1
|
Rahman MM, Tollefsbol TO. dCas9-HDAC8-EGFP fusion enables epigenetic editing of breast cancer cells by H3K9 deacetylation. Eur J Cell Biol 2024; 103:151463. [PMID: 39437453 DOI: 10.1016/j.ejcb.2024.151463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic editing is thriving as a robust tool for manipulating transcriptional regulation and cell fate. Despite its regulatory role in gene downregulation, epigenetic editing with histone deacetylation has been sparsely studied, especially in the context of cancer. In this current study, we have reconstructed a dCas9-HDAC8-EGFP fusion to perform histone deacetylation on the promoter of the ESR1, TERT and CDKN1C genes for the first time in breast cancer cell lines MCF-7 and MDA-MB-231 as well as in HEK293T cells. Our results demonstrated that dCas9-HDAC8-EGFP in combination with appropriate gRNAs were able to downregulate the expression of the ESR1, TERT and CDKN1C genes transcriptionally by specifically depleting the H3K9ac level on the recruitment loci. The addition of histone deacetylase inhibitors was found to neutralize the outcomes of dCas9-HDAC8-EGFP-induced epigenetic editing. Furthermore, we observed a significant downregulation of full length ERα expression in epigenetically edited MCF-7 cells with consequential alteration in cellular response toward estradiol and tamoxifen treatment due to dCas9-HDAC8-EGFP mediated epigenetic editing of the ESR1 gene. Overall, dCas9-HDAC8-EGFP is a novel circuit that enabled downregulation of crucial genes with cellular outcome in breast cancer cells by preferentially inducing H3K9 deacetylation of specific promoter regions.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Baker Frost D, Savchenko A, Takamura N, Wolf B, Fierkens R, King K, Feghali-Bostwick C. A Positive Feedback Loop Exists between Estradiol and IL-6 and Contributes to Dermal Fibrosis. Int J Mol Sci 2024; 25:7227. [PMID: 39000334 PMCID: PMC11241801 DOI: 10.3390/ijms25137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| | - Alisa Savchenko
- College of Osteopathic Medicine, Rocky Vista University, 4130 Rocky Vista Way, Billings, MT 59106, USA;
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA;
| | - Roselyn Fierkens
- Barabara Davis Center, Department of Pediatrics, University of Colorado, School of Medicine, M20-3201N, 1775 Aurora Court, Aurora, CO 80045, USA;
| | - Kimberly King
- School of Medicine, Morehouse College, 720 Westview Drive, Atlanta, GA 30310, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| |
Collapse
|
3
|
Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen Receptor Alpha Mutations, Truncations, Heterodimers, and Therapies. Endocrinology 2024; 165:bqae051. [PMID: 38643482 PMCID: PMC11075793 DOI: 10.1210/endocr/bqae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.
Collapse
Affiliation(s)
- Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60513, USA
| |
Collapse
|
4
|
Al-Kabariti AY, Abbas MA. Progress in the Understanding of Estrogen Receptor Alpha Signaling in Triple-Negative Breast Cancer: Reactivation of Silenced ER-α and Signaling through ER-α36. Mol Cancer Res 2023; 21:1123-1138. [PMID: 37462782 DOI: 10.1158/1541-7786.mcr-23-0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 11/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive tumor that accounts for approximately 15% of total breast cancer cases. It is characterized by poor prognosis and high rate of recurrence compared to other types of breast cancer. TNBC has a limited range of treatment options that include chemotherapy, surgery, and radiation due to the absence of estrogen receptor alpha (ER-α) rendering hormonal therapy ineffective. However, possible targets for improving the clinical outcomes in TNBC exist, such as targeting estrogen signaling through membranous ER-α36 and reactivating silenced ER-α. It has been shown that epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can restore the expression of ER-α. This reactivation of ER-α, presents a potential strategy to re-sensitize TNBC to hormonal therapy. Also, this review provides up-to-date information related to the direct involvement of miRNA in regulating the translation of ER-α mRNA. Specific epi-miRNAs can regulate ER-α expression indirectly by post-transcriptional targeting of mRNAs of enzymes that are involved in DNA methylation and histone deacetylation. Furthermore, ER-α36, an alternative splice variant of ER-α66, is highly expressed in ER-negative breast tumors and activates MAPK/ERK pathway, promoting cell proliferation, escaping apoptosis, and enhancing metastasis. In the future, these recent advances may be helpful for researchers working in the field to obtain novel treatment options for TNBC, utilizing epigenetic drugs and epi-miRNAs that regulate ER-α expression. Also, there is some evidence to suggest that drugs that decrease the expression of ER-α36 may be effective in treating TNBC.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
5
|
Balcazar Lopez CE, Albrecht J, Hafstað V, Börjesson Freitag C, Vallon‐Christersson J, Bellodi C, Persson H. Alternative promoters and splicing create multiple functionally distinct isoforms of oestrogen receptor alpha in breast cancer and healthy tissues. Cancer Med 2023; 12:18931-18945. [PMID: 37676103 PMCID: PMC10557849 DOI: 10.1002/cam4.6508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Oestrogen receptor alpha (ER) is involved in cell growth and proliferation and functions as a transcription factor, a transcriptional coregulator, and in cytoplasmic signalling. It affects, for example, bone, endometrium, ovaries and mammary epithelium. It is a key biomarker in clinical management of breast cancer, where it is used as a prognostic and treatment-predictive factor, and a therapeutical target. Several ER isoforms have been described, but transcript annotation in public databases is incomplete and inconsistent, and functional differences are not well understood. METHODS We have analysed short- and long-read RNA sequencing data from breast tumours, breast cancer cell lines, and normal tissues to create a comprehensive annotation of ER transcripts and combined it with experimental studies of full-length protein and six alternative isoforms. RESULTS The isoforms have varying transcription factor activity, subcellular localisation, and response to the ER-targeting drugs tamoxifen and fulvestrant. Antibodies differ in ability to detect alternative isoforms, which raises concerns for the interpretation of ER-status in routine pathology. CONCLUSIONS Future work should investigate the effects of alternative isoforms on patient survival and therapy response. An accurate annotation of ER isoforms will aid in interpretation of clinical data and inform functional studies to improve our understanding of the ER in health and disease.
Collapse
Affiliation(s)
| | - Juliane Albrecht
- Department of Clinical Sciences Lund, OncologyLund University Cancer CentreLundSweden
| | - Völundur Hafstað
- Department of Clinical Sciences Lund, OncologyLund University Cancer CentreLundSweden
| | | | | | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of MedicineLund UniversityLundSweden
| | - Helena Persson
- Department of Clinical Sciences Lund, OncologyLund University Cancer CentreLundSweden
| |
Collapse
|
6
|
Blakely B, Shin S, Jin K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem Pharmacol 2023; 212:115552. [PMID: 37068524 PMCID: PMC10394654 DOI: 10.1016/j.bcp.2023.115552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Estrogen Receptor is the driving transcription factor in about 75% of all breast cancers, which is the target of endocrine therapies, but drug resistance is a common clinical problem. ESR1 point mutations at the ligand binding domain are frequently identified in metastatic tumor and ctDNA (Circulating tumor DNA) derived from ER positive breast cancer patients with endocrine therapies. Although endocrine therapy and CDK4/6 inhibitor therapy have demonstrated preclinical and clinical benefits for breast cancer, the development of resistance remains a significant challenge and the detailed mechanisms, and potential therapeutic targets in advanced breast cancer yet to be revealed. Since a crosstalk between tumor and tumor microenvironment (TME) plays an important role to grow tumor and metastasis, this effect could serve as key regulators in the resistance of endocrine therapy and the transition of breast cancer cells to metastasis. In this article, we have reviewed recent progress in endocrine therapy and the contribution of TME to ER positive breast cancer.
Collapse
Affiliation(s)
- Brianna Blakely
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Seobum Shin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Science, Albany, NY, United States.
| |
Collapse
|
7
|
Clusan L, Percevault F, Jullion E, Le Goff P, Tiffoche C, Fernandez-Calero T, Métivier R, Marin M, Pakdel F, Michel D, Flouriot G. Codon adaptation by synonymous mutations impacts the functional properties of the estrogen receptor-alpha protein in breast cancer cells. Mol Oncol 2023. [PMID: 36808875 DOI: 10.1002/1878-0261.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Oestrogen receptor-alpha (ERα) positivity is intimately associated with the development of hormone-dependent breast cancers. A major challenge in the treatment of these cancers is to understand and overcome the mechanisms of endocrine resistance. Recently, two distinct translation programmes using specific transfer RNA (tRNA) repertoires and codon usage frequencies were evidenced during cell proliferation and differentiation. Considering the phenotype switch of cancer cells to more proliferating and less-differentiated states, we can speculate that the changes in the tRNA pool and codon usage that likely occur make the ERα coding sequence no longer adapted, impacting translational rate, co-translational folding and the resulting functional properties of the protein. To verify this hypothesis, we generated an ERα synonymous coding sequence whose codon usage was optimized to the frequencies observed in genes expressed specifically in proliferating cells and then investigated the functional properties of the encoded receptor. We demonstrate that such a codon adaptation restores ERα activities to levels observed in differentiated cells, including: (a) an enhanced contribution exerted by transactivation function 1 (AF1) in ERα transcriptional activity; (b) enhanced interactions with nuclear receptor corepressor 1 and 2 [NCoR1 and NCoR2 (also known as SMRT) respectively], promoting repressive capability; and (c) reduced interactions with SRC proto-oncogene, non-receptor tyrosine kinase (Src) and phosphoinositide 3-kinase (PI3K) p85 kinases, inhibiting MAPK and AKT signalling pathway.
Collapse
Affiliation(s)
- Léa Clusan
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| | - Frederic Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| | - Emmanuelle Jullion
- Institut de Génétique De Rennes (IGDR), UMR 6290 CNRS, ERL INSERM U1305, Univ Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| | - Christophe Tiffoche
- Institut de Génétique De Rennes (IGDR), UMR 6290 CNRS, ERL INSERM U1305, Univ Rennes, France
| | - Tamara Fernandez-Calero
- Departamento de Ciencias Exactas Y Naturales, Universidad Catolica del Uruguay, Montevideo, Uruguay.,Bioinformatics Unit, Institut Pasteur Montevideo, Uruguay
| | - Raphaël Métivier
- Institut de Génétique De Rennes (IGDR), UMR 6290 CNRS, ERL INSERM U1305, Univ Rennes, France
| | - Monica Marin
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S1085, France
| |
Collapse
|
8
|
Godoy‑Pacheco A, García‑Chagollán M, Ramírez‑De‑Arellano A, Hernández‑Silva C, Villegas‑Pineda J, Ramírez‑López I, Zepeda‑Nuño J, Aguilar‑Lemarroy A, Pereira‑Suárez A. Differential modulation of natural killer cell cytotoxicity by 17β‑estradiol and prolactin through the NKG2D/NKG2DL axis in cervical cancer cells. Oncol Lett 2022; 24:288. [DOI: 10.3892/ol.2022.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alejandro Godoy‑Pacheco
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Mariel García‑Chagollán
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adrián Ramírez‑De‑Arellano
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Christian Hernández‑Silva
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Julio Villegas‑Pineda
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Inocencia Ramírez‑López
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - José Zepeda‑Nuño
- Center for Research and Diagnosis of Pathology, Department of Microbiology and Pathology, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adriana Aguilar‑Lemarroy
- Department of Immunology, Western Biomedical Research Center, Guadalajara, Jalisco 44340, Mexico
| | - Ana Pereira‑Suárez
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
9
|
Chauvin S, Cohen-Tannoudji J, Guigon CJ. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int J Mol Sci 2022; 23:ijms23010512. [PMID: 35008938 PMCID: PMC8745567 DOI: 10.3390/ijms23010512] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Estradiol (E2) is a major hormone controlling women fertility, in particular folliculogenesis. This steroid, which is locally produced by granulosa cells (GC) within ovarian follicles, controls the development and selection of dominant preovulatory follicles. E2 effects rely on a complex set of nuclear and extra-nuclear signal transduction pathways principally triggered by its nuclear receptors, ERα and ERβ. These transcription factors are differentially expressed within follicles, with ERβ being the predominant ER in GC. Several ERβ splice isoforms have been identified and display specific structural features, which greatly complicates the nature of ERβ-mediated E2 signaling. This review aims at providing a concise overview of the main actions of E2 during follicular growth, maturation, and selection in human. It also describes the current understanding of the various roles of ERβ splice isoforms, especially their influence on cell fate. We finally discuss how E2 signaling deregulation could participate in two ovarian pathogeneses characterized by either a follicular arrest, as in polycystic ovary syndrome, or an excess of GC survival and proliferation, leading to granulosa cell tumors. This review emphasizes the need for further research to better understand the molecular basis of E2 signaling throughout folliculogenesis and to improve the efficiency of ovarian-related disease therapies.
Collapse
|
10
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
11
|
Cirillo F, Pellegrino M, Talia M, Perrotta ID, Rigiracciolo DC, Spinelli A, Scordamaglia D, Muglia L, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancer-associated fibroblasts. Clin Transl Med 2021; 11:e516. [PMID: 34841688 PMCID: PMC8567034 DOI: 10.1002/ctm2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of PhysicsUniversity of CalabriaRendeItaly
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, and Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | | | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rita Guzzi
- Department of PhysicsUniversity of CalabriaRendeItaly
| | | | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of CataniaGaribaldi‐Nesima HospitalCataniaItaly
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| |
Collapse
|
12
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
13
|
Gopal A, Herr AE. Segmentation-based analysis of single-cell immunoblots. Electrophoresis 2021; 42:2070-2080. [PMID: 34357587 PMCID: PMC8526408 DOI: 10.1002/elps.202100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
From genomics to transcriptomics to proteomics, microfluidic tools underpin recent advances in single-cell biology. Detection of specific proteoforms-with single-cell resolution-presents challenges in detection specificity and sensitivity. Miniaturization of protein immunoblots to single-cell resolution mitigates these challenges. For example, in microfluidic western blotting, protein targets are separated by electrophoresis and subsequently detected using fluorescently labeled antibody probes. To quantify the expression level of each protein target, the fluorescent protein bands are fit to Gaussians; yet, this method is difficult to use with noisy, low-abundance, or low-SNR protein bands, and with significant band skew or dispersion. In this study, we investigate segmentation-based approaches to robustly quantify protein bands from single-cell protein immunoblots. As compared to a Gaussian fitting pipeline, the segmentation pipeline detects >1.5× more protein bands for downstream quantification as well as more of the low-abundance protein bands (i.e., with SNR ∼3). Utilizing deep learning-based segmentation approaches increases the recovery of low-SNR protein bands by an additional 50%. However, we find that segmentation-based approaches are less robust at quantifying poorly resolved protein bands (separation resolution, Rs < 0.6). With burgeoning needs for more single-cell protein analysis tools, we see microfluidic separations as benefitting substantially from segmentation-based analysis approaches.
Collapse
Affiliation(s)
- Anjali Gopal
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Amy E. Herr
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
14
|
Fiocchetti M, Bastari G, Cipolletti M, Leone S, Acconcia F, Marino M. The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor α Activities in the Proliferation of Breast Cancer Cells. TOXICS 2021; 9:237. [PMID: 34678933 PMCID: PMC8538674 DOI: 10.3390/toxics9100237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Phthalates comprise a group of synthetic chemicals present in the environment because of their wide use as plasticizers and as additives in products for personal care. Among others, diethyl phthalate (DEP) is largely used in products for infants, children, and adults, in which its exposure has been correlated with an increased risk of breast cancer. The adverse health outcomes deriving from phthalate exposure have been associated with their activity as endocrine disruptors (EDCs) of the steroid and thyroid hormone signaling by affecting developmental and reproductive health, and even carcinogenicity. However, the estrogen disruptor activities of DEP are still controversial, and the mechanism at the root of the estrogenic-disrupting action of DEP remains to be clarified. Here, we evaluated the DEP mechanism of action on the activation status of estrogen receptor α (ERα) by analyzing the receptor's phosphorylation as well as both nuclear and extra-nuclear pathways triggered by the receptor to modulate the proliferation of breast cancer cells. Although DEP does not bind to ERα, our results suggest that this phthalate ester exerts multiple parallel interactions with ERα signaling and emphasize the importance to determine an appropriate battery of in vitro methods that will include specific molecular mechanisms involved in the endocrine disruption.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| | | | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| |
Collapse
|
15
|
Single-cell immunoblotting resolves estrogen receptor-α isoforms in breast cancer. PLoS One 2021; 16:e0254783. [PMID: 34314438 PMCID: PMC8315538 DOI: 10.1371/journal.pone.0254783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
An array of isoforms of the nuclear estrogen receptor alpha (ER-α) protein contribute to heterogeneous response in breast cancer (BCa); yet, a single-cell analysis tool that distinguishes the full-length ER-α66 protein from the activation function-1 deficient ER-α46 isoform has not been reported. Specific detection of protein isoforms is a gap in single-cell analysis tools, as the de facto standard immunoassay requires isoform-specific antibody probes. Consequently, to scrutinize hormone response heterogeneity among BCa tumor cells, we develop a precision tool to specifically measure ER-α66, ER- α46, and eight ER-signaling proteins with single-cell resolution in the highly hetero-clonal MCF-7 BCa cell line. With a literature-validated pan-ER immunoprobe, we distinguish ER-α66 from ER-α46 in each individual cell. We identify ER-α46 in 5.5% of hormone-sensitive (MCF-7) and 4.2% of hormone-insensitive (MDA-MB-231) BCa cell lines. To examine whether the single-cell immunoblotting can capture cellular responses to hormones, we treat cells with tamoxifen and identify different sub-populations of ER-α46: (i) ER-α46 induces phospho-AKT at Ser473, (ii) S6-ribosomal protein, an upstream ER target, activates both ER-α66 and ER-α46 in MCF-7 cells, and (iii) ER-α46 partitions MDA-MB-231 subpopulations, which are responsive to tamoxifen. Unlike other single-cell immunoassays, multiplexed single-cell immunoblotting reports–in the same cell–tamoxifen effects on ER signaling proteins and on distinct isoforms of the ER-α protein.
Collapse
|
16
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
17
|
Due SL, Watson DI, Hussey DJ. Oestrogen receptors: A potential therapeutic target in oesophageal adenocarcinoma? ANZ J Surg 2021; 91:1390-1396. [PMID: 34227212 DOI: 10.1111/ans.17054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022]
Abstract
Oesophageal cancer is the seventh most common cancer in the world and adenocarcinoma is the dominant subtype in Western industrialised nations. The global 5-year relative survival rate for oesophageal adenocarcinoma is 12%. Chemotherapy is a standard treatment offered to patients with both resectable and unresectable disease. However, there are only a few established chemotherapeutic drug options and progress in this area is limited. Recent efforts have focused on targeted molecular therapies. Epidemiological evidence points towards hormonal influences on disease development, particularly sex hormones. Several research studies have demonstrated oestrogen receptor (ER) expression in oesophageal adenocarcinoma tissue, making them a possible option for targeting with ER modulating agents. ERs are also present in laboratory models of the disease and experiments in ER-positive cell lines suggest that ER modulator therapy may be effective. A deeper understanding of the roles of ERα and ERβ in this disease would be valuable for future translation into clinical practice. In this review, we discuss the association between oestrogens and the development of oesophageal adenocarcinoma and the potential to modulate ER signalling networks for therapeutic benefit.
Collapse
Affiliation(s)
- Steven L Due
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
- Flinders Health and Medical Research Institute Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David I Watson
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
- Flinders Health and Medical Research Institute Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damian J Hussey
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
- Flinders Health and Medical Research Institute Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
19
|
Jehanno C, Percevault F, Boujrad N, Le Goff P, Fontaine C, Arnal JF, Primig M, Pakdel F, Michel D, Métivier R, Flouriot G. Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts ERα nuclear/genomic to extra-nuclear/non genomic actions. Mol Cell Endocrinol 2021; 530:111282. [PMID: 33894309 DOI: 10.1016/j.mce.2021.111282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/15/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
The Myocardin-related transcription factor A [MRTFA, also known as Megakaryoblastic Leukemia 1 (MKL1))] is a major actor in the epithelial to mesenchymal transition (EMT). We have previously shown that activation and nuclear accumulation of MRTFA mediate endocrine resistance of estrogen receptor alpha (ERα) positive breast cancers by initiating a partial transition from luminal to basal-like phenotype and impairing ERα cistrome and transcriptome. In the present study, we deepen our understanding of the mechanism by monitoring functional changes in the receptor's activity. We demonstrate that MRTFA nuclear accumulation down-regulates the expression of the unliganded (Apo-)ERα and causes a redistribution of the protein localization from its normal nuclear place to the entire cell volume. This phenomenon is accompanied by a shift in Apo-ERα monomer/dimer ratio towards the monomeric state, leading to significant functional consequences on ERα activities. In particular, the association of Apo-ERα with chromatin is drastically decreased, and the remaining ERα binding sites are substantially less enriched in ERE motifs than in control conditions. Monitored by proximity Ligation Assay, ERα interactions with P160 family coactivators are partly impacted when MRTFA accumulates in the nucleus, and those with SMRT and NCOR1 corepressors are abolished. Finally, ERα interactions with kinases such as c-src and PI3K are increased, thereby enhancing MAP Kinase and AKT activities. In conclusion, the activation and nuclear accumulation of MRTFA in ERα positive breast cancer cells remodels both ERα location and functions by shifting its activity from nuclear genome regulation to extra-nuclear non-genomic signaling.
Collapse
Affiliation(s)
- Charly Jehanno
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France; University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frédéric Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Noureddine Boujrad
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Raphaël Métivier
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
20
|
Gibson DA, Esnal-Zufiaurre A, Bajo-Santos C, Collins F, Critchley HOD, Saunders PTK. Profiling the expression and function of oestrogen receptor isoform ER46 in human endometrial tissues and uterine natural killer cells. Hum Reprod 2021; 35:641-651. [PMID: 32108901 PMCID: PMC7105323 DOI: 10.1093/humrep/dez306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does the oestrogen receptor isoform, ER46, contribute to regulation of endometrial function? SUMMARY ANSWER ER46 is expressed in endometrial tissues, is the predominant ER isoform in first trimester decidua and is localised to the cell membrane of uterine natural killer (uNK) cells where activation of ER46 increases cell motility. WHAT IS KNOWN ALREADY Oestrogens acting via their cognate receptors are essential regulators of endometrial function and play key roles in establishment of pregnancy. ER46 is a 46-kDa truncated isoform of full length ERα (ER66, encoded by ESR1) that contains both ligand- and DNA-binding domains. Expression of ER46 in the human endometrium has not been investigated previously. ER46 is located at the cell membrane of peripheral blood leukocytes and mediates rapid responses to oestrogens. uNK cells are a phenotypically distinct (CD56brightCD16-) population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. We have shown that oestrogens stimulate rapid increases in uNK cell motility. Previous characterisation of uNK cells suggests they are ER66-negative, but expression of ER46 has not been characterised. We hypothesise that uNK cells express ER46 and that rapid responses to oestrogens are mediated via this receptor. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human endometrial (n = 24) and decidual tissue biopsies (n = 30) as well as uNK cells which were freshly isolated from first trimester human decidua (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary human endometrial and first trimester decidual tissue biopsies were collected using methods approved by the local institutional ethics committee (LREC/05/51104/12 and LREC/10/51402/59). The expression of ERs (ER66, ER46 and ERβ) was assessed by quantitative PCR, western blot and immunohistochemistry. uNK cells were isolated from first-trimester human decidua by magnetic bead sorting. Cell motility of uNK cells was measured by live cell imaging: cells were treated with 17β-oestradiol conjugated to bovine serum albumin (E2-BSA, 10 nM equivalent), the ERβ-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nM) or dimethylsulphoxide vehicle control. MAIN RESULTS AND THE ROLE OF CHANCE ER46 was detected in proliferative and secretory phase tissues by western blot and was the predominant ER isoform in first-trimester decidua samples. Immunohistochemistry revealed that ER46 was co-localised with ER66 in cell nuclei during the proliferative phase but detected in both the cytoplasm and cell membrane of stromal cells in the secretory phase and in decidua. Triple immunofluorescence staining of decidua tissues identified expression of ER46 in the cell membrane of CD56-positive uNK cells which were otherwise ER66-negative. Profiling of isolated uNK cells confirmed expression of ER46 by quantitative PCR and western blot and localised ER46 protein to the cell membrane by immunocytochemistry. Functional analysis of isolated uNK cells using live cell imaging demonstrated that activation of ER46 with E2-BSA significantly increased uNK cell motility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Expression pattern in endometrial tissue was only determined using samples from proliferative and secretory phases. Assessment of first trimester decidua samples was from a range of gestational ages, which may have precluded insights into gestation-specific changes in these tissues. Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in situ. WIDER IMPLICATIONS OF THE FINDINGS E2 is an essential regulator of reproductive competence. This study provides the first evidence for expression of ER46 in the human endometrium and decidua of early pregnancy. We describe a mechanism for regulating the function of human uNK cells via expression of ER46 and demonstrate that selective targeting with E2-BSA regulates uNK cell motility. These novel findings identify a role for ER46 in the human endometrium and provide unique insight into the importance of membrane-initiated signalling in modulating the impact of E2 on uNK cell function in women. Given the importance of uNK cells to regulating vascular remodelling in early pregnancy and the potential for selective targeting of ER46, this may be an attractive future therapeutic target in the treatment of reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S) These studies were supported by Medical Research Council (MRC) Programme Grants G1100356/1 and MR/N024524/1 to PTKS. H.O.D.C. was supported by MRC grant G1002033. The authors declare no competing interests related to the published work.
Collapse
Affiliation(s)
- Douglas A Gibson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | - Cristina Bajo-Santos
- Department of Cancer Research Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Frances Collins
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
21
|
Langdon SP, Herrington CS, Hollis RL, Gourley C. Estrogen Signaling and Its Potential as a Target for Therapy in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061647. [PMID: 32580290 PMCID: PMC7352420 DOI: 10.3390/cancers12061647] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
The estrogen receptor (ER) has functionality in selected ovarian cancer subtypes and represents a potential target for therapy. The majority (>80%) of high grade serous, low grade serous and endometrioid carcinomas and many granulosa cell tumors express ER-alpha (ERα), and these tumor types have demonstrated responses to endocrine therapy (tamoxifen and aromatase inhibitors) in multiple clinical studies. Biomarkers of responses to these drugs are actively being sought to help identify responsive cancers. Evidence for both pro-proliferative and pro-migratory roles for ERα has been obtained in model systems. ER-beta (ERβ) is generally considered to have a tumor suppressor role in ovarian cancer cells, being associated with the repression of cell growth and invasion. The differential expression of the specific ERβ isoforms may determine functionality within ovarian cancer cells. The more recently identified G protein-coupled receptor (GPER1; GPR30) has been shown to mediate both tumor-suppressive and tumor-promoting action in ovarian cancer cells, suggesting a more complex role. This review will summarize recent findings in this field.
Collapse
Affiliation(s)
- Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
- Correspondence: ; Tel.: +44-(0)131-651-8694
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK;
- The Nicola Murray Centre for Ovarian Cancer Research, CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (R.L.H.); (C.G.)
| | - Robert L. Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (R.L.H.); (C.G.)
| | - Charlie Gourley
- The Nicola Murray Centre for Ovarian Cancer Research, CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (R.L.H.); (C.G.)
| |
Collapse
|
22
|
Gutiérrez A, Sambuco L, Álvarez L, Núñez M, Bergoc R, Zotta E, Martín G, Randi A. Expression of estrogen receptor α variants and c-Fos in rat mammary gland and tumors. J Steroid Biochem Mol Biol 2020; 199:105594. [PMID: 31968225 DOI: 10.1016/j.jsbmb.2020.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Breast cancer is currently the leading cause of cancer death among women worldwide. AP-1 (c-Fos/c-Jun) is associated with proliferation and survival, while cytoplasmic c-Fos activates phospholipid synthesis in cells induced to differentiate or grow. Estrogen receptor α 46 (ERα46) is a splice variant of full-length ERα66 and it is known that it has an inhibitory role in cancer cell growth. We investigated c-Fos localization, its relationship to AP-1, the non genomic pathway of phospho-Tyr537-ERα66, as well as ERα46 and ERα66 isoforms in rat mammary gland development and carcinogenic transformation, and in mammary tumors. Female rats were injected: a) saline solution (Control mammary gland, CMG) or b) N-Nitroso-N-methyl urea (NMU), and samples were taken at 60, 90, 120 and 150 days of life. In addition, we analyzed hormone-dependent (HD) and independent (HI) tumors in ovariectomized rats, and intact tumors (IT) in non-ovariectomized ones. Our results show that, in CMG, nuclear c-Fos and proliferation decreased with age, AP-1 content was low, and nuclear ERα46/ERα66 ratio was higher than 1. In NMU, nuclear c-Fos and proliferation increased with carcinogenic transformation, AP-1 content was high, and nuclear ERα46/ERα66 was below 1. As tumor grade increased, proliferation, nuclear c-Fos and AP-1 expression were negatively associated to nuclear ERα46/ERα66 in IT. In HD, nuclear ERα46/ERα66, nuclear c-Fos expression, AP-1 levels and proliferation were lower than in HI, whose growth is estrogen-independent. Phospho-Tyr537-ERα66 content and ERK1/2 activation were associated with AP-1 levels and cell proliferation. Collectively, our findings support the notion that variant detection and ERα46/ERα66 ratio could shed light on the role of ERα isoforms in mammary gland transformation and the behavior of ERα positive mammary tumors.
Collapse
Affiliation(s)
- Alicia Gutiérrez
- Uiversidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to Piso, (CP1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatematica, Laboratorio de Radioisótopos, Junín 954, Subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Lorena Sambuco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatematica, Laboratorio de Radioisótopos, Junín 954, Subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Laura Álvarez
- Uiversidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to Piso, (CP1121), Buenos Aires, Argentina.
| | - Mariel Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatematica, Laboratorio de Radioisótopos, Junín 954, Subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Rosa Bergoc
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatematica, Laboratorio de Radioisótopos, Junín 954, Subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Elsa Zotta
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Sección Patología, Laboratorio de Fisiopatogenia, Paraguay 2155, 5º Piso, (CP1121) Buenos Aires, Argentina.
| | - Gabriela Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatematica, Laboratorio de Radioisótopos, Junín 954, Subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Andrea Randi
- Uiversidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to Piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Ferreira Almeida C, Oliveira A, João Ramos M, Fernandes PA, Teixeira N, Amaral C. Estrogen receptor-positive (ER +) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem Pharmacol 2020; 177:113989. [PMID: 32330493 DOI: 10.1016/j.bcp.2020.113989] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Endocrine therapy is currently the main therapeutic approach for estrogen receptor-positive (ER+) breast cancer, the most frequent subtype of breast cancer in women worldwide. For this subtype of tumors, the current clinical treatment includes aromatase inhibitors (AIs) and anti-estrogenic compounds, such as Tamoxifen and Fulvestrant, being AIs the first-line treatment option for post-menopausal women. Moreover, the recent guidelines also suggest the use of these compounds by pre-menopausal women after suppressing ovaries function. However, besides its therapeutic efficacy, the prolonged use of this type of therapies may lead to the development of several adverse effects, as well as, endocrine resistance, limiting the effectiveness of such treatments. In order to surpass this issues and clinical concerns, during the last years, several studies have been suggesting alternative therapeutic approaches, considering the function of aromatase, ERα and ERβ. Here, we review the structural and functional features of these three targets and their importance in ER+ breast cancer treatment, as well as, the current treatment strategies used in clinic, emphasizing the importance of the development of multi-target compounds able to simultaneously modulate these key targets, as a novel and promising therapeutic strategy for this type of cancer.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- UCIBIO.REQUIMTE, Computational Biochemistry Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
24
|
Fontaine C, Buscato M, Vinel A, Giton F, Raymond-Letron I, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Gourdy P, Milon A, Flouriot G, Ohlsson C, Lenfant F, Arnal JF. The tissue-specific effects of different 17β-estradiol doses reveal the key sensitizing role of AF1 domain in ERα activity. Mol Cell Endocrinol 2020; 505:110741. [PMID: 32004676 DOI: 10.1016/j.mce.2020.110741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/31/2022]
Abstract
17β-Estradiol (E2) action can be mediated by the full-length estrogen receptor alpha (ERα66), and also by the AF1 domain-deficient ERα (ERα46) isoform, but their respective sensitivity to E2 is essentially unknown. We first performed a dose response study using subcutaneous home-made pellets mimicking either metestrus, proestrus or a pharmacological doses of E2, which resulted in plasma concentrations around 3, 30 and 600 pM, respectively. Analysis of the uterus, vagina and bone after chronic exposure to E2 demonstrated dose-dependent effects, with a maximal response reached at the proestrus-dose in wild type mice expressing mainly ERα66. In contrast, in transgenic mice harbouring only an ERα deleted in AF1, these effects of E2 were either strongly shifted rightward (10-100-fold) and/or attenuated, depending on the tissue studied. Finally, experiments in different cell lines transfected with ERα66 or ERα46 also delineated varying profiles of ERα AF1 sensitivity to E2. Altogether, this work emphasizes the importance of dose in the tissue-specific actions of E2 and demonstrates the key sensitizing role of AF1 in ERα activity.
Collapse
Affiliation(s)
- Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Melissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Alexia Vinel
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Frank Giton
- INSERM IMRB U955 Eq07, Créteil, France; AP-HP, Pôle Biologie-Pathologie Henri Mondor, Créteil, France
| | | | - Sung Hoon Kim
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Alain Milon
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR 1085, Rennes, France
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France.
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
25
|
Burgdorf T, Piersma AH, Landsiedel R, Clewell R, Kleinstreuer N, Oelgeschläger M, Desprez B, Kienhuis A, Bos P, de Vries R, de Wit L, Seidle T, Scheel J, Schönfelder G, van Benthem J, Vinggaard AM, Eskes C, Ezendam J. Workshop on the validation and regulatory acceptance of innovative 3R approaches in regulatory toxicology - Evolution versus revolution. Toxicol In Vitro 2019; 59:1-11. [PMID: 30946968 DOI: 10.1016/j.tiv.2019.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
At a joint workshop organized by RIVM and BfR, international experts from governmental institutes, regulatory agencies, industry, academia and animal welfare organizations discussed and provided recommendations for the development, validation and implementation of innovative 3R approaches in regulatory toxicology. In particular, an evolutionary improvement of our current approach of test method validation in the context of defined approaches or integrated testing strategies was discussed together with a revolutionary approach based on a comprehensive description of the physiological responses of the human body to chemical exposure and the subsequent definition of relevant and predictive in vitro, in chemico or in silico methods. A more comprehensive evaluation of biological relevance, scientific validity and regulatory purpose of new test methods and assessment strategies together with case studies that provide practical experience with new approaches were discussed as essential steps to build up the necessary confidence to facilitate regulatory acceptance.
Collapse
Affiliation(s)
- T Burgdorf
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - A H Piersma
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Netherlands
| | | | - R Clewell
- 21(st) Century Tox Consulting, Chapel Hill, NC 27515, USA
| | | | - M Oelgeschläger
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany.
| | | | - A Kienhuis
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| | - P Bos
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - R de Vries
- Evidence-based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA & SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - L de Wit
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - T Seidle
- Humane Society International, Toronto, Canada
| | - J Scheel
- Evonik Performance Materials GmbH, Darmstadt, Germany
| | - G Schönfelder
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - J van Benthem
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| | - A M Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet building 202, DK-2800 Kgs.Lyngby, Denmark
| | - C Eskes
- Swiss 3R Competence Centre (3RCC), Switzerland
| | - J Ezendam
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| |
Collapse
|
26
|
Gebhart VM, Caldwell JD, Rodewald A, Kalyvianaki K, Kampa M, Jirikowski GF. Estrogen receptors and sex hormone binding globulin in neuronal cells and tissue. Steroids 2019; 142:94-99. [PMID: 30030052 DOI: 10.1016/j.steroids.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 01/28/2023]
Abstract
Estrogens exert a critical influence on neuronal tissues and cells. As demonstrated in many clinical studies, estrogens are neuroprotective to the extent that they improve prognosis for women with neurodegenerative diseases. Unfortunately, we still do not know exactly how these effects are mediated. Fifty years ago the first estrogen receptor was found, but since then many other new pathways of estrogen action have been identified. This review describes several of these pathways of estrogen effects and provides some conclusions and correlations about these as determined by recent studies with nerve growth factor differentiated rat pheochromocytoma cell line.
Collapse
Affiliation(s)
| | - Jack D Caldwell
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Spartanburg, SC, United States
| | | | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | |
Collapse
|
27
|
Anamthathmakula P, Kyathanahalli C, Ingles J, Hassan SS, Condon JC, Jeyasuria P. Estrogen receptor alpha isoform ERdelta7 in myometrium modulates uterine quiescence during pregnancy. EBioMedicine 2019; 39:520-530. [PMID: 30502052 PMCID: PMC6355643 DOI: 10.1016/j.ebiom.2018.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Circulating estrogen (E2) levels are high throughout pregnancy and increase towards term, however its local tissue specific actions vary across gestation. For example, myometrial E2 regulated uterotonic action is disabled until term, whereas it's proliferative function is maintained in the breast. We have identified gestationally regulated splicing events, mediated by hnRNPG and modulated by E2 that generate alternatively spliced estrogen receptor alpha (ERα) variants (ERΔ7 and ERα46) in the myometrium. These variants allow for differential, gestationally regulated, modulation of the uterotonic action of E2. METHODS Human myometrium isolated from preterm and term non-laboring and laboring pregnant women were analyzed for ERα isoforms and splice factor levels. Lentiviral mediated shRNA knockdown of hnRNPG and overexpression of ERΔ7 were performed in human myometrial (hTERT-HM) cells. Functional 3D collagen contraction assays were executed. FINDINGS ERΔ7 acts as a dominant negative repressor of the uterotonic action of ERα66 and ERα46 isoforms through the regulation of the myometrial gap junction protein GJA1. Elimination of hnRNPG inhibits the generation of ERΔ7 while overexpression of ERΔ7 inhibited GJA1 expression. Moreover in vivo human myometrial hnRNPG levels decline at term in an E2 dependent manner resulting in a withdrawal of ERΔ7 levels and its tocolytic action at term. INTERPRETATION Our findings implicate the unique role of ERΔ7 as a modulator of myometrial quiescence and define the mechanism of ERΔ7 generation, through hormonally regulated splicing events. FUND: This study was supported by NIH OPRU U01 supplement (HD047905), University of Pittsburgh and Wayne State University Perinatal Research Initiative (USA).
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Judith Ingles
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA; Perinatology Research Branch, NICHD, Bethesda, MD 20892, USA
| | - Jennifer C Condon
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Pancharatnam Jeyasuria
- Department of Obstetrics and Gynecology, Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Ohe K, Miyajima S, Tanaka T, Hamaguchi Y, Harada Y, Horita Y, Beppu Y, Ito F, Yamasaki T, Terai H, Mori M, Murata Y, Tanabe M, Abe I, Ashida K, Kobayashi K, Enjoji M, Nomiyama T, Yanase T, Harada N, Utsumi T, Mayeda A. HMGA1a Induces Alternative Splicing of the Estrogen Receptor-α lpha Gene by Trapping U1 snRNP to an Upstream Pseudo-5' Splice Site. Front Mol Biosci 2018; 5:52. [PMID: 29938207 PMCID: PMC6002489 DOI: 10.3389/fmolb.2018.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives: The high-mobility group A protein 1a (HMGA1a) protein is known as a transcription factor that binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. We were prompted to decipher the mechanism of HMGA1a-induced alternative splicing of the estrogen receptor alpha (ERα) that we recently reported would alter tamoxifen sensitivity in MCF-7 TAMR1 cells. Methods: Endogenous expression of full length ERα66 and its isoform ERα46 were evaluated in MCF-7 breast cancer cells by transient expression of HMGA1a and an RNA decoy (2′-O-methylated RNA of the HMGA1a RNA-binding site) that binds to HMGA1a. RNA-binding of HMGA1a was checked by RNA-EMSA. In vitro splicing assay was performed to check the direct involvement of HMGA1a in splicing regulation. RNA-EMSA assay in the presence of purified U1 snRNP was performed with psoralen UV crosslinking to check complex formation of HMGA1a-U1 snRNP at the upstream pseudo-5′ splice site of exon 1. Results: HMGA1a induced exon skipping of a shortened exon 1 of ERα in in vitro splicing assays that was blocked by the HMGA1a RNA decoy and sequence-specific RNA-binding was confirmed by RNA-EMSA. RNA-EMSA combined with psoralen UV crosslinking showed that HMGA1a trapped purified U1 snRNP at the upstream pseudo-5′ splice site. Conclusions: Regulation of ERα alternative splicing by an HMGA1a-trapped U1 snRNP complex at the upstream 5′ splice site of exon 1 offers novel insight on 5′ splice site regulation by U1 snRNP as well as a promising target in breast cancer therapy where alternative splicing of ERα is involved.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Miyajima
- Department of Breast Surgery, Fujita Health University, Toyoake, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yuki Beppu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Fumiaki Ito
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hiroki Terai
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, Fujita Health University, Toyoake, Japan
| | - Toshiaki Utsumi
- Department of Breast Surgery, Fujita Health University, Toyoake, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
29
|
Boonyaratanakornkit V, Hamilton N, Márquez-Garbán DC, Pateetin P, McGowan EM, Pietras RJ. Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 2018; 466:51-72. [PMID: 29146555 PMCID: PMC5878997 DOI: 10.1016/j.mce.2017.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Irsik DL, Romero-Aleshire MJ, Chavez EM, Fallet RW, Brooks HL, Carmines PK, Lane PH. Renoprotective impact of estrogen receptor-α and its splice variants in female mice with type 1 diabetes. Am J Physiol Renal Physiol 2018; 315:F512-F520. [PMID: 29667912 DOI: 10.1152/ajprenal.00231.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor-α (ERα66), its ERα splice variants, and estrogen receptor-β (ERβ). Thus, we hypothesized that these splice variants may inhibit the glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8- to 12-wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO mice. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO compared with WT and αERKO mice but was higher in STZ than in Control mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ mice. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.
Collapse
Affiliation(s)
- Debra L Irsik
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | | | - Erin M Chavez
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Rachel W Fallet
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Pamela K Carmines
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Pascale H Lane
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska.,Department of Pediatrics, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
31
|
Zhu H, Huang Y, Su H, Ma Y, Tao Y, Liao DJ, Liu Y, Feng Z. Identification of a novel human estrogen receptor-α splice variant able to enhance malignant biological behaviors of breast cancer cells. Oncol Lett 2018; 15:5339-5344. [PMID: 29552176 DOI: 10.3892/ol.2018.7970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/12/2018] [Indexed: 11/05/2022] Open
Abstract
Since the early 1990s, multiple human estrogen receptor-α (hER-α) splice variants have been identified, of which the majority contain ≥1 deleted exon, and some are expressed as proteins with modified functions from the wild-type 66 kDa hER-α (ER-α66). In the present study, a novel hER-α splice variant, ER-α30, was identified and cloned from clinical breast cancer tissue. The ER-α30 sequence lacked a ligand-binding domain and a ligand-dependent transcriptional activation domain but retained the N-terminal transcriptional activation domain, the DNA-binding domain and a partial hinge domain, and possesses a unique 10-amino-acid domain. The expression of ER-α30 was associated with ER-α66-negative and progesterone receptor-negative breast cancer. The 30 kDa protein was expressed in stably transfected MDA-MB-231 cells, and the overexpression of ER-α30 in MDA-MB-231 cells enhanced malignant biological behaviors, including cellular proliferation, migration and invasion in vitro. The results of the present study indicated that ER-α30 might represent a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yue Huang
- Department of Breast Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Heling Su
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yili Ma
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yiming Tao
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - D Joshua Liao
- Hormel Institute, The University of Minnesota, Austin, MN 55912, USA
| | - Yongming Liu
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Miller MM, McMullen PD, Andersen ME, Clewell RA. Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts. Crit Rev Toxicol 2017; 47:564-580. [DOI: 10.1080/10408444.2017.1289150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
34
|
Guillaume M, Handgraaf S, Fabre A, Raymond-Letron I, Riant E, Montagner A, Vinel A, Buscato M, Smirnova N, Fontaine C, Guillou H, Arnal JF, Gourdy P. Selective Activation of Estrogen Receptor α Activation Function-1 Is Sufficient to Prevent Obesity, Steatosis, and Insulin Resistance in Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1273-1287. [DOI: 10.1016/j.ajpath.2017.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
|
35
|
Chantalat E, Boudou F, Laurell H, Palierne G, Houtman R, Melchers D, Rochaix P, Filleron T, Stella A, Burlet-Schiltz O, Brouchet A, Flouriot G, Métivier R, Arnal JF, Fontaine C, Lenfant F. The AF-1-deficient estrogen receptor ERα46 isoform is frequently expressed in human breast tumors. Breast Cancer Res 2016; 18:123. [PMID: 27927249 PMCID: PMC5142410 DOI: 10.1186/s13058-016-0780-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17β estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.
Collapse
Affiliation(s)
- Elodie Chantalat
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.,Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Frédéric Boudou
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Henrik Laurell
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Gaëlle Palierne
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - René Houtman
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Diana Melchers
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Philippe Rochaix
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Thomas Filleron
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Brouchet
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes 1, 35000, Rennes, France
| | - Raphaël Métivier
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.
| |
Collapse
|
36
|
Miller MM, Alyea RA, LeSommer C, Doheny DL, Rowley SM, Childs KM, Balbuena P, Ross SM, Dong J, Sun B, Andersen MA, Clewell RA. Editor's Highlight: Development of an In vitro Assay Measuring Uterine-Specific Estrogenic Responses for Use in Chemical Safety Assessment. Toxicol Sci 2016; 154:162-173. [PMID: 27503385 PMCID: PMC5091368 DOI: 10.1093/toxsci/kfw152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A toxicity pathway approach was taken to develop an in vitro assay using human uterine epithelial adenocarcinoma (Ishikawa) cells as a replacement for measuring an in vivo uterotrophic response to estrogens. The Ishikawa cell was determined to be fit for the purpose of recapitulating in vivo uterine response by verifying fidelity of the biological pathway components and the dose-response predictions to women of child-bearing age. Expression of the suite of estrogen receptors that control uterine proliferation (ERα66, ERα46, ERα36, ERβ, G-protein coupled estrogen receptor (GPER)) were confirmed across passages and treatment conditions. Phenotypic responses to ethinyl estradiol (EE) from transcriptional activation of ER-mediated genes, to ALP enzyme induction and cellular proliferation occurred at concentrations consistent with estrogenic activity in adult women (low picomolar). To confirm utility of this model to predict concentration-response for uterine proliferation with xenobiotics, we tested the concentration-response for compounds with known uterine estrogenic activity in humans and compared the results to assays from the ToxCast and Tox21 suite of estrogen assays. The Ishikawa proliferation assay was consistent with in vivo responses and was a more sensitive measure of uterine response. Because this assay was constructed by first mapping the key molecular events for cellular response, and then ensuring that the assay incorporated these events, the resulting cellular assay should be a reliable tool for identifying estrogenic compounds and may provide improved quantitation of chemical concentration response for in vitro-based safety assessments.
Collapse
Affiliation(s)
- Michelle M Miller
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Rebecca A Alyea
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Caroline LeSommer
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Daniel L Doheny
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Sean M Rowley
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Kristin M Childs
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Pergentino Balbuena
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Susan M Ross
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Jian Dong
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Bin Sun
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Melvin A Andersen
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Rebecca A Clewell
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina;
- ScitoVation, Research Triangle Park, North Carolina
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
37
|
The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep 2016; 36:BSR20160017. [PMID: 27160081 PMCID: PMC5293589 DOI: 10.1042/bsr20160017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.
Collapse
|
38
|
Rahman MSU, Cao J. Estrogen receptors in gastric cancer: Advances and perspectives. World J Gastroenterol 2016; 22:2475-2482. [PMID: 26937135 PMCID: PMC4768193 DOI: 10.3748/wjg.v22.i8.2475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Worldwide, gastric cancer is one of the most common malignancies with high mortality. Various aspects of the development and progression of gastric cancer continue to be extensively investigated in order to further our understanding and provide more effective means for the prevention, diagnosis, and treatment of the disease. Estrogen receptors (ERs) are steroid hormone receptors that regulate cellular activities in many physiological and pathological processes in different tissues. There are two distinct forms of ERs, namely ERα and ERβ, with several alternative-splicing isoforms for each. They show distinct tissue distribution patterns and exert different biological functions. Dysregulation of ERs has been found to be associated closely with many diseases, including cancer. A number of studies have been conducted to investigate the role of ERs in gastric cancer, the possible mechanisms underlying these roles, and the clinical relevance of deregulated ERs in gastric cancer patients. To date, inconsistent associations of different ERs with gastric cancer have been reported. These inconsistencies may be caused by variations in in vitro cell models and clinical samples, including assay conditions and protocols with regard to different forms of ERs. Given the potential of the deregulated ERs as diagnostic/prognostic markers or therapeutic targets for gastric cancer, it will be important to identify/confirm the association of each ER isoform with gastric cancer, to determine the specific roles and interactions that these individual ER isoforms play under specific conditions in the development and/or progression of gastric cancer, and to elucidate precisely these mechanisms. In this review, we summarize the achievements from early ER studies in gastric cancer to the most up-to-date discoveries, with an effort to provide a comprehensive understanding of the role of ERs roles in gastric cancer and its possible mechanisms. Furthermore, we propose directions for future investigations.
Collapse
|
39
|
Clewell RA, McMullen PD, Adeleye Y, Carmichael PL, Andersen ME. Pathway Based Toxicology and Fit-for-Purpose Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:205-230. [DOI: 10.1007/978-3-319-33826-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-α36): A new player in human breast cancer. Mol Cell Endocrinol 2015; 418 Pt 3:193-206. [PMID: 25917453 DOI: 10.1016/j.mce.2015.04.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
Prevailing wisdom is that estrogen receptor (ER)-α mediated genomic estrogen signaling is responsible for estrogen-stimulated cell proliferation and development of ER-positive breast cancer. However, accumulating evidence indicates that another estrogen signaling pathway, non-genomic or rapid estrogen signaling, also plays an important role in mitogenic estrogen signaling. Previously, our laboratory cloned a 36 kDa variant of ER-α, ER-α36, and found that ER-α36 is mainly expressed in the cytoplasm and at the plasma membrane. ER-α36 mediates rapid estrogen signaling and inhibits genomic estrogen signaling. In this review, we review and update the biological function of ER-α36 in ER-positive and -negative breast cancer, breast cancer stem/progenitor cells and tamoxifen resistance, potential interaction and cross-talk of ER-α36 with other ERs and growth factor receptors, and intracellular pathways of ER-α36-mediated rapid estrogen signaling. The potential function and underlying mechanism of ER-α in development of ER-positive breast cancer will also be discussed.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Li Yin
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
41
|
Inoue K, Fry EA. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer. GENETICS & EPIGENETICS 2015; 7:19-32. [PMID: 26692764 PMCID: PMC4669075 DOI: 10.4137/geg.s35500] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/01/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys to understand the pathogenesis, predict the prognosis, and choose specific therapies for BC.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
42
|
Characterization of the fundamental properties of the N-terminal truncation (Δ exon 1) variant of estrogen receptor α in the rat. Gene 2015; 571:117-25. [DOI: 10.1016/j.gene.2015.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
|
43
|
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors that are involved in the regulation of many complex physiological processes in humans. Abnormal ER signaling leads to development of a variety of diseases, such as cancer, metabolic and cardiovascular disease, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update on ERα and ERβ in health and disease with focus on their role in cancer and metabolic disease and in the context of recent years' success in providing genome wide data on ER function. Furthermore, potential clinical applications and challenges are also discussed.
Collapse
Affiliation(s)
- Min Jia
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, S-141 83 Huddinge, Sweden.
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, S-141 83 Huddinge, Sweden; SciLifeLab, Department of Biosciences and Nutrition, Karolinska Institutet, S-171 21 Solna, Sweden.
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, S-141 83 Huddinge, Sweden; Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd. Science and Engineering Research Center Bldg. 545, Houston, TX 77204-5056, United States.
| |
Collapse
|
44
|
Zhang W, Xu J, Shi Y, Sun Q, Zhang Q, Guan X. The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cell Mol Life Sci 2015; 72:2575-84. [PMID: 25782411 PMCID: PMC11113898 DOI: 10.1007/s00018-015-1887-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/04/2023]
Abstract
The selective estrogen receptor modulator tamoxifen is the most commonly used treatment for patients with ER-positive breast cancer. However, tumor cells often develop resistance to tamoxifen therapy, which is a major obstacle limiting the success of breast cancer treatment. miRNAs, as oncogenic or tumor suppressor genes, regulate the expression and function of their related target genes to affect the biological behaviors of cancer cells, including cancer initiation, progression, metastasis, and therapeutic resistance. In detail, many miRNAs associated with breast cancer tamoxifen resistance have been identified, which offer new targets for breast cancer therapy. Here, we review the miRNAs involved in regulation of tamoxifen resistance in human breast cancer and the mechanism of how the modulation of miRNAs may regulate the sensitivity of breast cancer cells to tamoxifen. We also discuss the future prospects of studies about miRNAs in regulation of tamoxifen resistance and miRNA-based therapeutics for tamoxifen resistance breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qian Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| |
Collapse
|
45
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Mélissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Romain Solinhac
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Gilles Flouriot
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Aurélie Fabre
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Drougard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Shyamala Rajan
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Muriel Laine
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alain Milon
- CNRS and Université de Toulouse, IPBS, Toulouse, France
| | | | - Daniel Henrion
- INSERM U1083, CNRS UMR 6214, Université d'Angers, Angers, France
| | - Marine Adlanmerini
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Marie-Cécile Valéra
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Gompel
- APHP, Unité de Gynécologie Endocrinienne, Université Paris Descartes, Paris, France
| | - Céline Gerard
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Christel Péqueux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Mélanie Mestdagt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | | | - Claude Knauf
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - François Ferriere
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Philippe Valet
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Geoffrey L Greene
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
46
|
Tamoxifen resistance: From cell culture experiments towards novel biomarkers. Pathol Res Pract 2015; 211:189-97. [DOI: 10.1016/j.prp.2015.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
|
47
|
The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications. Biochem J 2014; 461:257-68. [PMID: 24762104 DOI: 10.1042/bj20131240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to soluble factors, mechanical constraints and extracellular matrix stiffness are important regulators of cell fate that are mediated by cytoskeletal modifications. The EMT (epithelial-mesenchymal transition) that occurs during normal development and malignant progression is a typical example of the phenotypic switch associated with profound actin remodelling and changes in gene expression. For instance, actin dynamics control motile cell functions in EMT, in part, through regulating the subcellular localization of the myocardin-related transcription factor MKL1 (megakaryoblastic leukaemia translocation 1), a co-activator of SRF (serum-responsive factor). In the present paper, we show that MKL1 participates also to the control of the cellular switch between growth and quiescence. Experimental disconnection between MKL1 and G-actin (globular actin), by using an MKL1 mutant or enhancing the F (filamentous)-/G-actin ratio, generates a widely open chromatin state and a global increase in biosynthetic activity, classically associated with cell growth. Conversely, G-actin accumulation favours nuclear condensation and cell quiescence. These large-scale chromatin changes rely upon extensive histone modifications, exemplified by that of H3K9 (H3 Lys9) shifting from trimethylation, a heterochromatin mark, to acetylation, a mark of euchromatin. The present study provides the first evidence for a global reversible hetero/euchromatinization phenomenon triggered by the actin/MKL1 signalling pathway.
Collapse
|
48
|
Design and validation of a novel immunological test for enterolactone. Talanta 2014; 119:116-24. [PMID: 24401393 DOI: 10.1016/j.talanta.2013.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Enterolactone (ENL) is produced by the gut microflora from lignans found in edible plants. ENL is estrogenic with no effect on the E-screen test and is a natural Selected Estrogen Receptor Modulator (SERM) with health interests that have to be checked in clinical studies with bioavailability assessment. Two haptens of ENL were synthesized, with a spacer arm at the C5 position having either 2 or 4 carbon atoms (ENLΔ2 and ENLΔ4, respectively). Hapten coupling to bovine serum albumin (BSA) was characterized by MALDI mass spectrometry. Polyclonal antibodies were obtained against the BSA conjugates. Additional conjugates were generated by coupling to swine thyroglobulin (Thyr). Homologous and heterologous competitive ELISAs were developed with Thyr or BSA conjugates as coating. The best assays were validated on biological samples from mice. Both antibodies exhibited the same IC50 at 1.5 ng mL(-1) with a detection limit below 0.5 ng mL(-1). Most cross-reactions with structurally related lignans were lower than 0.03%. This new assay type is faster, more specific and more reliable than existing ones.
Collapse
|
49
|
Classical estrogen receptors and ERα splice variants in the mouse. PLoS One 2013; 8:e70926. [PMID: 23940668 PMCID: PMC3733772 DOI: 10.1371/journal.pone.0070926] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022] Open
Abstract
Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.
Collapse
|
50
|
Tamoxifen Elicits Atheroprotection through Estrogen Receptor α AF-1 But Does Not Accelerate Reendothelialization. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:304-12. [DOI: 10.1016/j.ajpath.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/18/2013] [Accepted: 03/07/2013] [Indexed: 01/01/2023]
|