1
|
Scholl JL, Rogers JT, Feng N, Forster GL, Watt MJ, Yaeger JD, Buchanan MW, Lowry CA, Renner KJ. Corticosterone rapidly modulates dorsomedial hypothalamus serotonin and behavior in an estrogen- and progesterone-dependent manner in adult female rats: potential role of organic cation transporter 3 (OCT3). Stress 2025; 28:2457765. [PMID: 39898528 PMCID: PMC11801257 DOI: 10.1080/10253890.2025.2457765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Previous studies have shown that corticosterone rapidly alters extracellular serotonin (5-hydroxytryptamine; 5-HT) concentrations in the dorsomedial hypothalamus (DMH) of adult male rats, suggesting a role for corticosterone actions in the DMH in regulation of physiological and behavioral responses. Whether or not corticosterone also rapidly alters extracellular serotonin concentrations in the DMH of female rats, and the dependence of this effect on ovarian hormones, is not known. To determine the effects of 17β-estradiol (E2), progesterone (P), and corticosterone on extracellular concentrations of serotonin in the DMH, corticosterone and/or P were delivered into the DMH of ovariectomized rats via reverse microdialysis in E2-primed rats. Combined, but not separate, delivery of corticosterone and P into the DMH rapidly and transiently increased extracellular 5-HT concentrations, a result that was dependent upon circulating E2. This effect of corticosterone on DMH 5-HT was replicated by local perfusion of the organic cation transporter 3 (OCT3) competitive inhibitor normetanephrine. Intra-DMH infusions of either corticosterone or normetanephrine also reversibly suppressed lordosis responses in E2 + P-primed females. These results suggest that ovarian hormones in combination with corticosterone modulate OCT3-mediated 5-HT clearance in the DMH, potentially representing an adaptive mechanism that allows sexually receptive females to respond rapidly to acute stressors.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Joshua T. Rogers
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Na Feng
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Gina L. Forster
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Michael J. Watt
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jazmine D.W. Yaeger
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Michael W. Buchanan
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kenneth J. Renner
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
- Department of Biology & Center for Brain and Behavior Research, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| |
Collapse
|
2
|
McGriff SA, Hecker JC, Maitland AD, Partilla JS, Baumann MH, Glatfelter GC. Psychedelic-like effects induced by 2,5-dimethoxy-4-iodoamphetamine, lysergic acid diethylamide, and psilocybin in male and female C57BL/6J mice. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06795-x. [PMID: 40381003 DOI: 10.1007/s00213-025-06795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/19/2025] [Indexed: 05/19/2025]
Abstract
RATIONALE The head twitch response (HTR) is a spontaneously occurring behavior in mice that is increased in frequency by serotonergic psychedelics. The mouse HTR is often used as a proxy for psychedelic-like drug effects, but limited information is available about sex differences in HTRs evoked by various classes of psychedelics (i.e., phenethylamines, lysergamides, tryptamines). OBJECTIVE AND METHODS To examine potential sex differences in responsiveness to structurally-distinct psychedelics, acute effects of subcutaneous 2,5-dimethoxy-4-iodo-amphetamine (DOI, 0.03-10 mg/kg), lysergic acid diethylamide (LSD, 0.003-1 mg/kg), and 4-phosphoryloxy-N,N-dimethyltryptamine (psilocybin, 0.03-10 mg/kg) on HTRs were compared in male and female C57BL/6J mice. For comparison, effects of the drugs on locomotor activity and body temperature were also determined. RESULTS Drug potencies for inducing HTRs were similar in males and females for all drugs, with only LSD exhibiting detectable differences due to increased maximal counts in females. Importantly, the maximum number of HTRs observed for all drugs was higher in females, with significant differences between sexes for DOI and LSD. Dose x sex interactions for the dose-response data were statistically significant for psilocybin and LSD, with females displaying more HTRs after the highest or peak doses of all drugs. The acute effects of drugs on locomotion and temperature varied by drug, but were similar in both sexes. CONCLUSIONS The present results overall show no substantial sex differences in the potencies to induce HTRs for DOI, LSD, and psilocybin in C57BL/6J mice. However, females uniformly displayed more HTRs at high doses administered across chemotypes. The results further suggest that commonly used doses of psychedelics induce comparable psychedelic-like effects in male and female C57BL/6J mice, but modest differences may emerge at high doses.
Collapse
Affiliation(s)
- Shelby A McGriff
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Jacquelin C Hecker
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alexander D Maitland
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - John S Partilla
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Grant C Glatfelter
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Karp NA. Navigating the paradigm shift of sex inclusive preclinical research and lessons learnt. Commun Biol 2025; 8:681. [PMID: 40301592 PMCID: PMC12041288 DOI: 10.1038/s42003-025-08118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
As progress is made in sex-inclusive preclinical research, the author highlights areas of research practice where significant development has been achieved & where more change is needed towards community accepted standards in equitable research
Collapse
Affiliation(s)
- Natasha A Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
4
|
Karp NA, Berdoy M, Gray K, Hunt L, Jennings M, Kerton A, Leach M, Tremoleda JL, Gledhill J, Pearl EJ, Percie du Sert N, Phillips B, Reynolds PS, Ryder K, Stanford SC, Wells S, Whitfield L. The Sex Inclusive Research Framework to address sex bias in preclinical research proposals. Nat Commun 2025; 16:3763. [PMID: 40263253 PMCID: PMC12015461 DOI: 10.1038/s41467-025-58560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
An interactive Sex Inclusive Research Framework (SIRF) supports the evaluation of in vivo and ex vivo research proposals to address the risk of sex bias in preclinical research. The framework delivers a traffic light classification, indicating whether a proposal is appropriate, risky, or insufficient with regard to sex inclusion. This tool is designed for use by researchers, (animal) ethical review boards, and funders to generate a rigorous and reproducible assessment of sex inclusion at the proposal level, thus helping address and resolve the embedded sex bias in preclinical research.
Collapse
Affiliation(s)
- Natasha A Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| | | | - Kelly Gray
- Open Innovation, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Matt Leach
- Comparative Biology Centre, Newcastle University, Newcastle, UK
| | | | - Jon Gledhill
- Comparative Biology Centre, Newcastle University, Newcastle, UK
| | | | | | - Benjamin Phillips
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Kathy Ryder
- Department of Health, Stormont Estate, Belfast, UK
| | | | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Science and Innovation Campus, Lyon, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
| | | |
Collapse
|
5
|
Mazumdar P, Biswas SS. Ramipril ameliorates endometriosis by inducing oxidative stress-mediated apoptosis in the wistar rat. J Mol Histol 2025; 56:117. [PMID: 40126675 DOI: 10.1007/s10735-025-10397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Endometriosis is illustrated by the presence of ectopic endometrial cells capable of evading apoptosis outside the uterus. Apoptotic and anti-apoptotic factors in the extra uterine microenvironment can be compromised by the impairment in oxidative status. Angiotensin Converting Enzyme (ACE) Inhibitors and Nitric Oxide (NO) modulators play pivotal role in inflammation, angiogenesis, apoptosis and in abrogating oxidative imbalance. Therefore, in the current study we investigate the role of ACE inhibitor and or NO modulators in mitigating the proliferation of ectopic endometrial lesions in rat model. Sixty adult female virgin wistar rats were utilized; out of which fifteen were used as donor rats and rest forty-two were randomly divided into seven groups after surgical implantation of endometrial explants into rats (group II-VII). Histomorphometric assessment of uteri and ectopic lesions was performed by Hematoxylin and eosin (H-E) staining, followed by immunohistochemical study for Proliferating cell nuclear antigen (PCNA), Bax and Bcl-2. Oxidative stress parameters were evaluated by biochemical estimations, succeeded by immunoblotting of Poly [ADP-ribose] polymerase 1 (PARP1). Additionally, immunoblotting of Vascular endothelial growth factor (VEGF), Bax, Bcl-2 and caspase-3 was also performed. Significant decrease in the diameter of lesions with diffused staining at the extracellular spaces of stromal cells for PCNA accompanied by significant decrease in the expression of VEGF (p < 0.00001) was observed in group III. Furthermore, increased expression of Bax:Bcl-2 ratio (p < 0.001) and cleaved caspase-3 (p ≤ 0.0001) in ectopic lesions of group III was also observed. Administration of ramipril alone results in triggering oxidative stress mediated cleavage of PARP1, augmenting apoptosis in the ectopic lesions.
Collapse
Affiliation(s)
- Piyali Mazumdar
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Shampa Sarkar Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
López-Moraga A, Luyten L, Beckers T. Generalization and extinction of platform-mediated avoidance in male and female rats. Sci Rep 2025; 15:9730. [PMID: 40118949 PMCID: PMC11928644 DOI: 10.1038/s41598-025-94265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Understanding anxiety-related disorders can be advanced by studying the fear learning mechanisms implicated in the transition from adaptive to maladaptive fear. Individuals with anxiety disorders often show impaired fear extinction, pervasive avoidance, and overgeneralization of fear. While these characteristics are usually studied in isolation, their interactions are less understood. We modified the platform-mediated avoidance task to chart avoidance, generalization, and extinction in male and female rats. Male rats acquired avoidance, showed a gradient of generalization, and reduced avoidance and fear under extinction. Female rats also learned avoidance, showed gradual generalization, and extinction of defensive behaviors. Sex differences emerged in extinction learning but were subtler than expected. We present an open-source automated system for processing DeepLabCut and SimBA output to score avoidance and freezing behavior. This task effectively probes avoidance, generalization, and extinction of fear in rats, and our automated scoring approach offers a effective method to quantify defensive behaviors.
Collapse
Affiliation(s)
- Alba López-Moraga
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Beede-James KF, Gutierrez VA, Brooker SL, Martin LE, Torregrossa AM. Sex differences in diet-mediated salivary protein upregulation. Appetite 2025; 207:107888. [PMID: 39870314 DOI: 10.1016/j.appet.2025.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Our lab previously established that repeated exposure to a bitter diet can increase salivary protein (SP) expression, which corresponds to an increase in acceptance of the bitter stimulus. However, this work was exclusively in male rodents, here we examine sex differences. We found that there are no differences in SP expression (experiment 1) or quinine diet acceptance (experiment 2) across stage of estrous cycle. Yet, males and females differ in feeding behaviors, SP expression, and responses to a quinine diet (experiment 3). On a quinine diet, males accepted the diet much faster than females. Males displayed a compensatory increase in meal number as meal size and rate of feeding decreased with initial exposure to a quinine diet, whereas females decreased meal size and rate of feeding with no compensation in meal number. There were sex differences in SP expression at day 14 of quinine exposure but these were gone by day 24. Both sexes increased acceptance of quinine in a brief access taste test after the feeding trial concluded. These data suggest that males and females have different patterns of bitter diet acceptance, but extended exposure to quinine diet still results in altered bitter taste responding and changes in SP profiles in females.
Collapse
Affiliation(s)
- Kimberly F Beede-James
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | | | - Samantha L Brooker
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Laura E Martin
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14260, USA; Center for Ingestive Behavior Research, State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
8
|
Schober JM, Wesley S, Taylor I, Ault B, Plue C, Bergman MM, Lucas JR, Fraley GS. Sex differences in blood pressure responses of Pekin ducks to sound stimuli and conspecific vocalizations. Poult Sci 2025; 104:104735. [PMID: 39740496 PMCID: PMC11750539 DOI: 10.1016/j.psj.2024.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
We tested Pekin ducks with playbacks of 5 different vocalizations plus a no noise and white noise stimulus as our controls (N = 15 ducks/sex/treatment). The "AM long" call is a common vocalization made by both sexes. "Honk" is also produced by both sexes and is thought to be an alarm or distress call. "Pips" and "harmonics" are common vocalizations made only by hens. The "egg laying squiggle" is also only made by hens. Trials consisted of an initial recording in a quiet condition with 5 consecutive measurements of heart rate, blood pressure and respiratory rate. A specific vocalization was then played on repeat while 8 more measurements of blood pressure, heart rate and respiratory rate were taken. Finally, 5 measurements of heart rate and blood pressure were taken post playback along with a final recording of respiratory rate. Data from all blood pressure measurements (systolic, diastolic and mean arterial pressure [MAP]), heart rate (HR) and respiratory rate (RR) were subject to a principal component analysis (Proc Princomp in SAS 9.4). The significant principal components (Prin 1 loaded strongly on blood pressure and Prin 2 loaded strongly on HR and RR) were then analyzed by ANOVA with repeated measures (Proc Mixed, SAS 9.4, subject=duck ID). Our results showed there was a significant main effect of playback type on the blood pressure of ducks during the playbacks (P = 0.0276). Ducks experienced an increase in blood pressure when played back the honk vocalization, as well as the white noise control. Additionally, there was a significant interaction between sex and treatment on the after-stimulus blood pressure (P = 0.0008): after the harmonic vocalization was played, the drakes still experienced an increase in blood pressure, but the hens experienced a decrease. The drakes, but not the hens, experienced a decrease in blood pressure after the AM long vocalization was played. Our data show that there are sex differences when it comes to vocalization playbacks in Pekin ducks, but overall, the honk vocalization and white noise control significantly increased ducks' blood pressure. This study represents a critical steppingstone toward understanding how Pekin duck vocalizations affect conspecific physiology.
Collapse
Affiliation(s)
- J M Schober
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - S Wesley
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - I Taylor
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - B Ault
- Purdue University Animal Science Research and Education Center, West Lafayette, IN, USA
| | - C Plue
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - M M Bergman
- Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - J R Lucas
- Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Alasmari AA, Alhussain MH, Al-Khalifah AS, Alshiban NM, Alharthi R, Alyami NM, Alodah HS, Alahmed MF, Aljahdali BA, BaHammam AS. Ramadan fasting model modulates biomarkers of longevity and metabolism in male obese and non-obese rats. Sci Rep 2024; 14:28731. [PMID: 39567585 PMCID: PMC11579461 DOI: 10.1038/s41598-024-79557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The health advantages of Ramadan fasting, a time-restricted eating from dawn to dusk, have garnered attention. Nevertheless, prior observational studies have found inconsistent findings because of challenges regulating variables such as sleep patterns, dietary habits, and physical activity. This study sought to investigate the impact of the Ramadan fasting model (RFM) on longevity and metabolic biomarkers in obese and non-obese rats. For 12 weeks, 48 male Wistar albino rats were separated into two groups and fed either a standard or a high-fat diet (HFD). During the final four weeks, rats in each group were separated into four subgroups to investigate the effect of RFM with/without training (on Treadmill) or glucose administration on the biomarkers of interest. The HFD groups subjected to RFM had significantly lower Insulin-like growth factor 1 (IGF-1) and mechanistic target of rapamycin (mTOR) serum, whereas AMPK, anti-inflammatory, and antioxidative stress serum levels were significantly higher. All groups reported decreased serum levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) compared to the HFD control group. Furthermore, the Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) results indicated a significant elevation in the TP53 gene expression in groups subjected to RFM. The data indicate that RFM can improve longevity and metabolic biomarkers and reduce pro-inflammation and oxidative stress. Also, RFM improves anti-inflammatory and antioxidant markers in HFD-induced obese rats.
Collapse
Affiliation(s)
- Abeer Abdallah Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Mohammed Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Alharthi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A Aljahdali
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Huang Y, Butelman ER, Ceceli AO, Kronberg G, King SG, McClain NE, Wong YY, Boros M, Drury KR, Sinha R, Alia-Klein N, Goldstein RZ. Sex and hormonal effects on drug cue-reactivity and its regulation in human addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317491. [PMID: 39606326 PMCID: PMC11601698 DOI: 10.1101/2024.11.18.24317491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective To study the sex and hormonal effects on cortico-striatal engagement during drug cue-reactivity and its regulation focusing on drug reappraisal. Methods Forty-nine men (age=41.96±9.71) with heroin use disorder (HUD) and 32 age-matched women (age=38.85±9.84) with HUD (n=16) or cocaine use disorder (CUD; n=16) were scanned using functional MRI, with a subgroup of women scanned twice, during the late-follicular and mid-luteal phases, to examine sex and menstrual phase differences in cortico-striatal drug cue-reactivity and its cognitive reappraisal and their correlations with ovarian hormones and drug craving. Results Women showed higher medial prefrontal cortex (PFC) drug cue-reactivity while men showed higher frontal eye field (FEF)/dorsolateral PFC (dlPFC) drug reappraisal as associated with lower cue-induced drug craving. In the women, drug cue-reactivity was higher during the follicular phase in the FEF/dlPFC, whereas drug reappraisal was higher during the luteal phase in the anterior PFC/orbitofrontal cortex. The more the estradiol during the follicular vs. luteal phase (Δ), the higher the Δdrug cue-reactivity in the vmPFC, which also correlated with higher Δdrug craving (observed also in the inferior frontal gyrus). The more this Δestradiol, the lower the Δdrug reappraisal in the vmPFC, anterior PFC and striatum. Conversely, Δprogesterone/estradiol ratio was positively associated with Δdrug reappraisal in the dlPFC. Conclusions Compared to men, women with addiction show more cortico-striatal reactivity to drug cue exposure and less PFC activity during drug reappraisal, driven by the follicular compared to luteal phase and directly related to craving and fluctuations in estrogen and progesterone with the former constituting a vulnerability and the latter a protective factor. This study provides insights for developing precisely timed and hormonally informed treatments for women with addiction.
Collapse
Affiliation(s)
- Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Eduardo R. Butelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ahmet O. Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah G. King
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Natalie E. McClain
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yui Ying Wong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maggie Boros
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - K Rachel Drury
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
- Yale Stress Center, Yale University School of Medicine, New Haven, CT 06510
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rita Z. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
12
|
Patel BP, Loweth JA. Effects of sex and estrous cycle on extended-access oxycodone self-administration and cue-induced drug seeking behavior. Front Behav Neurosci 2024; 18:1473164. [PMID: 39606121 PMCID: PMC11598338 DOI: 10.3389/fnbeh.2024.1473164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Increasing evidence indicates that sex is a factor that impacts the abuse liability and relapse vulnerability of prescription opioids like oxycodone. However, while women are more likely than men to be prescribed and to use these drugs, the impact of sex and ovarian hormones on prescription opioid use and relapse vulnerability remains unclear. Accurately assessing these measures is complicated by the fact that chronic opioid exposure can lower ovarian hormone levels and cause cycle irregularities. Methods Adult male and female Sprague-Dawley rats self-administered oxycodone (0.1 mg/kg/infusion) under extended-access conditions (6 h/day, 10 days) followed by forced abstinence. Separate groups of animals received cue-induced seeking tests in a drug-free state during early (1-2 days) or later periods of abstinence (43-45 days). To track estrous cycle stage, animals were regularly vaginally swabbed throughout the study. Results We observed oxycodone-induced estrous cycle dysregulation in the majority (~60%) of the animals during both self-administration and the first month of abstinence. In animals whose cycles were not dysregulated, we found a reduction in oxycodone intake during estrus compared to all other cycle stages (non-estrus). We also found that males but not females showed a time-dependent intensification or incubation of cue-induced oxycodone craving over the first 6 weeks of abstinence. This sex difference was estrous cycle-dependent, driven by a selective reduction in drug seeking during estrus. Discussion These findings highlight the importance of tracking drug-induced estrous cyclicity and identify a clear impact of ovarian hormones on oxycodone taking and seeking behavior.
Collapse
Affiliation(s)
| | - Jessica A. Loweth
- Department of Cell Biology and Neuroscience, Schools of Osteopathic Medicine and Translational Biomedical Engineering & Sciences, Virtua Health College of Medicine & Life Sciences of Rowan University, Stratford, NJ, United States
| |
Collapse
|
13
|
Tassinari ID, Zang J, Ribeiro NH, Martins BB, Tauffer JVM, Nunes RR, Sanches EF, Sizonenko S, Netto CA, Paz AH, de Fraga LS. Lactate administration causes long-term neuroprotective effects following neonatal hypoxia-ischemia. Exp Neurol 2024; 381:114929. [PMID: 39168170 DOI: 10.1016/j.expneurol.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of mortality and long-term disabilities in newborns, and the only clinical approach to treat this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models of HI. Lactate is a preferential metabolic substrate of the neonatal brain and has already been shown to produce beneficial neuroprotective outcomes in neonatal animals exposed to HI. Here, we administered lactate as a treatment in neonatal rats previously exposed to HI and evaluated the impact of this treatment in adulthood. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to one of four experimental groups: HI, HI+LAC, SHAM, SHAM+LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI+LAC and SHAM+LAC groups, whereas HI and SHAM groups received vehicle. Animals were tested in the behavioral tasks of negative geotaxis and righting reflex (P8), cylinder test (P24), and the modified neurological severity score was calculated (P25). Open field (OF), and novel object recognition (NOR) were evaluated in adulthood. Animals were killed at P60, and the brains were harvested and processed to evaluate the volume of brain injury. Our results showed that lactate administration reduced the volume of brain lesion and improved sensorimotor and cognitive behaviors in neonatal, juvenile, and adult life in HI animals from both sexes. Thus, lactate administration might be considered as a potential neuroprotective strategy for the treatment of neonatal HI, which is a prevalent disorder affecting newborns.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Janaína Zang
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Bianca Büchele Martins
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - João Vitor Miotto Tauffer
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ricardo Ribeiro Nunes
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Bioquímica, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Ciências Morfológicas, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil.
| |
Collapse
|
14
|
Colom M, Kraev I, Stramek AK, Loza IB, Rostron CL, Heath CJ, Dommett EJ, Singer BF. Conditioning- and reward-related dendritic and presynaptic plasticity of nucleus accumbens neurons in male and female sign-tracker rats. Eur J Neurosci 2024; 60:5694-5717. [PMID: 39193632 DOI: 10.1111/ejn.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
Collapse
Affiliation(s)
- Morgane Colom
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Iwona B Loza
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Claire L Rostron
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Eleanor J Dommett
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bryan F Singer
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- School of Psychology, Sussex Neuroscience, Sussex Addiction Research and Intervention Centre, University of Sussex, Brighton, UK
| |
Collapse
|
15
|
Boo KJ, Kim DH, Cho E, Kim DH, Jeon SJ, Shin CY. Neonatal dysregulation of 2-arachidonoylglycerol induces impaired brain function in adult mice. Neuropharmacology 2024; 257:110045. [PMID: 38885736 DOI: 10.1016/j.neuropharm.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The endocannabinoid system (ECS) regulates neurotransmission linked to synaptic plasticity, cognition, and emotion. While it has been demonstrated that dysregulation of the ECS in adulthood is relevant not only to central nervous system (CNS) disorders such as autism spectrum disorder, cognitive dysfunction, and depression but also to brain function, there are few studies on how dysregulation of the ECS in the neonatal period affects the manifestation and pathophysiology of CNS disorders later in life. In this study, DO34, a diacylglycerol lipase alpha (DAGLα) inhibitor affecting endocannabinoid 2-AG production, was injected into C57BL/6N male mice from postnatal day (PND) 7 to PND 10, inducing dysregulation of the ECS in the neonatal period. Subsequently, we examined whether it affects neuronal function in adulthood through electrophysiological and behavioral evaluation. DO34-injected mice showed significantly decreased cognitive functions, attributed to impairment of hippocampal synaptic plasticity. The findings suggest that regulation of ECS activity in the neonatal period may induce enduring effects on adult brain function.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae Hyun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Patel R, Jain NS. Stimulation of central histaminergic transmission attenuates diazepam-induced motor disturbance on rota-rod and beam walking tests in mice. Behav Pharmacol 2024; 35:351-365. [PMID: 39051902 DOI: 10.1097/fbp.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diazepam administration has been shown to influence the release of histamine in various brain areas involved in motor behavior. Therefore, the present study explored the plausible regulatory role of the central histaminergic system in diazepam-induced deficits in motor performance in mice using the rota-rod and beam walking tests. In this study, several doses of diazepam (0.5, 1, 2, and 3 mg/kg, i.p.) were assessed in mice for changes in motor performance on the rota-rod and beam walking test. In addition, the brain histamine levels were determined after diazepam administration, and the diazepam-induced motor deficits were assessed in mice, pretreated centrally (intracerebroventricular) with histaminergic agents such as histamine (0.1, 10 µg), histamine precursor (L-histidine: 0.1, 2.5 µg), histamine neuronal releaser/H 3 receptor antagonist (thioperamide: 0.5, 10 µg), H 1 and H 2 receptor agonist [2-(3-trifluoromethylphenyl) histamine (FMPH: 0.1, 6.5 µg; amthamine: 0.1, 5 µg)/antagonist (H 1 : cetirizine 0.1 µg) and (H 2 : ranitidine: 50 µg)]. Results indicate that mice treated with diazepam at doses 1, 2 mg/kg, i.p. significantly increased the brain histamine levels. Moreover, in mice pretreated with histaminergic transmission-enhancing agents, the diazepam (2 mg/kg, i.p.)-induced motor incoordination was significantly reversed. Contrastingly, diazepam (1 mg/kg, i.p.) in its subeffective dose produced significant motor deficits in mice preintracerebroventricular injected with histamine H 1 and H 2 receptor antagonists on both the employed tests. Therefore, it is postulated that endogenous histamine operates via H 1 and H 2 receptor activation to alleviate the motor-impairing effects of diazepam.
Collapse
Affiliation(s)
- Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, Chhattisgarh, India
| | | |
Collapse
|
17
|
Pestana JE, Graham BM. The impact of estrous cycle on anxiety-like behaviour during unlearned fear tests in female rats and mice: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 164:105789. [PMID: 39002829 DOI: 10.1016/j.neubiorev.2024.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Anxiety fluctuates across the human menstrual cycle, with symptoms worsening during phases of declining or low ovarian hormones. Similar findings have been observed across the rodent estrous cycle, however, the magnitude and robustness of these effects have not been meta-analytically quantified. We conducted a systematic review and meta-analysis of estrous cycle effects on anxiety-like behaviour (124 articles; k = 259 effect sizes). In both rats and mice, anxiety-like behaviour was higher during metestrus/diestrus (lower ovarian hormones) than proestrus (higher ovarian hormones) (g = 0.44 in rats, g = 0.43 in mice). There was large heterogeneity in the data, which was partially accounted for by strain, experimental task, and reproductive status. Nonetheless, the effect of estrous cycle on anxiety-like behaviour was highly robust, with the fail-safe N test revealing the effect would remain significant even if 21,388 additional studies yielded null results. These results suggest that estrous cycle should be accounted for in studies of anxiety in females. Doing so will facilitate knowledge about menstrual-cycle regulation of anxiety disorders in humans.
Collapse
|
18
|
Cattaneo A, Bellenghi M, Ferroni E, Mangia C, Marconi M, Rizza P, Borghini A, Martini L, Luciani MN, Ortona E, Carè A, Appetecchia M, Ministry Of Health-Gender Medicine Team. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. J Pers Med 2024; 14:908. [PMID: 39338162 PMCID: PMC11433203 DOI: 10.3390/jpm14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Gender medicine studies how health status and diseases differ between men and women in terms of prevention, therapeutic approach, prognosis, and psychological and social impact. Sex and gender analyses have been demonstrated to improve science, contributing to achieving real appropriateness and equity in the cure for each person. Therefore, it is fundamental to consider, both in preclinical and clinical research, the different clinical and biological features associated with sex and/or gender, where sex differences are mainly influenced by biological determinants and gender ones by socio-cultural and economic matters. This article was developed to provide knowledge and methodological tools for the development of studies/research protocols in which sex and gender should be taken into account.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eliana Ferroni
- Epidemiological System of the Veneto Region, Regional Center for Epidemiology, Veneto Region, 35100 Padova, Italy
| | - Cristina Mangia
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Matteo Marconi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Rizza
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alice Borghini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | - Lorena Martini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | | | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 00144 Rome, Italy
| | | |
Collapse
|
19
|
Woodruff JL, Bykalo MK, Loyo-Rosado FZ, Maissy ES, Sadek AT, Hersey M, Erichsen JM, Maxwell ND, Wilson MA, Wood SK, Hashemi P, Grillo CA, Reagan LP. Differential effects of high-fat diet on endocrine, metabolic and depressive-like behaviors in male and female rats. Appetite 2024; 199:107389. [PMID: 38697221 PMCID: PMC11139556 DOI: 10.1016/j.appet.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The complications of obesity extend beyond the periphery to the central nervous system (CNS) and include an increased risk of developing neuropsychiatric co-morbidities like depressive illness. Preclinical studies support this concept, including studies that have examined the effects of a high-fat diet (HFD) on depressive-like behaviors. Although women are approximately two-fold more likely to develop depressive illness compared to men, most preclinical studies have focused on the effects of HFD in male rodents. Accordingly, the goal of this study was to examine depressive-like behaviors in male and female rats provided access to a HFD. In agreement with prior studies, male and female rats provided a HFD segregate into an obesity phenotype (i.e., diet-induced obesity; DIO) or a diet resistant (DR) phenotype. Upon confirmation of the DR and DIO phenotypes, behavioral assays were performed in control chow, DR, and DIO rats. In the sucrose preference test, male DIO rats exhibited significant decreases in sucrose consumption (i.e., anhedonia) compared to male DR and male control rats. In the forced swim test (FST), male DIO rats exhibited increases in immobility and decreases in climbing behaviors in the pre-test sessions. Interestingly, male DR rats exhibited these same changes in both the pre-test and test sessions of the FST, suggesting that consumption of a HFD, even in the absence of the development of an obesity phenotype, has behavioral consequences. Female rats did not exhibit differences in sucrose preference, but female DIO rats exhibited increases in immobility exclusively in the test session of the FST, behavioral changes that were not affected by the stage of the estrous cycle. Collectively, these studies demonstrate that access to a HFD elicits different behavioral outcomes in male and female rats.
Collapse
Affiliation(s)
- J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - M K Bykalo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - F Z Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - A T Sadek
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M Hersey
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - J M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - N D Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - S K Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - P Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College, London, SW7 2AZ, UK
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
20
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior in rats is dependent on sex and vendor. Horm Behav 2024; 164:105609. [PMID: 39083878 DOI: 10.1016/j.yhbeh.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Treatment naïve male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior.
Collapse
Affiliation(s)
- Alexandra Turfe
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sara R Westbrook
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Sofia A Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor 48109, United States of America
| | - Stephen E Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor 48109, United States of America; Department of Psychiatry, University of Michigan, Ann Arbor 48109, United States of America.
| |
Collapse
|
21
|
Pu X, Liu L, Zhou Y, Xu Z. Determination of the rat estrous cycle vased on EfficientNet. Front Vet Sci 2024; 11:1434991. [PMID: 39119352 PMCID: PMC11306968 DOI: 10.3389/fvets.2024.1434991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
In the field of biomedical research, rats are widely used as experimental animals due to their short gestation period and strong reproductive ability. Accurate monitoring of the estrous cycle is crucial for the success of experiments. Traditional methods are time-consuming and rely on the subjective judgment of professionals, which limits the efficiency and accuracy of experiments. This study proposes an EfficientNet model to automate the recognition of the estrous cycle of female rats using deep learning techniques. The model optimizes performance through systematic scaling of the network depth, width, and image resolution. A large dataset of physiological data from female rats was used for training and validation. The improved EfficientNet model effectively recognized different stages of the estrous cycle. The model demonstrated high-precision feature capture and significantly improved recognition accuracy compared to conventional methods. The proposed technique enhances experimental efficiency and reduces human error in recognizing the estrous cycle. This study highlights the potential of deep learning to optimize data processing and achieve high-precision recognition in biomedical research. Future work should focus on further validation with larger datasets and integration into experimental workflows.
Collapse
Affiliation(s)
- Xiaodi Pu
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Longyi Liu
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yonglai Zhou
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Zihan Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Mosconi L, Nerattini M, Matthews DC, Jett S, Andy C, Williams S, Yepez CB, Zarate C, Carlton C, Fauci F, Ajila T, Pahlajani S, Andrews R, Pupi A, Ballon D, Kelly J, Osborne JR, Nehmeh S, Fink M, Berti V, Dyke JP, Brinton RD. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep 2024; 14:12680. [PMID: 38902275 PMCID: PMC11190148 DOI: 10.1038/s41598-024-62820-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
17β-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Alberto Pupi
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Roberta Diaz Brinton
- Department of Pharmacology and Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
23
|
St-Pierre J, Usselman CW, Scheede-Bergdahl C. Commentary: importance of considering sex and gender when designing cancer care programs. Support Care Cancer 2024; 32:408. [PMID: 38834829 DOI: 10.1007/s00520-024-08617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Due to perceived methodological complications, scientific studies have often excluded females. As a result, male-based findings have been generalized to females, despite physiological and biological differences between sexes. Gender has been even less considered in the literature, with little exploration specifically beyond traditional man/woman representation. This practice is compounded by a lack of what sex and gender encompass, including their erroneous use as synonyms. Sex- and gender-based differences, which are not clearly defined and recognized in scientific literature, are disregarded in health care delivery and, specifically relevant to the focus of this commentary, the development of cancer care programs. Conversely, accounting for sex- and gender in anti-cancer treatments and pathways can help create effective and personalized programming which could lead to an increased likelihood of adoption and adherence to treatment protocols. Although sex- and gender-specific programming may not be necessary in all situations, awareness of the concepts and possible impact on cancer care programs is paramount as more inclusive and personalized methodologies take shape. The goals of this commentary are to (a) clarify the terms sex and gender and (b) raise awareness of their applications and considerations for cancer care program design.
Collapse
Affiliation(s)
- Jade St-Pierre
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Peri-Operative Program, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Charlotte W Usselman
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Celena Scheede-Bergdahl
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.
- Peri-Operative Program, Montreal General Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Grissom NM, Glewwe N, Chen C, Giglio E. Sex mechanisms as nonbinary influences on cognitive diversity. Horm Behav 2024; 162:105544. [PMID: 38643533 PMCID: PMC11338071 DOI: 10.1016/j.yhbeh.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Essentially all neuropsychiatric diagnoses show some degree of sex and/or gender differences in their etiology, diagnosis, or prognosis. As a result, the roles of sex-related variables in behavior and cognition are of strong interest to many, with several lines of research showing effects on executive functions and value-based decision making in particular. These findings are often framed within a sex binary, with behavior of females described as less optimal than male "defaults"-- a framing that pits males and females against each other and deemphasizes the enormous overlap in fundamental neural mechanisms across sexes. Here, we propose an alternative framework in which sex-related factors encompass just one subset of many sources of valuable diversity in cognition. First, we review literature establishing multidimensional, nonbinary impacts of factors related to sex chromosomes and endocrine mechanisms on cognition, focusing on value- based decision-making tasks. Next, we present two suggestions for nonbinary interpretations and analyses of sex-related data that can be implemented by behavioral neuroscientists without devoting laboratory resources to delving into mechanisms underlying sex differences. We recommend (1) shifting interpretations of behavior away from performance metrics and towards strategy assessments to avoid the fallacy that the performance of one sex is worse than another; and (2) asking how much variance sex explains in measures and whether any differences are mosaic rather than binary, to avoid assuming that sex differences in separate measures are inextricably correlated. Nonbinary frameworks in research on cognition will allow neuroscience to represent the full spectrum of brains and behaviors.
Collapse
Affiliation(s)
- Nicola M Grissom
- Department of Psychology, University of Minnesota, United States of America.
| | - Nic Glewwe
- Department of Psychology, University of Minnesota, United States of America
| | - Cathy Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States of America
| | - Erin Giglio
- Department of Psychology, University of Minnesota, United States of America
| |
Collapse
|
25
|
Vasilakopoulou PB, Yanni AE, Fanarioti E, Dermon CR, Karathanos VT, Chiou A. Determination of Flavonoids and Phenolic Acids in the Liver of Wistar Rats after a Dietary Enrichment with Corinthian Currant ( Vitis vinifera L., var. Apyrena): A Liquid Chromatography-Tandem Mass Spectrometry Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11549-11560. [PMID: 38718199 DOI: 10.1021/acs.jafc.4c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Corinthian currants are dried fruits produced from Vitis vinifera L. var. Apyrena grape. This study investigated the distribution of phenolic compounds in male Wistar rat livers following two distinct Corinthian currant long-term dietary intake protocols (3 and 10% w/w). Method optimization, comparing fresh and lyophilized tissues, achieved satisfactory recoveries (>70%) for most analytes. Enzymatic hydrolysis conditions (37 °C, pH 5.0) minimally affected phenolics, but enzyme addition showed diverse effects. Hydrolyzed lyophilized liver tissue from rats consuming Corinthian currants (3 and 10% w/w) exhibited elevated levels of isorhamnetin (20.62 ± 2.27 ng/g tissue and 33.80 ± 1.38 ng/g tissue, respectively), along with similar effects for kaempferol, quercetin, and chrysin after prolonged Corinthian currant intake. This suggests their presence as phase II metabolites in the fasting-state liver. This study is the first to explore phenolic accumulation in rat liver, simulating real conditions of dried fruit consumption, as seen herein with Corinthian currant.
Collapse
Affiliation(s)
- Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Eleni Fanarioti
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26500 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26500 Patras, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Agricultural Cooperatives' Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| |
Collapse
|
26
|
Fang P, Yu LW, Espey H, Agirman G, Kazmi SA, Li K, Deng Y, Lee J, Hrncir H, Romero-Lopez A, Arnold AP, Hsiao EY. Sex-dependent interactions between prodromal intestinal inflammation and LRRK2 G2019S in mice promote endophenotypes of Parkinson's disease. Commun Biol 2024; 7:570. [PMID: 38750146 PMCID: PMC11096388 DOI: 10.1038/s42003-024-06256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.
Collapse
Affiliation(s)
- Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lewis W Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hannah Espey
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulistan Agirman
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yongning Deng
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jamie Lee
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Romero-Lopez
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Jameson AN, Siemann JK, Grueter CA, Grueter B, McMahon DG. Effects of age and sex on photoperiod modulation of nucleus accumbens monoamine content and release in adolescence and adulthood. Neurobiol Sleep Circadian Rhythms 2024; 16:100103. [PMID: 38585223 PMCID: PMC10990739 DOI: 10.1016/j.nbscr.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Day length, or photoperiod, is a reliable environmental cue encoded by the brain's circadian clock that indicates changing seasons and induces seasonal biological processes. In humans, photoperiod, age, and sex have been linked to seasonality in neuropsychiatric disorders, as seen in Seasonal Affective Disorder, Major Depressive Disorder, and Bipolar Disorder. The nucleus accumbens is a key locus for the regulation of motivated behaviors and neuropsychiatric disorders. Using periadolescent and young adult male and female mice, here we assessed photoperiod's effect on serotonin and dopamine tissue content in the nucleus accumbens core, as well as on accumbal synaptic dopamine release and uptake. We found greater serotonin and dopamine tissue content in the nucleus accumbens from young adult mice raised in a Short winter-like photoperiod. In addition, dopamine release and clearance were greater in the nucleus accumbens from young adult mice raised in a Long summer-like photoperiod. Importantly, we found that photoperiod's effects on accumbal dopamine tissue content and release were sex-specific to young adult females. These findings support that in mice there are interactions across age, sex, and photoperiod that impact critical monoamine neuromodulators in the nucleus accumbens which may provide mechanistic insight into the age and sex dependencies in seasonality of neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Alexis N. Jameson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Justin K. Siemann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie A. Grueter
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - BradA. Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
28
|
Turfe A, Westbrook SR, Lopez SA, Chang SE, Flagel SB. The effect of corticosterone on the acquisition of Pavlovian conditioned approach behavior is dependent on sex and vendor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.586009. [PMID: 38562896 PMCID: PMC10983933 DOI: 10.1101/2024.03.20.586009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cues in the environment become predictors of biologically relevant stimuli, such as food, through associative learning. These cues can not only act as predictors but can also be attributed with incentive motivational value and gain control over behavior. When a cue is imbued with incentive salience, it attains the ability to elicit maladaptive behaviors characteristic of psychopathology. We can capture the propensity to attribute incentive salience to a reward cue in rats using a Pavlovian conditioned approach paradigm, in which the presentation of a discrete lever-cue is followed by the delivery of a food reward. Upon learning the cue-reward relationship, some rats, termed sign-trackers, develop a conditioned response directed towards the lever-cue; whereas others, termed goal-trackers, approach the food cup upon lever-cue presentation. Here, we assessed the effects of systemic corticosterone (CORT) on the acquisition and expression of sign- and goal-tracking behaviors in male and female rats, while examining the role of the vendor (Charles River or Taconic) from which the rats originated in these effects. Male and female rats from Charles River had a greater tendency to sign-track than those from Taconic. Administration of CORT enhanced the acquisition of sign-tracking behavior in males from Charles River and females from both vendors. Conversely, administration of CORT had no effect on the expression of the conditioned response. These findings demonstrate a role for CORT in cue-reward learning and suggest that inherent tendencies towards sign- or goal-tracking may interact with this physiological mediator of motivated behavior. Highlights Male and female rats from Charles River exhibit more sign-tracking relative to those from Taconic.Corticosterone increases the acquisition of sign-tracking in male rats from Charles River.Corticosterone increases the acquisition of sign-tracking in female rats, regardless of vendor.There is no effect of corticosterone on the expression of sign-tracking behavior in either male or female rats.
Collapse
|
29
|
Raimondi GM, Eng AK, Kenny MP, Britting MA, Ostroff LE. Track-by-Day: A standardized approach to estrous cycle monitoring in biobehavioral research. Behav Brain Res 2024; 461:114860. [PMID: 38216058 DOI: 10.1016/j.bbr.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Despite known sex differences in brain function, female subjects are underrepresented in preclinical neuroscience research. This is driven in part by concerns about variability arising from estrous cycle-related hormone fluctuations, especially in fear- and anxiety-related research where there are conflicting reports as to whether and how the cycle influences behavior. The inconsistency may arise from a lack of common standards for tracking and reporting the cycle as opposed to inherent unpredictability in the cycle itself. The rat estrous cycle is conventionally tracked by assigning vaginal cytology smears to one of four qualitatively-defined stages. Although the cytology stages are of unequal length, the stage names are often, but not always, used to refer to the four cycle days. Subjective staging criteria and inconsistent use of terminology are not necessarily a problem in research on the cycle itself, but can lead to irreproducibility in neuroscience studies that treat the stages as independent grouping factors. We propose the explicit use of cycle days as independent variables, which we term Track-by-Day to differentiate it from traditional stage-based tracking, and that days be indexed to the only cytology feature that is a direct and rapid consequence of a hormonal event: a cornified cell layer formed in response to the pre-ovulatory 17β-estradiol peak. Here we demonstrate that cycle length is robustly regular with this method, and that the method outperforms traditional staging in detecting estrous cycle effects on Pavlovian fear conditioning and on a separate proxy for hormonal changes, uterine histology.
Collapse
Affiliation(s)
- Gianna M Raimondi
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA
| | - Ashley K Eng
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Murphy P Kenny
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Madison A Britting
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
30
|
Reho JJ, Muskus PC, Bennett DM, Grobe CC, Burnett CML, Nakagawa P, Segar JL, Sigmund CD, Grobe JL. Modulatory effects of estrous cycle on ingestive behaviors and energy balance in young adult C57BL/6J mice maintained on a phytoestrogen-free diet. Am J Physiol Regul Integr Comp Physiol 2024; 326:R242-R253. [PMID: 38284128 PMCID: PMC11213288 DOI: 10.1152/ajpregu.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.
Collapse
Affiliation(s)
- John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Patricia C Muskus
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Darby M Bennett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Department of Medicine/Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
31
|
Lindsey ML, Usselman CW, Ripplinger CM, Carter JR, DeLeon-Pennell KY. Sex as a biological variable for cardiovascular physiology. Am J Physiol Heart Circ Physiol 2024; 326:H459-H469. [PMID: 38099847 PMCID: PMC11219053 DOI: 10.1152/ajpheart.00727.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 02/03/2024]
Abstract
There have been ongoing efforts by federal agencies and scientific communities since the early 1990s to incorporate sex and/or gender in all aspects of cardiovascular research. Scientific journals provide a critical function as change agents to influence transformation by encouraging submissions for topic areas, and by setting standards and expectations for articles submitted to the journal. As part of ongoing efforts to advance sex and gender in cardiovascular physiology research, the American Journal of Physiology-Heart and Circulatory Physiology recently launched a call for papers on Considering Sex as a Biological Variable. This call was an overwhelming success, resulting in 78 articles published in this collection. This review summarizes the major themes of the collection, including Sex as a Biological Variable Within: Endothelial Cell and Vascular Physiology, Cardiovascular Immunity and Inflammation, Metabolism and Mitochondrial Energy, Extracellular Matrix Turnover and Fibrosis, Neurohormonal Signaling, and Cardiovascular Clinical and Epidemiology Assessments. Several articles also focused on establishing rigor and reproducibility of key physiological measurements involved in cardiovascular health and disease, as well as recommendations and considerations for study design. Combined, these articles summarize our current understanding of sex and gender influences on cardiovascular physiology and pathophysiology and provide insight into future directions needed to further expand our knowledge.
Collapse
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
32
|
Hayes AMR, Kao AE, Ahuja A, Subramanian KS, Klug ME, Rea JJ, Nourbash AC, Tsan L, Kanoski SE. Early- but not late-adolescent Western diet consumption programs for long-lasting memory impairments in male but not female rats. Appetite 2024; 194:107150. [PMID: 38049033 PMCID: PMC11033621 DOI: 10.1016/j.appet.2023.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Early life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA). Control (CTL) rats were given healthy standard chow throughout both periods. To evaluate long-lasting memory capacity well beyond the early life WD exposure periods, we performed behavioral assessments after both a short (4 weeks for WD-EA, 2 weeks for WD-LA) and long (12 weeks for WD-EA, 10 weeks for WD-LA) period of healthy diet intervention. Results revealed no differences in body weight or body composition between diet groups, regardless of sex. Following the shorter period of healthy diet intervention, both male and female WD-EA and WD-LA rats showed deficits in hippocampal-dependent memory compared to CTL rats. Following the longer healthy diet intervention period, memory impairments persisted in male WD-EA but not WD-LA rats. In contrast, in female rats the longer healthy diet intervention reversed the initial memory impairments in both WD-EA and WD-LA rats. Collectively, these findings reveal that early-adolescence is a critical period of long-lasting hippocampal vulnerability to dietary insults in male but not female rats, thus highlighting developmental- and sex-specific effects mediating the relationship between the early life nutritional environment and long-term cognitive health.
Collapse
Affiliation(s)
- Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Anna C Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Zhang K, Shen D, Huang S, Iqbal J, Huang G, Si J, Xue Y, Yang JL. The sexually divergent cFos activation map of fear extinction. Heliyon 2024; 10:e23748. [PMID: 38205315 PMCID: PMC10777019 DOI: 10.1016/j.heliyon.2023.e23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Objective Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that can develop after experiencing or witnessing a traumatic event. Exposure therapy is a common treatment for PTSD, but it has varying levels of efficacy depending on sex. In this study, we aimed to compare the sexual dimorphism in brain activation during the extinction of fear conditioning in male and female rats by detecting the c-fos levels in the whole brain. Methods Thirty-two rats (Male: n = 16; Female: n = 16) were randomly separated into the extinction group as well as the non-extinction group, and fear conditioning was followed by extinction and non-extinction, respectively. Subsequently, brain sections from the sacrificed animal were performed immunofluorescence and the collected data were analyzed by repeated two-way ANOVAs as well as Pearson Correlation Coefficient. Results Our findings showed that most brain areas activated during extinction were similar in both male and female rats, except for the reuniens thalamic nucleus and ventral hippocampi. Furthermore, we found differences in the correlation between c-fos activation levels and freezing behavior during extinction between male and female rats. Specifically, in male rats, c-fos activation in the anterior cingulate cortex was negatively correlated with the freezing level, while c-fos activation in the retrosplenial granular cortex was positively correlated with the freezing level; but in female rats did not exhibit any correlation between c-fos activation and freezing level. Finally, the functional connectivity analysis revealed differences in the neural networks involved in extinction learning between male and female rats. In male rats, the infralimbic cortex and insular cortex, anterior cingulate cortex and retrosplenial granular cortex, and dorsal dentate gyrus and dCA3 were strongly correlated after extinction. In female rats, prelimbic cortex and basolateral amygdala, insular cortex and dCA3, and anterior cingulate cortex and dCA1 were significantly correlated. Conclusion These results suggest divergent neural networks involved in extinction learning in male and female rats and provide a clue for improving the clinical treatment of exposure therapy based on the sexual difference.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Dan Shen
- Xinxiang Medical University, 601 Jinsui Dadao, Hongqi District, Xinxiang City, Henan Province, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Javed Iqbal
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Gengdi Huang
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jijian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China
- Xinxiang Medical University, 601 Jinsui Dadao, Hongqi District, Xinxiang City, Henan Province, China
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
35
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
36
|
Tanner MK, Mellert SM, Fallon IP, Baratta MV, Greenwood BN. Multiple Sex- and Circuit-Specific Mechanisms Underlie Exercise-Induced Stress Resistance. Curr Top Behav Neurosci 2024; 67:37-60. [PMID: 39080242 DOI: 10.1007/7854_2024_490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior physical activity reduces the risk of future stress-related mental health disorders including depression, anxiety, and post-traumatic stress disorder. Rodents allowed to engage in voluntary wheel running are similarly protected from behavioral consequences of stress. The present review summarizes current knowledge on mechanisms underlying exercise-induced stress resistance. A conceptual framework involving the development (during exercise) and expression (during stress) of stress resistance from exercise is proposed. During the development of stress resistance, adaptations involving multiple exercise signals and molecular mediators occur within neural circuits orchestrating various components of the stress response, which then respond differently to stress during the expression of stress resistance. Recent data indicate that the development and expression of stress resistance from exercise involve multiple independent mechanisms that depend on sex, stressor severity, and behavioral outcome. Recent insight into the role of the prefrontal cortex in exercise-induced stress resistance illustrates these multiple mechanisms. This knowledge has important implications for the design of future experiments aimed at identifying the mechanisms underlying exercise-induced stress resistance.
Collapse
Affiliation(s)
- Margaret K Tanner
- Department of Psychology, University of Colorado Denver, Denver, CO, USA
| | - Simone M Mellert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Isabella P Fallon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | |
Collapse
|
37
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
38
|
Nerattini M, Rubino F, Jett S, Andy C, Boneu C, Zarate C, Carlton C, Loeb-Zeitlin S, Havryliuk Y, Pahlajani S, Williams S, Berti V, Christos P, Fink M, Dyke JP, Brinton RD, Mosconi L. Elevated gonadotropin levels are associated with increased biomarker risk of Alzheimer's disease in midlife women. FRONTIERS IN DEMENTIA 2023; 2:1303256. [PMID: 38774256 PMCID: PMC11108587 DOI: 10.3389/frdem.2023.1303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Introduction In preclinical studies, menopausal elevations in pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), trigger Alzheimer's disease (AD) pathology and synaptic loss in female animals. Herein, we took a translational approach to test whether gonadotropin elevations are linked to AD pathophysiology in women. Methods We examined 191 women ages 40-65 years, carrying risk factors for late-onset AD, including 45 premenopausal, 67 perimenopausal, and 79 postmenopausal participants with clinical, laboratory, cognitive exams, and volumetric MRI scans. Half of the cohort completed 11C-Pittsburgh Compound B (PiB) amyloid-β (Aβ) PET scans. Associations between serum FSH, LH and biomarkers were examined using voxel-based analysis, overall and stratified by menopause status. Associations with region-of-interest (ROI) hippocampal volume, plasma estradiol levels, APOE-4 status, and cognition were assessed in sensitivity analyses. Results FSH levels were positively associated with Aβ load in frontal cortex (multivariable adjusted P≤0.05, corrected for family wise type error, FWE), an effect that was driven by the postmenopausal group (multivariable adjusted PFWE ≤ 0.044). LH levels were also associated with Aβ load in frontal cortex, which did not survive multivariable adjustment. FSH and LH were negatively associated with gray matter volume (GMV) in frontal cortex, overall and in each menopausal group (multivariable adjusted PFWE ≤ 0.040), and FSH was marginally associated with ROI hippocampal volume (multivariable adjusted P = 0.058). Associations were independent of age, clinical confounders, menopause type, hormone therapy status, history of depression, APOE-4 status, and regional effects of estradiol. There were no significant associations with cognitive scores. Discussion Increasing serum gonadotropin levels, especially FSH, are associated with higher Aβ load and lower GMV in some AD-vulnerable regions of midlife women at risk for AD. These findings are consistent with preclinical work and provide exploratory hormonal targets for precision medicine strategies for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Federica Rubino
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Berti
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
39
|
Sadie-Van Gijsen H, Kotzé-Hörstmann L. Rat models of diet-induced obesity and metabolic dysregulation: Current trends, shortcomings and considerations for future research. Obes Res Clin Pract 2023; 17:449-457. [PMID: 37788944 DOI: 10.1016/j.orcp.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Rat diet-induced obesity and metabolic dysregulation (DIO/DIMD) is widely used as a pre-clinical model for human obesity and for testing weight-loss interventions. The aim of this review was to utilise a systematic literature survey of rat DIO/DIMD studies as a tool to document trends around study design and metabolic outcomes of these studies, and to consider ways in which the design of these studies may be improved to enhance the relevance thereof for human obesity research. In total, 110 comparisons between control and obesogenic dietary groups were included in the survey. Young male rats were found to be the model of choice, but fewer than 50% of studies provided comprehensive information about diet composition and energy intake. In addition, it was found that the majority of expected DIO/DIMD responses (hyperglycemia, hyperinsulinemia, dyslipidemia, hypoadiponectinemia) occurred at < 80% frequency, drawing into question the concept of a "typical" or "appropriate" response. We discuss the impact of differences in diet composition and energy intake on metabolic outcomes against the context of large heterogeneity of obesogenic diets employed in rat DIO/DIMD studies, and provide recommendations for the improvement of reporting standards around diet composition and dietary intake. In addition, we highlight the lack of data from female and older rats and describe considerations around the inclusion of sex and age as a variable in rat DIO/DIMD studies, aiming towards improving the applicability of these studies as a model of human obesity, which is most prevalent in women and older individuals.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - Liske Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa; Institute for Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
40
|
Tanner MK, Hohorst AA, Mellert SM, Loetz EC, Baratta MV, Greenwood BN. Female rats are more responsive than are males to the protective effects of voluntary physical activity against the behavioral consequences of inescapable stress. Stress 2023; 26:2245492. [PMID: 37549016 PMCID: PMC10492196 DOI: 10.1080/10253890.2023.2245492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Common stress-related mental health disorders affect women more than men. Physical activity can provide protection against the development of future stress-related mental health disorders (i.e. stress resistance) in both sexes, but whether there are sex differences in exercise-induced stress resistance is unknown. We have previously observed that voluntary wheel running (VWR) protects both female and male rats against the anxiety- and exaggerated fear-like behavioral effects of inescapable stress, but the time-course and magnitude of VWR-induced stress resilience has not been compared between sexes. The goal of the current study was to determine whether there are sex differences in the time-course and magnitude of exercise-induced stress resistance. In adult female and male Sprague Dawley rats, 6 weeks of VWR produced robust protection against stress-induced social avoidance and exaggerated fear. The magnitude of stress protection was similar between the sexes and was independent of reactivity to shock, general locomotor activity, and circulating corticosterone. Interestingly, 3 weeks of VWR prevented both stress-induced social avoidance and exaggerated fear in females but only prevented stress-induced social avoidance in males. Ovariectomy altered wheel-running behavior in females such that it resembled that of males, however; 3 weeks of VWR still protected females against behavioral consequences of stress regardless of the absence of ovaries. These data indicate that female Sprague Dawley rats are more responsive to exercise-induced stress resistance than are males.
Collapse
Affiliation(s)
- Margaret K. Tanner
- Department of Psychology, University of Colorado Denver, North Classroom Rm. 5005 F, CB 173, PO Box 173364, Denver, CO 80217-3364
| | - Alyssa A. Hohorst
- Department of Integrative Biology, University of Colorado Denver, North Classroom Rm. 5005 F, CB 173, PO Box 173364, Denver, CO 80217-3364
| | - Simone M. Mellert
- Department of Integrative Biology, University of Colorado Denver, North Classroom Rm. 5005 F, CB 173, PO Box 173364, Denver, CO 80217-3364
| | - Esteban C. Loetz
- Department of Psychology, University of Colorado Denver, North Classroom Rm. 5005 F, CB 173, PO Box 173364, Denver, CO 80217-3364
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80302
| | - Benjamin N. Greenwood
- Department of Psychology, University of Colorado Denver, North Classroom Rm. 5005 F, CB 173, PO Box 173364, Denver, CO 80217-3364
| |
Collapse
|
41
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Benitah KC, Kavaliers M, Ossenkopp KP. The enteric metabolite, propionic acid, impairs social behavior and increases anxiety in a rodent ASD model: Examining sex differences and the influence of the estrous cycle. Pharmacol Biochem Behav 2023; 231:173630. [PMID: 37640163 DOI: 10.1016/j.pbb.2023.173630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Research suggests that certain gut and dietary factors may worsen behavioral features of autism spectrum disorder (ASD). Treatment with propionic acid (PPA) has been found to create both brain and behavioral responses in rats that are characteristic of ASD in humans. A consistent male bias in human ASD prevalence has been observed, and several sex-differential genetic and hormonal factors have been suggested to contribute to this bias. The majority of PPA studies in relation to ASD focus on male subjects; research examining the effects of PPA in females is scarce. The present study includes two experiments. Experiment 1 explored sex differences in the effects of systemic administration of PPA (500 mg/kg, ip) on adult rodent social behavior and anxiety (light-dark test). Experiment 2 investigated differential effects of systemic administration of PPA (500 mg/kg) on social behavior and anxiety in relation to fluctuating estrogen and progesterone levels during the adult rodent estrous cycle. PPA treatment impaired social behavior and increased anxiety in females to the same degree in comparison to PPA-treated males. As well, females treated with PPA in their diestrus phase did not differ significantly in comparison to females administered PPA in their proestrus phase, in terms of reduced social behavior and increased anxiety.
Collapse
Affiliation(s)
- Katie C Benitah
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
43
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
44
|
Zucker I. The mixed legacy of the rat estrous cycle. Biol Sex Differ 2023; 14:55. [PMID: 37667337 PMCID: PMC10476291 DOI: 10.1186/s13293-023-00542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The rat estrous cycle first characterized by Long and Evans in 1922 profoundly affected the course of endocrine research. Investigators took advantage of sex steroid hormone fluctuations associated with the cycle to assess hormonal influences on anxiety, depression, food intake, stress, brain structure and other traits. Similarities of the rat estrous and human menstrual cycles facilitated understanding of human reproductive physiology. I assessed the impact of awareness of the estrous cycle on the emergence of a sex bias that excluded female rats from biomedical research. METHODS Beginning with the 1918 volume of the American Journal of Physiology and ending in 1976 when the journal subdivided into several separate disciplinary journals, all studies conducted on rats were downloaded; the use of females, males, both sexes and sex left unspecified was tabulated for 485 articles. A second analysis tracked the number of rat estrous cycle studies across all disciplines listed in PubMed from 1950 to 2021. RESULTS The description and awareness of variability associated with the rat estrous cycle was correlated with a precipitous decline in investigations that incorporated both sexes, a marked increase in male-only studies and a striking sex bias that excluded female rats. The number of rat estrous cycles studies increased markedly from earlier decades to a peak in 2021. CONCLUSIONS The initial description the rat estrous cycle was correlated with a substantial decline in investigations that incorporated both sexes; one result was a marked increase in male-only studies and a striking sex bias that excluded female rats from biomedical research. Recognition of the advantages of studies that incorporate the rat estrous cycle has resulted in recent years in an increase of such investigations. Female rats and females of several other species are not more variable than their male counterparts across traits, arguing for female inclusion without requiring cycle monitoring. There, remain, however, many advantages of incorporating the estrous cycle in contemporary research.
Collapse
Affiliation(s)
- Irving Zucker
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way West, Berkeley, CA, 94720, USA.
- Department of Integrative Biology, University of California, Berkeley, 3040 VLSB, Berkeley, CA, 94720, USA.
| |
Collapse
|
45
|
Nunamaker EA, Turner PV. Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare. Animals (Basel) 2023; 13:2792. [PMID: 37685056 PMCID: PMC10486396 DOI: 10.3390/ani13172792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Sex bias in biomedical and natural science research has been prevalent for decades. In many cases, the female estrous cycle was thought to be too complex an issue to model for, and it was thought to be simpler to only use males in studies. At times, particularly when studying efficacy and safety of new therapeutics, this sex bias has resulted in over- and under-medication with associated deleterious side effects in women. Many sex differences have been recognized that are unrelated to hormonal variation occurring during the estrous cycle. Sex bias also creates animal welfare challenges related to animal over-production and wastage, insufficient consideration of welfare (and scientific) impact related to differential housing of male vs female animals within research facilities, and a lack of understanding regarding differential requirements for pain recognition and alleviation in male versus female animals. Although many funding and government agencies require both sexes to be studied in biomedical research, many disparities remain in practice. This requires further enforcement of expectations by the Institutional Animal Care and Use Committee when reviewing protocols, research groups when writing grants, planning studies, and conducting research, and scientific journals and reviewers to ensure that sex bias policies are enforced.
Collapse
Affiliation(s)
- Elizabeth A. Nunamaker
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
| | - Patricia V. Turner
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
46
|
Lyu Y, Wei X, Yang X, Li J, Wan G, Wang Y, Hao Z, Lu Y, Guo J, Shi J. 11-Ethoxyviburtinal improves chronic restraint stress-induced anxiety-like behaviors in gender-specific mice via PI3K/Akt and E 2 /ERβ signaling pathways. Phytother Res 2023; 37:4149-4165. [PMID: 37300355 DOI: 10.1002/ptr.7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Anxiety disorder is a chronic and disabling psychiatric disorder that is more prevalent in females than in males. 11-Ethoxyviburtinal is an iridoid extracted from Valeriana jatamansi Jones, which has anxiolytic potential. The aim of the present work was to study the anxiolytic efficacy and mechanism of 11-ethoxyviburtinal in gender-specific mice. We first evaluated the anxiolytic-like efficacy of 11-ethoxyviburtinal in chronic restraint stress (CRS) mice of different sexes through behavioral experiments and biochemical indexes. In addition, network pharmacology and molecular docking were used to predict potential targets and important pathways for the treatment of anxiety disorder with 11-ethoxyviburtinal. Finally, the influence of 11-ethoxyviburtinal on phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, estrogen receptor β (ERβ) expression, and anxiety-like behavior in mice was verified by western blotting, immunohistochemistry staining, antagonist intervention methods, and behavioral experiments. 11-ethoxyviburtinal alleviated the anxiety-like behaviors induced by CRS and inhibited neurotransmitter dysregulation and HPA axis hyperactivity. It inhibited the abnormal activation of the PI3K/Akt signaling pathway, modulated estrogen production, and promoted ERβ expression in mice. In addition, the female mice may be more sensitive to the pharmacological effects of 11-ethoxyviburtinal. 11-ethoxyviburtinal may exert its anxiolytic-like effects through PI3K/Akt and E2/ERβ signaling pathways. Meanwhile, by comparing the male and female mice, gender differences may affect the therapy and development of anxiety disorder.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojia Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guohui Wan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuangzhuang Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianyou Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Birmingham EA, Wickens MM, Kirkland JM, Knouse MC, McGrath AG, Briand LA. Circulating ovarian hormones interact with protein interacting with C kinase (PICK1) within the medial prefrontal cortex to influence cocaine seeking in female mice. Horm Behav 2023; 155:105408. [PMID: 37541099 PMCID: PMC10543586 DOI: 10.1016/j.yhbeh.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
Protein interacting with C kinase 1 (PICK1) is an AMPA receptor binding protein that works in conjunction with glutamate receptor interacting protein (GRIP) to balance the number of GluA2-containing AMPARs in the synapse. In male mice, disrupting PICK1 in the medial prefrontal cortex (mPFC) leads to a decrease in cue-induced cocaine seeking and disrupting GRIP in the mPFC has the opposing effect, consistent with other evidence that removal of GluA2-containing AMPARs potentiates reinstatement. However, PICK1 does not seem to play the same role in female mice, as knockdown of either PICK1 or GRIP in the mPFC leads to similar increases in cue-induced cocaine seeking. These previous findings indicate that the role of PICK1 in the prefrontal cortex is sex specific. The goal of the current study was to examine whether ovarian hormones contribute to the effect of prefrontal PICK1 knockdown on reinstatement of cocaine seeking. While we replicated the increased cue-induced cocaine seeking in prefrontal PICK1 knockdown sham mice, we did not see any difference between the GFP control mice and PICK1 knockdowns following ovariectomy. However, this effect was driven primarily by an increase in cocaine seeking in ovariectomized GFP control mice while there was no effect ovariectomy in PICK1 knockdown mice. Taken together, these findings suggest that circulating ovarian hormones interact with the effects of PICK1 on cue-induced reinstatement.
Collapse
Affiliation(s)
| | - Megan M Wickens
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Julia M Kirkland
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Melissa C Knouse
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Anna G McGrath
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Lisa A Briand
- Department of Psychology & Neuroscience, Temple University, United States of America; Neuroscience Program, Temple University, United States of America.
| |
Collapse
|
48
|
Hersey M, Bartole MK, Jones CS, Newman AH, Tanda G. Are There Prevalent Sex Differences in Psychostimulant Use Disorder? A Focus on the Potential Therapeutic Efficacy of Atypical Dopamine Uptake Inhibitors. Molecules 2023; 28:5270. [PMID: 37446929 PMCID: PMC10343811 DOI: 10.3390/molecules28135270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Psychostimulant use disorders (PSUD) affect a growing number of men and women and exert sizable public health and economic burdens on our global society. Notably, there are some sex differences in the onset of dependence, relapse rates, and treatment success with PSUD observed in preclinical and clinical studies. The subtle sex differences observed in the behavioral aspects of PSUD may be associated with differences in the neurochemistry of the dopaminergic system between sexes. Preclinically, psychostimulants have been shown to increase synaptic dopamine (DA) levels and may downregulate the dopamine transporter (DAT). This effect is greatest in females during the high estradiol phase of the estrous cycle. Interestingly, women have been shown to be more likely to begin drug use at younger ages and report higher levels of desire to use cocaine than males. Even though there is currently no FDA-approved medication, modafinil, a DAT inhibitor approved for use in the treatment of narcolepsy and sleep disorders, has shown promise in the treatment of PSUD among specific populations of affected individuals. In this review, we highlight the therapeutic potential of modafinil and other atypical DAT inhibitors focusing on the lack of sex differences in the actions of these agents.
Collapse
Affiliation(s)
| | | | | | | | - Gianluigi Tanda
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA; (M.H.); (M.K.B.); (C.S.J.); (A.H.N.)
| |
Collapse
|
49
|
Hinds NM, Wojtas ID, Gallagher CA, Corbett CM, Manvich DF. Effects of sex and estrous cycle on intravenous oxycodone self-administration and the reinstatement of oxycodone-seeking behavior in rats. Front Behav Neurosci 2023; 17:1143373. [PMID: 37465001 PMCID: PMC10350507 DOI: 10.3389/fnbeh.2023.1143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction The increasing misuse of both prescription and illicit opioids has culminated in a national healthcare crisis in the United States. Oxycodone is among the most widely prescribed and misused opioid pain relievers and has been associated with a high risk for transition to compulsive opioid use. Here, we sought to examine potential sex differences and estrous cycle-dependent effects on the reinforcing efficacy of oxycodone, as well as on stress-induced or cue-induced oxycodone-seeking behavior, using intravenous (IV) oxycodone self-administration and reinstatement procedures. Methods In experiment 1, adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone according to a fixed-ratio 1 schedule of reinforcement in daily 2-h sessions, and a dose-response function was subsequently determined (0.003-0.03 mg/kg/inf). In experiment 2, a separate group of adult male and female Long-Evans rats were trained to self-administer 0.03 mg/kg/inf oxycodone for 8 sessions, followed by 0.01 mg/kg/inf oxycodone for 10 sessions. Responding was then extinguished, followed by sequential footshock-induced and cue-induced reinstatement tests. Results In the dose-response experiment, oxycodone produced a typical inverted U-shape function with 0.01 mg/kg/inf representing the maximally effective dose in both sexes. No sex differences were detected in the reinforcing efficacy of oxycodone. In the second experiment, the reinforcing effects of 0.01-0.03 mg//kg/inf oxycodone were significantly attenuated in females during proestrus/estrus as compared to metestrus/diestrus phases of the estrous cycle. Neither males nor females displayed significant footshock-induced reinstatement of oxycodone seeking, but both sexes exhibited significant cue-induced reinstatement of oxycodone seeking at magnitudes that did not differ either by sex or by estrous cycle phase. Discussion These results confirm and extend previous work suggesting that sex does not robustly influence the primary reinforcing effects of oxycodone nor the reinstatement of oxycodone-seeking behavior. However, our findings reveal for the first time that the reinforcing efficacy of IV oxycodone varies across the estrous cycle in female rats.
Collapse
Affiliation(s)
- Nicole M. Hinds
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Ireneusz D. Wojtas
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Corinne A. Gallagher
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Claire M. Corbett
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Daniel F. Manvich
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| |
Collapse
|
50
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|