aspecific stimulation in the target cells leading to an increased secretion of anorexigenic molecules. Further studies are needed to fully understand the involvement of the immune system in AN pathogenesis. LEVEL OF EVIDENCE V, descriptive study.
Collapse
|
20
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Jeong B, Kim KK, Lee TH, Kim HR, Park BS, Park JW, Jeong JK, Seong JY, Lee BJ. Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior. Biomolecules 2022; 12:biom12020236. [PMID: 35204737 PMCID: PMC8961618 DOI: 10.3390/biom12020236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin’s effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin’s action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Kwang-Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Tae-Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Han-Rae Kim
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Byong-Seo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jeong-Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
| | - Jin-Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 22037, USA; (H.-R.K.); (J.-K.J.)
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: (J.-Y.S.); (B.-J.L.)
| | - Byung-Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea; (B.J.); (K.-K.K.); (T.-H.L.); (B.-S.P.); (J.-W.P.)
- Correspondence: (J.-Y.S.); (B.-J.L.)
| |
Collapse
|
22
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
23
|
Quaresma PGF, Wasinski F, Mansano NS, Furigo IC, Teixeira PDS, Gusmao DO, Frazao R, Donato J. Leptin Receptor Expression in GABAergic Cells is Not Sufficient to Normalize Metabolism and Reproduction in Mice. Endocrinology 2021; 162:6353267. [PMID: 34402859 DOI: 10.1210/endocr/bqab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Previous studies indicate that leptin receptor (LepR) expression in GABAergic neurons is necessary for the biological effects of leptin. However, it is not clear whether LepR expression only in GABAergic neurons is sufficient to prevent the metabolic and neuroendocrine imbalances caused by LepR deficiency. In the present study, we produced mice that express the LepR exclusively in GABAergic cells (LepRVGAT mice) and compared them with wild-type (LepR+/+) and LepR-deficient (LepRNull/Null) mice. Although LepRVGAT mice showed a pronounced reduction in body weight and fat mass, as compared with LepRNull/Null mice, male and female LepRVGAT mice exhibited an obese phenotype relative to LepR+/+ mice. Food intake was normalized in LepRVGAT mice; however, LepRVGAT mice still exhibited lower energy expenditure in both sexes and reduced ambulatory activity in the females, compared with LepR+/+ mice. The acute anorexigenic effect of leptin and hedonic feeding were normalized in LepRVGAT mice despite the hyperleptinemia they present. Although LepRVGAT mice showed improved glucose homeostasis compared with LepRNull/Null mice, both male and female LepRVGAT mice exhibited insulin resistance. In contrast, LepR expression only in GABAergic cells was sufficient to normalize the density of agouti-related peptide (AgRP) and α-MSH immunoreactive fibers in the paraventricular nucleus of the hypothalamus. However, LepRVGAT mice exhibited reproductive dysfunctions, including subfertility in males and alterations in the estrous cycle of females. Taken together, our findings indicate that LepR expression in GABAergic cells, although critical to the physiology of leptin, is insufficient to normalize several metabolic aspects and the reproductive function in mice.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Naira S Mansano
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Isadora C Furigo
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Pryscila D S Teixeira
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Daniela O Gusmao
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazao
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Jose Donato
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
24
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
25
|
Multiple Leptin Signalling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends? Int J Mol Sci 2021; 22:ijms22179210. [PMID: 34502119 PMCID: PMC8430761 DOI: 10.3390/ijms22179210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its ‘anti-obesity’ effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin’s metabolic effects while retaining leptin’s permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.
Collapse
|
26
|
Weber C, Capel B. Sex determination without sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200109. [PMID: 34247500 DOI: 10.1098/rstb.2020.0109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With or without sex chromosomes, sex determination is a synthesis of many molecular events that drives a community of cells towards a coordinated tissue fate. In this review, we will consider how a sex determination pathway can be engaged and stabilized without an inherited genetic determinant. In many reptilian species, no sex chromosomes have been identified, yet a conserved network of gene expression is initiated. Recent studies propose that epigenetic regulation mediates the effects of temperature on these genes through dynamic post-transcriptional, post-translational and metabolic pathways. It is likely that there is no singular regulator of sex determination, but rather an accumulation of molecular events that shift the scales towards one fate over another until a threshold is reached sufficient to maintain and stabilize one pathway and repress the alternative pathway. Investigations into the mechanism underlying sex determination without sex chromosomes should focus on cellular processes that are frequently activated by multiple stimuli or can synthesize multiple inputs and drive a coordinated response. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Ceri Weber
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
27
|
Butiaeva LI, Slutzki T, Swick HE, Bourguignon C, Robins SC, Liu X, Storch KF, Kokoeva MV. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab 2021; 33:1433-1448.e5. [PMID: 34129812 DOI: 10.1016/j.cmet.2021.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Knowledge of how leptin receptor (LepR) neurons of the mediobasal hypothalamus (MBH) access circulating leptin is still rudimentary. Employing intravital microscopy, we found that almost half of the blood-vessel-enwrapping pericytes in the MBH express LepR. Selective disruption of pericytic LepR led to increased food intake, increased fat mass, and loss of leptin-dependent signaling in nearby LepR neurons. When delivered intravenously, fluorescently tagged leptin accumulated at hypothalamic LepR pericytes, which was attenuated upon pericyte-specific LepR loss. Because a paracellular tracer was also preferentially retained at LepR pericytes, we pharmacologically targeted regulators of inter-endothelial junction tightness and found that they affect LepR neuronal signaling and food intake. Optical imaging in MBH slices revealed a long-lasting, tonic calcium increase in LepR pericytes in response to leptin, suggesting pericytic contraction and vessel constriction. Together, our data indicate that LepR pericytes facilitate localized, paracellular blood-brain barrier leaks, enabling MBH LepR neurons to access circulating leptin.
Collapse
Affiliation(s)
- Liliia I Butiaeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Tal Slutzki
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Hannah E Swick
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Clément Bourguignon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Sarah C Robins
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Xiaohong Liu
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada
| | - Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Berger C, Klöting N. Leptin Receptor Compound Heterozygosity in Humans and Animal Models. Int J Mol Sci 2021; 22:4475. [PMID: 33922961 PMCID: PMC8123313 DOI: 10.3390/ijms22094475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Leptin and its receptor are essential for regulating food intake, energy expenditure, glucose homeostasis and fertility. Mutations within leptin or the leptin receptor cause early-onset obesity and hyperphagia, as described in human and animal models. The effect of both heterozygous and homozygous variants is much more investigated than compound heterozygous ones. Recently, we discovered a spontaneous compound heterozygous mutation within the leptin receptor, resulting in a considerably more obese phenotype than described for the homozygous leptin receptor deficient mice. Accordingly, we focus on compound heterozygous mutations of the leptin receptor and their effects on health, as well as possible therapy options in human and animal models in this review.
Collapse
Affiliation(s)
- Claudia Berger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Nora Klöting
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021; 18:39. [PMID: 33849593 PMCID: PMC8045279 DOI: 10.1186/s12986-021-00569-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Tianxin Du
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Chen Li
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Guoqing Yang
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, Jung SB, Park JW, Kim S, Park CB, Dugu H, Choi JH, Jang WH, Park SE, Cho YM, Kim JG, Kim KG, Choi CS, Kim YB, Lee C, Shong M, Kim MS. Mitohormesis in Hypothalamic POMC Neurons Mediates Regular Exercise-Induced High-Turnover Metabolism. Cell Metab 2021; 33:334-349.e6. [PMID: 33535098 PMCID: PMC7959183 DOI: 10.1016/j.cmet.2021.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Low-grade mitochondrial stress can promote health and longevity, a phenomenon termed mitohormesis. Here, we demonstrate the opposing metabolic effects of low-level and high-level mitochondrial ribosomal (mitoribosomal) stress in hypothalamic proopiomelanocortin (POMC) neurons. POMC neuron-specific severe mitoribosomal stress due to Crif1 homodeficiency causes obesity in mice. By contrast, mild mitoribosomal stress caused by Crif1 heterodeficiency in POMC neurons leads to high-turnover metabolism and resistance to obesity. These metabolic benefits are mediated by enhanced thermogenesis and mitochondrial unfolded protein responses (UPRmt) in distal adipose tissues. In POMC neurons, partial Crif1 deficiency increases the expression of β-endorphin (β-END) and mitochondrial DNA-encoded peptide MOTS-c. Central administration of MOTS-c or β-END recapitulates the adipose phenotype of Crif1 heterodeficient mice, suggesting these factors as potential mediators. Consistently, regular running exercise at moderate intensity stimulates hypothalamic MOTS-c/β-END expression and induces adipose tissue UPRmt and thermogenesis. Our findings indicate that POMC neuronal mitohormesis may underlie exercise-induced high-turnover metabolism.
Collapse
Affiliation(s)
- Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Ye Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seongjun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hong Dugu
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young Min Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Kyung-Gon Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Metabolic Phenotyping Center, Gachon University, Inchon 21999, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Korea; Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
31
|
p-Coumaric Acid Enhances Hypothalamic Leptin Signaling and Glucose Homeostasis in Mice via Differential Effects on AMPK Activation. Int J Mol Sci 2021; 22:ijms22031431. [PMID: 33572687 PMCID: PMC7867021 DOI: 10.3390/ijms22031431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK) plays a crucial role in the regulation of energy homeostasis in both peripheral metabolic organs and the central nervous system. Recent studies indicated that p-Coumaric acid (CA), a hydroxycinnamic phenolic acid, potentially activated the peripheral AMPK pathway to exert beneficial effects on glucose metabolism in vitro. However, CA’s actions on central AMPK activity and whole-body glucose homeostasis have not yet been investigated. Here, we reported that CA exhibited different effects on peripheral and central AMPK activation both in vitro and in vivo. Specifically, while CA treatment promoted hepatic AMPK activation, it showed an inhibitory effect on hypothalamic AMPK activity possibly by activating the S6 kinase. Furthermore, CA treatment enhanced hypothalamic leptin sensitivity, resulting in increased proopiomelanocortin (POMC) expression, decreased agouti-related peptide (AgRP) expression, and reduced daily food intake. Overall, CA treatment improved blood glucose control, glucose tolerance, and insulin sensitivity. Together, these results suggested that CA treatment enhanced hypothalamic leptin signaling and whole-body glucose homeostasis, possibly via its differential effects on AMPK activation.
Collapse
|
32
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
33
|
Quaresma PGF, Dos Santos WO, Wasinski F, Metzger M, Donato J. Neurochemical phenotype of growth hormone-responsive cells in the mouse paraventricular nucleus of the hypothalamus. J Comp Neurol 2020; 529:1228-1239. [PMID: 32844436 DOI: 10.1002/cne.25017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Willian O Dos Santos
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Metzger
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Benbaibeche H, Bounihi A, Koceir EA. Leptin level as a biomarker of uncontrolled eating in obesity and overweight. Ir J Med Sci 2020; 190:155-161. [PMID: 32681271 DOI: 10.1007/s11845-020-02316-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Uncontrolled eating (UE) showed important relationships with the development of obesity. Homeostatic regulations of feeding and energy balance, as well as hedonic eating, are regulated by leptin. AIMS The aims of this study were (1) to assess eating behaviors of Algerian adults as measured by the 51-item eating inventory; we also evaluate changes in the Three-Factor Eating Questionnaire (TFEQ) scores according to the body mass index (BMI) category; (2) to examine the association between the scores of the three TFEQ factors and the BMI values of the participants; and (3) to examine whether leptin concentrations are associated with eating behavior. Our hypothesis is that participants with obesity and high concentrations of leptin might display uncontrolled eating behavior. METHODS The subjects were 190 participants (60 obese, 60 overweight, and 70 lean subjects). The eating behavior was measured by using the 51-item eating inventory. Serum insulin concentrations were assessed by radioimmunoassay and were used to calculate homeostasis model assessment (HOMA). Serum leptin was quantified by the enzyme-linked immunosorbent assay (ELISA). RESULTS Obese and overweight subjects showed hyperphagic behavior, i.e., uncontrolled eating. The logistic regression analysis showed an effect of leptin, HOMA, uncontrolled eating, and emotional eating on BMI. Leptin levels were associated with the uncontrolled eating and influenced by insulin sensitivity. CONCLUSIONS The uncontrolled eating reflects hyperphagic eating behavior in obese and overweight subjects. Coexistence of uncontrolled eating and high level of leptin demonstrates a state of leptin resistance resulting in an inability to detect satiety. High circulating leptin can be considered a potential biomarker of uncontrolled eating.
Collapse
Affiliation(s)
- Hassiba Benbaibeche
- Département des Sciences de la Nature et de la Vie, Faculté des Sciences, Université D'Alger, Algiers, Algeria. .,Bioenergetics and Intermediary Metabolism team, Biology and Organisms Physiology laboratory, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), El Alia, Bab Ezzouar, 16123, Algiers, Algeria.
| | - Abdenour Bounihi
- Bioenergetics and Intermediary Metabolism team, Biology and Organisms Physiology laboratory, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), El Alia, Bab Ezzouar, 16123, Algiers, Algeria.,Department of Second Cycle, Ecole Supérieure des Sciences de l'Aliment et des Industries Agroalimentaires, Algiers, Algeria
| | - Elhadj Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Biology and Organisms Physiology laboratory, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), El Alia, Bab Ezzouar, 16123, Algiers, Algeria
| |
Collapse
|
35
|
Venema W, Severi I, Perugini J, Di Mercurio E, Mainardi M, Maffei M, Cinti S, Giordano A. Ciliary Neurotrophic Factor Acts on Distinctive Hypothalamic Arcuate Neurons and Promotes Leptin Entry Into and Action on the Mouse Hypothalamus. Front Cell Neurosci 2020; 14:140. [PMID: 32528252 PMCID: PMC7253709 DOI: 10.3389/fncel.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In humans and experimental animals, the administration of ciliary neurotrophic factor (CNTF) reduces food intake and body weight. To gain further insights into the mechanism(s) underlying its satiety effect, we: (i) evaluated the CNTF-dependent activation of the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) pathway in mouse models where neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons can be identified by green fluorescent protein (GFP); and (ii) assessed whether CNTF promotes leptin signaling in hypothalamic feeding centers. Immunohistochemical experiments enabled us to establish that intraperitoneal injection of mouse recombinant CNTF activated the JAK2-STAT3 pathway in a substantial proportion of arcuate nucleus (ARC) NPY neurons (18.68% ± 0.60 in 24-h fasted mice and 25.50% ± 1.17 in fed mice) but exerted a limited effect on POMC neurons (4.15% ± 0.33 in 24-h fasted mice and 2.84% ± 0.45 in fed mice). CNTF-responsive NPY neurons resided in the ventromedial ARC, facing the median eminence (ME), and were surrounded by albumin immunoreactivity, suggesting that they are located outside the blood-brain barrier (BBB). In both normally fed and high-fat diet (HFD) obese animals, CNTF activated extracellular signal-regulated kinase signaling in ME β1- and β2-tanycytes, an effect that has been linked to the promotion of leptin entry into the brain. Accordingly, compared to the animals treated with leptin, mice treated with leptin/CNTF showed: (i) a significantly greater leptin content in hypothalamic protein extracts; (ii) a significant increase in phospho-STAT3 (P-STAT3)-positive neurons in the ARC and the ventromedial hypothalamic nucleus of normally fed mice; and (iii) a significantly increased number of P-STAT3-positive neurons in the ARC and dorsomedial hypothalamic nucleus of HFD obese mice. Collectively, these data suggest that exogenously administered CNTF reduces food intake by exerting a leptin-like action on distinctive NPY ARC neurons and by promoting leptin signaling in hypothalamic feeding centers.
Collapse
Affiliation(s)
- Wiebe Venema
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Mainardi
- Institute of Neuroscience, National Research Council, Pisa, Italy
| | | | - Saverio Cinti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
- Center of Obesity, Università Politecnica delle Marche-United Hospitals, Ancona, Italy
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
36
|
Good DJ, Zhang H, Grange RW, Braun T. Pro-opiomelanocortin Neurons and the Transcriptional Regulation of Motivated Exercise. Exerc Sport Sci Rev 2020; 48:74-82. [DOI: 10.1249/jes.0000000000000219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, Brown RJ, Muniyappa R. Metabolomic Analysis of the Effects of Leptin Replacement Therapy in Patients with Lipodystrophy. J Endocr Soc 2019; 4:bvz022. [PMID: 32010873 DOI: 10.1210/jendso/bvz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Context and Objective Leptin treatment has dramatic clinical effects on glucose and lipid metabolism in leptin-deficient patients with lipodystrophy. Further elucidation of metabolic effects of exogenous leptin therapy will shed light on understanding leptin physiology in humans. Our objective was to utilize metabolomic profiling to examine the changes associated with administration of short-term metreleptin therapy in patients with lipodystrophy. Study Design We conducted a pre-post-treatment study in 19 patients (75% female) with varying forms of lipodystrophy (congenital generalized lipodystrophy, n = 10; acquired generalized lipodystrophy, n = 1; familial partial lipodystrophy, n = 8) who received daily subcutaneous metreleptin injections for a period of 16 to 23 weeks. A 3-hour oral glucose tolerance test and body composition measurements were conducted before and after the treatment period, and fasting blood samples were used for metabolomic profiling. The study outcome aimed at measuring changes in physiologically relevant metabolites before and after leptin therapy. Results Metabolomic analysis revealed changes in pathways involving branched-chain amino acid metabolism, fatty acid oxidation, protein degradation, urea cycle, tryptophan metabolism, nucleotide catabolism, vitamin E, and steroid metabolism. Fold changes in pre- to post-treatment metabolite levels indicated increased breakdown of fatty acids, branched chain amino acids proteins, and nucleic acids. Conclusions Leptin replacement therapy has significant effects on important metabolic pathways implicated in patients with lipodystrophy. Continued metabolomic studies may provide further insight into the mechanisms of action of leptin replacement therapy and provide novel biomarkers of lipodystrophy.Abbreviations: 1,5-AG, 1,5-anhydroglucitol; 11βHSD1, 11-β hydroxysteroid dehydrogenase 1; BCAA, branched-chain amino acid; FFA, free fatty acid; GC-MS, gas chromatography mass spectrometry; IDO, indoleamine 2,3-dioxygenase; IFN-γ, interferon-γ; m/z, mass to charge ratio; OGTT, oral glucose tolerance test; TDO, tryptophan 2,3-dioxygenase; TNF-α, tumor necrosis factor-α; UPLC-MS/MS, ultra-performance liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Shivraj Grewal
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sriram Gubbi
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andin Fosam
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Caroline Sedmak
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shanaz Sikder
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harsha Talluru
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, Clinical Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Skinner NJ, Rizwan MZ, Grattan DR, Tups A. Chronic Light Cycle Disruption Alters Central Insulin and Leptin Signaling as well as Metabolic Markers in Male Mice. Endocrinology 2019; 160:2257-2270. [PMID: 31276158 DOI: 10.1210/en.2018-00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/20/2019] [Indexed: 01/25/2023]
Abstract
Recent evidence suggests that the circadian timing system plays a role in energy and glucose homeostasis, and disruptions to this system are a risk factor for the development of metabolic disorders. We exposed animals to a constantly shifting lighting environment comprised of a 6-hour advance, occurring every 6 days, to chronically disrupt their circadian timing system. This treatment caused a gradual increase in body weight of 12 ± 2% after 12 phase shifts, compared with a 6 ± 1% increase in mice under control lighting conditions. Additionally, after the fifth phase shift, light cycle-disrupted (CD) animals showed a reversal in their diurnal pattern of energy homeostasis and locomotor activity, followed by a subsequent loss of this rhythm. To investigate potential molecular mechanisms mediating these metabolic alterations, we assessed central leptin and insulin sensitivity. We discovered that CD mice had a decrease in central leptin signaling, as indicated by a reduction in the number of phosphorylated signal transducer and activator of transcription 3 immunoreactive cells in the arcuate nucleus of the hypothalamus. Furthermore, CD animals exhibited a marked increase in fasting blood glucose (269.4 ± 21.1 mg/dL) compared with controls (108.8 ± 21.3 mg/dL). This dramatic increase in fasting glucose levels was not associated with an increase in insulin levels, suggesting impairments in pancreatic insulin release. Peripheral hyperglycemia was accompanied by central alterations in insulin signaling at the level of phospho Akt and insulin receptor substrate 1, suggesting that light cycle disruption alters central insulin signaling. These results provide mechanistic insights into the association between light cycle disruption and metabolic disease.
Collapse
Affiliation(s)
- Nathan J Skinner
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mohammed Z Rizwan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Üner AG, Keçik O, Quaresma PGF, De Araujo TM, Lee H, Li W, Kim HJ, Chung M, Bjørbæk C, Kim YB. Role of POMC and AgRP neuronal activities on glycaemia in mice. Sci Rep 2019; 9:13068. [PMID: 31506541 PMCID: PMC6736943 DOI: 10.1038/s41598-019-49295-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
Leptin regulates both feeding and glycaemia primarily through its receptors expressed on agouti-related peptide (AgRP) and pro-opiomelanocortin-expressing (POMC) neurons; however, it is unknown whether activity of these neuronal populations mediates the regulation of these processes. To determine this, we injected Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) viruses into the hypothalamus of normoglycaemic and diabetic AgRP-ires-cre and POMC-cre mice to chemogenetically activate or inhibit these neuronal populations. Despite robust changes in food intake, activation or inhibition of AgRP neurons did not affect glycaemia, while activation caused significant (P = 0.014) impairment in insulin sensitivity. Stimulation of AgRP neurons in diabetic mice reversed leptin’s ability to inhibit feeding but did not counter leptin’s ability to lower blood glucose levels. Notably, the inhibition of POMC neurons stimulated feeding while decreasing glucose levels in normoglycaemic mice. The findings suggest that leptin’s effects on feeding by AgRP neurons are mediated by changes in neuronal firing, while the control of glucose balance by these cells is independent of chemogenetic activation or inhibition. The firing-dependent glucose lowering mechanism within POMC neurons is a potential target for the development of novel anti-diabetic medicines.
Collapse
Affiliation(s)
- Aykut Göktürk Üner
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA.,Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Efeler, Aydin, 09010, Turkey
| | - Onur Keçik
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Paula G F Quaresma
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago M De Araujo
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Hyon Lee
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Wenjing Li
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Hyun Jeong Kim
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Michelle Chung
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Christian Bjørbæk
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Young-Bum Kim
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Augustine RA, Knowles PJ, Khant Aung Z, Grattan DR, Ladyman SR. Impaired hypothalamic leptin sensitivity in pseudopregnant rats treated with chronic prolactin to mimic pregnancy. J Neuroendocrinol 2019; 31:e12702. [PMID: 30803074 DOI: 10.1111/jne.12702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
Pregnancy in rodents is associated with hyperphagia, increased fat deposition, elevated leptin concentrations and insensitivity to the satiety action of leptin. To investigate the hormonal mechanisms involved in the development of this state of pregnancy-induced leptin resistance, we have used a pseudopregnancy rat model. We have previously demonstrated that pseudopregnant rats have a normal feeding response to leptin, although, if pseudopregnancy is extended using chronic i.c.v. ovine prolactin infusion along with progesterone implants, then leptin no longer suppresses food intake. The present study aimed to investigate the effect of chronically high lactogen levels, as seen in mid-pregnancy, on leptin-induced activation of hypothalamic Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal transduction and mRNA expression of leptin (LepR-B) and prolactin (Prlr-L) receptors, using pseudopregnant rats chronically infused with ovine prolactin. Groups of virgin (dioestrous) and pseudopregnant rats were treated with chronic i.c.v. infusion of either prolactin (2.5 μg μL-1 h-1 for 5 days) or vehicle (artificial cerebrospinal fluid [aCSF]) via a minipump connected to a cannula surgically implanted into the lateral ventricle. Rats were fasted overnight and then received an i.c.v. injection of leptin (400 ng) or vehicle (aCSF) and were perfused 30 minutes later. In chronic vehicle-infused pseudopregnant rats, i.c.v. leptin increased the number of phosphorylated STAT3 positive cells in the arcuate nucleus and ventromedial nucleus (VMH) of the hypothalamus, similar to all acute-leptin treated virgin groups. This effect of leptin, however, was not observed in the pseudopregnant rats that were chronically infused with prolactin. A quantitative polymerase chain reaction analysis also showed decreased expression of LepR-B in the arcuate and VMH nuclei, as well as decreased Prlr-L in the arcuate nucleus of prolactin-infused "extended pseudopregnancy" rats. These data suggest that the attenuation of the leptin-induced suppression of food intake caused by chronically high lactogen levels in pseudopregnant rats is associated with impaired leptin-induced activation of the JAK/STAT pathway in specific hypothalamic nuclei.
Collapse
Affiliation(s)
- Rachael A Augustine
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Penelope J Knowles
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
41
|
Yang Y, van der Klaauw AA, Zhu L, Cacciottolo TM, He Y, Stadler LKJ, Wang C, Xu P, Saito K, Hinton A, Yan X, Keogh JM, Henning E, Banton MC, Hendricks AE, Bochukova EG, Mistry V, Lawler KL, Liao L, Xu J, O'Rahilly S, Tong Q, Inês Barroso, O'Malley BW, Farooqi IS, Xu Y. Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nat Commun 2019; 10:1718. [PMID: 30979869 PMCID: PMC6461669 DOI: 10.1038/s41467-019-08737-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/21/2019] [Indexed: 12/04/2022] Open
Abstract
Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.
Collapse
Affiliation(s)
- Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Liangru Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, 430022, China
| | - Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Antentor Hinton
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xiaofeng Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Matthew C Banton
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Audrey E Hendricks
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Mathematical and Statistical Sciences Department, University of Colorado - Denver, Denver, CO, 80204, USA
| | - Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Vanisha Mistry
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Katherine L Lawler
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Inês Barroso
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
van den Pol AN, Acuna C, Davis JN, Huang H, Zhang X. Defining the caudal hypothalamic arcuate nucleus with a focus on anorexic excitatory neurons. J Physiol 2019; 597:1605-1625. [PMID: 30618146 PMCID: PMC6418765 DOI: 10.1113/jp277152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Excitatory glutamate neurons are sparse in the rostral hypothalamic arcuate nucleus (ARC), the subregion that has received the most attention in the past. In striking contrast, excitatory neurons are far more common (by a factor of 10) in the caudal ARC, an area which has received relatively little attention. These glutamate cells may play a negative role in energy balance and food intake. They can show an increase in phosphorylated Stat-3 in the presence of leptin, are electrically excited by the anorectic neuromodulator cholecystokinin, and inhibited by orexigenic neuromodulators neuropeptide Y, met-enkephalin, dynorphin and the catecholamine dopamine. The neurons project local axonal connections that excite other ARC neurons including proopiomelanocortin neurons that can play an important role in obesity. These data are consistent with models suggesting that the ARC glutamatergic neurons may play both a rapid and a slower role in acting as anorectic neurons in CNS control of food intake and energy homeostasis. ABSTRACT Here we interrogate a unique class of excitatory neurons in the hypothalamic arcuate nucleus (ARC) that utilizes glutamate as a fast neurotransmitter using mice expressing GFP under control of the vesicular glutamate transporter 2 (vGluT2) promoter. These neurons show a unique distribution, synaptic characterization, cellular physiology and response to neuropeptides involved in energy homeostasis. Although apparently not previously appreciated, the caudal ARC showed a far greater density of vGluT2 cells than the rostral ARC, as seen in transgenic vGluT2-GFP mice and mRNA analysis. After food deprivation, leptin induced an increase in phosphorylated Stat-3 in vGluT2-positive neurons, indicating a response to hormonal cues of energy state. Based on whole-cell recording electrophysiology in brain slices, vGluT2 neurons were spontaneously active with a spike frequency around 2 Hz. vGluT2 cells were responsive to a number of neuropeptides related to energy homeostasis; they were excited by the anorectic peptide cholecystokinin, but inhibited by orexigenic neuropeptide Y, dynorphin and met-enkephalin, consistent with an anorexic role in energy homeostasis. Dopamine, associated with the hedonic aspect of enhancing food intake, inhibited vGluT2 neurons. Optogenetic excitation of vGluT2 cells evoked EPSCs in neighbouring neurons, indicating local synaptic excitation of other ARC neurons. Microdrop excitation of ARC glutamate cells in brain slices rapidly increased excitatory synaptic activity in anorexigenic proopiomelanocortin neurons. Together these data support the perspective that vGluT2 cells may be more prevalent in the ARC than previously appreciated, and play predominantly an anorectic role in energy metabolism.
Collapse
Affiliation(s)
| | - Claudio Acuna
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - John N. Davis
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Hao Huang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Xiaobing Zhang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| |
Collapse
|
43
|
TrkB-expressing neurons in the dorsomedial hypothalamus are necessary and sufficient to suppress homeostatic feeding. Proc Natl Acad Sci U S A 2019; 116:3256-3261. [PMID: 30718415 DOI: 10.1073/pnas.1815744116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.
Collapse
|
44
|
Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, Jackson WS, Petzold GC. Stroke target identification guided by astrocyte transcriptome analysis. Glia 2018; 67:619-633. [DOI: 10.1002/glia.23544] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Melvin Schleif
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Hana Matušková
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| | - Thomas Ulas
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | - Kristian Händler
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Toni Schumacher
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Khalid Tai
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Joachim L. Schultze
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Gabor C. Petzold
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| |
Collapse
|
45
|
Abstract
The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system. These two cell populations are anorexigenic neurons expressing proopiomelanocortin (POMC) and orexigenic neurons that express agouti-related peptide (AGRP). Several important studies have demonstrated that reactive oxygen species and endoplasmic reticulum stress significantly impact these hypothalamic neuronal populations that regulate global energy metabolism. Reactive oxygen species and redox homeostasis are influenced by selenoproteins, an essential class of proteins that incorporate selenium co-translationally in the form of the 21st amino acid, selenocysteine. Levels of these proteins are regulated by dietary selenium intake and they are widely expressed in the brain. Of additional relevance, selenium supplementation has been linked to metabolic alterations in both animal and human studies. Recent evidence also indicates that hypothalamic selenoproteins are significant modulators of energy metabolism in both neurons and tanycytes, a population of glial-like cells lining the floor of the 3rd ventricle within the hypothalamus. This review article will summarize current understanding of the regulatory influence of redox status on hypothalamic nutrient sensing and highlight recent work revealing the importance of selenoproteins in the hypothalamus.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
46
|
McCabe IC, Fedorko A, Myers MG, Leinninger G, Scheller E, McCabe LR. Novel leptin receptor signaling mutants identify location and sex-dependent modulation of bone density, adiposity, and growth. J Cell Biochem 2018; 120:4398-4408. [PMID: 30269370 DOI: 10.1002/jcb.27726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
Leptin, a hormone primarily produced by adipocytes, contributes to the regulation of bone health by modulating bone density, growth and adiposity. Upon leptin binding, multiple sites of the long form of the leptin receptor (LepRb) are phosphorylated to trigger activation of downstream signaling pathways. To address the role of LepRb-signaling pathways in bone health, we compared the effects of three LepRb mutations on bone density, adiposity, and growth in male and female mice. The ∆65 mutation, which lacks the known tyrosine phosphorylation sites, caused obesity and the most dramatic bone phenotype marked by excessive bone adiposity, osteoporosis, and decreased growth, consistent with the phenotype of db/db and ob/ob mice that fully lack leptin receptor signaling. Mutation of LepRb Tyr 1138 , which results in an inability to recruit and phosphorylate signal transducer and activator of transcription 3, also caused obesity, but bone loss and adiposity were more dominant in male mice and no growth defect was observed. In contrast, mutation of LepRb Tyr 985 , which blocks SHP2/SOCS3 recruitment to LepRb and contributes to leptin hypersensitivity, promoted increased femur bone density only in male mice, while marrow adiposity and bone growth were not affected. Additional analyses of vertebral trabecular bone volume indicate that only the Tyr 1138 mutant mice exhibit bone loss in vertebrae. Together, our findings suggest that the phosphorylation status of specific sites of the LepRb contribute to the sex- and location-dependent bone responses to leptin. Unraveling the mechanisms by which leptin responses are sex- and location-dependent can contribute to the development of uniquely targeted osteoporosis therapies.
Collapse
Affiliation(s)
- Ian C McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Alyssa Fedorko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Erica Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, Missouri
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Department of Radiology, Michigan State University, East Lansing, Michigan.,Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
| |
Collapse
|
47
|
Farinetti A, Marraudino M, Ponti G, Panzica G, Gotti S. Chronic treatment with tributyltin induces sexually dimorphic alterations in the hypothalamic POMC system of adult mice. Cell Tissue Res 2018; 374:587-594. [PMID: 30078105 DOI: 10.1007/s00441-018-2896-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Tributyltin (TBT), an antifouling agent found in boat paints, is a common contaminant of marine and freshwater ecosystems. It is rapidly absorbed by organic materials and accumulated in many aquatic animals. Human exposure may depend on ingestion of contaminated food or by indirect exposure from household items containing organotin compounds. TBT is defined as an endocrine disruptor compound (EDC) because it binds to androgen receptors. Moreover, it is also included on the list of metabolic disruptors. The brain is a known target of TBT and this compound interferes with the orexigenic system, inducing a strong decrease in NPY expression in the hypothalamus. In the present experiment, we investigated the effect of a chronic treatment with TBT on the mouse anorexigenic system in both sexes, to look at the pro-opiomelanocortin (POMC) expression in the paraventricular (PVN), dorsomedial (DMN), ventromedial (VMN), and arcuate (ARC) hypothalamic nuclei. The results show a sexually dimorphic effect of TBT on both systems. TBT induced a significant decrease of POMC-positive structures only in female mice in DMN, ARC, and in PVN for both sexes. Apparently, these results show that TBT may interfere with the anorexigenic system in hypothalamic areas involved in the control of food intake, by inhibiting POMC in a sexually dimorphic way. In conclusion, in addition to having a direct effect on fat tissue, the effects of TBT as metabolic disruptor, may be due to gender-specific actions on both orexigenic and anorexigenic hypothalamic systems.
Collapse
Affiliation(s)
- Alice Farinetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Laboratorio di Neuroendocrinologia, NICO-Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10, Orbassano, Turin, 10043, Italy
| | - Marilena Marraudino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Laboratorio di Neuroendocrinologia, NICO-Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10, Orbassano, Turin, 10043, Italy
| | - Giovanna Ponti
- Laboratorio di Neuroendocrinologia, NICO-Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10, Orbassano, Turin, 10043, Italy.,Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - GianCarlo Panzica
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Laboratorio di Neuroendocrinologia, NICO-Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10, Orbassano, Turin, 10043, Italy
| | - Stefano Gotti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy. .,Laboratorio di Neuroendocrinologia, NICO-Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10, Orbassano, Turin, 10043, Italy.
| |
Collapse
|
48
|
Is leptin resistance the cause or the consequence of diet-induced obesity? Int J Obes (Lond) 2018; 42:1445-1457. [PMID: 29789721 DOI: 10.1038/s41366-018-0111-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is strongly associated with leptin resistance. It is unclear whether leptin resistance results from the (over)consumption of energy-dense diets or if reduced leptin sensitivity is also a pre-existing factor in rodent models of diet-induced obesity (DIO). We here tested whether leptin sensitivity on a chow diet predicts subsequent weight gain and leptin sensitivity on a free choice high-fat high-sucrose (fcHFHS) diet. METHODS Based upon individual leptin sensitivity on chow diet, rats were grouped in leptin sensitive (LS, n = 22) and leptin resistant (LR, n = 19) rats (P = 0.000), and the development of DIO on a fcHFHS diet was compared. The time-course of leptin sensitivity was measured over weeks in individual rats. RESULTS Both on a chow and a fcHFHS diet, high variability in leptin sensitivity was observed between rats, but not over time per individual rat. Exposure to the fcHFHS diet revealed that LR rats were more prone to develop DIO (P = 0.013), which was independent of caloric intake (p ≥ 0.320) and the development of diet-induced leptin resistance (P = 0.769). Reduced leptin sensitivity in LR compared with LS rats before fcHFHS diet exposure, was associated with reduced leptin-induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the dorsomedial and ventromedial hypothalamus (P ≤ 0.049), but not the arcuate nucleus (P = 0.558). CONCLUSIONS A pre-existing reduction in leptin sensitivity determines the susceptibility to develop excessive DIO after fcHFHS diet exposure. Rats with a pre-existing reduction in leptin sensitivity develop excessive DIO without eating more calories or altering their leptin sensitivity.
Collapse
|
49
|
Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond) 2018; 42:1431-1444. [PMID: 29777232 PMCID: PMC6113193 DOI: 10.1038/s41366-018-0094-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Background and objective Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring’s hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. Methods Eight-week-old female Sprague–Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. Results With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. Conclusion Maternal overnutrition programs long-term epigenetic alterations in the offspring’s hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.
Collapse
|
50
|
Caron A, Dungan Lemko HM, Castorena CM, Fujikawa T, Lee S, Lord CC, Ahmed N, Lee CE, Holland WL, Liu C, Elmquist JK. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. eLife 2018. [PMID: 29528284 PMCID: PMC5866097 DOI: 10.7554/elife.33710] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leptin is critical for energy balance, glucose homeostasis, and for metabolic and neuroendocrine adaptations to starvation. A prevalent model predicts that leptin’s actions are mediated through pro-opiomelanocortin (POMC) neurons that express leptin receptors (LEPRs). However, previous studies have used prenatal genetic manipulations, which may be subject to developmental compensation. Here, we tested the direct contribution of POMC neurons expressing LEPRs in regulating energy balance, glucose homeostasis and leptin secretion during fasting using a spatiotemporally controlled Lepr expression mouse model. We report a dissociation between leptin’s effects on glucose homeostasis versus energy balance in POMC neurons. We show that these neurons are dispensable for regulating food intake, but are required for coordinating hepatic glucose production and for the fasting-induced fall in leptin levels, independent of changes in fat mass. We also identify a role for sympathetic nervous system regulation of the inhibitory adrenergic receptor (ADRA2A) in regulating leptin production. Collectively, our findings highlight a previously unrecognized role of POMC neurons in regulating leptin levels.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, United States
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Caleb C Lord
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Newaz Ahmed
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|