1
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
2
|
Hoeflich A, Galow AM, Brenmoehl J, Hadlich F. Growth and development of the mammary gland in mice-control of the insulin-like growth factor system by hormones and metalloproteases, and putative interference with micro RNAs. Anim Front 2023; 13:77-85. [PMID: 37324202 PMCID: PMC10266761 DOI: 10.1093/af/vfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
3
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
4
|
Patel B, Kleeman SO, Neavin D, Powell J, Baskozos G, Ng M, Ahmed WUR, Bennett DL, Schmid AB, Furniss D, Wiberg A. Shared genetic susceptibility between trigger finger and carpal tunnel syndrome: a genome-wide association study. THE LANCET. RHEUMATOLOGY 2022; 4:e556-e565. [PMID: 36043126 PMCID: PMC7613465 DOI: 10.1016/s2665-9913(22)00180-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Trigger finger and carpal tunnel syndrome are the two most common non-traumatic connective tissue disorders of the hand. Both of these conditions frequently co-occur, often in patients with rheumatoid arthritis. However, this phenotypic association is poorly understood. Hypothesising that the co-occurrence of trigger finger and carpal tunnel syndrome might be explained by shared germline predisposition, we aimed to identify a specific genetic locus associated with both diseases. Methods In this genome-wide association study (GWAS), we identified 2908 patients with trigger finger and 436579 controls from the UK Biobank prospective cohort. We conducted a case-control GWAS for trigger finger, followed by co-localisation analyses with carpal tunnel syndrome summary statistics. To identify putative causal variants and establish their biological relevance, we did fine-mapping analyses and expression quantitative trait loci (eQTL) analyses, using fibroblasts from healthy donors (n=79) and tenosynovium samples from patients with carpal tunnel syndrome (n=77). We conducted a Cox regression for time to trigger finger and carpal tunnel syndrome diagnosis against plasma IGF-1 concentrations in the UK Biobank cohort. Findings Phenome-wide analyses confirmed a marked association between carpal tunnel syndrome and trigger finger in the participants from UK Biobank (odds ratio [OR] 11·97, 95% CI 11·1-13·0; p<1 × 10-300). GWAS for trigger finger identified five independent loci, including one locus, DIRC3, that was co-localised with carpal tunnel syndrome and could be fine-mapped to rs62175241 (0·76, 0·68-0·84; p=5·03 × 10-13). eQTL analyses found a fibroblast-specific association between the protective T allele of rs62175241 and increased DIRC3 and IGFBP5 expression. Increased plasma IGF-1 concentrations were associated with both carpal tunnel syndrome and trigger finger in participants from UK Biobank (hazard ratio >1·04, p<0·02). Interpretation In this GWAS, the DIRC3 locus on chromosome 2 was significantly associated with both carpal tunnel syndrome and trigger finger, possibly explaining their co-occurrence. The disease-protective allele of rs62175241 was associated with increased expression of long non-coding RNA DIRC3 and its transcriptional target, IGBP5, an antagonist of IGF-1 signalling. These findings suggest a model in which IGF-1 is a driver of both carpal tunnel syndrome and trigger finger, and in which the DIRC3-IGFBP5 axis directly antagonises fibroblastic IGF-1 signalling. Funding Wellcome Trust, National Institute for Health Research, Medical Research Council.
Collapse
Affiliation(s)
- Benjamin Patel
- Department of Plastic and Reconstructive Surgery, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | | - Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joseph Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; UNSW Cellular Genomics Futures Institute, University of New South Wales, NSW, Australia
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Waheed-Ul-Rahman Ahmed
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis 2022; 13:340. [PMID: 35418167 PMCID: PMC9007962 DOI: 10.1038/s41419-022-04803-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Renal inflammation is a critical pathophysiological characteristic of diabetic kidney disease (DKD). The mechanism of the inflammatory response is complicated, and there are few effective treatments for renal inflammation that can be used clinically. Insulin-like growth factor-binding protein 5 (IGFBP5) is an important secretory protein that is related to inflammation and fibrosis in several tissues. Studies have shown that the IGFBP5 level is significantly upregulated in DKD. However, the function of IGFBP5 and its mechanism in DKD remain unclear. Here, we showed that IGFBP5 levels were significantly increased in the kidneys of diabetic mice. Ablation of IGFBP5 alleviated kidney inflammation in DKD mice. Mechanistically, IGFBP5 increased glycolysis, which was characterized by increases in lactic acid and the extracellular acidification rate, by activating the transcription factor early growth response 1 (EGR1) and enhancing the expression of PFKFB3 in endothelial cells. Furthermore, a mutation in PFKFB3 attenuated renal inflammation in DKD mice. Taken together, we provided evidence that IGFBP5 enhanced kidney inflammation through metabolic reprogramming of glomerular endothelial cells. Our results provide new mechanistic insights into the effect of IGFBP5 on kidney and highlight potential therapeutic opportunities for IGFBP5 and the metabolic regulators involved in DKD. ![]()
Collapse
|
6
|
Cohick WS. The role of the IGF system in mammary physiology of ruminants. Domest Anim Endocrinol 2022; 79:106709. [PMID: 35078102 DOI: 10.1016/j.domaniend.2021.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IGF system plays a central role in all stages of mammary development, lactation and involution. IGFs exert their effects on the mammary gland through both endocrine and paracrine/autocrine mechanisms and the importance of circulating versus local IGF action remains an open question, especially in ruminants. At the whole organ level, a critical role for IGFs in ductal morphogenesis and lobuloalveolar development has been established, while at the cellular level the ability of IGFs to stimulate cell proliferation and control cell survival contributes to the number of milk-secreting cells in the gland. Much of this work has been conducted in rodents which provide an affordable research model and allow for genetic manipulation of specific components of the IGF system. Research into the role of the IGF system in dairy cows has generally supported information obtained with rodents though large gaps in our knowledge remain and species differences are not well defined. Examples include whether exogenous somatotropin exerts its effects on the mammary gland through local IGF-1 synthesis which is accepted dogma in rodents, what the role of IGF-1 versus IGF-2 is in the mammary gland, and how the IGFBPs regulate IGF bioactivity. This last area is particularly under-investigated in ruminants both at the whole animal and the cellular and molecular levels. Given that the IGF system may underlie many management practices that could contribute to enhancing productive efficiency of lactation, more research into the basic biology of this important system is warranted.
Collapse
Affiliation(s)
- Wendie S Cohick
- Rutgers, The State University of New Jersey, Department of Animal Science, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
8
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
9
|
Jenkins EC, Brown SO, Germain D. The Multi-Faced Role of PAPP-A in Post-Partum Breast Cancer: IGF-Signaling is Only the Beginning. J Mammary Gland Biol Neoplasia 2020; 25:181-189. [PMID: 32901383 DOI: 10.1007/s10911-020-09456-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling and control of local bioavailability of free IGF by the IGF binding proteins (IGFBP) are important regulators of both mammary development and breast cancer. A recent genome-wide association study (GWAS) identified small nucleotide polymorphisms that reduce the expression of IGFBP-5 as a risk factor of developing breast cancer. This observation suggests that genetic alterations leading to a decreased level of IGFBP-5 may also contribute to breast cancer. In the current review, we focus on Pregnancy-Associated Plasma Protein A (PAPP-A), a protease involved in the degradation of IGFBP-5. PAPP-A is overexpressed in the majority of breast cancers but its role in cancer has only begun to be explored. More specifically, this review aims at highlighting the role of post-partum involution in the oncogenic function of PAPP-A. Notably, we summarize recent studies indicating that PAPP-A plays a role not only in the degradation of IGFBP-5 but also in the deposition of collagen and activation of the collagen receptor discoidin 2 (DDR2) during post-partum involution. Finally, considering the immunosuppressive microenvironment of post-partum involution, we also discuss the unexpected finding made in Ewing Sarcoma that PAPP-A plays a role in immune evasion. While the immunosuppressive role of PAPP-A in breast cancer remains to be determined, collectively these studies highlight the multifaced role of PAPP-A in cancer that extends well beyond its effect on IGF-signaling.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Samantha O Brown
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/ Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Borges VF, Lyons TR, Germain D, Schedin P. Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments? Cancer Res 2020; 80:1790-1798. [PMID: 32075799 PMCID: PMC8285071 DOI: 10.1158/0008-5472.can-19-3448] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease. Notably, lactation has been shown to be protective against breast cancer incidence overall, with varying degrees of protection by race, multiparity, and lifetime duration of lactation. An effect for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most recent data and mechanistic insights underlying these epidemiologic findings. Postpartum involution of the breast has been identified as a key mediator of the increased risk for metastasis in women diagnosed within 5-10 years of a completed pregnancy. During breast involution, immune avoidance, increased lymphatic network, extracellular matrix remodeling, and increased seeding to the liver and lymph node work as interconnected pathways, leading to the adverse effect of a postpartum diagnosis. We al discuss a novel mechanism underlying the protective effect of breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the prevention and/or improved treatment of postpartum breast cancer.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pepper Schedin
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
12
|
Slocum E, Germain D. Collagen and PAPP-A in the Etiology of Postpartum Breast Cancer. Discov Oncol 2019; 10:137-144. [PMID: 31631239 DOI: 10.1007/s12672-019-00368-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/29/2019] [Indexed: 01/14/2023] Open
Abstract
Pregnancy has a dual effect on the risk of breast cancer. On one hand, pregnancy at a young age is known to be protective. However, pregnancy is also associated with a transient increased risk of breast cancer. For women that have children after the age of 30, the risk remains higher than women who never had children for decades. Involution of the breast has been identified as a window of mammary development associated with the adverse effect of pregnancy. In this review, we summarize the current understanding of the role of involution and describe the role of collagen in this setting. We also discuss the role of a collagen-dependent protease, pappalysin-1, in postpartum breast cancer and its role in activating both insulin-like growth factor signaling and discoidin domain collagen receptor 2, DDR2. Together, these novel advances in our understanding of postpartum breast cancer open the way to targeted therapies against this aggressive breast cancer sub-type.
Collapse
Affiliation(s)
- Elizabeth Slocum
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA.
| |
Collapse
|
13
|
Zhang X, Cheng Z, Wang L, Jiao B, Yang H, Wang X. MiR-21-3p Centric Regulatory Network in Dairy Cow Mammary Epithelial Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11137-11147. [PMID: 31532202 DOI: 10.1021/acs.jafc.9b04059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNA-mediated gene regulation is important for the development of the mammary gland and the lactating process. A previous study has shown that the expression of microRNA-21 (miR-21) is different in the dry and early lactation period of the dairy cow mammary gland, but the molecular mechanisms underlying the lactation cycle are not fully understood. Here, the function of miR-21-3p on bovine mammary gland epithelial cells (BMECs) was detected by MTT assay and flow cytometry analysis, which showed that miR-21-3p significantly promoted the cell viability and proliferation. Then, the regulating mechanism of miR-21-3p on cell viability and proliferation was elucidated. Dual luciferase assay, RT-qPCR, and Western blot results revealed that IGFBP5 was a target gene of miR-21-3p. It was known that lncRNA could act as a competing endogenous RNA to sequester miRNAs and reduce the regulatory effect of miRNA-targeted genes. Based on our previous lncRNA-seq data and bioinformatics analysis, lncRNA NONBTAT017009.2 was potentially associated with miR-21-3p, and its expression was specifically inhibited with the transfection of miR-21-3p mimic into BMECs. Inversely, the overexpression of NONBTAT017009.2 significantly decreased the expression level of miR-21-3p in BMECs, while the expression of IGFBP5, the target gene of miR-21-3p, was significantly upregulated. In addition, the promoter region of miR-21 contained two STAT3 binding sites, and the dual luciferase reporter assays revealed that the overexpression of STAT3 significantly reduced the promoter activity of miR-21, implying that the transcription factor STAT3 may act as an upstream regulator affecting the regulation process of miR-21-3p. The overexpression of STAT3 significantly inhibited the expression of miR-21-3p, while the mRNA expression of IGFBP5 was significantly increased compared with the control group. Besides, there are no STAT3 binding sites in the promoter region of IGFBP5 as we predicted by gene-regulation and JASPAR software. Therefore, it could infer that STAT3 might regulate the expression of IGFBP5 by miR-21-3p. Taken together, these results established a regulatory network of miR-21-3p to illustrate the regulating mechanism on promoting cow mammary epithelial cell proliferation.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Zixi Cheng
- The Middle School Attached to Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Beilei Jiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Hua Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
14
|
Neirijnck Y, Papaioannou MD, Nef S. The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci 2019; 20:ijms20184440. [PMID: 31505893 PMCID: PMC6770468 DOI: 10.3390/ijms20184440] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent research over the past few decades has clearly established that the insulin-like family of growth factors, which is composed of insulin and insulin-like growth factors 1 (IGF1) and 2 (IGF2), plays essential roles in sexual development and reproduction of both males and females. Within the male and female reproductive organs, ligands of the family act in an autocrine/paracrine manner, in order to guide different aspects of gonadogenesis, sex determination, sex-specific development or reproductive performance. Although our knowledge has greatly improved over the last years, there are still several facets that remain to be deciphered. In this review, we first briefly outline the principles of sexual development and insulin/IGF signaling, and then present our current knowledge, both in rodents and humans, about the involvement of insulin/IGFs in sexual development and reproductive functions. We conclude by highlighting some interesting remarks and delineating certain unanswered questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
15
|
Slocum E, Craig A, Villanueva A, Germain D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res 2019; 21:56. [PMID: 31046834 PMCID: PMC6498606 DOI: 10.1186/s13058-019-1142-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Women who had children at a young age (less than 25) show a reduced overall risk of breast cancer. However, epidemiological studies showed that for all other women, pregnancy increases the risk of breast cancer and the risk remains higher for decades. Further, even in women who had children at a young age, there is a transient increase risk that peaks 6 years after pregnancy. Women diagnosed with breast cancer following pregnancy show a higher rate of metastasis. Yet, the factors that increase the predisposition of post-partum breasts to more aggressive cancers remain unknown. Pregnancy-associated plasma protein A (PAPP-A) is a secreted protease that is overexpressed in more than 70% of breast cancers. However, PAPP-A is a collagen-dependent oncogene. We initiated this study to test the effect of PAPP-A on the predisposition of post-partum breasts. Methods We used PAPP-A mouse models for the analysis of its effect on virgin, involuting, or post-partum mammary glands. We performed second-harmonic generation microscopy for the analysis of collagen, defined tumor-associated collagen signature (TACS), the rate of mammary tumors, and the status of the collagen-DDR2-Snail axis of metastasis. We knockdown DDR2 by CRISPR and performed invasion assays. A transcriptomic approach was used to define a PAPP-A and parity-dependent genetic signature and assess its correlation with breast cancer recurrence in humans. Results We confirmed that post-partum mammary glands have a higher level of collagen than virgin glands and that this collagen is characterized by an anti-proliferative architecture. However, PAPP-A converts the anti-proliferative post-partum collagen into pro-tumorigenic collagen. We show that PAPP-A activates the collagen receptor DDR2 and metastasis. Further, deletion of DDR2 by CRISPR abolished the effect of PAPP-A on invasion. We defined a PAPP-A-driven genetic signature that identifies patients at higher risk of metastasis. Conclusions These results support the notion that information about pregnancy may be critical in the prognosis of breast cancer as passage through a single pregnancy predisposes to the oncogenic action of PAPP-A. Our data indicate that history of pregnancy combined with the expression of PAPP-A-driven genetic signature may be useful to identify patients at higher risk of metastatic disease. Electronic supplementary material The online version of this article (10.1186/s13058-019-1142-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth Slocum
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Craig
- Department of Medicine, Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Department of Medicine, Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
17
|
Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018; 9:413-438. [PMID: 30549022 DOI: 10.1002/cphy.c180010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF-1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF-1 produced will be discussed. Last, the interaction of IGF-1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413-438, 2019.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Li D, Ji Y, Zhao C, Yao Y, Yang A, Jin H, Chen Y, San M, Zhang J, Zhang M, Zhang L, Feng X, Zheng Y. OXTR overexpression leads to abnormal mammary gland development in mice. J Endocrinol 2018; 239:121-136. [PMID: 30089682 DOI: 10.1530/joe-18-0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
Oxytocin receptor (OXTR) is a G-protein-coupled receptor and known for regulation of maternal and social behaviors. Null mutation (Oxtr-/-) leads to defects in lactation due to impaired milk ejection and maternal nurturing. Overexpression of OXTR has never been studied. To define the functions of OXTR overexpression, a transgenic mouse model that overexpresses mouse Oxtr under β-actin promoter was developed ( ++ Oxtr). ++ Oxtr mice displayed advanced development and maturation of mammary gland, including ductal distention, enhanced secretory differentiation and early milk production at non-pregnancy and early pregnancy. However, ++ Oxtr dams failed to produce adequate amount of milk and led to lethality of newborns due to early involution of mammary gland in lactation. Mammary gland transplantation results indicated the abnormal mammary gland development was mainly from hormonal changes in ++Oxtr mice but not from OXTR overexpression in mammary gland. Elevated OXTR expression increased prolactin-induced phosphorylation and nuclear localization of STAT5 (p-STAT5), and decreased progesterone level, leading to early milk production in non-pregnant and early pregnant females, whereas low prolactin and STAT5 activation in lactation led to insufficient milk production. Progesterone treatment reversed the OXTR-induced accelerated mammary gland development by inhibition of prolactin/p-STAT5 pathway. Prolactin administration rescued lactation deficiency through STAT5 activation. Progesterone plays a negative role in OXTR-regulated prolactin/p-STAT5 pathways. The study provides evidence that OXTR overexpression induces abnormal mammary gland development through progesterone and prolactin-regulated p-STAT5 pathway.
Collapse
Affiliation(s)
- Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yan Ji
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunlan Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Anlan Yang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Jing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjiao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
19
|
Liu C, Xin Y, Bai Y, Lewin G, He G, Mai K, Duan C. Ca 2+ concentration-dependent premature death of igfbp5a-/- fish reveals a critical role of IGF signaling in adaptive epithelial growth. Sci Signal 2018; 11:11/548/eaat2231. [PMID: 30228225 DOI: 10.1126/scisignal.aat2231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phenotype gap is a challenge for genetically dissecting redundant endocrine signaling pathways, such as the six isoforms in the insulin-like growth factor binding protein (IGFBP) family. Although overexpressed IGFBPs can inhibit or potentiate IGF actions or have IGF-independent actions, mutant mice lacking IGFBP-encoding genes do not exhibit major phenotypes. We found that although zebrafish deficient in igfbp5a did not show overt phenotypes when raised in Ca2+-rich solutions, they died prematurely in low Ca2+ conditions. A group of epithelial cells expressing igfbp5a take up Ca2+ and proliferate under low Ca2+ conditions because of activation of IGF signaling. Deletion of igfbp5a blunted low Ca2+ stress-induced IGF signaling and impaired adaptive proliferation. Reintroducing zebrafish Igfbp5a, but not its ligand binding-deficient mutant, restored adaptive proliferation. Similarly, adaptive proliferation was restored in zebrafish lacking igfbp5a by expression of human IGFBP5, but not two cancer-associated IGFBP5 mutants. Knockdown of IGFBP5 in human colon carcinoma cells resulted in reduced IGF-stimulated cell proliferation. These results reveal a conserved mechanism by which a locally expressed Igfbp regulates organismal Ca2+ homeostasis and survival by activating IGF signaling in epithelial cells and promoting their proliferation in Ca2+-deficient states. These findings underscore the importance of physiological context when analyzing loss-of-function phenotypes of endocrine factors.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yi Xin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Bai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grant Lewin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gen He
- The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Education Ministry of China and College of Fisheries, Ocean University of China, Qingdao 266003, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
21
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne) 2018; 9:117. [PMID: 29686648 PMCID: PMC5900387 DOI: 10.3389/fendo.2018.00117] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factors (IGFs) are key growth-promoting peptides that act as both endocrine hormones and autocrine/paracrine growth factors. In the bloodstream and in local tissues, most IGF molecules are bound by one of the members of the IGF-binding protein (IGFBP) family, of which six distinct types exist. These proteins bind to IGF with an equal or greater affinity than the IGF1 receptor and are thus in a key position to regulate IGF signaling globally and locally. Binding to an IGFBP increases the half-life of IGF in the circulation and blocks its potential binding to the insulin receptor. In addition to these classical roles, IGFBPs have been shown to modulate IGF signaling locally under various conditions. Although members of the IGFBP family share significant sequence homology, they each have unique structural features and play distinct roles. These IGFBP genes also have different modes of regulation and distinct expression patterns. Some IGFBPs have been found to bind to their own receptors or to translocate into the interior compartments of cells where they may execute IGF-independent actions. In spite of this functional and regulatory diversity, it has been puzzling that loss-of-function studies have yielded relatively little information about the physiological functions of IGFBPs. In this review, we suggest that evolution has tended to retain an array of IGFBPs in order to facilitate fine-tuning of IGF signaling. We explore the emerging explanation that many IGFBP functions have evolved to allow the targeted adjustment of IGF signaling under stressful or irregular conditions, which would likely not be revealed in a standard laboratory setting.
Collapse
|
23
|
Takabatake Y, Oxvig C, Nagi C, Adelson K, Jaffer S, Schmidt H, Keely PJ, Eliceiri KW, Mandeli J, Germain D. Lactation opposes pappalysin-1-driven pregnancy-associated breast cancer. EMBO Mol Med 2017; 8:388-406. [PMID: 26951623 PMCID: PMC4818749 DOI: 10.15252/emmm.201606273] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pregnancy is associated with a transient increase in risk for breast cancer. However, the mechanism underlying pregnancy‐associated breast cancer (PABC) is poorly understood. Here, we identify the protease pappalysin‐1 (PAPP‐A) as a pregnancy‐dependent oncogene. Transgenic expression of PAPP‐A in the mouse mammary gland during pregnancy and involution promotes the deposition of collagen. We demonstrate that collagen facilitates the proteolysis of IGFBP‐4 and IGFBP‐5 by PAPP‐A, resulting in increased proliferative signaling during gestation and a delayed involution. However, while studying the effect of lactation, we found that although PAPP‐A transgenic mice lactating for an extended period of time do not develop mammary tumors, those that lactate for a short period develop mammary tumors characterized by a tumor‐associated collagen signature (TACS‐3). Mechanistically, we found that the protective effect of lactation is associated with the expression of inhibitors of PAPP‐A, STC1, and STC2. Collectively, these results identify PAPP‐A as a pregnancy‐dependent oncogene while also showing that extended lactation is protective against PAPP‐A‐mediated carcinogenesis. Our results offer the first mechanism that explains the link between breast cancer, pregnancy, and breastfeeding.
Collapse
Affiliation(s)
- Yukie Takabatake
- Division of Hematology/Oncology of the Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Chandandeep Nagi
- Department of Pathology of the Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Kerin Adelson
- Dubin Breast Center of the Icahn School of Medicine, Tisch Cancer Institute, New York, NY, USA
| | - Shabnam Jaffer
- Department of Pathology of the Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Hank Schmidt
- Dubin Breast Center of the Icahn School of Medicine, Tisch Cancer Institute, New York, NY, USA
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - John Mandeli
- Department of Biostatistical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Doris Germain
- Division of Hematology/Oncology of the Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
24
|
Bodelon C, Oh H, Chatterjee N, Garcia-Closas M, Palakal M, Sherman ME, Pfeiffer RM, Geller B, Vacek P, Weaver DL, Chicoine R, Papathomas D, Xiang J, Patel DA, Khodr ZG, Linville L, Clare SE, Visscher DW, Mies C, Hewitt SM, Brinton LA, Storniolo AMV, He C, Chanock SJ, Gierach GL, Figueroa JD. Association between breast cancer genetic susceptibility variants and terminal duct lobular unit involution of the breast. Int J Cancer 2016; 140:825-832. [PMID: 27859137 DOI: 10.1002/ijc.30512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/05/2016] [Indexed: 01/06/2023]
Abstract
Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers, and lack of TDLU involution (higher TDLU counts, higher acini count per TDLU and the product of the two) is a breast cancer risk factor. Numerous breast cancer susceptibility single nucleotide polymorphisms (SNPs) have been identified, but whether they are associated with TDLU involution is unknown. In a pooled analysis of 872 women from two studies, we investigated 62 established breast cancer SNPs and relationships with TDLU involution. Poisson regression models with robust variance were used to calculate adjusted per-allele relative risks (with the non-breast cancer risk allele as the referent) and 95% confidence intervals between TDLU measures and each SNP. All statistical tests were two-sided; P < 0.05 was considered statistically significant. Overall, 36 SNPs (58.1%) were related to higher TDLU counts although this was not statistically significant (p = 0.25). Six of the 62 SNPs (9.7%) were nominally associated with at least one TDLU measure: rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1) were associated with higher TDLU count (p = 0.047, 0.045 and 0.031, respectively); rs1353747 (PDE4D) and rs6472903 (8q21.11) were associated with higher acini count per TDLU (p = 0.007 and 0.027, respectively); and rs1353747 (PDE4D) and rs204247 (RANBP9) were associated with the product of TDLU and acini counts (p = 0.024 and 0.017, respectively). Our findings suggest breast cancer SNPs may not strongly influence TDLU involution. Agnostic genome-wide association studies of TDLU involution may provide new insights on its biologic underpinnings and breast cancer susceptibility.
Collapse
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Hannah Oh
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Maya Palakal
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Mark E Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | | | | | | | - Daphne Papathomas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Jackie Xiang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Deesha A Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Zeina G Khodr
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Laura Linville
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Susan E Clare
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Carolyn Mies
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center, Indianapolis, IN
| | - Chunyan He
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Usher Institute of Population Health Sciences and Informatics and Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Wyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S, Zhang Y, Bolla MK, Wang Q, Dennis J, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Peto J, Dos-Santos-Silva I, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Nordestgaard BG, González-Neira A, Benitez J, Neuhausen SL, Brenner H, Dieffenbach AK, Meindl A, Schmutzler RK, Brauch H, Nevanlinna H, Khan S, Matsuo K, Ito H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Wu AH, Van Den Berg D, Lambrechts D, Wildiers H, Chang-Claude J, Rudolph A, Radice P, Peterlongo P, Couch FJ, Olson JE, Giles GG, Milne RL, Haiman CA, Henderson BE, Dumont M, Teo SH, Wong TY, Kristensen V, Zheng W, Long J, Winqvist R, Pylkäs K, Andrulis IL, Knight JA, Devilee P, Seynaeve C, García-Closas M, Figueroa J, Klevebring D, Czene K, Hooning MJ, van den Ouweland AMW, Darabi H, Shu XO, Gao YT, Cox A, Blot W, Signorello LB, Shah M, Kang D, Choi JY, Hartman M, Miao H, Hamann U, Jakubowska A, Lubinski J, Sangrajrang S, McKay J, Toland AE, Yannoukakos D, Shen CY, Wu PE, Swerdlow A, Orr N, et alWyszynski A, Hong CC, Lam K, Michailidou K, Lytle C, Yao S, Zhang Y, Bolla MK, Wang Q, Dennis J, Hopper JL, Southey MC, Schmidt MK, Broeks A, Muir K, Lophatananon A, Fasching PA, Beckmann MW, Peto J, Dos-Santos-Silva I, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Nordestgaard BG, González-Neira A, Benitez J, Neuhausen SL, Brenner H, Dieffenbach AK, Meindl A, Schmutzler RK, Brauch H, Nevanlinna H, Khan S, Matsuo K, Ito H, Dörk T, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Wu AH, Van Den Berg D, Lambrechts D, Wildiers H, Chang-Claude J, Rudolph A, Radice P, Peterlongo P, Couch FJ, Olson JE, Giles GG, Milne RL, Haiman CA, Henderson BE, Dumont M, Teo SH, Wong TY, Kristensen V, Zheng W, Long J, Winqvist R, Pylkäs K, Andrulis IL, Knight JA, Devilee P, Seynaeve C, García-Closas M, Figueroa J, Klevebring D, Czene K, Hooning MJ, van den Ouweland AMW, Darabi H, Shu XO, Gao YT, Cox A, Blot W, Signorello LB, Shah M, Kang D, Choi JY, Hartman M, Miao H, Hamann U, Jakubowska A, Lubinski J, Sangrajrang S, McKay J, Toland AE, Yannoukakos D, Shen CY, Wu PE, Swerdlow A, Orr N, Simard J, Pharoah PDP, Dunning AM, Chenevix-Trench G, Hall P, Bandera E, Amos C, Ambrosone C, Easton DF, Cole MD. An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Hum Mol Genet 2016; 25:3863-3876. [PMID: 27402876 PMCID: PMC5216618 DOI: 10.1093/hmg/ddw223] [Show More Authors] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/11/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following oestrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR = 0.68 95%CI 0.55-0.83, P = 0.0002; replication OR = 0.77 95% CI 0.73-0.82, P = 2.1 × 10-19) and identify 13 additional linked variants (r2 > 0.8) in the 20Kb linkage block containing the enCNV (P = 3.2 × 10-15 - 5.6 × 10-17). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5.
Collapse
Affiliation(s)
- Asaf Wyszynski
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Christian Lytle
- Molecular Biology Core Facility, Dartmouth College, Hanover, NH 03755 USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, 1066 CX Amsterdam, The Netherlands
| | - Annegien Broeks
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, OX3 7BN, UK
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical school, Warwick University, Coventry, CV4 7AL, UK
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, UK
| | - Artitaya Lophatananon
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Matthias W Beckmann
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Elinor J Sawyer
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, OX3 7BN, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, 94807 Villejuif, France
- University Paris-Sud, UMRS 1018, 94807 Villejuif, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, 94807 Villejuif, France
- University Paris-Sud, UMRS 1018, 94807 Villejuif, France
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, 81675 Munich, Germany
| | - Rita K Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, 50931 Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, 50931 Cologne, Germany
- Center for Integrated Oncology (CIO), University Hospital of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, FI-70211 Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, FI-70211 Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Hans Wildiers
- Multidisciplinary Breast Center, Department of General Medical Oncology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Martine Dumont
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, QC, G1V 4G2, Canada
| | - Soo Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, 47500 Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre (UMMC), 59100 Kuala Lumpur, Malaysia
| | - Tien Y Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore 168751
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, N-0310 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo (UiO), 0450 Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo (UiO), 0450 Oslo, Norway
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu/Oulu University Hospital, FI-90220 Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu/Oulu University Hospital, FI-90220 Oulu, Finland
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter Devilee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, 3075 EA Rotterdam, The Netherlands
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel Klevebring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus University Medical Center, 3075 EA Rotterdam, The Netherlands
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus University Medical Center, 3075 EA Rotterdam, The Netherlands
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Xuhui, Shanghai, China
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
- International Epidemiology Institute, Rockville, MD 20850, USA
| | - Lisa B Signorello
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 151-742, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597
| | - Hui Miao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland
| | | | - James McKay
- International Agency for Research on Cancer, 69372 Lyon, CEDEX 08, France
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, 153 10 Athens, Greece
| | - Chen-Yang Shen
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- School of Public Health, China Medical University, Taichung 404, Taiwan
| | - Pei-Ei Wu
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Division of Breast Cancer Research, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, QC, G1V 4G2, Canada
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, CB1 8RN, UK
| | - Georgia Chenevix-Trench
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Elisa Bandera
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901 USA
| | - Chris Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michael D Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Horm IGF Res 2016; 28:26-42. [PMID: 26432542 PMCID: PMC4809789 DOI: 10.1016/j.ghir.2015.09.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY 10010-408
| | - Olle Isaksson
- Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, SE-41345 Gothenburg, Sweden
| |
Collapse
|
27
|
Christians JK, Bath AK, Amiri N. Pappa2 deletion alters IGFBPs but has little effect on glucose disposal or adiposity. Growth Horm IGF Res 2015; 25:232-239. [PMID: 26164771 DOI: 10.1016/j.ghir.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Insulin-like growth factor binding proteins (IGFBPs) are involved in glucose and lipid metabolism, and their actions are modulated by proteases. The aim of this study was to examine the effects of an IGFBP-5 protease, pregnancy associated plasma protein-A2 (PAPP-A2), on glucose metabolism and susceptibility to diet-induced obesity. DESIGN Postnatal growth, circulating IGF-I, IGFBP-3 and IGFBP-5 levels, and glucose tolerance were measured in Pappa2 deletion mice and littermate controls on a chow diet. Males were subsequently fed a high-fat diet for 8 weeks to measure weight gain and adiposity, as well as glucose tolerance in response to a metabolic challenge. RESULTS Circulating IGFBP-5 levels were ~2-fold higher in mice with no functional PAPP-A2 than in littermate controls, as expected. In contrast, circulating IGFBP-3 levels were reduced by ~15-fold, and total IGF-I levels were ~60% higher in Pappa2 deletion mice. There was no effect of Pappa2 deletion on fasting blood glucose levels or glucose clearance after intraperitoneal injection of 2g glucose/kg body weight in mice on a chow diet. In males on a high-fat diet, there was no difference between genotypes in weight gain or adiposity, adjusting for differences in initial body weight, or in fasting blood glucose or insulin levels, or in glucose clearance. CONCLUSIONS Despite a dramatic disruption of the balance between circulating IGF-I, IGFBP-3 and -5, we found no effects of Pappa2 deletion on glucose metabolism, weight gain or adiposity on a high-fat diet.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Amrit K Bath
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Neilab Amiri
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
29
|
Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. NUCLEAR RECEPTOR SIGNALING 2014; 12:e004. [PMID: 25422594 PMCID: PMC4242291 DOI: 10.1621/nrs.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in
breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary
gland tumorigenesis through remodeling of the stromal compartment and activation of
cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic
activity is specific to ERBB2-induced tumors, or whether it influences the initiation and
progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement
of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related
integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that
compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in
Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth
rate. Ablation of Rarb altered the composition of the stroma, repressed the
activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and
angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway
contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the
absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of
epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1
oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent
retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
Collapse
Affiliation(s)
- Xingxing Liu
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| |
Collapse
|
30
|
Sharov AA. Evolutionary constraints or opportunities? Biosystems 2014; 123:9-18. [PMID: 25047708 DOI: 10.1016/j.biosystems.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/24/2022]
Abstract
Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term "constraint" has negative connotations, I use the term "regulated variation" to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch "on" or "off" preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection).
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Sharov AA. WITHDRAWN: Evolutionary constraints or opportunities? Biosystems 2014. [DOI: 10.1016/j.biosystems.2014.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Sharov AA. Evolutionary constraints or opportunities? Biosystems 2014; 120C:21-30. [PMID: 24769155 PMCID: PMC4206685 DOI: 10.1016/j.biosystems.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term "constraint" has negative connotations, I use the term "regulated variation" to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch "on" or "off" preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection).
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Loss of Igfbp7 causes precocious involution in lactating mouse mammary gland. PLoS One 2014; 9:e87858. [PMID: 24505323 PMCID: PMC3913705 DOI: 10.1371/journal.pone.0087858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insulin like growth factors (IGFs) and their binding proteins (IGFBPs) are secreted peptides that play major roles in regulating the normal development and maturation of mammary gland. While Igfbp7 has been shown to decrease breast tumor growth, its role in regulating the normal mammary gland development has not been studied. To this end, we generated Igfbp7-null mice and examined the development and maturation of mammary glands in the virgin, pregnant and lactating animals. RESULTS We report here that loss of Igfbp7 significantly retards mammary gland development in the virgin animals. More significantly, the pregnant Igfpb7-null glands contained fewer alveolar structures and that during lactation these glands exhibit the morphological changes that are associated with involution. The transcriptome profile of the Igfbp7-null glands on the lactation day 3 revealed a distinct involution-related gene signature compared to the lactating WT glands. Interestingly, we found that the lactating Igfbp7-null glands exhibit increased expression of Stat3 and enhanced activation of (phosphorylated) Stat3, combined with decreased expression of Stat5 suggesting that the absence of Igfbp7 accelerates the onset of involution. We also found that in absence of Igfpb7, the lactating glands contain increased Igfbp5 protein along with decreased expression of IGF-1 Receptor and Akt activation. Finally, we show that during the normal course of involution, Igfbp7 expression is significantly decreased in the mammary gland. CONCLUSION Our data suggest that loss of Igfbp7 induces precocious involution possibly through diminished cell survival signals. Our findings identify Igfbp7 as major regulator of involution in the mammary gland.
Collapse
|
34
|
Macias H, Hinck L. Mammary gland development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:533-57. [PMID: 22844349 DOI: 10.1002/wdev.35] [Citation(s) in RCA: 523] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
35
|
Identification of putative ortholog gene blocks involved in gestant and lactating mammary gland development: a rodent cross-species microarray transcriptomics approach. Int J Genomics 2013; 2013:624681. [PMID: 24288657 PMCID: PMC3830774 DOI: 10.1155/2013/624681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/23/2023] Open
Abstract
The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development.
Collapse
|
36
|
Sureshbabu A, Okajima H, Yamanaka D, Tonner E, Shastri S, Maycock J, Szymanowska M, Shand J, Takahashi SI, Beattie J, Allan G, Flint D. IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J Cell Sci 2012; 125:1693-705. [PMID: 22328518 DOI: 10.1242/jcs.092882] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Maintenance of tissue boundaries is crucial for control of metastasis. We describe a new signalling pathway in which epithelial cell disruption can be minimised and thereby restricts epithelial-mesenchymal transgressions. This involves the release of insulin-like growth factor (IGF)-binding protein 5 (IGFBP5) from apoptotic cells, which increases the adhesion of epithelial cells on mesenchymal but not epithelial extracellular matrix (ECM), and involves the direct interaction of IGFBP5 and α2β1 integrins. IGFBP5 also induced cell adhesion to vitronectin in the absence of αVβ3 integrin, the vitronectin receptor, again through an α2β1-integrin-dependent action, suggesting that IGFBP5 can induce spreading on matrices, even in the absence of the integrins normally used in this process. Using IGFBP5 mutants we demonstrate that the effect is IGF-independent but requires the heparin-binding domain in the C-terminus of IGFBP5. A truncated mutant containing only the C-terminal of IGFBP5 also induced adhesion. Adhesion induced by IGFBP5 was dependent on Cdc42 and resulted in activation of integrin-linked kinase (ILK) and Akt. Consistent with these changes, IGFBP5 facilitated prolonged cell survival in nutrient-poor conditions and decreased phosphorylation of the stress-activated kinase p38 MAPK (MAPK14). Whereas IGFBP5 enhanced adhesion, it inhibited cell migration, although this was not evident using the truncated C-terminal mutant, suggesting that effects of IGFBP5 on adhesion and migration involve different mechanisms. We anticipate that these responses to IGFBP5 would reduce the metastatic potential of cells.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Güllü G, Karabulut S, Akkiprik M. Functional roles and clinical values of insulin-like growth factor-binding protein-5 in different types of cancers. CHINESE JOURNAL OF CANCER 2012; 31:266-80. [PMID: 22313597 PMCID: PMC3777492 DOI: 10.5732/cjc.011.10405] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) are critical regulators of the mitogenic activity of insulin-like growth factors (IGFs). IGFBP5, one of these IGFBPs, has special structural features, including a nuclear transport domain, heparin-binding motif, and IGF/extracellular matrix/acid-labile subunit-binding sites. Furthermore, IGFBP5 has several functional effects on carcinogenesis and even normal cell processes, such as cell growth, death, motility, and tissue remodeling. These biological effects are sometimes related with IGF (IGF-dependent effects) and sometimes not (IGF-independent effects). The functional role of IGFBP5 is most likely determined in a cell-type and tissue-type specific manner but also depends on cell context, especially in terms of the diversity of interacting proteins and the potential for nuclear localization. Clinical findings show that IGFBP5 has the potential to be a useful clinical biomarker for predicting response to therapy and clinical outcome of cancer patients. In this review, we summarize the functional diversity and clinical importance of IGFBP5 in different types of cancers.
Collapse
Affiliation(s)
- Gökçe Güllü
- Department of Medical Biology, School of Medicine, DMarmara University, Istanbul 34468, Turkey
| | | | | |
Collapse
|
38
|
Liu BY, Soloviev I, Huang X, Chang P, Ernst JA, Polakis P, Sakanaka C. Mammary tumor regression elicited by Wnt signaling inhibitor requires IGFBP5. Cancer Res 2012; 72:1568-78. [PMID: 22307840 DOI: 10.1158/0008-5472.can-11-3668] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wnt ligand-driven tumor growth is inhibited by the soluble Wnt inhibitor Fzd8CRD, but the mechanism through which this effect is mediated is unknown. In the MMTV-Wnt1 mouse model, regression of mammary tumors by Fzd8CRD treatment coincides with an acute and strong induction of insulin-like growth factor (IGF)-binding protein IGFBP5, an antagonist of IGF signaling that mediates involution of mammary gland in females after offspring are weaned. In this study, we show that repression of this IGF inhibitory pathway is crucial for Wnt-driven growth of mammary tumors. We found that IGFBP5 regulation was mediated by the β-catenin-dependent Wnt pathway. Wnt, in addition to IGF ligands, facilitated tumor growth by paracrine communication among tumor cells. In addition, Fzd8CRD caused precocious induction of IGFBP5 in normal mammary glands undergoing involution, implying an acceleration of the involution process by inhibition of Wnt signaling. The molecular and phenotypic parallel between tumor regression and mammary gland involution suggests that Wnt-driven mammary tumors use the same growth mechanism as proliferating normal mammary glands.
Collapse
Affiliation(s)
- Bob Y Liu
- Department of Cancer Targets, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Keady SM, Kenny DA, Keane MG, Waters SM. Effect of sire breed and genetic merit for carcass weight on the transcriptional regulation of the somatotropic axis in longissimus dorsi of crossbred steers. J Anim Sci 2011; 89:4007-16. [PMID: 21724946 DOI: 10.2527/jas.2011-4032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The somatotropic axis plays an important role in postnatal growth, development, and differentiation of skeletal muscle. The aim of this study was to examine the effect of sire breed and sire EPD for carcass weight (EPD(cwt)) on the expression of components of the somatotropic axis in LM of beef cattle at slaughter. Crossbred Aberdeen Angus (AA; n = 17) and Belgian Blue (BB; n = 16) steers born to Holstein-Friesian dams and sired by bulls with either high (H) or low (L) EPD(cwt) were used in the study. Thus, there were 4 genetic groups [i.e., BBH (n = 8), BBL (n = 8), AAH (n = 8), and AAL (n = 9)]. Blood samples were collected via jugular venipuncture at regular intervals for analysis of plasma concentrations of IGF-1 and insulin. Total RNA was isolated from LM collected at slaughter, and the mRNA expression of IGF-1, IGF-2, their receptors (IGF-1R; IGF-2R), 6 IGFBP, acid labile subunit (ALS), and GH receptor (GHR) was measured by real-time reverse-transcription quantitative PCR. There was no effect of either sire breed or EPD(cwt) on concentrations of circulating IGF or insulin (P > 0.05). Gene expression of IGF-1R and IGFBP3 was upregulated in AA (P < 0.001) compared with BB, whereas IGF-1 was upregulated in H compared with L animals (P < 0.01). Correlation analysis indicated moderate positive associations between gene expression of IGFBP3 and IGF-1 (r = 0.54; P < 0.001) and IGF-1R (r = 0.48; P < 0.01). In addition, correlation analysis revealed that mRNA expression of IGFBP3 was moderately negatively associated with LM area per kilogram of carcass weight (r = -0.40; P < 0.05). Greater gene expression of IGF-1 and reduced transcript abundance of IGFBP3 in muscle may have a role in increased muscle growth potential in steers during the finishing period. These data will contribute to a better understanding of the molecular control of muscle growth at a tissue level in cattle.
Collapse
Affiliation(s)
- S M Keady
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Co. Meath, Ireland
| | | | | | | |
Collapse
|
40
|
Foote MR, Giesy SL, Bernal-Santos G, Bauman DE, Boisclair YR. t10,c12-CLA decreases adiposity in peripubertal mice without dose-related detrimental effects on mammary development, inflammation status, and metabolism. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1521-8. [PMID: 20844263 DOI: 10.1152/ajpregu.00445.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The trans 10, cis 12-conjugated linoleic acid (10,12-CLA) isomer reduces adiposity in several animal models. In the mouse, however, this effect is associated with adipose tissue inflammation, hyperinsulinemia and hepatic lipid accumulation. Moreover, 10,12-CLA was recently shown to promote mammary ductal hyperplasia and ErbB2/Her2-driven mammary cancer in the mouse. Reasons for detrimental effects of 10,12-CLA on the mouse mammary gland could relate to its effect on the mammary fat pad (MFP), which is essential for normal development. Accordingly, we hypothesized that mammary effects of 10,12-CLA were mediated through the MFP in a dose-dependent manner. Female FVB mice were fed 10,12-CLA at doses of 0%, 0.1%, 0.2%, or 0.5% of the diet from day 24 of age, and effects on mammary development and metabolism were measured on day 49. The 0.5% dose reduced ductal elongation and caused premature alveolar budding. These effects were associated with increased expression of inflammatory markers and genes shown to alter epithelial growth (IGF binding protein-5) and alveolar budding (TNF-α and receptor of activated NF-κB ligand). The 0.5% dose also caused hyperinsulinemia and hepatic lipid accumulation. In contrast, the 0.1% 10,12-CLA dose had no adverse effects on mammary development, metabolic events, and inflammatory responses, but remained effective in decreasing adipose weights and lipogenic gene expression. These results show that a low dose of 10,12-CLA reduces adiposity in the mouse without negative effects on mammary development, inflammation, and metabolism, and suggest that previously reported detrimental effects relate to the use of excessive doses.
Collapse
Affiliation(s)
- M R Foote
- Dept. of Animal Science, Cornell Univ., 259 Morrison Hall, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
41
|
Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 2010; 167:344-51. [PMID: 20403355 DOI: 10.1016/j.ygcen.2010.04.009] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/07/2010] [Accepted: 04/14/2010] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) signaling pathway consists of multiple IGF ligands, IGF receptors, and IGF-binding proteins (IGFBPs). Studies in a variety of animal and cellular systems suggest that the IGF signaling pathway plays a key role in regulating skeletal muscle growth, differentiation, and in maintaining homeostasis of the adult muscle tissues. Intriguingly, IGFs stimulate both myoblast proliferation and differentiation, which are two mutually exclusive biological events during myogenesis. Both of these actions are mediated through the same IGF-1 receptor. Recent studies have shed new insights into the molecular mechanisms underlying these paradoxical actions of IGFs in muscle cells. In this article, we provide a brief review of our current understanding of the IGF signaling system and discuss recent findings on how local oxygen availability and IGFBPs act to specify IGF actions in muscle cells.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
42
|
Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells. FIBROGENESIS & TISSUE REPAIR 2010; 3:3. [PMID: 20163708 PMCID: PMC2834615 DOI: 10.1186/1755-1536-3-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/17/2010] [Indexed: 02/06/2023]
Abstract
Background Expression of insulin-like growth factor binding protein 5 (IGFBP5) is strongly induced upon activation of hepatic stellate cells and their transdifferentiation into myofibroblasts in vitro. This was confirmed in vivo in an animal model of liver fibrosis. Since IGFBP5 has been shown to promote fibrosis in other tissues, the aim of this study was to investigate its role in the progression of liver fibrosis. Methods The effect of IGFBP5 was studied in LX2 cells, a model for partially activated hepatic stellate cells, and in human primary liver myofibroblasts. IGFBP5 signalling was modulated by the addition of recombinant protein, by lentiviral overexpression, and by siRNA mediated silencing. Furthermore, the addition of IGF1 and silencing of the IGF1R was used to investigate the role of the IGF-axis in IGFBP5 mediated effects. Results IGFBP5 enhanced the survival of LX2 cells and myofibroblasts via a >50% suppression of apoptosis. This effect of IGFBP5 was not modulated by the addition of IGF1, nor by silencing of the IGF1R. Additionally, IGFBP5 was able to enhance the expression of established pro-fibrotic markers, such as collagen Iα1, TIMP1 and MMP1. Conclusion IGFBP5 enhances the survival of (partially) activated hepatic stellate cells and myofibroblasts by lowering apoptosis via an IGF1-independent mechanism, and enhances the expression of profibrotic genes. Its lowered expression may, therefore, reduce the progression of liver fibrosis.
Collapse
|
43
|
Dai W, Kamei H, Zhao Y, Ding J, Du Z, Duan C. Duplicated zebrafish insulin-like growth factor binding protein-5 genes with split functional domains: evidence for evolutionarily conserved IGF binding, nuclear localization, and transactivation activity. FASEB J 2010; 24:2020-9. [PMID: 20081093 DOI: 10.1096/fj.09-149435] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor binding protein (IGFBP)-5 is a secreted protein that binds to IGF and modulates IGF actions. IGFBP-5 is also found in the nucleus of mammalian cells and has transactivation activity. The structural basis of this transactivation activity and its role in mediating IGF-independent actions are not clear. Here we report that there are 2 igfbp-5 genes in zebrafish and other teleost fish. In zebrafish, igfbp-5a and -5b are expressed in spatially restricted, mostly nonoverlapping domains during early development. The IGF binding site is conserved in both zebrafish IGFBP-5s, and they are both secreted and capable of IGF binding. Both proteins contain a consensus bipartite nuclear localization signal and were found in the nucleus when introduced into cultured cells. Although zebrafish IGFBP-5b possesses transactivation activity, zebrafish IGFBP-5a lacks this activity. Mutational analysis demonstrated that 2 unique amino acids in positions 22 and 56 of IGFBP-5a are responsible for its lack of transactivation activity. These findings suggest that the duplicated zebrafish IGFBP-5s have evolved divergent regulatory mechanisms and distinct biological properties by partitioning of ancestral structural domains and provide new evidence for a conserved role of the IGF binding, nuclear localization, and transactivation domain of this multifunctional IGFBP.
Collapse
Affiliation(s)
- Wei Dai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gleason CE, Ning Y, Cominski TP, Gupta R, Kaestner KH, Pintar JE, Birnbaum MJ. Role of insulin-like growth factor-binding protein 5 (IGFBP5) in organismal and pancreatic beta-cell growth. Mol Endocrinol 2009; 24:178-92. [PMID: 19897600 DOI: 10.1210/me.2009-0167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A family of IGF-binding proteins (IGFBP) exerts biological actions both dependent on and independent of IGF-I. A major effector of the insulin/IGF-I signaling pathway, the serine/threonine protein kinase Akt, mediates cellular processes such as glucose uptake, protein synthesis, cell survival, and growth. IGF-I is required for normal organismal growth, and in the pancreatic beta-cell, the insulin/IGF-I signaling pathway is critical for normal and adaptive maintenance of beta-cell mass. Expression of myrAkt1, an activated form of Akt, in the endocrine pancreas drives beta-cell expansion through dramatic increases in both islet and beta-cell size and number. Herein we present a comparative expression profiling of myrAkt1 transgenic islets that demonstrates the increased abundance of transcripts encoding proteins associated with growth, suppression of apoptosis, RNA processing, and metabolism. Although IGFBP5 is identified as a gene induced by Akt1 activation in the beta-cell, Igfbp5 expression is not necessary for myrAkt1 to augment beta-cell size or mass in vivo. However, in the absence of Igfbp5, mice demonstrate an increase in size and mild glucose intolerance. This is accentuated during diet-induced obesity, when Igfbp5-deficient mice have increased adiposity compared with wild-type mice on the same diet. These studies reveal a novel role for Igfbp5 in the control of growth and metabolism.
Collapse
Affiliation(s)
- Catherine E Gleason
- University of Pennsylvania School of Medicine, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Monks J, Henson PM. Differentiation of the mammary epithelial cell during involution: implications for breast cancer. J Mammary Gland Biol Neoplasia 2009; 14:159-70. [PMID: 19408104 DOI: 10.1007/s10911-009-9121-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/31/2023] Open
Abstract
That milk secretion is not the final differentiated state of the mammary alveolar cells is a relatively new concept. Recent work has suggested that secreting, mammary epithelial cells (MECs) have another function to perform before they undergo cell death in the involuting mammary gland. That is, they help in the final clearance and breakdown of their neighboring cells (and likely residual milk as well.) They become, for a short time, amateur phagocytes, or efferocytes, and then are believed to die and be cleared themselves. Although relatively little study has been made of this change in the functional state of the MEC, nevertheless we may speculate from the involution literature, and extend findings from other systems of apoptotic cell clearance, on some of the mechanisms involved. And with the finding that involution may represent a unique susceptibility window for the progression of metastatic breast cancer, we may suggest areas for future research along these lines as well.
Collapse
Affiliation(s)
- Jenifer Monks
- Webb Waring Center, University of Colorado, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
46
|
Stein T, Salomonis N, Nuyten DSA, van de Vijver MJ, Gusterson BA. A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis. J Mammary Gland Biol Neoplasia 2009; 14:99-116. [PMID: 19408105 DOI: 10.1007/s10911-009-9120-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/15/2022] Open
Abstract
Mouse mammary gland involution resembles a wound healing response with suppressed inflammation. Wound healing and inflammation are also associated with tumour development, and a 'wound-healing' gene expression signature can predict metastasis formation and survival. Recent studies have shown that an involuting mammary gland stroma can promote metastasis. It could therefore be hypothesised that gene expression signatures from an involuting mouse mammary gland may provide new insights into the physiological pathways that promote breast cancer progression. Indeed, using the HOPACH clustering method, the human orthologues of genes that were differentially regulated at day 3 of mammary gland involution and showed prolonged expression throughout the first 4 days of involution distinguished breast cancers in the NKI 295 breast cancer dataset with low and high metastatic activity. Most strikingly, genes associated with copper ion homeostasis and with HIF-1 promoter binding sites were the most over-represented, linking this signature to hypoxia. Further, six out of the ten mRNAs with strongest up-regulation in cancers with poor survival code for secreted factors, identifying potential candidates that may be involved in stromal/matrix-enhanced metastasis formation/breast cancer development. This method therefore identified biological processes that occur during mammary gland involution, which may be critical in promoting breast cancer metastasis that could form a basis for future investigation, and supports a role for copper in breast cancer development.
Collapse
Affiliation(s)
- Torsten Stein
- Division of Cancer Sciences and Molecular Pathology, Section of Gene Regulation and Mechanisms of Disease, Western Infirmary, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
47
|
Tripathi G, Salih DAM, Drozd AC, Cosgrove RA, Cobb LJ, Pell JM. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J 2009; 23:2616-26. [PMID: 19332648 DOI: 10.1096/fj.08-114124] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP-5 is the most conserved of these and is up-regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP-5 in these physiological and pathological situations is unclear, however, several IGFBP-5 sequence motifs and studies in vitro suggest IGF-independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild-type Igfbp5 or an N-terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild-type IGFBP-5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP-5 with the IGF system. Further, overexpression of wild-type IGFBP-5 rescued the lethal phenotype induced by "excess" IGF-II in type 2 receptor-null mice; mutant IGFBP-5 overexpression could not. Therefore, wild-type IGFBP-5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF-independent actions for IGFBP-5 during development.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 2009; 30:51-74. [PMID: 19075184 PMCID: PMC5393153 DOI: 10.1210/er.2008-0022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer chemoprevention by preventing actions of both estrogen and progesterone, especially in women at extremely high risk for developing breast cancer such as BRCA gene 1 or 2 mutations.
Collapse
Affiliation(s)
- David L Kleinberg
- Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
49
|
Flint DJ, Tonner E, Beattie J, Allan GJ. Role of insulin-like growth factor binding proteins in mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:443-53. [PMID: 18998203 DOI: 10.1007/s10911-008-9095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/28/2008] [Indexed: 01/08/2023] Open
Abstract
Insulin-like growth factors (IGFs) play an important role in mammary gland development and their effects are, in turn, influenced by a family of 6 IGF-binding proteins (IGFBPs). The IGFBPs are expressed in time- and tissue-specific fashion during the periods of rapid growth and involution of the mammary gland. The precise roles of these proteins in vivo have, however, been difficult to determine. This review examines the indirect evidence (evolution, chromosomal location and roles in lower life-forms) the evidence from in vitro studies and the attempts to examine their roles in vivo, using IGFBP-deficient and over-expression models. Evidence exists for a role of the IGFBPs in inhibition of the survival effects of IGFs as well as in IGF-enhancing effects from in vitro studies. The location of the IGFBPs, often associated with the extracellular matrix, suggests roles as a reservoir of IGFs or as a potential barrier, restricting access of IGFs to distinct cellular compartments. We also discuss the relative importance of IGF-dependent versus IGF-independent effects. IGF-independent effects include nuclear localization, activation of proteases and interaction with a variety of extracellular matrix and cell surface proteins. Finally, we examine the increasing evidence for the IGFBPs to be considered as part of a larger family of extracellular matrix proteins involved in morphogenesis and tissue re-modeling.
Collapse
Affiliation(s)
- D J Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0NR, UK.
| | | | | | | |
Collapse
|
50
|
Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RWE. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol 2008; 22:2677-88. [PMID: 18927239 DOI: 10.1210/me.2008-0097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes beta-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed beta-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.
Collapse
Affiliation(s)
- Paul G Tiffen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|