1
|
Oliveri LM, Buzaleh AM, Gerez EN. Regulation of the expression of ferrochelatase in a murine model of diabetes mellitus type I. Biochem Biophys Rep 2025; 42:101989. [PMID: 40230493 PMCID: PMC11994340 DOI: 10.1016/j.bbrep.2025.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Background Diabetes produces changes on cellular hemeprotein metabolism. The last enzyme of heme biosynthetic pathway is ferrochelatase (FECH), an enzyme that catalyzes the insertion of ferrous ion into protoporphyrin IX to produce heme. The aim of this work was to investigate whether FECH expression can be other key point in the regulation of heme biosynthesis in diabetic animals. Methods Mice were rendered diabetic with streptozotocin (STZ, 170 mg/kg body weight i.p. for 15 days). Liver FECH protein and mRNA levels were evaluated by Western blot and Northern blot respectively. Vanadate was used as a hypoglycemic agent. The levels of the transcription factor Sp1 bound to the FECH promoter were assessed by chromatin immunoprecipitation (ChIP). Results Hyperglycemia caused an increase in FECH mRNA levels but no changes in FECH protein expression. ChIP analysis revealed that the increase in FECH mRNA levels was due to enhanced Sp1 binding to the FECH promoter in diabetic animals, which was reduced by vanadate administration. Conclusions In diabetic animals, enhanced binding of Sp1 to the FECH promoter may be responsible for the increase in FECH mRNA levels. However, this increase was not reflected in the amount of FECH protein, which would confirm that FECH could be another control point in heme synthesis.
Collapse
Affiliation(s)
- Leda María Oliveri
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
| | - Ana Maria Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
- Cátedra Bioquímica General Celular y Molecular, Facultad de Ciencias Médicas. Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Bolanle IO, Palmer TM. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int J Mol Sci 2025; 26:3303. [PMID: 40244145 PMCID: PMC11989994 DOI: 10.3390/ijms26073303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
More than 400 different types of post-translational modifications (PTMs), including O-GlcNAcylation and phosphorylation, combine to co-ordinate almost all aspects of protein function. Often, these PTMs overlap and the specific relationship between O-GlcNAcylation and phosphorylation has drawn much attention. In the last decade, the significance of this dynamic crosstalk has been linked to several chronic pathologies of cardiovascular origin. However, very little is known about the pathophysiological significance of this crosstalk for vascular smooth muscle cell dysfunction in cardiovascular disease. O-GlcNAcylation occurs on serine and threonine residues which are also targets for phosphorylation. A growing body of research has now emerged linking altered vascular integrity and homeostasis with highly regulated crosstalk between these PTMs. Additionally, a significant body of evidence indicates that O-GlcNAcylation is an important contributor to the pathogenesis of neointimal hyperplasia and vascular restenosis responsible for long-term vein graft failure. In this review, we evaluate the significance of this dynamic crosstalk and its role in cardiovascular pathologies, and the prospects of identifying possible targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
3
|
Ahmad W, Shabbiri K. Glucose enrichment reduces lifespan and promotes tau phosphorylation in human tau-expressing C. elegans, unaffected by O-β-GlcNAcylation induction. J Mol Med (Berl) 2025; 103:327-338. [PMID: 39924618 DOI: 10.1007/s00109-025-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is associated with the formation of tau-hyperphosphorylated neurofibrillary tangles (NFTs). Impaired glucose metabolism has been proposed as a major risk factor in AD severity, with many enzymes and pathways associated with glucose metabolism found to be compromised. The use of additional glucose has been suggested to reduce AD severity. However, the exact role of glucose metabolism in disease progression is still under investigation. In this study, we found that adding glucose to tau-expressing worms not only shortens their lifespan but also induces tau phosphorylation on critical serine and threonine residues. Increased phosphorylation of tau is associated with the formation of NFTs and increased disease severity. O-β-GlcNAcylation may inhibit phosphorylation. We hypothesized that high glucose levels might induce tau O-β-GlcNAcylation, thereby protecting against tau phosphorylation. Contrary to our expectations, glucose increased tau phosphorylation but not O-β-GlcNAcylation. Increasing O-β-GlcNAcylation, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene, interferes with and reduces tau phosphorylation. Conversely, reducing O-β-GlcNAcylation by suppressing the O-GlcNAc transferase (ogt-1) gene increases tau phosphorylation. Our results suggest that glucose addition may induce selective O-β-GlcNAcylation on some proteins but not on tau. High levels of glucose exacerbate disease progression by promoting tau hyperphosphorylation. The effects of glucose cannot be effectively managed by manipulating O-β-GlcNAcylation in tau models of AD in C. elegans. Our observations indicate that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression. KEY MESSAGES: Formation of tau hyperphosphorylated neurofibrillary tangles are hallmarks of Alzheimer's disease (AD) in aged patients. Glucose metabolism may affect the AD pathogenesis. Glucose was found to induce tau phosphorylation. Glucose intake was not able to induce overall O-β-GlcNAcylation. Collectively, higher glucose levels in diet were associated with induced disease severity.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane, 4072, Australia.
| | - Khadija Shabbiri
- School of Biological Sciences, the University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
4
|
Qi B, Chen Y, Chai S, Lu X, Kang L. O-linked β-N-acetylglucosamine (O-GlcNAc) modification: Emerging pathogenesis and a therapeutic target of diabetic nephropathy. Diabet Med 2025; 42:e15436. [PMID: 39279604 PMCID: PMC11733667 DOI: 10.1111/dme.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
AIMS O-Linked β-N-acetylglucosamine (O-GlcNAc) modification, a unique post-translational modification of proteins, is elevated in diabetic nephropathy. This review aims to summarize the current knowledge on the mechanisms by which O-GlcNAcylation of proteins contributes to the pathogenesis and progression of diabetic nephropathy, as well as the therapeutic potential of targeting O-GlcNAc modification for its treatment. METHODS Current evidence in the literature was reviewed and synthesized in a narrative review. RESULTS Hyperglycemia increases glucose flux into the hexosamine biosynthesis pathway, which activates glucosamino-fructose aminotransferase expression and activity, leading to the production of O-GlcNAcylation substrate UDP-GlcNAc and an increase in protein O-GlcNAcylation in kidney cells. Protein O-GlcNAcylation regulates the function of kidney cells including mesangial cells, podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, resulting in kidney damage. Current treatments for diabetic nephropathy, such as sodium-glucose cotransporter 2 (SGLT-2) inhibitors and renin-angiotensin-aldosterone system (RAAS) inhibitors, delay disease progression, and suppress protein O-GlcNAcylation. CONCLUSIONS Increased protein O-GlcNAcylation mediates renal cell damage and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although the full significance of inhibition of O-GlcNAcylation is not yet understood, it may represent a novel target for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Bingxue Qi
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Yang Chen
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Siyang Chai
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Xiaodan Lu
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Li Kang
- Division of Cellular and Systems MedicineSchool of Medicine, University of DundeeDundeeUK
| |
Collapse
|
5
|
Trink J, Li R, Gao B, Lu C, Krepinsky JC. Modulators of Alpha-2 Macroglobulin Upregulation by High Glucose in Glomerular Mesangial Cells. Biomolecules 2024; 14:1444. [PMID: 39595620 PMCID: PMC11592121 DOI: 10.3390/biom14111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Up to 40% of patients with diabetes mellitus will develop diabetic kidney disease (DKD), characterized pathologically by the accumulation of extracellular matrix proteins, which leads to the loss of kidney function over time. Our previous studies showed that the pan-protease inhibitor alpha 2-macroglobulin (A2M) is increased in DKD and is a critical regulator of the fibrotic response in glomerular mesangial cells (MC), an initial site of injury during DKD development. How A2M is regulated by high glucose (HG) has not yet been elucidated and is the focus of this investigation. Using serial deletions of the full A2M promoter, we identified the -405 bp region as HG-responsive in MC. Site-directed mutagenesis, siRNA, and ChIP studies showed that the transcription factor, nuclear factor of activated T cells 5 (NFAT5), regulated A2M promoter activity and protein expression in response to HG. Forkhead box P1 (FOXP1) served as a cooperative binding partner for NFAT5, required for A2M upregulation. Lastly, we showed that Smad3, known for its role in kidney fibrosis, regulated A2M promoter activity and protein production independently of HG. The importance of NFAT5, FOXP1, and Smad3 in A2M regulation was confirmed in ex vivo studies using isolated glomeruli. In conclusion, Smad3 is required for basal and HG-induced A2M expression, while NFAT5 and FOXP1 cooperatively regulate increased A2M transcription in response to HG. Inhibition of NFAT5/FOXP1 will be further evaluated as a potential therapeutic strategy to inhibit A2M production and attenuate profibrotic signaling in DKD.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, McMaster University, Hamilton, ON L8N 1Y3, Canada; (J.T.); (R.L.); (B.G.); (C.L.)
| | - Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, ON L8N 1Y3, Canada; (J.T.); (R.L.); (B.G.); (C.L.)
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, ON L8N 1Y3, Canada; (J.T.); (R.L.); (B.G.); (C.L.)
| | - Chao Lu
- Division of Nephrology, McMaster University, Hamilton, ON L8N 1Y3, Canada; (J.T.); (R.L.); (B.G.); (C.L.)
| | - Joan C. Krepinsky
- Division of Nephrology, McMaster University, Hamilton, ON L8N 1Y3, Canada; (J.T.); (R.L.); (B.G.); (C.L.)
- St. Joseph’s Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
6
|
Khan S, Aggarwal S, Bhatia P, Yadav AK, Kumar Y, Veerapu NS. Glucose and glutamine drive hepatitis E virus replication. Arch Virol 2024; 169:233. [PMID: 39476184 DOI: 10.1007/s00705-024-06160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024]
Abstract
Viruses have undergone evolutionary adaptations to tune their utilization of carbon sources, enabling them to extract specific cellular substrates necessary for their replication. The lack of a reliable cell culture system and a small-animal model has hampered our understanding of the molecular mechanism of replication of hepatitis E virus (HEV) genotype 1. Our recent identification of a replicative ensemble of mutant HEV RNA libraries has allowed us to study the metabolic prerequisites for HEV replication. Initial assessments revealed increased glucose and glutamine utilization during HEV replication. Inhibition of glycolysis and glycolysis + glutaminolysis reduced the levels of HEV replication to similar levels. An integrated analysis of protein-metabolite pathways suggests that HEV replication markedly alters glycolysis, the TCA cycle, and glutamine-associated metabolic pathways. Cells supporting HEV replication showed a requirement for fructose-6-phosphate and glutamine utilization through the hexosamine biosynthetic pathway (HBP), stimulating HSP70 expression to facilitate virus replication. Observations of mannose utilization and glutamine dependence suggest a crucial role of the HBP in supporting HEV replication. Inhibition of glycolysis and HSP70 activity or knockdown of glutamine fructose-6-phosphate amidotransferase expression led to a substantial reduction in HEV RNA and ORF2 expression accompanied by a significant decrease in HSP70 levels. This study demonstrates that glucose and glutamine play critical roles in facilitating HEV replication.
Collapse
Affiliation(s)
- Shaheen Khan
- Virology Section, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, UP201314, India
| | - Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, India
| | - Pooja Bhatia
- Virology Section, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, UP201314, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, India
| | - Naga Suresh Veerapu
- Virology Section, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, UP201314, India.
| |
Collapse
|
7
|
Li Y, Lu T, Dong P, Chen J, Zhao Q, Wang Y, Xiao T, Wu H, Zhao Q, Huang H. A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification. Nat Commun 2024; 15:2019. [PMID: 38448482 PMCID: PMC10917797 DOI: 10.1038/s41467-024-46455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The Drosophila tracheal system is a favorable model for investigating the program of tubular morphogenesis. This system is established in the embryo by post-mitotic cells, but also undergoes remodeling by adult stem cells. Here, we provide a comprehensive cell atlas of Drosophila trachea using the single-cell RNA-sequencing (scRNA-seq) technique. The atlas documents transcriptional profiles of tracheoblasts within the Drosophila airway, delineating 9 major subtypes. Further evidence gained from in silico as well as genetic investigations highlight a set of transcription factors characterized by their capacity to switch cell fate. Notably, the transcription factors Pebbled, Blistered, Knirps, Spalt and Cut are influenced by Notch signaling and determine tracheal cell identity. Moreover, Notch signaling orchestrates transcriptional activities essential for tracheoblast differentiation and responds to protein glycosylation that is induced by high sugar diet. Therefore, our study yields a single-cell transcriptomic atlas of tracheal development and regeneration, and suggests a glycosylation-responsive Notch signaling in cell fate determination.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Jian Chen
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Qiang Zhao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yuying Wang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianheng Xiao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Honggang Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China.
| |
Collapse
|
8
|
She C, Zhu J, Liu A, Xu Y, Jiang Z, Peng Y. Dexmedetomidine Inhibits NF-κB-Transcriptional Activity in Neurons Undergoing Ischemia-Reperfusion by Regulating O-GlcNAcylation of SNW1. J Neuropathol Exp Neurol 2022; 81:836-849. [PMID: 35818332 DOI: 10.1093/jnen/nlac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dexmedetomidine (Dex) is neuroprotective in ischemia-reperfusion (I/R) by suppressing inflammation but the underlying molecular mechanisms are not known. SNW domain-containing protein 1 (SNW1) is a coactivator of the pro-inflammatory transcription factor NF-κB p65. Because SNW1 is regulated by O-GlcNAcylation, we aimed to determine whether this modification influences NF-κB transcriptional activity in neurons undergoing I/R and how Dex may affect the O-GlcNAcylation of SNW1. SH-SY5Y and PC12 cells under hypoxia/reoxygenation (H/R) conditions were treated with Dex and with inhibitors of O-GlcNAc transferase (OGT). O-GlcNAc levels in SNW1 and effects of SNW1 on NF-κB p65 were determined by immunoprecipitation. H/R increased SNW1 protein levels but inhibited O-GlcNAcylation of SNW1. A Luciferase reporter assay demonstrated that increased SNW1 levels led to increased NF-κB p65 activity and increased secretion of neuron-derived inflammatory factors demonstrated by ELISA. Dex reversed the H/R-induced increase of SNW1 protein by upregulating OGT and enhancing O-GlcNAcylation of SNW1. Dex suppression of the SNW1/NF-κB complex resulted in neuroprotection in vitro and in a middle cerebral artery occlusion model in vivo. PKA and ERK1/2 inhibitors abolished the effect of Dex on OGT protein. Taken together, these data indicate that Dex inhibits NF-κB-transcriptional activity in neurons undergoing I/R by regulating O-GlcNAcylation of SNW1.
Collapse
Affiliation(s)
- Chang She
- From the 5th Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, P.R. China
| | - Jiahua Zhu
- 2nd Emergency Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China
| | - An Liu
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Yangting Xu
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Zhengqian Jiang
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Ya Peng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, P.R. China
| |
Collapse
|
9
|
Ahmad W. Glucose enrichment impair neurotransmission and induce Aβ oligomerization that cannot be reversed by manipulating O-β-GlcNAcylation in the C. elegans model of Alzheimer's disease. J Nutr Biochem 2022; 108:109100. [PMID: 35779795 DOI: 10.1016/j.jnutbio.2022.109100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/27/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Amyloid beta (Aβ) plaques formation and impaired neurotransmission and neuronal behaviors are primary hallmarks of Alzheimer's disease (AD) that are further associated with impaired glucose metabolism in elderly AD's patients. However, the exact role of glucose metabolism on disease progression has not been elucidated yet. In this study, the effect of glucose on Aβ-mediated toxicity, neurotransmission and neuronal behaviors has been investigated using a C. elegans model system expressing human Aβ. In addition to regular diet, worms expressing Aβ were supplemented with different concentrations of glucose and glycerol and 5 mM 2-deoxyglucose to draw any conclusions. Addition of glucose to the growth medium delayed Aβ-associated paralysis, promoted abnormal body shapes and movement, unable to restore impaired acetylcholine neurotransmission, inhibited egg laying and hatching in pre-existing Aβ-mediated pathology. The harmful effects of glucose may associate with an increase in toxic Aβ oligomers and impaired neurotransmission. O-β-GlcNAcylation (O-GlcNAc), a well-known post-translational modification is directly associated with glucose metabolism and has been found to ameliorates the Aβ- toxicity. We reasoned that glucose addition might induce O-GlcNAc, thereby protect against Aβ. Contrary to our expectations, induced glucose levels were not protective. Increasing O-GlcNAc, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene does interfere with and, therefore, reduce Aβ- toxicity but not in the presence of high glucose. The effects of glucose cannot be effectively managed by manipulating O-GlcNAc in AD models of C. elegans. Our observations suggest that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
10
|
Ng YH, Okolo CA, Erickson JR, Baldi JC, Jones PP. Protein O-GlcNAcylation in the heart. Acta Physiol (Oxf) 2021; 233:e13696. [PMID: 34057811 DOI: 10.1111/apha.13696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification that is extremely labile and plays a significant role in physiology, including the heart. Sustained activation of cardiac O-GlcNAcylation is frequently associated with alterations in cellular metabolism, leading to detrimental effects on cardiovascular function. This is particularly true during conditions such as diabetes, hypertension, cardiac remodelling, heart failure and arrhythmogenesis. Paradoxically, transient elevation of cardiac protein O-GlcNAcylation can also exert beneficial effects in the heart. There is compelling evidence to suggest that a complex interaction between O-GlcNAcylation and phosphorylation also exists in the heart. Beyond direct functional consequences on cardiomyocytes, O-GlcNAcylation also acts indirectly by altering the function of transcription factors that affect downstream signalling. This review focuses on the potential cardioprotective role of protein O-GlcNAcylation during ischaemia-reperfusion injury, the deleterious consequences of chronically elevated O-GlcNAc levels, the interplay between O-GlcNAcylation and phosphorylation in the cardiomyocytes and the effects of O-GlcNAcylation on other major non-myocyte cell types in the heart.
Collapse
Affiliation(s)
- Yann Huey Ng
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Chidinma A. Okolo
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
- Life Sciences Division Diamond Light Source LtdHarwell Science and Innovation Campus Didcot UK
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| | - James C. Baldi
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Peter P. Jones
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| |
Collapse
|
11
|
Cao Y, Yang Z, Chen Y, Jiang S, Wu Z, Ding B, Yang Y, Jin Z, Tang H. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9:630401. [PMID: 34124032 PMCID: PMC8193943 DOI: 10.3389/fcell.2021.630401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN), a common diabetic microvascular complication, is characterized by its complex pathogenesis, higher risk of mortality, and the lack of effective diagnosis and treatment methods. Many studies focus on the diagnosis and treatment of diabetes mellitus (DM) and have reported that the pathophysiology of DN is very complex, involving many molecules and abnormal cellular activities. Given the respective pivotal roles of NF-κB, Nrf2, and TGF-β in inflammation, oxidative stress, and fibrosis during DN, we first review the effect of posttranslational modifications on these vital molecules in DN. Then, we describe the relationship between these molecules and related abnormal cellular activities in DN. Finally, we discuss some potential directions for DN treatment and diagnosis. The information reviewed here may be significant in the design of further studies to identify valuable therapeutic targets for DN.
Collapse
Affiliation(s)
- Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Zhao Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| |
Collapse
|
12
|
Otomo H, Nara M, Kato S, Shimizu T, Suganuma Y, Sato T, Morii T, Yamada Y, Fujita H. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy. Metabolism 2020; 113:154405. [PMID: 33069809 DOI: 10.1016/j.metabol.2020.154405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
AIMS The crosstalk between sodium-glucose cotransporter 2 (SGLT2) inhibition and a membrane-associated endocytic receptor megalin function involved in renal proximal tubular protein overload in progressive diabetic nephropathy (DN) is uncertain. Here, we determined whether SGLT2 inhibition affects megalin endocytic function through suppressing its O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) and protects the diabetic kidney from protein overload. MATERIALS AND METHOD We treated 8-week-old male non-obese and hypoinsulinemic KK/Ta-Ins2Akita (KK/Ta-Akita) mice which develop progressive DN with an SGLT2 inhibitor ipragliflozin or insulin for 6 weeks, and investigated the endocytic function (proximal tubular protein reabsorption), renal expression and O-GlcNAcylation of megalin along with their effects on renal phenotypes including histology and biochemical markers. RESULTS The treatment with ipragliflozin, but not insulin, suppressed megalin O-GlcNAcylation and accelerated its internalization, resulting in reduction in proximal tubular reabsorption of the highly filtered plasma proteins such as albumin and neutrophil gelatinase-associated lipocalin. These alterations following the ipragliflozin treatment contributed to amelioration of proximal tubular protein overload, mitochondrial morphological abnormality, and renal oxidative stress and tubulointerstitial fibrosis. CONCLUSIONS The present study provides a novel crosstalk mechanism between SGLT2 inhibition and megalin underlying the potential renal benefits of SGLT2 inhibition in DN.
Collapse
Affiliation(s)
- Hitomi Otomo
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Mitsuhiko Nara
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Shunsuke Kato
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Tatsunori Shimizu
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yumi Suganuma
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Takehiro Sato
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Tsukasa Morii
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hiroki Fujita
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| |
Collapse
|
13
|
Singh R, Rao HK, Singh TG. Neuropathic pain in diabetes mellitus: Challenges and future trends. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zheng XP, Nie Q, Feng J, Fan XY, Jin YL, Chen G, Du JW. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol 2020; 21:174. [PMID: 32398108 PMCID: PMC7216346 DOI: 10.1186/s12882-020-01833-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, and is the most important cause of death for diabetic patients. Baicalin (BAI) has anti-oxidative, anti-inflammatory and anti-apoptotic activities, which play a role in attenuating insulin resistance and protecting the kidney. Moreover, cell-specific targeting of renal tubular cells is an approach to enhance drug accumulation in the kidney. METHODS Forty-five Sprague-Dawley rats were divided into four groups. A diabetes model was created using streptozotocin (STZ) intraperitoneally injection. The four groups included: Control group (n = 10), DN (n = 15), BAI treatment (BAI; n = 10) and BAI-LZM treatment (BAI-LZM; n = 10) groups. In the current study, the renoprotection and anti-fibrotic effects of BAI-lysozyme (LZM) conjugate were further investigated in rats with DN induced by STZ compared with BAI treatment alone. RESULTS The results suggest that BAI-LZM better ameliorates renal impairment, metabolic disorder and renal fibrosis than BAI alone in rats with DN, and the potential regulatory mechanism likely involves inhibiting inflammation via the nuclear factor-κB signaling pathway, inhibiting extracellular matrix accumulation via the transforming growth factor-β/Smad3 pathway and regulating cell proliferation via the insulin-like growth factor (IGF)-1/IGF-1 receptor/p38 Mitogen-activated protein kinase (MAPK) pathway. BAI and the kidney-targeted BAI-LZM can utilize the body's cytoprotective pathways to reactivate autophagy (as indicated by the autophagy markers mechanistic target of rapamycin and sirtuin 1 to ameliorate DN outcomes. CONCLUSIONS Our data support the traditional use of S. baicalensis as an important anti-DN traditional chinese medicine (TCM), and BAI, above all BAI-LZM, is a promising source for the identification of molecules with anti-DN effects.
Collapse
Affiliation(s)
- Xiao-Peng Zheng
- Department of basic medical sciences, Taizhou University hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
- College of Basic Medical Sciences, Jiamusi University, No 148 Xuefu Street, Jiamusi, 154007, China
| | - Qing Nie
- Weifang centers for disease control and prevention, No 4801 Huixian Road, Gaoxin Distric, Weifang, 261061, Shandong Province, China
| | - Jing Feng
- Department of basic medical sciences, Taizhou University hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
- College of Basic Medical Sciences, Jiamusi University, No 148 Xuefu Street, Jiamusi, 154007, China
| | - Xiao-Yan Fan
- Department of basic medical sciences, Taizhou University hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Yue-Lei Jin
- Department of basic medical sciences, Taizhou University hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Guang Chen
- Department of basic medical sciences, Taizhou University hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China.
| | - Ji-Wei Du
- Nursing department, Xiang'An Hospital, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
15
|
TGF-β and Diabetic Nephropathy: Lessons Learned Over the Past 20 Years. Am J Med Sci 2019; 359:70-72. [PMID: 32039767 DOI: 10.1016/j.amjms.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/22/2022]
|
16
|
Xing X, Wang H, Zhang Y, Niu T, Jiang Y, Shi X, Wang C, Liu K. O- glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition. Biochem Biophys Res Commun 2019; 512:552-557. [DOI: 10.1016/j.bbrc.2019.03.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023]
|
17
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
18
|
Böttcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE, Dettmer K, Oefner PJ, Mackensen A, Kreutz M, Mougiakakos D. D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology 2018; 7:e1445454. [PMID: 29900057 PMCID: PMC5993507 DOI: 10.1080/2162402x.2018.1445454] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
D-2-hydroxyglutarate (D-2HG) is released by various types of malignant cells including acute myeloid leukemia (AML) blasts carrying isocitrate dehydrogenase (IDH) gain-of-function mutations. D-2HG acting as an oncometabolite promotes proliferation, anoikis, and differentiation block of hematopoietic cells in an autocrine fashion. However, prognostic impact of IDH mutations and high D-2HG levels remains controversial and might depend on the overall mutational context. An increasing number of studies focus on the permissive environment created by AML blasts to promote immune evasion. Impact of D-2HG on immune cells remains incompletely understood. Here, we sought out to investigate the effects of D-2HG on T-cells as key mediators of anti-AML immunity. D-2HG was efficiently taken up by T-cells in vitro, which is in line with high 2-HG levels measured in T-cells isolated from AML patients carrying IDH mutations. T-cell activation was slightly impacted by D-2HG. However, D-2HG triggered HIF-1a protein destabilization resulting in metabolic skewing towards oxidative phosphorylation, increased regulatory T-cell (Treg) frequency, and reduced T helper 17 (Th17) polarization. Our data suggest for the first time that D-2HG might contribute to fine tuning of immune responses.
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kathrin Renner
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Raffaela Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kristin Mentz
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simone Thomas
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Marina Kreutz
- Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
19
|
Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev 2017; 31:1655-1665. [PMID: 28903979 PMCID: PMC5647936 DOI: 10.1101/gad.305441.117] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
In this study, Ruan et al. demonstrate that O-GlcNAc transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Their findings delineate a new signaling pathway in which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis. Starvation induces liver autophagy, which is thought to provide nutrients for use by other organs and thereby maintain whole-body homeostasis. Here we demonstrate that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Genetic ablation of OGT in mouse livers reduces autophagic flux and the production of glucose and ketone bodies. Upon glucagon-induced calcium signaling, calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates OGT, which in turn promotes O-GlcNAc modification and activation of Ulk proteins by potentiating AMPK-dependent phosphorylation. These findings uncover a signaling cascade by which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis.
Collapse
|
20
|
Groussaud D, Khair M, Tollenaere AI, Waast L, Kuo MS, Mangeney M, Martella C, Fardini Y, Coste S, Souidi M, Benit L, Pique C, Issad T. Hijacking of the O-GlcNAcZYME complex by the HTLV-1 Tax oncoprotein facilitates viral transcription. PLoS Pathog 2017; 13:e1006518. [PMID: 28742148 PMCID: PMC5542696 DOI: 10.1371/journal.ppat.1006518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/03/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.
Collapse
Affiliation(s)
- Damien Groussaud
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mostafa Khair
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Armelle I. Tollenaere
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laetitia Waast
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mei-Shiue Kuo
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marianne Mangeney
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Martella
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yann Fardini
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Solène Coste
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mouloud Souidi
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurence Benit
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (CP); (TI)
| | - Tarik Issad
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (CP); (TI)
| |
Collapse
|
21
|
O -GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun 2017; 484:79-84. [DOI: 10.1016/j.bbrc.2017.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 01/18/2023]
|
22
|
Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Exp Eye Res 2016; 147:72-77. [PMID: 27109029 DOI: 10.1016/j.exer.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022]
Abstract
In diabetic retinopathy, increased cytosolic reactive oxygen species, produced by NADPH oxidase (Nox), damage mitochondria, and this accelerates apoptosis of retinal capillary cells, resulting in the histopathology. Activation of Nox2 is mediated by a small molecular weight GTPase, Rac1, and retinal Rac1 is activated in diabetes. Our goal is to investigate the molecular mechanism responsible for transcriptional activation of Rac1 in the development of diabetic retinopathy. Using retinal microvessels, the site of histopathology associated with diabetic retinopathy, from streptozotocin-induced diabetic rats, we investigated the binding of the nuclear transcriptional factor-kB (NF-kB) at Rac1 promoter. Since activation of NF-kB is regulated by its acetylation-deacetylation, the role of acetylation in Rac1 transcription was confirmed in the retina from diabetic mice overexpressing a deacetylase, Sirtuin 1. Diabetes increased the binding of p65 subunit of NF-kB at the Rac1 promoter. Overexpression of Sirtuin 1 prevented hyper-acetylation of p65, decreased its binding at the Rac1 promoter and ameliorated Rac1-Nox2 mediated mitochondrial damage. Thus, in diabetes Rac1 transcriptional activation in the retina is mediated by acetylation of NF-kB, and modulation of acetylation during the early stages of diabetic retinopathy has potential to inhibit/retard its development.
Collapse
|
23
|
Peterson SB, Hart GW. New insights: A role for O-GlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol 2016; 51:150-61. [DOI: 10.3109/10409238.2015.1135102] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Żurawska-Płaksej E, Kratz EM, Ferens-Sieczkowska M, Knapik-Kordecka M, Piwowar A. Changes in glycosylation of human blood plasma chitotriosidase in patients with type 2 diabetes. Glycoconj J 2015; 33:29-39. [DOI: 10.1007/s10719-015-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/03/2023]
|
26
|
Na J, Sweetwyne MT, Park ASD, Susztak K, Cagan RL. Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Rep 2015; 12:636-47. [PMID: 26190114 DOI: 10.1016/j.celrep.2015.06.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy is a major cause of end-stage kidney disease. Characterized by progressive microvascular disease, most efforts have focused on injury to the glomerular endothelium. Recent work has suggested a role for the podocyte, a highly specialized component of the glomerular filtration barrier. Here, we demonstrate that the Drosophila nephrocyte, a cell analogous to the mammalian podocyte, displays defects that phenocopy aspects of diabetic nephropathy in animals fed chronic high dietary sucrose. Through functional studies, we identify an OGT-Polycomb-Knot-Sns pathway that links dietary sucrose to loss of the Nephrin ortholog Sns. Reducing OGT through genetic or drug means is sufficient to rescue loss of Sns, leading to overall extension of lifespan. We demonstrate upregulation of the Knot ortholog EBF2 in glomeruli of human diabetic nephropathy patients and a mouse ob/ob diabetes model. Furthermore, we demonstrate rescue of Nephrin expression and cell viability in ebf2(-/-) primary podocytes cultured in high glucose.
Collapse
Affiliation(s)
- Jianbo Na
- Department of Developmental and Regenerative Biology and School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA
| | - Mariya T Sweetwyne
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 405B Clinical Research Building, Philadelphia, PA 19104-4539, USA
| | - Ae Seo Deok Park
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 405B Clinical Research Building, Philadelphia, PA 19104-4539, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 405B Clinical Research Building, Philadelphia, PA 19104-4539, USA
| | - Ross L Cagan
- Department of Developmental and Regenerative Biology and School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029-1020, USA.
| |
Collapse
|
27
|
Li R, Uttarwar L, Gao B, Charbonneau M, Shi Y, Chan JSD, Dubois CM, Krepinsky JC. High Glucose Up-regulates ADAM17 through HIF-1α in Mesangial Cells. J Biol Chem 2015; 290:21603-14. [PMID: 26175156 DOI: 10.1074/jbc.m115.651604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/26/2022] Open
Abstract
We previously showed that ADAM17 mediates high glucose-induced matrix production by kidney mesangial cells. ADAM17 expression is increased in diabetic kidneys, suggesting that its up-regulation may augment high glucose profibrotic responses. We thus studied the effects of high glucose on ADAM17 gene regulation. Primary rat mesangial cells were treated with high glucose (30 mm) or mannitol as osmotic control. High glucose dose-dependently increased ADAM17 promoter activity, transcript, and protein levels. This correlated with augmented ADAM17 activity after 24 h versus 1 h of high glucose. We tested involvement of transcription factors shown in other settings to regulate ADAM17 transcription. Promoter activation was not affected by NF-κB or Sp1 inhibitors, but was blocked by hypoxia-inducible factor-1α (HIF-1α) inhibition or down-regulation. This also prevented ADAM17 transcript and protein increases. HIF-1α activation by high glucose was shown by its increased nuclear translocation and activation of the HIF-responsive hypoxia-response element (HRE)-luciferase reporter construct. Assessment of ADAM17 promoter deletion constructs coupled with mutation analysis and ChIP studies identified HIF-1α binding to its consensus element at -607 as critical for the high glucose response. Finally, inhibitors of epidermal growth factor receptor (EGFR) and downstream PI3K/Akt, or ADAM17 itself, prevented high glucose-induced HIF-1α activation and ADAM17 up-regulation. Thus, high glucose induces ADAM17 transcriptional up-regulation in mesangial cells, which is associated with augmentation of its activity. This is mediated by HIF-1α and requires EGFR/ADAM17 signaling, demonstrating the potentiation by ADAM17 of its own up-regulation. ADAM17 inhibition thus provides a potential novel therapeutic strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Renzhong Li
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Lalita Uttarwar
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Bo Gao
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Martine Charbonneau
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Yixuan Shi
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - John S D Chan
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Claire M Dubois
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Joan C Krepinsky
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6,
| |
Collapse
|
28
|
Fardini Y, Perez-Cervera Y, Camoin L, Pagesy P, Lefebvre T, Issad T. Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Biochem Biophys Res Commun 2015; 462:151-8. [PMID: 25944660 DOI: 10.1016/j.bbrc.2015.04.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023]
Abstract
O-GlcNAcylation is a reversible post-translational modification that regulates cytosolic and nuclear proteins. We and others previously demonstrated that FoxO1 is O-GlcNAcylated in different cell types, resulting in an increase in its transcriptional activity. Four O-GlcNAcylation sites were identified in human FOXO1 but directed mutagenesis of each site individually had modest (T317) or no effect (S550, T648, S654) on its O-GlcNAcylation status and transcriptional activity. Moreover, the consequences of mutating all four sites had not been investigated. In the present work, we mutated these sites in the mouse Foxo1 and found that mutation of all four sites did not decrease Foxo1 O-GlcNAcylation status and transcriptional activity, and would even tend to increase them. In an attempt to identify other O-GlcNAcylation sites, we immunoprecipitated wild-type O-GlcNAcylated Foxo1 and analysed the tryptic digest peptides by mass spectrometry using High-energy Collisional Dissociation. We identified T646 as a new O-GlcNAcylation site on Foxo1. However, site directed mutagenesis of this site individually or together with all four previously identified residues did not impair Foxo1 O-GlcNAcylation and transcriptional activity. These results suggest that residues important for the control of Foxo1 activity by O-GlcNAcylation still remain to be identified.
Collapse
Affiliation(s)
- Yann Fardini
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yobana Perez-Cervera
- Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d'Ascq, France; Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Luc Camoin
- INSERM, U1068, CRCM, Marseille Protéomique IBiSA, Marseille, F-13009, France; Institut Paoli-Calmettes Team, Cell Polarity, Cell Signaling and Cancer, Marseille, F-13009, France; Aix-Marseille Université, F-13284, Marseille, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Patrick Pagesy
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Tony Lefebvre
- Structural and Functional Glycobiology Unit, Lille 1 University, CNRS (UMR 8576), IFR 117, Villeneuve d'Ascq, France
| | - Tarik Issad
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
29
|
Pantaleon M. The Role of Hexosamine Biosynthesis and Signaling in Early Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:53-76. [DOI: 10.1007/978-1-4939-2480-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Donovan K, Alekseev O, Qi X, Cho W, Azizkhan-Clifford J. O-GlcNAc modification of transcription factor Sp1 mediates hyperglycemia-induced VEGF-A upregulation in retinal cells. Invest Ophthalmol Vis Sci 2014; 55:7862-73. [PMID: 25352121 DOI: 10.1167/iovs.14-14048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Proangiogenic protein VEGF-A contributes significantly to retinal lesions and neovascularization in diabetic retinopathy (DR). In preclinical DR, hyperglycemia can upregulate VEGF-A in retinal cells. The VEGF-A promoter is responsive to the transcription factor specificity protein 1 (Sp1). The O-GlcNAc modification is driven by glucose concentration and has a profound effect on Sp1 activity. This study investigated the effects of hyperglycemia on Sp1-mediated expression of VEGF-A in the retinal endothelium and pigment epithelium. METHODS Hyperglycemia-exposed ARPE-19 (human retinal pigment epithelial cells) and TR-iBRB (rat retinal microendothelial cells) were assayed for levels of VEGF-A by qRT-PCR, Western blot, and ELISA. Small molecule inhibitors of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) were used to manipulate O-GlcNAc levels. Vascular endothelial growth factor-A protein and transcript were measured in cells depleted of OGT or Sp1 by shRNA. The proximal VEGF-A promoter was analyzed for glucose sensitivity by luciferase assay. Chromatin immunoprecipitation (ChIP) was used to assess Sp1 occupancy on the VEGF-A promoter. RESULTS Hyperglycemia increased VEGF-A promoter activity and upregulated VEGF-A transcript and protein. Elevation of O-GlcNAc by OGA inhibitors was sufficient to increase VEGF-A. O-GlcNAc transferase inhibition abrogated glucose-driven VEGF-A. Cellular depletion of OGT or Sp1 by shRNA significantly abrogated glucose-induced changes in VEGF-A. ChIP analysis showed that hyperglycemia significantly increased binding of Sp1 to the VEGF-A promoter. CONCLUSIONS Hyperglycemia-driven VEGF-A production is mediated by elevated O-GlcNAc modification of the Sp1 transcription factor. This mechanism may be significant in the pathogenesis of preclinical DR through VEGF-A upregulation.
Collapse
Affiliation(s)
- Kelly Donovan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Oleg Alekseev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Xin Qi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - William Cho
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
31
|
Peternelj TT, Marsh SA, Morais C, Small DM, Dalbo VJ, Tucker PS, Coombes JS. O-GlcNAc protein modification in C2C12 myoblasts exposed to oxidative stress indicates parallels with endogenous antioxidant defense. Biochem Cell Biol 2014; 93:63-73. [PMID: 25453190 DOI: 10.1139/bcb-2014-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A growing body of evidence demonstrates the involvement of protein modification with O-linked β-N-acetylglucosamine (O-GlcNAc) in the stress response and its beneficial effects on cell survival. Here we investigated protein O-GlcNAcylation in skeletal muscle cells exposed to oxidative stress and the crosstalk with endogenous antioxidant system. The study focused on antioxidant enzymes superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPX1), and transcriptional regulators proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and forkhead box protein O1 (FOXO1), which play important roles in oxidative stress response and are known to be O-GlcNAc-modified. C2C12 myoblasts were subjected to 24 h incubation with different reagents, including hydrogen peroxide, diethyl maleate, high glucose, and glucosamine, and the inhibitors of O-GlcNAc cycling enzymes. Surprisingly, O-GlcNAc levels were significantly increased only with glucosamine, whilst other treatments showed no effect. Significant changes at the mRNA level were observed with concomitant upregulation of the genes for O-GlcNAc enzymes and stress-related proteins with oxidizing agents and downregulation of these genes with agents promoting O-GlcNAcylation. Our findings suggest a role of O-GlcNAc in the stress response and indicate an inhibitory mechanism controlling O-GlcNAc levels in the muscle cells. This could represent an important homeostatic regulation of the cellular defense system.
Collapse
Affiliation(s)
- Tina Tinkara Peternelj
- a Antioxidant Research Group, School of Human Movement Studies, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Suh HN, Lee YJ, Kim MO, Ryu JM, Han HJ. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. J Cell Physiol 2014; 229:1557-68. [PMID: 24591095 DOI: 10.1002/jcp.24599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab 2014; 39:1205-13. [PMID: 25203141 DOI: 10.1139/apnm-2014-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.
Collapse
Affiliation(s)
- Jason P Myslicki
- a Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
34
|
Elevated O-LinkedN-Acetylglucosamine Correlated with Reduced Sp1 Cooperative DNA Binding with Its Collaborating Factorsin Vivo. Biosci Biotechnol Biochem 2014; 74:1668-72. [DOI: 10.1271/bbb.100289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Santos JM, Mishra M, Kowluru RA. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Exp Eye Res 2014; 121:168-77. [PMID: 24607487 DOI: 10.1016/j.exer.2014.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Aguilar H, Fricovsky E, Ihm S, Schimke M, Maya-Ramos L, Aroonsakool N, Ceballos G, Dillmann W, Villarreal F, Ramirez-Sanchez I. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am J Physiol Cell Physiol 2014; 306:C794-804. [PMID: 24553187 DOI: 10.1152/ajpcell.00251.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excess enzyme-mediated protein O-GlcNAcylation is known to occur with diabetes mellitus. A characteristic of diabetic cardiomyopathy is the development of myocardial fibrosis. The role that enhanced protein O-GlcNAcylation plays in modulating the phenotype of cardiac fibroblasts (CF) is unknown. To address this issue, rat CF were cultured in normal glucose (NG; 5 mM glucose) or high-glucose (HG; 25 mM) media for 48 h. Results demonstrate that CF cultured in HG have higher levels (~50%) of overall protein O-GlcNAcylation vs. NG cells. Key regulators of collagen synthesis such as transforming-growth factor-β1 (TGF-β1), SMADs 2/3, and SMAD 7 protein levels, including those of arginase I and II, were altered, leading to increases in collagen levels. The nuclear transcription factor Sp1 and arginase II evidence excess O-GlcNAcylation in HG cells. Expression in CF of an adenovirus coding for the enzyme N-acetylglucosaminidase, which removes O-GlcNAc moieties from proteins, decreased Sp1 and arginase II O-GlcNAcylation and restored HG-induced perturbations in CF back to NG levels. These findings may have important pathophysiological implications for the development of diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Hugo Aguilar
- Seccion de Posgrado, Escuela Superior de Medicina, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wollaston-Hayden EE, Harris RBS, Liu B, Bridger R, Xu Y, Wells L. Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance. Front Endocrinol (Lausanne) 2014; 5:223. [PMID: 25657638 PMCID: PMC4302944 DOI: 10.3389/fendo.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023] Open
Abstract
Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance.
Collapse
Affiliation(s)
- Edith E. Wollaston-Hayden
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ruth B. S. Harris
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | - Bingqiang Liu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- *Correspondence: Lance Wells, Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA e-mail:
| |
Collapse
|
38
|
Baudoin L, Issad T. O-GlcNAcylation and Inflammation: A Vast Territory to Explore. Front Endocrinol (Lausanne) 2014; 5:235. [PMID: 25620956 PMCID: PMC4288382 DOI: 10.3389/fendo.2014.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/18/2014] [Indexed: 01/04/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification that regulates the activities of cytosolic and nuclear proteins according to glucose availability. This modification appears to participate in several hyperglycemia-associated complications. An important feature of metabolic diseases such as diabetes and obesity is the presence of a low-grade chronic inflammation that causes numerous complications. Hyperglycemia associated with the metabolic syndrome is known to promote inflammatory processes through different mechanisms including oxidative stress and abnormally elevated protein O-GlcNAcylation. However, the role of O-GlcNAcylation on inflammation remains contradictory. O-GlcNAcylation associated with hyperglycemia has been shown to increase nuclear factor κB (NFκB) transcriptional activity through different mechanisms. This could contribute in inflammation-associated diabetic complications. However, in other conditions such as acute vascular injury, O-linked N-acetyl glucosamine (O-GlcNAc) also exerts anti-inflammatory effects via inhibition of the NFκB pathway, suggesting a complex regulation of inflammation by O-GlcNAc. Moreover, whereas macrophages and monocytes exposed to high glucose for a long-term period developed a pro-inflammatory phenotype, the impact of O-GlcNAcylation in these cells remains unclear. A future challenge will be to clearly establish the role of O-GlcNAcylation in pro- and anti-inflammatory functions in macrophages.
Collapse
Affiliation(s)
- Léa Baudoin
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
| | - Tarik Issad
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
- *Correspondence: Tarik Issad, Department of Endocrinology, Metabolism and Diabetes, Institute Cochin, 22 rue Méchain, Paris 75014, France e-mail:
| |
Collapse
|
39
|
Penque BA, Hoggatt AM, Herring BP, Elmendorf JS. Hexosamine biosynthesis impairs insulin action via a cholesterolgenic response. Mol Endocrinol 2013; 27:536-47. [PMID: 23315940 DOI: 10.1210/me.2012-1213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasma membrane cholesterol accumulation has been implicated in cellular insulin resistance. Given the role of the hexosamine biosynthesis pathway (HBP) as a sensor of nutrient excess, coupled to its involvement in the development of insulin resistance, we delineated whether excess glucose flux through this pathway provokes a cholesterolgenic response induced by hyperinsulinemia. Exposing 3T3-L1 adipocytes to physiologically relevant doses of hyperinsulinemia (250pM-5000pM) induced a dose-dependent gain in the mRNA/protein levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR). These elevations were associated with elevated plasma membrane cholesterol. Mechanistically, hyperinsulinemia increased glucose flux through the HBP and O-linked β-N-acetylglucosamine (O-GlcNAc) modification of specificity protein 1 (Sp1), known to activate cholesterolgenic gene products such as the sterol response element-binding protein (SREBP1) and HMGR. Chromatin immunoprecipitation demonstrated that increased O-GlcNAc modification of Sp1 resulted in a higher binding affinity of Sp1 to the promoter regions of SREBP1 and HMGR. Luciferase assays confirmed that HMGR promoter activity was elevated under these conditions and that inhibition of the HBP with 6-diazo-5-oxo-l-norleucine (DON) prevented hyperinsulinemia-induced activation of the HMGR promoter. In addition, both DON and the Sp1 DNA-binding inhibitor mithramycin prevented the hyperinsulinemia-induced increases in HMGR mRNA/protein and plasma membrane cholesterol. In these mithramycin-treated cells, both cortical filamentous actin structure and insulin-stimulated glucose transport were restored. Together, these data suggest a novel mechanism whereby increased HBP activity increases Sp1 transcriptional activation of a cholesterolgenic program, thereby elevating plasma membrane cholesterol and compromising cytoskeletal structure essential for insulin action.
Collapse
Affiliation(s)
- Brent A Penque
- Departments of Cellular and Integrative Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The most problematic issue in clinical nephrology is the relentless and progressive increase in patients with ESRD (end-stage renal disease) worldwide. The impact of diabetic nephropathy on the increasing population with CKD (chronic kidney disease) and ESRD is enormous. Three major pathways showing abnormality of intracellular metabolism have been identified in the development of diabetic nephropathy: (i) the activation of polyol and PKC (protein kinase C) pathways; (ii) the formation of advanced glycation end-products; and (iii) intraglomerular hypertension induced by glomerular hyperfiltration. Upstream of these three major pathways, hyperglycaemia is the major driving force of the progression to ESRD from diabetic nephropathy. Downstream of the three pathways, microinflammation and subsequent extracellular matrix expansion are common pathways for the progression of diabetic nephropathy. In recent years, many researchers have been convinced that the inflammation pathways play central roles in the progression of diabetic nephropathy, and the identification of new inflammatory molecules may link to the development of new therapeutic strategies. Various molecules related to the inflammation pathways in diabetic nephropathy include transcription factors, pro-inflammatory cytokines, chemokines, adhesion molecules, Toll-like receptors, adipokines and nuclear receptors, which are candidates for the new molecular targets for the treatment of diabetic nephropathy. Understanding of these molecular pathways of inflammation would translate into the development of anti-inflammation therapeutic strategies.
Collapse
|
41
|
Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci 2012; 19:94. [PMID: 23148884 PMCID: PMC3503885 DOI: 10.1186/1423-0127-19-94] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 12/17/2022] Open
Abstract
Specific protein 1 (Sp1), the first transcription factor to be isolated, regulates the expression of numerous genes involved in cell proliferation, apoptosis, and differentiation. Recent studies found that an increase in Sp1 transcriptional activity is associated with the tumorigenesis. Moreover, post-translational modifications of Sp1, including glycosylation, phosphorylation, acetylation, sumoylation, ubiquitination, and methylation, regulate Sp1 transcriptional activity and modulate target gene expression by affecting its DNA binding activity, transactivation activity, or protein level. In addition, recent studies have investigated several compounds with anti-cancer activity that could inhibit Sp1 transcriptional activity. In this review, we describe the effect of various post-translational modifications on Sp1 transcriptional activity and discuss compounds that inhibit the activity of Sp1.
Collapse
|
42
|
Lima VV, Giachini FRC, Carneiro FS, Carneiro ZN, Fortes ZB, Carvalho MHC, Webb RC, Tostes RC. Increased vascular O-GlcNAcylation augments reactivity to constrictor stimuli - VASOACTIVE PEPTIDE SYMPOSIUM. ACTA ACUST UNITED AC 2012; 2:410-7. [PMID: 19884969 DOI: 10.1016/j.jash.2008.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND O-Linked N-acetylglucosaminylation (O-GlcNAcylation) plays a role in many aspects of protein function. Whereas elevated O-GlcNAc levels contribute to diabetes related end-organ damage, O-GlcNAcylation is also physiologically important. Because proteins that play a role in vascular tone regulation can be O-GlcNAcylated, we hypothesized that O-GlcNAcylation increases vascular reactivity to constrictor stimuli. METHODS AND RESULTS Aortas from male Sprague-Dawley rats and C57BL/6 mice were incubated for 24 h with vehicle or PugNAc (O-GlcNAcase inhibitor, 100muM). PugNAc incubation significantly increased O-GlcNAc-proteins, as determined by Western blot. PugNAc also increased vascular contractions to phenylephrine and serotonin, an effect not observed in the presence of L-NAME or in endothelium-denuded vessels. Acetylcholine-induced relaxation, but not that to sodium nitroprusside was decreased by PugNAc treatment, an effect accompanied by decreased levels of phosphorylated eNOS(Ser-1177) and Akt(Ser-473). CONCLUSION Augmented O-GlcNAcylation increases vascular reactivity to constrictor stimuli, possibly due to its effects on eNOS expression and activity, reinforcing the concept that O-GlcNAcylation modulates vascular reactivity and may play a role in pathological conditions associated with abnormal vascular function.
Collapse
Affiliation(s)
- Victor V Lima
- Department of Physiology, Medical College of Georgia, Augusta, GA, 30912-3000, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
NFAT5 contributes to osmolality-induced MCP-1 expression in mesothelial cells. Mediators Inflamm 2012; 2012:513015. [PMID: 22619484 PMCID: PMC3350971 DOI: 10.1155/2012/513015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/28/2012] [Indexed: 02/03/2023] Open
Abstract
Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD.
Collapse
|
44
|
Uttarwar L, Gao B, Ingram AJ, Krepinsky JC. SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F329-41. [DOI: 10.1152/ajprenal.00136.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. Recent studies showed that overexpression of the transcription factor sterol-responsive element-binding protein (SREBP)-1 induces pathology reminiscent of diabetic nephropathy, and SREBP-1 upregulation was observed in diabetic kidneys. We thus studied whether SREBP-1 is activated by high glucose (HG) and mediates its profibrogenic responses. In primary rat mesangial cells, HG activated SREBP-1 by 30 min, seen by the appearance of its cleaved nuclear form (nSREBP-1), EMSA, and by activation of an SREBP-1 response element (SRE)-driven green fluorescent protein construct. Activation was dose dependent and not induced by an osmotic control. Site 1 protease was required, since its inhibition by AEBSF prevented SREBP-1 activation. SCAP, the ER-associated chaperone for SREBP-1, was also necessary since its inhibitor fatostatin also blocked SREBP-1 activation. Signaling through the EGFR/phosphatidylinositol 3-kinase (PI3K) pathway, which we previously showed mediates HG-induced TGF-β1 upregulation, and through RhoA, were upstream of SREBP-1 activation (Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC. Diabetologia 50: 2008–2018, 2007; Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. J Am Soc Nephrol 20: 554–566, 2009). Fatostatin and AEBSF prevented HG-induced TGF-β1 upregulation by Northern blot analysis, and HG-induced TGF-β1 promoter activation was inhibited by both fatostatin and dominant negative SREBP-1a. Chromatin immunoprecipitation analysis confirmed that HG led to SREBP-1 binding to the TGF-β1 promoter in a region containing a putative SREBP-1 binding site (SRE). Thus HG-induced SREBP-1 activation requires EGFR/PI3K/RhoA signaling and SCAP-mediated transport to the Golgi for its proteolytic cleavage. Activated SREBP-1 binds to the TGF-β promoter, resulting in TGF-β1 upregulation in response to HG. SREBP-1 thus provides a potential novel therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lalita Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Joan C. Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Goldberg H, Whiteside C, Fantus IG. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am J Physiol Endocrinol Metab 2011; 301:E713-26. [PMID: 21712532 DOI: 10.1152/ajpendo.00108.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.
Collapse
Affiliation(s)
- Howard Goldberg
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
46
|
Waby JS, Bingle CD, Corfe BM. Post-translational control of sp-family transcription factors. Curr Genomics 2011; 9:301-11. [PMID: 19471608 PMCID: PMC2685645 DOI: 10.2174/138920208785133244] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022] Open
Abstract
Sp-family transcription factors are widely expressed in human tissues and involved in the regulation of many cellular processes and response to cellular microenvironment. These responses appear to be mediated by alterations in transcription factor affinity for DNA rather than altered protein level. How might such changes be effected? This review will identify the range of known post-translational modifications (PTMs) of Sp-factors and the sometimes conflicting literature about the roles of PTMs in regulating activity. We will speculate on the interaction between cell environment, chromatin microenvironment and the role of PTM in governing functionality of the proteins and the complexes to which they belong.
Collapse
Affiliation(s)
- J S Waby
- School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | | | | |
Collapse
|
47
|
Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ, Krepinsky JC. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 2011; 300:F921-31. [PMID: 21289053 DOI: 10.1152/ajprenal.00436.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- L Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 2011; 469:564-7. [PMID: 21240259 PMCID: PMC3064491 DOI: 10.1038/nature09638] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/03/2010] [Indexed: 02/06/2023]
Abstract
The essential mammalian enzyme O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 Å resolution) and as a ternary complex with UDP and a peptide substrate (1.95 Å). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Michael B Lazarus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
49
|
Rajapakse AG, Ming XF, Carvas JM, Yang Z. O-linked beta-N-acetylglucosamine during hyperglycemia exerts both anti-inflammatory and pro-oxidative properties in the endothelial system. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:172-5. [PMID: 20592773 PMCID: PMC2763244 DOI: 10.4161/oxim.2.3.8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 02/07/2023]
Abstract
Elevated cellular levels of protein O-linked beta-N-acetylglucosamine (O-GlcNAc) through hexosamine biosynthesis pathway (HBP) are suggested to contribute to cardiovascular adverse effects under chronic hyperglycemic condition associated with oxidative stress and inflammation. Conversely, enhancing O-GlcNAc levels have also been demonstrated being protective against myocardial ischemia/reperfusion injury. We recently demonstrated that hyperglycemia increases oxidative stress and HBP flux in endothelial cells and enhances endothelial expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in response to tumor necrosis factor-alpha (TNFalpha) through oxidative stress rather than HBP pathway. Here we present further complementary data showing that enhancing O-GlcNAc levels by glucosamine does not mimic hyperglycemia's effect on TNFalpha-induced endothelial VCAM-1 and ICAM-1 expression. Glucosamine however inhibits ICAM-1 (not VCAM-1) expression and induces superoxide generation in the cells. The results further suggest that increased O-GlcNAc levels do not mediate the enhancing effect of hyperglycemia on the endothelial inflammatory responses to TNFalpha. In contrast, it exerts certain anti-inflammatory effects accompanied by pro-oxidative properties. Further work should delineate the exact role of HPB pathway in different aspects of cardiovascular functions, especially those of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Angana Gupta Rajapakse
- Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland
| | | | | | | |
Collapse
|
50
|
Alemu EA, Sjøttem E, Outzen H, Larsen KB, Holm T, Bjørkøy G, Johansen T. Transforming growth factor-β-inducible early response gene 1 is a novel substrate for atypical protein kinase Cs. Cell Mol Life Sci 2010; 68:1953-68. [PMID: 20953893 PMCID: PMC3092057 DOI: 10.1007/s00018-010-0541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/03/2010] [Accepted: 09/27/2010] [Indexed: 11/25/2022]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases consists of ten different isoforms grouped into three subfamilies, denoted classical, novel and atypical PKCs (aPKCs). The aPKCs, PKCι/λ and PKCζ serve important roles during development and in processes subverted in cancer such as cell and tissue polarity, cell proliferation, differentiation and apoptosis. In an effort to identify novel interaction partners for aPKCs, we performed a yeast two-hybrid screen with the regulatory domain of PKCι/λ as bait and identified the Krüppel-like factors family protein TIEG1 as a putative interaction partner for PKCι/λ. We confirmed the interaction of both aPKCs with TIEG1 in vitro and in cells, and found that both aPKCs phosphorylate the DNA-binding domain of TIEG1 on two critical residues. Interestingly, the aPKC-mediated phosphorylation of TIEG1 affected its DNA-binding activity, subnuclear localization and transactivation potential.
Collapse
Affiliation(s)
- Endalkachew A. Alemu
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| | - Heidi Outzen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| | - Kenneth B. Larsen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| | - Turid Holm
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| | - Geir Bjørkøy
- University College of Sør-Trøndelag, 7006 Trondheim, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsö, 9037 Tromsö, Norway
| |
Collapse
|