1
|
Kuganathan A, Leal M, Mehta N, Lu V, Gao B, MacDonald M, Dickhout J, Krepinsky JC. Follistatin lowers blood pressure and improves vascular structure and function in essential and secondary hypertension. Hypertens Res 2024; 47:3158-3172. [PMID: 39300291 DOI: 10.1038/s41440-024-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is characterized by resistance artery remodeling driven by oxidative stress and fibrosis. We previously showed that an activin A antagonist, follistatin, inhibited renal oxidative stress and fibrosis in a model of hypertensive chronic kidney disease. Here, we investigate the effects of follistatin on blood pressure and vascular structure and function in models of essential and secondary hypertension. 5/6 nephrectomised mice, a model of secondary hypertension, were treated with either exogenous follistatin or with a follistatin miRNA inhibitor to increase endogenous follistatin for 9 weeks. Blood pressure in mice was measured by tail cuff. Spontaneously hypertensive rats, a model of essential hypertension, were treated with follistatin for 8 weeks. Wistar Kyoto (WKY) rats were used as the normotensive control. Blood pressure in rats was measured by radiotelemetry. Mouse superior mesenteric arteries and rat first branch mesenteric arteries were isolated for structural and functional analyses. In both models, follistatin significantly lowered blood pressure and improved vascular structure, decreasing medial thickness and collagen content. Follistatin also reduced agonist-induced maximum contraction and improved endothelium-dependent relaxation. Increased vessel oxidative stress was attenuated by follistatin in both models. In ex vivo WKY vessels, activin A increased oxidative stress, augmented constriction, and decreased endothelium-dependent relaxation. Inhibition of oxidative stress restored vessel relaxation. This study demonstrates that follistatin lowers blood pressure and improves vascular structure and function in models of essential and secondary hypertension. Effects were likely mediated through its inhibition of activin A and oxidative stress. These data suggest a potential therapeutic role for follistatin as a novel antihypertensive agent. Follistatin, through antagonization of activin A, inhibits oxidative stress and improves vascular structure and function in resistance arteries from models of essential and secondary HTN. FST decreases collagen content and vascular ROS. Functionally, FST improves endothelium-dependent relaxation and decreases maximal vasoconstriction. Improved resistance artery structure and function are correlated with a decrease in BP in both models.
Collapse
Affiliation(s)
- Ann Kuganathan
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marcos Leal
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Vincent Lu
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey Dickhout
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Meng X, Zhao X, Zhou B, Song W, Liang Y, Liang M, Du M, Shi J, Gao Y. FSTL3 is associated with prognosis and immune cell infiltration in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:17. [PMID: 38240936 PMCID: PMC10799152 DOI: 10.1007/s00432-023-05553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE FSTL3 expression is altered in various types of cancer. However, the role and mechanism of action of FSTL3 in lung adenocarcinoma development and tumor immunity are unknown. We investigated the association between FSTL3 expression and clinical characteristics and immune cell infiltration in lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) and a separate validation set from our hospital. METHODS Data on immune system infiltration, gene expression, and relevant clinical information were obtained by analyzing lung adenocarcinoma sample data from TCGA database. Using online tools like GEPIA, the correlations between FSTL3 expression and prognosis, clinical stage, survival status, and tumor-infiltrating immune cells were examined. In a validation dataset, immunohistochemistry was performed to analyze FSTL3 expression and its related clinical characteristics. RESULTS FSTL3 expression was markedly reduced in patients with lung adenocarcinoma. N stage, pathological stage, and overall survival were significantly correlated with FSTL3 expression. According to GSEA, FSTL3 is strongly linked to signaling pathways such as DNA replication and those involved in cell cycle regulation. Examination of TCGA database and TIMER online revealed a correlation between FSTL3 and B cell, T cell, NK cell, and neutrophil levels. The prognosis of patients with lung adenocarcinoma was significantly affected by six genes (KRT6A, VEGFC, KRT14, KRT17, SNORA12, and KRT81) related to FSTL3. CONCLUSION FSTL3 is significantly associated with the prognosis and progression of lung adenocarcinoma and the infiltration of immune cells. Thus, targeting FSTL3 and its associated genes in immunotherapy could be potentially beneficial for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Xiaojian Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yicheng Liang
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Jianwei Shi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China.
| |
Collapse
|
3
|
Bielka W, Przezak A, Pawlik A. Follistatin and follistatin-like 3 in metabolic disorders. Prostaglandins Other Lipid Mediat 2023; 169:106785. [PMID: 37739334 DOI: 10.1016/j.prostaglandins.2023.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Follistatin (FST) is a glycoprotein which main role is antagonizing activity of transforming growth factor β superfamily members. Folistatin-related proteins such as follistatin-like 3 (FSTL3) also reveal these properties. The exact function of them has still not been established, but it can be bound to the pathogenesis of metabolic disorders. So far, there were performed a few studies about their role in type 2 diabetes, obesity or gestational diabetes and even less in type 1 diabetes. The outcomes are contradictory and do not allow to draw exact conclusions. In this article we summarize the available information about connections between follistatin, as well as follistatin-like 3, and metabolic disorders. We also emphasize the strong need of performing further research to explain their exact role, especially in the pathogenesis of diabetes and obesity.
Collapse
Affiliation(s)
- Weronika Bielka
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Agnieszka Przezak
- Department of Rheumatology and Internal Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.
| |
Collapse
|
4
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Regulation of follistatin-like 3 expression by miR-486-5p modulates gastric cancer cell proliferation, migration and tumor progression. Aging (Albany NY) 2021; 13:20302-20318. [PMID: 34425560 PMCID: PMC8436905 DOI: 10.18632/aging.203412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
Cancer development and progression can be regulated by the levels of endogenous factors. Gastric cancer is an aggressive disease state with poor patient prognosis, needing the development of new diagnostics and therapeutic strategies. We investigated the close association between follistatin-like 3 (FSTL3) and different cancers, and focused on its role in gastric cancer cell function. Using cancer bioinformatics, we found that FSTL3 expression is elevated in a large majority of the 33 cancers we analyzed in publicly available cancer databases. Elevated levels of FSTL3 is associated with poor patient prognosis in gastric cancer. In a comparison of normal gastric epithelial cells and gastric cancer cell lines, FSTL3 expression was consistently elevated in gastric cancer cells. Overexpression of FSTL3 promoted gastric cancer cell viability, proliferation and migration. Conversely, FSTL3 knockdown inhibits these cellular processes. Using bioinformatics, we found that the FSTL3 mRNA has a potential binding site in the 3'-UTR for a small microRNA, miR-486-5p. Further bioinformatics revealed significant negative correlation between FSTL3 and miR-486-5p levels. Using luciferase reporter constructs, we provide evidence that the 3'UTR from the FSTL3 mRNA can confer downregulation in the presence of miR-486-5p. These studies lead us to conclude that FSTL3 has oncogenic properties and increased expression of this gene product promotes gastric cancer development and progression.
Collapse
|
6
|
Liu YJ, Li JP, Zhang Y, Nie MJ, Zhang YH, Liu SL, Zou X. FSTL3 is a Prognostic Biomarker in Gastric Cancer and is Correlated with M2 Macrophage Infiltration. Onco Targets Ther 2021; 14:4099-4117. [PMID: 34262295 PMCID: PMC8274543 DOI: 10.2147/ott.s314561] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Follistatin-related gene 3 (FSTL3), an established oncogene, can modulate target gene expression via members of the transforming growth factor β (TGF-β) superfamily. The present study was conducted to evaluate the expression of FSTL3 in gastric cancer (GC) and to determine its prognostic significance. We also evaluated the possible mechanisms involved in the oncogenic role of FSTL3 in gastric carcinogenesis and development. Methods We obtained data from the Human Protein Atlas, MethSurv, cBioPortal, UALCAN, TIMER, GEPIA, STRING, GeneMANIA, ONCOMINE, and MEXPRESS databases and examined it using R software. RNAi was used to establish stable FSTL3-knockdown (shFSTL3) and overexpression (OE) cell strains. Western blot; enzyme-linked immunosorbent (ELISA); and immunohistochemical (ICH), immunofluorescence, and phalloidin staining were used for examining protein expression. Cell invasion and migration were determined using transwell and scratch-wound assays. After tumor-associated macrophage (TAM) generation, co-culturing of cancer cells with TAMs was performed to confirm the relationship between FSTL3 and TAMs. Results In GC patients, FSTL3 mRNA and protein levels were upregulated. FSTL3 expression was significantly linked to cancer stage as well as to pathological tumor grade in GC. Moreover, a high expression of FSTL3 was associated with a dismal survival duration in patients with GC. Furthermore, functional enrichment analysis demonstrated that FSTL3 overexpression could activate epithelial-mesenchymal transition (EMT) by promoting F-actin expression and BMP/SMAD signaling. Finally, immunofluorescence staining confirmed that the overexpression of FSTL3 promoted the proliferation of M2 TAMs. Conclusion Taken together, our findings suggest that FSTL3 may be involved in GC progression via the promotion of BMP/SMAD signaling-mediated EMT and M2 macrophage activation.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Jun Nie
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yong-Hua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Shen-Lin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
7
|
Walker RG, Kattamuri C, Goebel EJ, Zhang F, Hammel M, Tainer JA, Linhardt RJ, Thompson TB. Heparin-mediated dimerization of follistatin. Exp Biol Med (Maywood) 2021; 246:467-482. [PMID: 33197333 PMCID: PMC7885052 DOI: 10.1177/1535370220966296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Heparin and heparan sulfate (HS) are highly sulfated polysaccharides covalently bound to cell surface proteins, which directly interact with many extracellular proteins, including the transforming growth factor-β (TGFβ) family ligand antagonist, follistatin 288 (FS288). Follistatin neutralizes the TGFβ ligands, myostatin and activin A, by forming a nearly irreversible non-signaling complex by surrounding the ligand and preventing interaction with TGFβ receptors. The FS288-ligand complex has higher affinity than unbound FS288 for heparin/HS, which accelerates ligand internalization and lysosomal degradation; however, limited information is available for how FS288 interactions with heparin affect ligand binding. Using surface plasmon resonance (SPR) we show that preincubation of FS288 with heparin/HS significantly decreased the association kinetics for both myostatin and activin A with seemingly no effect on the dissociation rate. This observation is dependent on the heparin/HS chain length where small chain lengths less than degree of polymerization 10 (dp10) did not alter association rates but chain lengths >dp10 decreased association rates. In an attempt to understand the mechanism for this observation, we uncovered that heparin induced dimerization of follistatin. Consistent with our SPR results, we found that dimerization only occurs with heparin molecules >dp10. Small-angle X-ray scattering of the FS288 heparin complex supports that FS288 adopts a dimeric configuration that is similar to the FS288 dimer in the ligand-bound state. These results indicate that heparin mediates dimerization of FS288 in a chain-length-dependent manner that reduces the ligand association rate, but not the dissociation rate or antagonistic activity of FS288.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
8
|
Meier D, Lodberg A, Gvozdenovic A, Pellegrini G, Neklyudova O, Born W, Fuchs B, Eijken M, M. Botter S. Inhibition of the activin receptor signaling pathway: A novel intervention against osteosarcoma. Cancer Med 2021; 10:286-296. [PMID: 33179858 PMCID: PMC7826474 DOI: 10.1002/cam4.3581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
Osteosarcoma is a cancer of pathological bone remodeling with high mortality and severe comorbidity. New therapies are urgently needed. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, has been suggested to stimulate proliferation and invasion of osteosarcoma cells in vitro, thus representing a potential therapeutic target. In this study, inhibition of the activin receptor signaling pathway was explored as a therapy for osteosarcoma. In a murine intratibial osteosarcoma xenograft model, two types of inhibitors were tested: (a) a soluble activin type IIA decoy receptor (ActRIIA-mFc), or (b) a modified variant of follistatin (FSTΔHBS -hFc), either alone or in combination with a bisphosphonate. Both inhibitors reduced primary tumor development by nearly 50% compared to vehicle treatment. When ActRIIA-mFc was combined with bisphosphonate, the effect on tumor size became even more pronounced (78% reduction vs. vehicle). Moreover, FSTΔHBS -hFc increased body weight in the face of tumor progression (14% increase vs. vehicle), and ActRIIA-mFc reduced the number of lung metastases when combined with bisphosphonate. The present study demonstrates a novel approach to treating osteosarcoma and encourages further investigation of inhibition of the activin receptor signaling pathway as an intervention against the disease.
Collapse
Affiliation(s)
- Daniela Meier
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| | - Andreas Lodberg
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Pulmonary MedicineAarhus University HospitalAarhusDenmark
| | - Ana Gvozdenovic
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model PathologyInstitute of Veterinary Pathology, University of ZurichZurichSwitzerland
| | - Olga Neklyudova
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| | - Walter Born
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| | - Bruno Fuchs
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| | - Marco Eijken
- Department of Renal MedicineAarhus University HospitalAarhusDenmark
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | - Sander M. Botter
- Department of OrthopedicsBalgrist University HospitalZurichSwitzerland
| |
Collapse
|
9
|
Founds SA, Stolz DB. Gene expression of four targets in situ of the first trimester maternal-fetoplacental interface. Tissue Cell 2019; 64:101313. [PMID: 32473702 DOI: 10.1016/j.tice.2019.101313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
EPAS1, FSTL3, IGFBP1, and SEMA3C were localized to determine whether expression is decidual, trophoblastic, or both in the human first trimester maternal-fetoplacental interface. Identified on global genome-wide microarray analysis of chorionic villus sampling tissues in preclinical preeclampsia, these targets were predicted to interact by bioinformatics pathways analysis. In situ hybridization (ISH) with mRNA of each gene was conducted in 10 cases of archived first trimester termination tissues. Randomly selected areas of cells by tissue type yielded the relative proportion of cells expressing mRNA signal in decidual and fetoplacental sites. Data were analyzed using Shapiro-Wilk and Kruskal-Wallis tests (p ≤ .05). The average gestational age was 10.2 weeks. Expression signal for each gene differed by cell type (p < .001). FSTL3 expression was 17 times higher in cells of anchoring columns than areas of decidua without ISH signal. SEMA3C was three times higher in cells of anchoring columns than in decidua. EPAS1 was 1.31 times higher in cells of anchoring columns than in areas of decidua. IGFBP1 was 20 times higher in some decidua versus cells in anchoring columns or villous trophoblast. While all targets were expressed by both maternal and fetoplacental cells, our localizations identified which compartment had relatively higher expression of each gene.
Collapse
Affiliation(s)
- Sandra A Founds
- School of Nursing, Member Magee-Womens Research Institute, University of Pittsburgh, 3500 Victoria St., 448 Victoria Building, Pittsburgh, PA, 15261, United States.
| | - Donna B Stolz
- Cell Biology Associate Director, Center for Biologic Imaging, University of Pittsburgh, United States
| |
Collapse
|
10
|
Roh JD, Hobson R, Chaudhari V, Quintero P, Yeri A, Benson M, Xiao C, Zlotoff D, Bezzerides V, Houstis N, Platt C, Damilano F, Lindman BR, Elmariah S, Biersmith M, Lee SJ, Seidman CE, Seidman JG, Gerszten RE, Lach-Trifilieff E, Glass DJ, Rosenzweig A. Activin type II receptor signaling in cardiac aging and heart failure. Sci Transl Med 2019; 11:eaau8680. [PMID: 30842316 PMCID: PMC7124007 DOI: 10.1126/scitranslmed.aau8680] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.
Collapse
Affiliation(s)
- Jason D Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Hobson
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinita Chaudhari
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Quintero
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Yeri
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyang Xiao
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Zlotoff
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vassilios Bezzerides
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Houstis
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin Platt
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Federico Damilano
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brian R Lindman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Sammy Elmariah
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Biersmith
- Division of Cardiovascular Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02114, USA
| | | | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Castonguay R, Lachey J, Wallner S, Strand J, Liharska K, Watanabe AE, Cannell M, Davies MV, Sako D, Troy ME, Krishnan L, Mulivor AW, Li H, Keates S, Alexander MJ, Pearsall RS, Kumar R. Follistatin-288-Fc Fusion Protein Promotes Localized Growth of Skeletal Muscle. J Pharmacol Exp Ther 2019; 368:435-445. [PMID: 30563942 DOI: 10.1124/jpet.118.252304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-β superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huiming Li
- Acceleron Pharma, Cambridge, Massachusetts
| | | | | | | | - Ravi Kumar
- Acceleron Pharma, Cambridge, Massachusetts
| |
Collapse
|
12
|
Lodberg A, van der Eerden BCJ, Boers-Sijmons B, Thomsen JS, Brüel A, van Leeuwen JPTM, Eijken M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J 2019; 33:6001-6010. [PMID: 30759349 DOI: 10.1096/fj.201801969rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the activin receptor signaling pathway (IASPs) have become candidate therapeutics for sarcopenia and bone remodeling disorders because of their ability to increase muscle and bone mass. However, IASPs utilizing activin type IIA and IIB receptors are also potent stimulators of erythropoiesis, a feature that may restrict their usage to anemic patients because of increased risk of venous thromboembolism. Based on the endogenous TGF-β superfamily antagonist follistatin (FST), a molecule in the IASP class, FSTΔHBS-mFc, was generated and tested in both ovariectomized and naive BALB/c and C57BL/6 mice. In ovariectomized mice, FSTΔHBS-mFc therapy dose-dependently increased cancellous bone mass up to 42% and improved bone microstructural indices. For the highest dosage of FSTΔHBS-mFc (30 mg/kg, 2 times/wk), the increase in cancellous bone mass was similar to that observed with parathyroid hormone therapy (1-34, 80 µg/kg, 5 times/wk). Musculus quadriceps femoris mass dose-dependently increased up to 21% in ovariectomized mice. In both ovariectomized and naive mice, FSTΔHBS-mFc therapy did not influence red blood cell count or hematocrit or hemoglobin levels. If the results are reproduced, a human FSTΔHBS-mFc version could be applicable in patients with musculoskeletal conditions irrespective of hematocrit status.-Lodberg, A., van der Eerden, B. C. J., Boers-Sijmons, B., Thomsen, J. S., Brüel, A., van Leeuwen, J. P. T. M., Eijken, M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Bianca Boers-Sijmons
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Shen C, Iskenderian A, Lundberg D, He T, Palmieri K, Crooker R, Deng Q, Traylor M, Gu S, Rong H, Ehmann D, Pescatore B, Strack-Logue B, Romashko A, Baviello G, Gill J, Zhang B, Meiyappan M, Pan C, Norton AW. Protein Engineering on Human Recombinant Follistatin: Enhancing Pharmacokinetic Characteristics for Therapeutic Application. J Pharmacol Exp Ther 2018; 366:291-302. [PMID: 29752426 DOI: 10.1124/jpet.118.248195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 03/08/2025] Open
Abstract
Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-β family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.
Collapse
Affiliation(s)
- Chuan Shen
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Andrea Iskenderian
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Dianna Lundberg
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Tao He
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Kathleen Palmieri
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Robert Crooker
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Qingwei Deng
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Matthew Traylor
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Sheng Gu
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Haojing Rong
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - David Ehmann
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Brian Pescatore
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Bettina Strack-Logue
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Alla Romashko
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - George Baviello
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - John Gill
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Bohong Zhang
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Muthuraman Meiyappan
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Clark Pan
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| | - Angela W Norton
- Departments of Discovery Therapeutics (C.S., A.I., D.L., B.P., B.S.-L., A.R., G.B., J.G., B.Z., M.M., C.P., A.W.N.), Bioanalytical and Biomarker Development (T.H.), Discovery Biology and Translational Research (K.P., R.C., Q.D., D.E.), Analytical Development (M.T., S.G.), and Drug Metabolism and Pharmacokinetics (H.R.), Shire, Lexington, Massachusetts (H.R.)
| |
Collapse
|
14
|
Analysis and identification of the Grem2 heparin/heparan sulfate-binding motif. Biochem J 2017; 474:1093-1107. [PMID: 28104757 DOI: 10.1042/bcj20161050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic proteins (BMPs) are regulated by extracellular antagonists of the DAN (differential screening-selected gene aberrative in neuroblastoma) family. Similar to the BMP ligands, certain DAN family members have been shown to interact with heparin and heparan sulfate (HS). Structural studies of DAN family members Gremlin-1 and Gremlin-2 (Grem2) have revealed a dimeric growth factor-like fold where a series of lysine residues cluster along one face of the protein. In the present study, we used mutagenesis, heparin-binding measurements, and cell surface-binding analysis to identify lysine residues that are important for heparin/HS binding in Grem2. We determined that residues involved in heparin/HS binding, while not necessary for BMP antagonism, merge with the heparin/HS-binding epitope of BMP2. Furthermore, the Grem2-BMP2 complex has higher affinity for heparin than the individual proteins and this affinity is not abrogated when the heparin/HS-binding epitope of Grem2 is attenuated. Overall, the present study shows that the Grem2 heparin/HS and BMP-binding epitopes are unique and independent, where, interestingly, the Grem2-BMP2 complex exhibits a significant increase in binding affinity toward heparin moieties that appear to be partially independent of the Grem2 heparin/HS-binding epitope.
Collapse
|
15
|
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, Oh J, Aykul S, Walton KL, Schang G, Bernard DJ, Hinck AP, Harrison CA, Martinez-Hackert E, Wagers AJ, Lee RT, Thompson TB. Structural basis for potency differences between GDF8 and GDF11. BMC Biol 2017; 15:19. [PMID: 28257634 PMCID: PMC5336696 DOI: 10.1186/s12915-017-0350-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. Results Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. Conclusions These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Ana Vujic
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miook Cho
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Juhyun Oh
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard T Lee
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA. .,University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH, 45267, USA.
| |
Collapse
|
16
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
17
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
18
|
Datta-Mannan A, Huang L, Pereira J, Yaden B, Korytko A, Croy JE. Insights into the Impact of Heterogeneous Glycosylation on the Pharmacokinetic Behavior of Follistatin-Fc-Based Biotherapeutics. Drug Metab Dispos 2015; 43:1882-90. [PMID: 26354950 DOI: 10.1124/dmd.115.064519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/08/2015] [Indexed: 02/13/2025] Open
Abstract
Follistatin 315 heparan sulfate-binding deficient mutant human IgG4 Fc fusion (FST-ΔHBS-Fc) is a follistatin (FST) based Fc fusion protein currently being developed as a novel therapy for several potential indications, including muscle wasting. Previous assessments of the pharmacokinetics and therapeutic activity of FST-ΔHBS-Fc have shown a close association of the exposure-response relationship. The current work builds upon these initial studies by investigating the glycosylation characteristics of FST-ΔHBS-Fc after recombinant expression and its impact on the pharmacokinetics in mice and Cynomolgus monkeys. The data presented indicate that FST-ΔHBS-Fc is heterogeneously glycosylated at the three putative sites in FST when recombinantly expressed in stably transfected Chinese hamster ovary cells. Such carbohydrate heterogeneity, especially with regards to sialic acid incorporation, directly results in sugar-dependent clearance in both mice and Cynomolgus monkeys. Examination of the pharmacokinetics of FST-ΔHBS-Fc molecules containing variable sialic acid content in asialoglycoprotein receptor 1 (ASPGR-1) knockout mice supports the receptor's role as part of the clearance mechanism of the molecules. Based on the evaluation of several variably sialylated lots of material in pharmacokinetic assessments, we define specifications for average sialic acid incorporation into FST-ΔHBS-Fc that result in limited sugar-mediated clearance. Taken together, these studies highlight the importance of establishing an early understanding of the glycosylation/pharmacokinetic relationships of FST-ΔHBS-Fc, which will provide a basis for future application toward optimal systemic drug delivery and dosing strategies.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| | - Lihua Huang
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| | - Jennifer Pereira
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| | - Benjamin Yaden
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| | - Andrew Korytko
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| | - Johnny E Croy
- Departments of Drug Disposition Development/Commercialization (A.D.-M.), Biotechnology Discovery Research (J.P., J.E.C), Bioproduct Research and Development (L.H.), and Musculoskeletal Research (B.Y.), Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana; Biotechnology Discovery Research, Applied Molecular Evolution, San Diego, California (A.K.)
| |
Collapse
|
19
|
Nolan K, Kattamuri C, Luedeke DM, Angerman EB, Rankin SA, Stevens ML, Zorn AM, Thompson TB. Structure of neuroblastoma suppressor of tumorigenicity 1 (NBL1): insights for the functional variability across bone morphogenetic protein (BMP) antagonists. J Biol Chem 2015; 290:4759-4771. [PMID: 25561725 DOI: 10.1074/jbc.m114.628412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are antagonized through the action of numerous extracellular protein antagonists, including members from the differential screening-selected gene aberrative in neuroblastoma (DAN) family. In vivo, misregulation of the balance between BMP signaling and DAN inhibition can lead to numerous disease states, including cancer, kidney nephropathy, and pulmonary arterial hypertension. Despite this importance, very little information is available describing how DAN family proteins effectively inhibit BMP ligands. Furthermore, our understanding for how differences in individual DAN family members arise, including affinity and specificity, remains underdeveloped. Here, we present the structure of the founding member of the DAN family, neuroblastoma suppressor of tumorigenicity 1 (NBL1). Comparing NBL1 to the structure of protein related to Dan and Cerberus (PRDC), a more potent BMP antagonist within the DAN family, a number of differences were identified. Through a mutagenesis-based approach, we were able to correlate the BMP binding epitope in NBL1 with that in PRDC, where introduction of specific PRDC amino acids in NBL1 (A58F and S67Y) correlated with a gain-of-function inhibition toward BMP2 and BMP7, but not GDF5. Although NBL1(S67Y) was able to antagonize BMP7 as effectively as PRDC, NBL1(S67Y) was still 32-fold weaker than PRDC against BMP2. Taken together, this data suggests that alterations in the BMP binding epitope can partially account for differences in the potency of BMP inhibition within the DAN family.
Collapse
Affiliation(s)
- Kristof Nolan
- Department of Molecular Genetics, Biochemistry, and Microbiology, The University of Cincinnati, Cincinnati, Ohio 45267 and
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, The University of Cincinnati, Cincinnati, Ohio 45267 and
| | - David M Luedeke
- Department of Molecular Genetics, Biochemistry, and Microbiology, The University of Cincinnati, Cincinnati, Ohio 45267 and
| | - Elizabeth B Angerman
- Department of Molecular Genetics, Biochemistry, and Microbiology, The University of Cincinnati, Cincinnati, Ohio 45267 and
| | - Scott A Rankin
- Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics, The University of Cincinnati, Cincinnati, Ohio 45229
| | - Mariana L Stevens
- Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics, The University of Cincinnati, Cincinnati, Ohio 45229
| | - Aaron M Zorn
- Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics, The University of Cincinnati, Cincinnati, Ohio 45229
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, The University of Cincinnati, Cincinnati, Ohio 45267 and.
| |
Collapse
|
20
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yaden BC, Croy JE, Wang Y, Wilson JM, Datta-Mannan A, Shetler P, Milner A, Bryant HU, Andrews J, Dai G, Krishnan V. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharmacol Exp Ther 2014; 349:355-71. [PMID: 24627466 DOI: 10.1124/jpet.113.211169] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Follistatin (FST) is a member of the tissue growth factor β family and is a secreted glycoprotein that antagonizes many members of the family, including activin A, growth differentiation factor 11, and myostatin. The objective of this study was to explore the use of an engineered follistatin therapeutic created by fusing FST315 lacking heparin binding activity to the N terminus of a murine IgG1 Fc (FST315-ΔHBS-Fc) as a systemic therapeutic agent in models of muscle injury. Systemic administration of this molecule was found to increase body weight and lean muscle mass after weekly administration in normal mice. Subsequently, we tested this agent in several models of muscle injury, which were chosen based on their severity of damage and their ability to reflect clinical settings. FST315-ΔHBS-Fc treatment proved to be a potent inducer of muscle remodeling and regeneration. FST315-ΔHBS-Fc induced improvements in muscle repair after injury/atrophy by modulating the early inflammatory phase allowing for increased macrophage density, and Pax7-positive cells leading to an accelerated restoration of myofibers and muscle function. Collectively, these data demonstrate the benefits of a therapeutically viable form of FST that can be leveraged as an alternate means of ameliorating muscle regeneration.
Collapse
Affiliation(s)
- Benjamin C Yaden
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, Indiana (B.C.Y., J.M.W., G.D.); and Musculoskeletal Research (B.C.Y., Y.W., P.S., A.M., H.U.B., J.A., V.K.), Departments of Drug Disposition Development/Commercialization, and Biotechnology Discovery Research (J.E.C., A.D.-M.), and Translational Sciences-Molecular Pathology, Lilly Research Laboratories, Indianapolis, Indiana (J.M.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Datta-Mannan A, Yaden B, Krishnan V, Jones BE, Croy JE. An engineered human follistatin variant: insights into the pharmacokinetic and pharmocodynamic relationships of a novel molecule with broad therapeutic potential. J Pharmacol Exp Ther 2013; 344:616-23. [PMID: 23249626 DOI: 10.1124/jpet.112.201491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human follistatin is a regulatory glycoprotein with widespread biologic functions, including antiinflammatory activities, wound-healing properties, and muscle-stimulating effects. The role of follistatin in a wide range of biologic activities shows promise for potential clinical application, which has prompted considerable interest in the investigation of the protein as a potential disease-modifying agent. In spite of this potential, the development of follistatin as a broad use biotherapeutic has been severely hindered by a poor understanding and characterization of its pharmacokinetic/pharmacodynamic (PK/PD) relationships. Therefore, to better define these relationships, we performed in-depth analyses of the PK/PD relationships of native follistatin-315 (FST315). Our data indicate that the intrinsic PK/PD properties of native FST315 are poorly suited for acting as a parentally administered biotherapeutic with broad systemic effects. Here, we leveraged protein engineering to modify the PK characteristics of the native molecule by fusing FST315 to a murine IgG(1) Fc and removing the intrinsic heparan sulfate-binding activity of follistatin. The engineered variant molecule had ~100- and ~1600-fold improvements in terminal half-life and exposure, respectively. In contrast to the native FST315, the variant showed a robust, dose-dependent pharmacological effect when administered subcutaneously on a weekly basis in mouse models of muscle atrophy and degeneration. These studies highlight the underappreciated and critical relationship between optimizing multiple physical and chemical properties of follistatin on its overall PK/PD profile. Moreover, our findings provide the first documented strategy toward the development of a follistatin therapeutic with potential use in patients affected with skeletal muscle diseases.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Department of Drug Disposition Development/Commercialization, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
23
|
Fitzgerald AM, Benz C, Clark AF, Wordinger RJ. The effects of transforming growth factor-β2 on the expression of follistatin and activin A in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci 2012; 53:7358-69. [PMID: 23010638 DOI: 10.1167/iovs.12-10292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To compare follistatin (FST) and activin (Act) expression in normal and glaucomatous trabecular meshwork (TM) cells and tissues and determine if exogenous TGF-β2 regulates the expression of FST and Act in TM cells. METHODS Total RNA was isolated from TM cell strains, and mRNA expression for FST 317/344 isoforms and Act was determined via RT-PCR and quantitative PCR (qPCR). Western immunoblotting and immunocytochemistry determined FST and Act A protein levels in normal TM (NTM) and glaucomatous TM (GTM) cells. Cells were treated with recombinant human TGF-β2 protein at 0 to 10 ng/mL for 0 to 72 hours. qPCR, Western immunoblotting, immunocytochemistry, and ELISA immunoassay were utilized to determine changes in FST and Act A mRNA and protein levels. In addition, NTM and GTM tissue samples were examined by immunohistochemistry for expression of FST, FST 315, FST 288, and Act A. RESULTS Both FST mRNA and protein levels were significantly elevated in GTM cells. FST mRNA transcripts FST 317/344 were also significantly elevated in GTM cells. Immunohistochemistry showed FST levels were significantly elevated in GTM tissues. Exogenous TGF-β2 significantly induced FST mRNA and protein expression. Immunohistochemistry demonstrated that Act A protein levels were significantly higher in NTM tissues compared to GTM tissues. CONCLUSIONS FST is elevated in GTM cells and tissues. FST is known to be an inhibitor of bone morphogenetic proteins (BMPs), which, coupled with the ability of TGF-β2 to upregulate FST levels, may indicate a possible role of FST in the pathogenesis of glaucoma. These results suggest that additional endogenous molecules in human TM may regulate TGF-β2 signaling via inhibition of BMP family members.
Collapse
Affiliation(s)
- Ashley M Fitzgerald
- Department of Cell Biology and Anatomy and the North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
24
|
Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol 2012; 359:2-12. [PMID: 21763751 DOI: 10.1016/j.mce.2011.06.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 12/29/2022]
Abstract
Like other members of the transforming growth factor-β (TGF-β) superfamily, activins are synthesised as precursor molecules comprising an N-terminal prodomain and C-terminal mature region. During synthesis, the prodomain interacts non-covalently with mature activin, maintaining the molecule in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases and activin is secreted from the cell non-covalently associated with its propeptide. Extracellularly, the propeptide interacts with heparan sulfate proteoglycans to regulate activin localization within tissues. The mature activin dimer exhibits the classic 'open-hand' structure of TGF-β ligands with 'finger-like' domains projecting outward from the cysteine knot core of the molecule. These finger domains form the binding epitopes for type I and II serine/threonine kinase receptors. Activins ability to access its signalling receptors is regulated by the extracellular binding proteins, follistatin, follistatin-like-3, and by inhibins, which, in the presence of betaglycan, sequester type II receptors.
Collapse
Affiliation(s)
- Kelly L Walton
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Vic 3168, Australia
| | | | | |
Collapse
|
25
|
Zhang F, Beaudet JM, Luedeke DM, Walker RG, Thompson TB, Linhardt RJ. Analysis of the interaction between heparin and follistatin and heparin and follistatin-ligand complexes using surface plasmon resonance. Biochemistry 2012; 51:6797-803. [PMID: 22809401 DOI: 10.1021/bi300804g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparin and related heparan sulfate interact with a number of cytokines and growth factors, thereby playing an essential role in many physiological and pathophysiological processes by involving both signal transduction and the regulation of the tissue distribution of cytokines/growth factors. Follistatin (FS) is an autocrine protein with a heparin-binding motif that serves to regulate the cell proliferative activity of the paracrine hormone, and member of the TGF-β family, activin A (ActA). Follistatin is currently under investigation as an antagonist of another TGF-β family member, myostatin (Mstn), for the promotion of muscle growth in diseases associated with muscle atrophy. In this study, we employ surface plasmon resonance (SPR) spectroscopy to dissect the binding interactions between the heparin polysaccharide and both free follistatin (FS288) and its complexes (FS288-ActA and FS288-Mstn). FS288 complexes show much higher heparin binding affinity than FS288 alone. SPR solution competition studies using heparin oligosaccharides showed that the binding of FS288 and its complex to heparin is dependent on chain length. Full chain heparin or large oligosaccharides, having 18-20 sugar residues, show the highest binding activity for FS288 and the FS288-ActA complex, whereas smaller heparin molecules could interact with the FS288-Mstn complex. These interactions were also analyzed in normal physiological buffers and at different salt concentrations and pH values. Unbound follistatin was much more sensitive to all salt concentrations of >150 mM. The binding of heparin to the FS288-ActA complex was disrupted at 500 mM salt, whereas it was actually strengthened for the FS288-Mstn complex. At acidic pH values, binding of heparin to FS288 and the FS288-ActA complex was enhanced. While slightly acidic pH values (pH 6.2 and 5.2) enhanced the binding of the FS288-Mstn complex to heparin, at pH 4 heparin binding was inhibited. Overall, these studies demonstrate that binding of a specific ligand to FS288 differentially regulates its affinity and behavior for heparin molecules.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cash JN, Angerman EB, Keutmann HT, Thompson TB. Characterization of follistatin-type domains and their contribution to myostatin and activin A antagonism. Mol Endocrinol 2012; 26:1167-78. [PMID: 22593183 DOI: 10.1210/me.2012-1061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Follistatin (FST)-type proteins are important antagonists of some members of the large TGF-β family of cytokines. These include myostatin, an important negative regulator of muscle growth, and the closely related activin A, which is involved in many physiological functions, including maintenance of a normal reproductive axis. FST-type proteins, including FST and FST-like 3 (FSTL3), differentially inhibit various TGF-β family ligands by binding each ligand with two FST-type molecules. In this study, we sought to examine features that are important for ligand antagonism by FST-type proteins. Previous work has shown that a modified construct consisting of the FST N-terminal domain (ND) followed by two repeating follistatin domains (FSD), herein called FST ND-FSD1-FSD1, exhibits strong specificity for myostatin over activin A. Using cell-based assays, we show that FST ND-FSD1-FSD1 is unique in its specificity for myostatin as compared with similar constructs containing domains from FSTL3 and that the ND is critical to its activity. Furthermore, we demonstrate that FSD3 of FST provides affinity to ligand inhibition and confers resistance to perturbations in the ND and FSD2, likely through the interaction of FSD3 of one FST molecule with the ND of the other FST molecule. Additionally, our data suggest that this contact provides cooperativity to ligand antagonism. Cross-linking studies show that this interaction also potentiates formation of 1:2 ligand-FST complexes, whereas lack of FSD3 allows formation of 1:1 complexes. Altogether, these studies support that domain differences generate FST-type molecules that are each uniquely suited ligand antagonists.
Collapse
Affiliation(s)
- Jennifer N Cash
- Department of Molecular Genetics, University of Cincinnati Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
27
|
Cash JN, Angerman EB, Kattamuri C, Nolan K, Zhao H, Sidis Y, Keutmann HT, Thompson TB. Structure of myostatin·follistatin-like 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding. J Biol Chem 2011; 287:1043-53. [PMID: 22052913 DOI: 10.1074/jbc.m111.270801] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.
Collapse
Affiliation(s)
- Jennifer N Cash
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 2010; 429:1-12. [PMID: 20545624 DOI: 10.1042/bj20100305] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFbeta (transforming growth factor-beta) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-beta superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.
Collapse
|
29
|
The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding. EMBO J 2009; 28:2662-76. [PMID: 19644449 PMCID: PMC2738701 DOI: 10.1038/emboj.2009.205] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/22/2009] [Indexed: 01/07/2023] Open
Abstract
Myostatin is a member of the transforming growth factor-beta (TGF-beta) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-beta class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuous electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.
Collapse
|
30
|
Abstract
Activin was discovered in the 1980s as a gonadal protein that stimulated FSH release from pituitary gonadotropes and was thought of as a reproductive hormone. In the ensuing decades, many additional activities of activin were described and it was found to be produced in a wide variety of cell types at nearly all stages of development. Its signaling and actions are regulated intracellularly and by extracellular antagonists. Over the past 5 years, a number of important advances have been made that clarify our understanding of the structural basis for signaling and regulation, as well as the biological roles of activin in stem cells, embryonic development and in adults. These include the crystallization of activin in complex with the activin type II receptor ActRIIB, or with the binding proteins follistatin and follistatin-like 3, as well as identification of activin's roles in gonadal sex development, follicle development, luteolysis, beta-cell proliferation and function in the islet, stem cell pluripotency and differentiation into different cell types and in immune cells. These advances are reviewed to provide perspective for future studies.
Collapse
Affiliation(s)
- Yin Xia
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
31
|
Forissier S, Razanajaona D, Ay AS, Martel S, Bartholin L, Rimokh R. AF10-dependent transcription is enhanced by its interaction with FLRG. Biol Cell 2008; 99:563-71. [PMID: 17868029 DOI: 10.1042/bc20060131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION FLRG (follistatin-related gene) is a secreted glycoprotein which is very similar to follistatin. As observed for follistatin, FLRG is involved in the regulation of various biological processes through its binding to members of the TGFbeta (transforming growth factor beta) superfamily, activin, BMPs (bone morphogenetic proteins) and myostatin. Unlike follistatin, FLRG has been found to be both secreted and localized within the nucleus of many FLRG-producing cells, suggesting the existence of specific intracellular functions of the protein. RESULTS In order to analyse the function of the nuclear form of FLRG, we performed a yeast two-hybrid screen, in which we identified AF10 [ALL1 (acute lymphoblastic leukaemia) fused gene from chromosome 10], a translocation partner of the MLL (mixed-lineage leukaemia) oncogene in human leukaemia, as a FLRG-interacting protein. This interaction was confirmed by far-Western-blot analysis and co-immunoprecipitation with transfected COS-7 cells. The N-terminal region of AF10, including the PHD (plant homeodomain), is sufficient to mediate this interaction, and has been shown to be involved in AF10 homo-oligomerization. By immunoprecipitation experiments, we showed that FLRG enhances the homo-oligomerization of AF10. Functional studies demonstrated that FLRG enhances the transactivation properties of the AF10 protein fused to Gal4 DNA-binding domains in transient transfection assays. CONCLUSIONS Our present study provides novel insights into the function of the nuclear form of the FLRG protein, which is revealed as a novel regulator of transcription. The nuclear isoform of FLRG lacks an intrinsic transactivation domain, but enhances AF10-mediated transcription, probably through promoting the homo-oligomerization of AF10, thus facilitating the recruitment of co-activators.
Collapse
|
32
|
Prowse ABJ, McQuade LR, Bryant KJ, Marcal H, Gray PP. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 2007; 6:3796-807. [PMID: 17655345 DOI: 10.1021/pr0702262] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique pluripotential characteristic of human embryonic stem cells heralds their use in fields such as medicine, biotechnology, biopharmaceuticals, and developmental biology. However, the current availability of sufficient quantities of embryonic stem cells for such applications is limited, and generating sufficient numbers for downstream therapeutic applications is a key concern. In the absence of feeder layers or their conditioned media, human embryonic stem cells readily differentiate to form embryoid bodies, indicating that trophic factors secreted by the feeder layers are required for long-term proliferation and maintenance of pluripotency. Adding further complexity to the elucidation of the factors required for the maintenance of pluripotency is the variability of different fibroblast feeder layers (of mouse or human origin) to effectively support human embryonic stem cells. Currently, the deficiency of knowledge concerning the exact identity of factors within the pathways for self-renewal illustrates that a number of factors may be required to support pluripotent, undifferentiated growth of human embryonic stem cells. This study utilized a proteomic analysis (multidimensional chromatography coupled to tandem mass spectrometry) to isolate and identify proteins in the conditioned media of three mitotically inactivated fibroblast lines (human fetal, human neonatal, and mouse embryonic fibroblasts) used to support the undifferentiated growth of human embryonic stem cells. One-hundred seventy-five unique proteins were identified between the three cell lines using a </=1% false positive rate of identification. These proteins were organized into 17 categories. The differentiation and growth factor and extracellular matrix and remodeling categories contained proteins from many of the key pathways already implicated in the maintenance of human embryonic stem cell pluripotency including the Wnt, BMP/TGF-beta1, Activin/Inhibin, and insulin-like growth factor-1 pathways. The conditioned media of fibroblast feeder layers is a complex system, and this study assists in narrowing potential candidates responsible for the support of undifferentiated human embryonic stem cells.
Collapse
Affiliation(s)
- Andrew B J Prowse
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
33
|
Lerch TF, Shimasaki S, Woodruff TK, Jardetzky TS. Structural and Biophysical Coupling of Heparin and Activin Binding to Follistatin Isoform Functions. J Biol Chem 2007; 282:15930-9. [PMID: 17409095 DOI: 10.1074/jbc.m700737200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Follistatin (FS) regulates transforming growth factor-beta superfamily ligands and is necessary for normal embryonic and ovarian follicle development. Follistatin is expressed as two splice variants (FS288 and FS315). Previous studies indicated differences in heparin binding between FS288 and FS315, potentially influencing the physiological functions and locations of these isoforms. We have determined the structure of the FS315-activin A complex and quantitatively compared heparin binding by the two isoforms. The FS315 complex structure shows that both isoforms inhibit activin similarly, but FS315 exhibits movements within follistatin domain 3 (FSD3) apparently linked to binding of the C-terminal extension. Surprisingly, the binding affinities of FS288 and FS315 for heparin are similar at lower ionic strengths with FS315 binding decreasing more sharply as a function of salt concentration. When bound to activin, FS315 binds heparin similarly to the FS288 isoform, consistent with the structure of the complex, in which the acidic residues of the C-terminal extension cannot interact with the heparin-binding site. Activin-induced binding of heparin is unique to the FS315 isoform and may stimulate clearance of FS315 complexes.
Collapse
Affiliation(s)
- Thomas F Lerch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
34
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006; 231:534-44. [PMID: 16636301 DOI: 10.1177/153537020623100507] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma SI, Hyvönen M. Structural basis for the inhibition of activin signalling by follistatin. EMBO J 2006; 25:1035-45. [PMID: 16482217 PMCID: PMC1409725 DOI: 10.1038/sj.emboj.7601000] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/20/2006] [Indexed: 11/09/2022] Open
Abstract
The secreted, multidomain protein follistatin binds activins with high affinity, inhibiting their receptor interaction. We have dissected follistatin's domain structure and shown that the minimal activin-inhibiting fragment of follistatin is comprised of the first and second Fs domains (Fs12). This protein can bind to activin dimer and form a stable complex containing two Fs12 molecules and one activin dimer. We have solved crystal structures of activin A alone and its complex with Fs12 fragment to 2 A resolution. The complex structure shows how Fs12 molecules wrap around the back of the 'wings' of activin, blocking the type II receptor-binding site on activin A. Arginine 192 in Fs2 is a key residue in this interaction, inserting itself in between activin's fingers. Complex formation imposes a novel orientation for the EGF- and Kazal-like subdomains in the Fs2 domain and activin A shows further variation from the canonical TGF-beta family fold. The structure provides a detailed description of the inhibitory mechanism and gives insights into interactions of follistatin with other TGF-beta family proteins.
Collapse
Affiliation(s)
| | | | | | | | - Shin-ichi Ohnuma
- Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. Tel.: +44 1223 766044; Fax: +44 1223 766002; E-mail:
| |
Collapse
|
36
|
|
37
|
Mordhorst BR, Murphy SL, Ross RM, Samuel MS, Salazar SR, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Obstructive jaundice and carcinoma of the gallbladder. Cell Reprogram 1969; 20:38-48. [PMID: 29412741 PMCID: PMC5804098 DOI: 10.1089/cell.2017.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Warburg effect is a metabolic phenomenon characterized by increased glycolytic activity, decreased mitochondrial oxidative phosphorylation, and the production of lactate. This metabolic phenotype is characterized in rapidly proliferative cell types such as cancerous cells and embryonic stem cells. We hypothesized that a Warburg-like metabolism could be achieved in other cell types by treatment with pharmacological agents, which might, in turn, facilitate nuclear reprogramming. The aim of this study was to treat fibroblasts with CPI-613 and PS48 to induce a Warburg-like metabolic state. We demonstrate that treatment with both drugs altered the expression of 69 genes and changed the level of 21 metabolites in conditioned culture media, but did not induce higher proliferation compared to the control treatment. These results support a role for the reverse Warburg effect, whereby cancer cells induce cancer-associated fibroblast cells in the surrounding stroma to exhibit the metabolically characterized Warburg effect. Cancer-associated fibroblasts then produce and secrete metabolites such as pyruvate to supply the cancerous cells, thereby supporting tumor growth and metastasis. While anticipating an increase in the production of lactate and increased cellular proliferation, both hallmarks of the Warburg effect, we instead observed increased secretion of pyruvate without changes in proliferation.
Collapse
Affiliation(s)
| | | | - Renee M. Ross
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Melissa S. Samuel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri
| | - Susanta K. Behura
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Kevin D. Wells
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Jonathan A. Green
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Randall S. Prather
- Department of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|