1
|
Yu J, Chen G, Jin Y, Zhang M, Wu T. Research Progress of Bioactive Peptides in Improving Type II Diabetes. Foods 2025; 14:340. [PMID: 39941934 PMCID: PMC11817365 DOI: 10.3390/foods14030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Type II diabetes mellitus (T2DM) is a prevalent, long-standing metabolic condition marked by the body's reduced response to insulin and inadequate insulin production, impacting a significant portion of the global population. Research has demonstrated that bioactive peptides play a crucial role in reducing blood sugar levels, enhancing insulin sensitivity, balancing lipid metabolism, and combating inflammation. These peptides also contribute to the enhancement of pancreatic islet function, lowering systemic inflammation by influencing various molecular signaling pathways. This paper provides an overview of recent advancements and potential applications of bioactive peptides in addressing T2DM. It highlights the diverse impacts of bioactive peptides sourced from different origins in combating diabetes. This comprehensive review offers theoretical substantiation and novel insights to support the future clinical utilization and exploration of bioactive peptides for T2DM management.
Collapse
Affiliation(s)
- Jiaxin Yu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.Y.); (G.C.); (Y.J.); (M.Z.)
| | - Guoxing Chen
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.Y.); (G.C.); (Y.J.); (M.Z.)
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.Y.); (G.C.); (Y.J.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.Y.); (G.C.); (Y.J.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.Y.); (G.C.); (Y.J.); (M.Z.)
- School of Ocean and Environment, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
3
|
Rizzetti DA, Corrales P, Uranga-Ocio JA, Medina-Gómez G, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Potential benefits of egg white hydrolysate in the prevention of Hg-induced dysfunction in adipose tissue. Food Funct 2022; 13:5996-6007. [PMID: 35575219 DOI: 10.1039/d2fo00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 μg kg-1, subsequent doses 0.07 μg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Patricia Corrales
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - José Antonio Uranga-Ocio
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain. .,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain
| | - Gema Medina-Gómez
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Atenas s/n, Alcorcón, Spain.
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil.
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Chen X, Daniels NA, Cottrill D, Cao Y, Wang X, Li Y, Shriwas P, Qian Y, Archer MW, Whitticar NB, Jahan I, Nunemaker CS, Guo A. Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism. Diabetes Metab Syndr Obes 2021; 14:759-772. [PMID: 33658814 PMCID: PMC7917315 DOI: 10.2147/dmso.s284295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
Collapse
Affiliation(s)
- Xiaozhuo Chen
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Athens, OH, 45701, USA
| | - Nigel A Daniels
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Department of Specialty Medicine, Athens, OH, 45701, USA
| | - David Cottrill
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanyang Cao
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Xuan Wang
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yunsheng Li
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Pratik Shriwas
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanrong Qian
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Michael W Archer
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Ishrat Jahan
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Craig S Nunemaker
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Craig S Nunemaker Department of Biomedical Sciences, 1 Ohio University, Athens, OH, 45701, USATel +1 740-593-2387Fax +1 740-593-4795 Email
| | - Aili Guo
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA
- Correspondence: Aili Guo Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, PSSB, G400, 4150 V St., Sacramento, CA, 95817, USATel +1 916-734-3730Fax +1 916-734-2292 Email
| |
Collapse
|
5
|
Hummell NA, Kirienko NV. Repurposing bioactive compounds for treating multidrug-resistant pathogens. J Med Microbiol 2020; 69:881-894. [PMID: 32163353 DOI: 10.1099/jmm.0.001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction. Antimicrobial development is being outpaced by the rising rate of antimicrobial resistance in the developing and industrialized world. Drug repurposing, where novel antibacterial functions can be found for known molecular entities, reduces drug development costs, reduces regulatory hurdles, and increases rate of success.Aim. We sought to characterize the antimicrobial properties of five known bioactives (DMAQ-B1, carboplatin, oxaliplatin, CD437 and PSB-069) that were discovered in a high-throughput phenotypic screen for hits that extend Caenorhabditis elegans survival during exposure to Pseudomonas aeruginosa PA14.Methodology. c.f.u. assays, biofilm staining and fluorescence microscopy were used to assay the compounds' effect on various virulence determinants. Checkerboard assays were used to assess synergy between compounds and conventional antimicrobials. C. elegans-based assays were used to test whether the compounds could also rescue against Enterococcus faecalis and Staphyloccus aureus. Finally, toxicity was assessed in C. elegans and mammalian cells.Results. Four of the compounds rescued C. elegans from a second bacterial pathogen and two of them (DMAQ-B1, a naturally occurring insulin mimetic, and CD437, an agonist of the retinoic acid receptor) rescued against all three. The platinum complexes displayed increased antimicrobial activity against P. aeruginosa. Of the molecules tested, only CD437 showed slight synergy with ampicillin. The two most effective compounds, DMAQ-B1 and CD437, showed toxicity to mammalian cells.Conclusion. Although these compounds' potential for repurposing is limited by their toxicity, our results contribute to this growing field and provide a simple road map for using C. elegans for preliminary testing of known bioactive compounds with predicted antimicrobial activity.
Collapse
|
6
|
Dibutyl phthalate exposure aggravates type 2 diabetes by disrupting the insulin-mediated PI3K/AKT signaling pathway. Toxicol Lett 2018. [DOI: 10.1016/j.toxlet.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Jahandideh F, Chakrabarti S, Davidge ST, Wu J. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PLoS One 2017; 12:e0185653. [PMID: 28972997 PMCID: PMC5626431 DOI: 10.1371/journal.pone.0185653] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Insulin resistance and inflammation in adipose tissue is a key mechanism underlying metabolic syndrome, a growing health problem characterized by diabetes, obesity and hypertension. Previous work from our research group has demonstrated the potential of egg white ovotransferrin derived bioactive peptides against hypertension, oxidative stress and inflammation in vitro and in vivo. Egg white hydrolysate (EWH) has also shown anti-hypertensive effects in spontaneously hypertensive rats. Given the interplay among hypertension, inflammation, oxidative stress and metabolic syndrome, the objective of the study was to test the EWH on differentiation, insulin signaling and inflammatory responses in 3T3-F442A pre-adipocytes. Our study suggested that EWH could promote adipocyte differentiation as shown by increased lipid accumulation, increased release of adiponectin and upregulation of peroxisome proliferator associated receptor gamma (PPARγ) and CCAAT/ enhancer binding protein alpha (C/EBP-α). In addition to enhanced insulin effects on the upregulation of protein kinase B/Akt phosphorylation, EWH treatment increased extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation to a level similar to that of insulin, indicating insulin sensitizing and mimetic properties of the EWH. EWH further attenuated cytokine induced inflammatory marker; cyclooxygenase -2 (COX-2) by 48.78%, possibly through the AP-1 pathway by down regulating c-Jun phosphorylation in adipocytes. Given the critical role of adipose in the pathogenesis of insulin resistance and metabolic syndrome, EWH may have potential applications in the prevention and management of metabolic syndrome and its complications.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Subhadeep Chakrabarti
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
8
|
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice. PLoS One 2017; 12:e0169809. [PMID: 28072841 PMCID: PMC5224995 DOI: 10.1371/journal.pone.0169809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Mrittika Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Sahid Hussain
- Department of Chemical Sciences, Tezpur University, Assam, India
| | | | | | - Abul Usmani
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Bhola S Pradhan
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial (IPGME&R−SSKM) Hospital, Kolkata, West Bengal, India
| | | | - Mihir K. Chaudhuri
- Department of Chemical Sciences, Tezpur University, Assam, India
- * E-mail: (SB); (MKC)
| | - Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
- * E-mail: (SB); (MKC)
| |
Collapse
|
9
|
Chakrabarti S, Wu J. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells. PLoS One 2015; 10:e0117492. [PMID: 25714093 PMCID: PMC4340623 DOI: 10.1371/journal.pone.0117492] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/24/2014] [Indexed: 01/17/2023] Open
Abstract
Milk derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE). Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB) pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Agricultural, Food & Nutritional Science (AFNS) and the Cardiovascular Research Centre (CVRC), University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science (AFNS) and the Cardiovascular Research Centre (CVRC), University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Qiang G, Xue S, Yang JJ, Du G, Pang X, Li X, Goswami D, Griffin PR, Ortlund EA, Chan CB, Ye K. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 2014; 63:1394-409. [PMID: 24651808 PMCID: PMC3964510 DOI: 10.2337/db13-0334] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin replacement therapy is a widely adopted treatment for all patients with type 1 diabetes and some with type 2 diabetes. However, injection of insulin has suffered from problems such as tissue irritation, abscesses, discomfort, and inconvenience. The use of orally bioactive insulin mimetics thus represents an ideal treatment alternative. Here we show that a chaetochromin derivative (4548-G05) acts as a new nonpeptidyl insulin mimetic. 4548-G05 selectively activates an insulin receptor (IR) but not insulin-like growth factor receptor-I or other receptor tyrosine kinases. Through binding to the extracellular domain of the IR, 4548-G05 induces activation of the receptor and initiates the downstream Akt and extracellular signal-related kinase pathways to trigger glucose uptake in C2C12 myotubes. Moreover, it displays a potent blood glucose-lowering effect when administrated orally in normal, type 1 diabetic, and type 2 diabetic mice models. Therefore, 4548-G05 may represent a novel pharmacological agent for antidiabetes drug development.
Collapse
Affiliation(s)
- Guifen Qiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA
| | - Jenny J. Yang
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA
| | - Guanhua Du
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobin Pang
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Xiaoting Li
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Pharmacy, Henan University, Kaifeng, China
| | - Devrishi Goswami
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Corresponding author: Chi Bun Chan, , or Keqiang Ye,
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Corresponding author: Chi Bun Chan, , or Keqiang Ye,
| |
Collapse
|
11
|
Vater A, Sell S, Kaczmarek P, Maasch C, Buchner K, Pruszynska-Oszmalek E, Kolodziejski P, Purschke WG, Nowak KW, Strowski MZ, Klussmann S. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J Biol Chem 2013; 288:21136-21147. [PMID: 23744070 PMCID: PMC3774380 DOI: 10.1074/jbc.m112.444414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/04/2013] [Indexed: 11/23/2022] Open
Abstract
Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia in type 1 and type 2 diabetes. Accordingly, immunoneutralization of glucagon or genetic deletion of the glucagon receptor improved glucose homeostasis in animal models of diabetes. Despite this strong evidence, agents that selectively interfere with endogenous glucagon have not been implemented in clinical practice yet. We report the discovery of mirror-image DNA-aptamers (Spiegelmer®) that bind and inhibit glucagon. The affinity of the best binding DNA oligonucleotide was remarkably increased (>25-fold) by the introduction of oxygen atoms at selected 2'-positions through deoxyribo- to ribonucleotide exchanges resulting in a mixed DNA/RNA-Spiegelmer (NOX-G15) that binds glucagon with a Kd of 3 nm. NOX-G15 shows no cross-reactivity with related peptides such as glucagon-like peptide-1, glucagon-like peptide-2, gastric-inhibitory peptide, and prepro-vasoactive intestinal peptide. In vitro, NOX-G15 inhibits glucagon-stimulated cAMP production in CHO cells overexpressing the human glucagon receptor with an IC50 of 3.4 nm. A single injection of NOX-G15 ameliorated glucose excursions in intraperitoneal glucose tolerance tests in mice with streptozotocin-induced (type 1) diabetes and in a non-genetic mouse model of type 2 diabetes. In conclusion, the data suggest NOX-G15 as a therapeutic candidate with the potential to acutely attenuate hyperglycemia in type 1 and type 2 diabetes.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/blood
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Blood Glucose/metabolism
- Body Weight/drug effects
- CHO Cells
- Cricetinae
- Cricetulus
- Cyclic AMP/biosynthesis
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Disease Models, Animal
- Fasting/blood
- Glucagon/antagonists & inhibitors
- Glucagon/metabolism
- Glucose Tolerance Test
- Humans
- Kinetics
- Male
- Mice
- Mice, Inbred BALB C
- RNA/metabolism
Collapse
Affiliation(s)
- Axel Vater
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Simone Sell
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Przemyslaw Kaczmarek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Christian Maasch
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Klaus Buchner
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ewa Pruszynska-Oszmalek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Pawel Kolodziejski
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Werner G Purschke
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krzysztof W Nowak
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Mathias Z Strowski
- the Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Klussmann
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany,.
| |
Collapse
|
12
|
Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 2013; 4:200-12. [PMID: 23160185 PMCID: PMC3678366 DOI: 10.1039/c2fo30199g] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a result of chronic insulin resistance and loss of functional pancreatic β-cell mass. Strategies to preserve β-cell mass and a greater understanding of the mechanisms underlying β-cell turnover are needed to prevent and treat this devastating disease. Genistein, a naturally occurring soy isoflavone, is reported to have numerous health benefits attributed to multiple biological functions. Over the past 10 years, numerous studies have demonstrated that genistein has anti-diabetic effects, in particular, direct effects on β-cell proliferation, glucose-stimulated insulin secretion and protection against apoptosis, independent of its functions as an estrogen receptor agonist, antioxidant, or tyrosine kinase inhibitor. Effects are structure-specific and not common to all flavonoids. While there are limited data on the effects of genistein consumption in humans with diabetes, there are a plethora of animal and cell-culture studies that demonstrate a direct effect of genistein on β-cells at physiologically relevant concentrations (<10 μM). The effects appear to involve cAMP/PKA signaling and there are some studies that suggest an effect on epigenetic regulation of gene expression. This review focuses on the anti-diabetic effects of genistein in both in vitro and in vivo models and potential mechanisms underlying its direct effects on β-cells.
Collapse
Affiliation(s)
- Elizabeth. R. Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
13
|
Lai MC, Lo YS, Yang C. The effect of demethylasterriquinone B-1 on insulin secretion in rat pancreas. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jdm.2013.33017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Development of a nongenetic mouse model of type 2 diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:416254. [PMID: 22164157 PMCID: PMC3226533 DOI: 10.1155/2011/416254] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022]
Abstract
Insulin resistance and loss of β-cell mass cause Type 2 diabetes (T2D). The objective of this study was to generate a nongenetic mouse model of T2D. Ninety-six 6-month-old C57BL/6N males were assigned to 1 of 12 groups including (1) low-fat diet (LFD; low-fat control; LFC), (2) LFD with 1 i.p. 40 mg/kg BW streptozotocin (STZ) injection, (3), (4), (5), (6) LFD with 2, 3, 4, or 5 STZ injections on consecutive days, respectively, (7) high-fat diet (HFD), (8) HFD with 1 STZ injection, (9), (10), (11), (12) HFD with 2, 3, 4, or 5 STZ injections on consecutive days, respectively. After 4 weeks, serum insulin levels were reduced in HFD mice administered at least 2 STZ injections as compared with HFC. Glucose tolerance was impaired in mice that consumed HFD and received 2, 3, or 4 injections of STZ. Insulin sensitivity in HFD mice was lower than that of LFD mice, regardless of STZ treatment. Islet mass was not affected by diet but was reduced by 50% in mice that received 3 STZ injections. The combination of HFD and three 40 mg/kg STZ injections induced a model with metabolic characteristics of T2D, including peripheral insulin resistance and reduced β-cell mass.
Collapse
|
15
|
Chou SY, Tsai HJ. Regioselective synthesis of 3-(1H-indol-3-yl)-5-(1H-indole-3-carbonyl)-4-hydroxyfuroic acids: route to hydroxyfuroic acid-based insulin receptor activators. Drug Dev Res 2010. [DOI: 10.1002/ddr.20391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cotero VE, Zhang BB, Routh VH. The response of glucose-excited neurones in the ventromedial hypothalamus to decreased glucose is enhanced in a murine model of type 2 diabetes mellitus. J Neuroendocrinol 2010; 22:65-74. [PMID: 20002964 PMCID: PMC4270105 DOI: 10.1111/j.1365-2826.2009.01938.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are associated with dysfunctional insulin signalling and impaired central glucose sensing. Glucose sensing neurones reside in key areas of the brain involved in glucose and energy homeostasis (e.g. ventromedial hypothalamus; VMH). We have recently shown that insulin attenuates the ability of glucose-excited (GE) neurones to sense decreased glucose. We hypothesise that this effect of insulin on VMH GE neurones is impaired during T2DM when insulin signalling is dysfunctional. To test our hypotheses, we used whole cell patch clamp recording techniques to evaluate the effects of insulin on VMH GE neurones in brain slices from wild-type and diabetic (db/db) mice. The effects of decreasing glucose from 2.5 to 0.1 mM on VMH GE neurones were similar in wild-type and db/db mice. However, decreasing glucose from 2.5 to 0.5 mM decreased the action potential frequency, membrane potential and input resistance of VMH GE neurones to a significantly greater extent in db/db versus wild-type mice. Furthermore, insulin (5 nM) blunted the effects of decreased glucose in wild-type, but not db/db mice. These differences in both glucose and insulin sensitivity between wild-type and db/db mice were completely ameliorated by the insulin sensitiser, Compound 2 (300 nM). These data are consistent with our hypothesis that impaired insulin signalling in T2DM sensitises VMH GE neurones to decreased glucose.
Collapse
Affiliation(s)
- V E Cotero
- Department of Pharmacology and Physiology, New Jersey Medical School (UMDNJ), Newark, NJ, USA
| | | | | |
Collapse
|
17
|
A novel hydroxyfuroic acid compound as an insulin receptor activator. Structure and activity relationship of a prenylindole moiety to insulin receptor activation. J Biomed Sci 2009; 16:68. [PMID: 19642985 PMCID: PMC2733134 DOI: 10.1186/1423-0127-16-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/30/2009] [Indexed: 01/24/2023] Open
Abstract
Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ) B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db) mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), and fibroblast growth factor (FGF) receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639), which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.
Collapse
|
18
|
Lum RT, Cheng M, Cristobal CP, Goldfine ID, Evans JL, Keck JG, Macsata RW, Manchem VP, Matsumoto Y, Park SJ, Rao SS, Robinson L, Shi S, Spevak WR, Schow SR. Design, synthesis, and structure-activity relationships of novel insulin receptor tyrosine kinase activators. J Med Chem 2008; 51:6173-87. [PMID: 18788731 DOI: 10.1021/jm800600v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel series of symmetrical ureas of [(7-amino(2-naphthyl))sulfonyl]phenylamines were designed, synthesized, and tested for their ability to increase glucose transport in mouse 3T3-L1 adipocytes, a surrogate readout for activation of the insulin receptor (IR) tyrosine kinase (IRTK). A structure-activity relationship was established that indicated glucose transport activity was dependent on the presence of two acidic functionalities, two sulfonamide linkages, and a central urea or 2-imidazolidinone core. Compound 30 was identified as a potent and selective IRTK activator. At low concentrations, 30 was able to increase the tyrosine phosphorylation of the IR stimulated by submaximal insulin. At higher concentrations, 30 was able to increase tyrosine the phosphorylation levels of the IR in the absence of insulin. When administered intraperitoneally (ip) and orally (po), 30 improved glucose tolerance in hypoinsulinemic, streptozotocin-treated rats. These data provide pharmacological validation that small molecule IRTK activators represent a potential new class of antidiabetic agents.
Collapse
Affiliation(s)
- Robert T Lum
- Telik, Inc., 3165 Porter Drive, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Song HK, Lee MH, Kim BK, Park YG, Ko GJ, Kang YS, Han JY, Han SY, Han KH, Kim HK, Cha DR. Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295:F1485-94. [PMID: 18768589 DOI: 10.1152/ajprenal.90231.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Visfatin is an adipocytokine that improves insulin resistance and has an antidiabetic effect. However, the role of visfatin in the kidney has not yet been reported. In this experiment, the synthesis and physiological action of visfatin in cultured mesangial cells (MCs) were studied to investigate the role of visfatin in diabetic nephropathy. Visfatin was found synthesized in MCs as well as adipocytes. Visfatin synthesis was markedly increased, not by angiotensin II, but by high glucose stimuli. In addition, visfatin treatment induced a rapid uptake of glucose, peaking at 20 min after visfatin treatment in a dose-dependent manner. A small inhibiting RNA against insulin receptor significantly blocked visfatin-mediated glucose uptake. Visfatin stimuli also enhanced intracellular NAD levels, and treatment with FK866, which is a specific inhibitor of nicotinamide phosphoribosyltransferase (Nampt), significantly inhibited visfatin-induced NAD synthesis and glucose uptake. Visfatin treatment increased glucose transporter-1 (GLUT-1) protein expression in isolated cellular membranes, and pretreatment with cytochalasin B completely inhibited visfatin-induced glucose uptake. Moreover, immunofluorescent microscopy showed the migration of cytosolic GLUT-1 into cellular membranes after visfatin treatment. In accordance with these results, the activation of protein kinase B was detected after visfatin treatment. Furthermore, visfatin treatment dramatically increased the synthesis of profibrotic molecules including transforming growth factor-beta1, plasminogen activator inhibitor-1, and type I collagen, and pretreatment with cytochalasin B completely inhibited visfatin-induced upregulation of profibrotic molecules. These results suggest that visfatin is produced in MCs, which are a novel target for visfatin, and play an important role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Hye Kyoung Song
- Department of Internal Medicine, Korea University, Ansan City, Kyungki-Do, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin B, Li Z, Park K, Deng L, Pai A, Zhong L, Pirrung MC, Webster NJG. Identification of novel orally available small molecule insulin mimetics. J Pharmacol Exp Ther 2007; 323:579-85. [PMID: 17687071 DOI: 10.1124/jpet.107.126102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oral hypoglycemic agents have great potential for the treatment of both type 1 and type 2 diabetes. Here we report the identification of novel, small-molecule, insulin mimetics that activate the insulin receptor (IR) in vivo and in vitro, stimulate the Akt and extracellular signal-regulated kinase pathways downstream of the IR, and mimic the ability of insulin to stimulate glucose uptake, glycogen synthesis, and lipid synthesis in 3T3-L1 adipocytes. However, the compounds do not mimic the mitogenic effect of insulin. In animals, these compounds have oral hypoglycemic effects in both normal C57BL6 mice and diabetic db/db mice. Quantitative structure activity relationship modeling on data from a library of 60 compounds has highlighted structural features that are important for IR agonist activity that can be used to guide design of second and third generation compounds with greater potency and specificity.
Collapse
Affiliation(s)
- Bo Lin
- Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ren Y, Himmeldirk K, Chen X. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-D-glucopyranose and its analogues. J Med Chem 2006; 49:2829-37. [PMID: 16640344 DOI: 10.1021/jm060087k] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid increase of obesity-associated diabetes has created urgent demands for more effective antidiabetic therapies and pharmaceuticals that are able to address the problems of hyperglycemia and weight gain simultaneously. Our previous studies indicated that the alpha- and beta-anomers of penta-O-galloyl-D-glucopyranose (PGG), 2 and 3, act as insulin mimetics that bind to and activate the insulin receptor, stimulate glucose transport in adipocytes, and reduce blood glucose and insulin levels in diabetic and obese animals. In addition, they inhibit differentiation of preadipocytes into adipocytes. These activities suggest that 2 and 3 may reduce blood glucose without increasing adiposity. To investigate the structure-activity relationship of 2 and 3, four series of novel compounds were prepared and their glucose transport stimulatory activities were measured using a radioactive glucose uptake bioassay. The assay results indicate that both the glucose and the galloyl groups are critical to the activity of 2 and 3. It appears that the glucose core provides an optimal scaffold to present the galloyl groups with the correct spatial orientation to induce activity. Moreover, the galloyl groups linked to the 1, 2, 3, and 4 positions of glucose are essential, while the galloyl group connected to the 6 position of 2 is unnecessary for the induction of activity. The discovery that two related novel compounds, 6-deoxytetra-O-galloyl-alpha-D-glucopyranose (43) and tetra-O-galloyl-alpha-D-xylopyranose (59), also possess glucose transport stimulatory activity suggests that 2 may be further modified around position 6 to modulate and enhance its efficacy. To test this hypothesis, we developed a new synthetic method that allows for the stereoselective preparation of derivatives of 2 that are modified on C-6. We found that 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-alpha-D-glucopyranose (80) exhibits a significantly higher glucose transport stimulatory activity than 2. Its activity is comparable to that of insulin.
Collapse
Affiliation(s)
- Yulin Ren
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
22
|
Velliquette RA, Friedman JE, Shao J, Zhang BB, Ernsberger P. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X. J Pharmacol Exp Ther 2005; 314:422-30. [PMID: 15833894 DOI: 10.1124/jpet.104.080606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4906, USA
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Christopher Hug
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|