1
|
Fudvoye J, Lopez-Rodriguez D, Glachet C, Franssen D, Terwagne Q, Lavergne A, Donneau AF, Munaut C, Dehan P, Lomniczi A, Parent AS. Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat. Reprod Toxicol 2025; 132:108854. [PMID: 39933604 DOI: 10.1016/j.reprotox.2025.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (Fut2), pregnancy-specific glycoprotein 22 (Psg22), Wnt family member 7b (Wnt7b) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (src2), a key mediator of steroid induced decidualization, was significantly reduced, while placental src2 mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.
Collapse
Affiliation(s)
- J Fudvoye
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| | - D Lopez-Rodriguez
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - C Glachet
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - D Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Q Terwagne
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - A Lavergne
- Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | - A F Donneau
- Department of Public Health, University of Liège, Liège, Belgium
| | - C Munaut
- Laboratory of Tumor and Development Biology, GIGA-R, University of Liège, Liège, Belgium
| | - P Dehan
- Experimental Pathology, University of Liège, Liège, Liège, Belgium
| | - A Lomniczi
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - A S Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium
| |
Collapse
|
2
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
3
|
Research on the Mechanism of Asperosaponin VI for Treating Recurrent Spontaneous Abortion by Bioinformatics Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8099853. [PMID: 35783512 PMCID: PMC9246589 DOI: 10.1155/2022/8099853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022]
Abstract
Asperosaponin VI (AS6), as the quality marker of Dipsaci Radix, is verified to exert therapeutic effect on alleviating recurrent spontaneous abortion (RSA). However, due to the lack of relevant research, its molecular mechanism is still unclear. We retrieved targets for AS6 and RSA, and then used their overlapped targets for PPI analysis. In addition, we used GO and KEGG enrichment analyses, and molecular docking to investigate the anti-RSA mechanisms of AS6. Furthermore, we conducted in vitro experiments to validate the predictions of network pharmacology. Results showed that a total of 103 AS6-associated targets and 2084 RSA-associated targets, with 49 targets overlapped. GO enrichment analysis showed 845 significant biological processes like decidualization, while KEGG pathway enrichment analysis revealed 76 significant entries including 18 signaling pathways, which were closely linked to PI3K-Akt, HIF-1, TNF, IL-17, and VEGF signaling pathways, etc. Molecular docking findings verified that AS6 had tight link with the key targets including JUN, CASP3, STAT3, SRC, and PTGS2. Notably, in vitro experiments revealed that AS6 treatment could exert lower expressions of JUN, pro-CASP3, CASP3, STAT3, SRC, and PTGS2 in decidual cells compared with progesterone despite the expressions of STAT3, SRC, and PTGS2 with no significant difference, and mifepristone could interfere with the effects. In general, numerous targets and multiple pathways involve during the process of AS6 treatment against RSA. Moreover, our in vitro research first reported that AS6 may regulate the expressions of key targets (JUN, CASP3, STAT3, SRC, and PTGS2) in decidual cells to promote decidualization, thus treating RSA.
Collapse
|
4
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Rohira AD, Lonard DM, O’Malley BW. Emerging roles of steroid receptor coactivators in stromal cell responses. J Endocrinol 2021; 248:R41-R50. [PMID: 33337343 PMCID: PMC7925431 DOI: 10.1530/joe-20-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue parenchyma is the functional unit of an organ and all of the remaining cells within that organ collectively make up the tissue stroma. The stroma includes fibroblasts, endothelial cells, immune cells, and nerves. Interactions between stromal and epithelial cells are essential for tissue development and healing after injury. These interactions are governed by growth factors, inflammatory cytokines and hormone signaling cascades. The steroid receptor coactivator (SRC) family of proteins includes three transcriptional coactivators that facilitate the assembly of multi-protein complexes to induce gene expression in response to activation of many cellular transcription factor signaling cascades. They are ubiquitously expressed and are especially critical for the developmental function of steroid hormone responsive tissues. The SRCs are overexpressed in multiple cancers including breast, ovarian, prostate and endometrial cancers. In this review, we focus on the role of the SRCs in regulating the functions of stromal cell components responsible for angiogenesis, inflammation and cell differentiation.
Collapse
Affiliation(s)
- Aarti D. Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Corresponding author: Bert W. O’Malley, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, Tel: 713-798-6205, Fax: 713-798-1275,
| |
Collapse
|
6
|
Marquardt RM, Lee K, Kim TH, Lee B, DeMayo FJ, Jeong JW. Interleukin-13 receptor subunit alpha-2 is a target of progesterone receptor and steroid receptor coactivator-1 in the mouse uterus†. Biol Reprod 2020; 103:760-768. [PMID: 32558878 DOI: 10.1093/biolre/ioaa110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Brandon Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Program of Neuroscience, Bowdoin College, Brunswick, ME, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
7
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
8
|
Yoshinaga K. A historical review of blastocyst implantation research. Biol Reprod 2018; 99:175-195. [PMID: 30010858 PMCID: PMC6279068 DOI: 10.1093/biolre/ioy093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Research development on blastocyst implantation was reviewed in three sections: primate implantation, ungulate farm animal implantation, and the general process of blastocyst implantation in small rodents. Future research directions of this area are suggested.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, Division of Extramural Research, NICHD, NIH,
Bethesda, Maryland, USA
| |
Collapse
|
9
|
Cuevas CA, Tapia-Pizarro A, Salvatierra AM, Munroe DJ, Velasquez L, Croxatto HB. Effect of single post-ovulatory administration of mifepristone (RU486) on transcript profile during the receptive period in human endometrium. Reproduction 2016; 151:331-49. [DOI: 10.1530/rep-15-0458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
Progesterone regulates uterine function during the luteal phase and is essential for the acquisition of endometrial receptivity. The objective of the present study was to identify endometrial transcripts whose expression is altered during the window of implantation after the administration of 200 mg of the antiprogestin mifepristone, 48 h after the LH peak (LH+2, LH+0=LH peak), and to determine the relationship of these transcripts with those regulated during the acquisition of receptivity. Endometrial samples were obtained in LH+7 from seven women of proven fertility, each one contributing with one cycle treated with placebo and another with mifepristone. Additionally, endometrial samples were obtained in LH+2 and LH+7 during a single untreated spontaneous cycle from seven normal fertile women as a reference. DNA microarrays were used to identify transcripts significantly regulated (defined as ≥2.0-fold change with false discovery rate below 1% usingt-test) with the administration of mifepristone vs placebo, or during the transition from pre-receptive to receptive (LH+2 vs LH+7). Approximately 2000 transcripts were significantly regulated in both comparisons (mifepristone vs placebo and LH+2 vs LH+7), but only 777 of them were coincident and displayed opposite regulation except for 25. The mRNA level for eight selected genes regulated by mifepristone was confirmed by real-time RT-PCR. We conclude that not all changes in endometrial transcript levels occurring in the transition from LH+2 to LH+7 seem to be regulated by the progesterone receptor and ∼37% of the genes whose transcript levels changed by effect of mifepristone could be associated with the acquisition of receptivity.
Collapse
|
10
|
Szwarc MM, Kommagani R, Lessey BA, Lydon JP. The p160/steroid receptor coactivator family: potent arbiters of uterine physiology and dysfunction. Biol Reprod 2014; 91:122. [PMID: 25297546 PMCID: PMC4434928 DOI: 10.1095/biolreprod.114.125021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 11/01/2022] Open
Abstract
The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3; otherwise known as NCOA1, NCOA2, and NCOA3, respectively), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor and non-nuclear receptor signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From "dovetailing" clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and to colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells, SRC-2 was shown to act as a molecular "pacemaker" of the glycolytic flux. This finding is significant because acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for endometrial stromal cells to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Although studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies, particularly in the mouse, to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, South Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
12
|
Szwarc MM, Kommagani R, Jeong JW, Wu SP, Tsai SY, Tsai MJ, O’Malley BW, DeMayo FJ, Lydon JP. Perturbing the cellular levels of steroid receptor coactivator-2 impairs murine endometrial function. PLoS One 2014; 9:e98664. [PMID: 24905738 PMCID: PMC4048228 DOI: 10.1371/journal.pone.0098664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 01/24/2023] Open
Abstract
As pleiotropic coregulators, members of the p160/steroid receptor coactivator (SRC) family control a broad spectrum of transcriptional responses that underpin a diverse array of physiological and pathophysiological processes. Because of their potent coregulator properties, strict controls on SRC expression levels are required to maintain normal tissue functionality. Accordingly, an unwarranted increase in the cellular levels of SRC members has been causally linked to the initiation and/or progression of a number of clinical disorders. Although knockout mouse models have underscored the critical non-redundant roles for each SRC member in vivo, there are surprisingly few mouse models that have been engineered to overexpress SRCs. This deficiency is significant since SRC involvement in many of these disorders is based on unscheduled increases in the levels (rather than the absence) of SRC expression. To address this deficiency, we used recent mouse technology that allows for the targeted expression of human SRC-2 in cells which express the progesterone receptor. Through cre-loxP recombination driven by the endogenous progesterone receptor promoter, a marked elevation in expression levels of human SRC-2 was achieved in endometrial cells that are positive for the progesterone receptor. As a result of this increase in coregulator expression, female mice are severely subfertile due to a dysfunctional uterus, which exhibits a hypersensitivity to estrogen exposure. Our findings strongly support the proposal from clinical observations that increased levels of SRC-2 are causal for a number of endometrial disorders which compromise fertility. Future studies will use this mouse model to decipher the molecular mechanisms that underpin the endometrial defect. We believe such mechanistic insight may provide new molecular descriptors for diagnosis, prognosis, and/or therapy in the clinical management of female infertility.
Collapse
Affiliation(s)
- Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - San-Pin Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
13
|
Kommagani R, Szwarc MM, Kovanci E, Creighton CJ, O'Malley BW, Demayo FJ, Lydon JP. A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells. Biol Reprod 2014; 90:75. [PMID: 24571987 DOI: 10.1095/biolreprod.114.117531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
14
|
Varayoud J, Ramos JG, Muñoz-de-Toro M, Luque EH. Long-lasting effects of neonatal bisphenol A exposure on the implantation process. VITAMINS AND HORMONES 2014; 94:253-75. [PMID: 24388194 DOI: 10.1016/b978-0-12-800095-3.00010-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful implantation is the result of complex molecular interactions between the hormonally primed uterus and a mature blastocyst. This very carefully synchronized interplay of hormonal signals and feedback loops is potentially vulnerable to chemicals such as endocrine disruptors that may disrupt endocrine signaling. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. This chapter describes the effects of brief postnatal exposure to BPA on female reproductive performance and specifically on the uterine adaptations during the preimplantation period. We propose that an early alteration in Hoxa10 gene expression affects the functional differentiation of the preimplantation uterus as part of an altered endocrine signal transduction pathway. These molecular alterations could explain, at least in part, the adverse effects of BPA on uterine implantation. Exposure to endocrine disruptors, such as BPA, could contribute to the impaired female fertility noted over the past decades.
Collapse
Affiliation(s)
- Jorgelina Varayoud
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
15
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
16
|
Ivanova MM, Radde BN, Son J, Mehta FF, Chung SH, Klinge CM. Estradiol and tamoxifen regulate NRF-1 and mitochondrial function in mouse mammary gland and uterus. J Mol Endocrinol 2013; 51:233-46. [PMID: 23892277 PMCID: PMC3772954 DOI: 10.1530/jme-13-0051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear respiratory factor-1 (NRF-1) stimulates the transcription of nuclear-encoded genes that regulate mitochondrial (mt) genome transcription and biogenesis. We reported that estradiol (E2) and 4-hydroxytamoxifen (4-OHT) stimulate NRF-1 transcription in an estrogen receptor α (ERα)- and ERβ-dependent manner in human breast cancer cells. The aim of this study was to determine whether E2 and 4-OHT increase NRF-1 in vivo. Here, we report that E2 and 4-OHT increase NRF-1 expression in mammary gland (MG) and uterus of ovariectomized C57BL/6 mice in a time-dependent manner. E2 increased NRF-1 protein in the uterus and MG; however, in MG, 4-OHT increased Nrf1 mRNA but not protein. Chromatin immunoprecipitation assays revealed increased in vivo recruitment of ERα to the Nrf1 promoter and intron 3 in MG and uterus 6 h after E2 and 4-OHT treatment, commensurate with increased NRF-1 expression. E2- and 4-OHT-induced increases in NRF-1 and its target genes Tfam, Tfb1m, and Tfb2m were coordinated in MG but not in uterus due to uterine-selective inhibition of the expression of the NRF-1 coactivators Ppargc1a and Ppargc1b by E2 and 4-OHT. E2 transiently increased NRF-1 and PGC-1α nuclear staining while reducing PGC-1α in uterus. E2, not 4-OHT, activates mt biogenesis in MG and uterus in a time-dependent manner. E2 increased mt outer membrane Tomm40 protein levels in MG and uterus whereas 4-OHT increased Tomm40 only in uterus. These data support the hypothesis of tissue-selective regulation of NRF-1 and its downstream targets by E2 and 4-OHT in vivo.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| | - Brandie N. Radde
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| | - Jieun Son
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Fabiola F. Mehta
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd., Houston, TX 77204
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology; Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292
| |
Collapse
|
17
|
Fenne IS, Helland T, Flågeng MH, Dankel SN, Mellgren G, Sagen JV. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells. PLoS One 2013; 8:e70096. [PMID: 23936147 PMCID: PMC3728357 DOI: 10.1371/journal.pone.0070096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells.
Collapse
Affiliation(s)
- Ingvild S. Fenne
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Marianne H. Flågeng
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Simon N. Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jørn V. Sagen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Manabe Y, Tochigi M, Moriwaki A, Takeuchi S, Takahashi S. Insulin-like growth factor 1 mRNA expression in the uterus of streptozotocin-treated diabetic mice. J Reprod Dev 2013; 59:398-404. [PMID: 23719562 PMCID: PMC3944355 DOI: 10.1262/jrd.2012-169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Reproductive functions decline with the onset of diabetes in female mice. Diabetic mice
have smaller uteri with an underdeveloped endometrium, suggesting diminished
estrogen-induced growth. We aimed to clarify the changes in the estrous cycle and in
insulin-like growth factor 1 (IGF1) expression in the uteri of streptozotocin
(STZ)-treated diabetic mice, because IGF1 is one of the main growth factors involved in
estrogen-induced uterine growth. ICR female mice were intraperitoneally administered STZ
(10 mg/100 g BW), and blood glucose levels were determined. Mice with blood glucose levels
> 200 mg/dl were classified as diabetic mice. The onset of diabetes was associated with
acyclic estrous cycles. Diabetes was also induced with STZ in ovariectomized mice. Uterine
Igf1 mRNA levels were reduced in ovariectomized STZ-treated diabetic
mice. Estrogen is known to stimulate Igf1 mRNA expression in the uterus,
but estrogen action was abolished in the uteri of STZ-treated diabetic mice. mRNA
expressions of estrogen receptor α (ERα) and steroid hormone receptor coactivators
(SRC-1/Ncoa1, SRC-2/Ncoa2,
SRC-3/Ncoa3 and CBP/p300/Crebbp) were reduced in the
uteri of ovariectomized STZ-treated diabetic mice. The present study demonstrates that
diabetes induces a decline in female reproductive functions in mice. Igf1
expression in ovariectomized diabetic female mice was decreased, and decreased
responsiveness to estrogen in the uteri of diabetic mice is probably associated with a
reduction in ERα and steroid receptor coactivator mRNA expression.
Collapse
Affiliation(s)
- Yoshie Manabe
- The Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
19
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deng WB, Tian Z, Liang XH, Wang BC, Yang F, Yang ZM. Progesterone regulation of Na/K-ATPase β1 subunit expression in the mouse uterus during the peri-implantation period. Theriogenology 2013; 79:1196-203. [PMID: 23534996 DOI: 10.1016/j.theriogenology.2013.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023]
Abstract
Luminal closure and embryo apposition are essential for blastocyst attachment during early pregnancy. In our preliminary microarray results (unpublished data), sodium-potassium adenosine triphosphatase (Na/K-ATPase) β1 (Atp1b1) was highly expressed in mouse uterus on Days 3 and 4 of pregnancy. However, expression and regulation of Atp1b1 in the mammalian uterus during early pregnancy are unknown. Using in situ hybridization, a strong level of Atp1b1 mRNA was detected in luminal epithelial cells on Days 3 and 4 of pregnancy (Day 1 = day of vaginal plug). The expression pattern of FXYD domain-containing ion transport regulator 4 (Fxyd4) was similar to that of Atp1b1. Real-time reverse transcription polymerase chain reaction confirmed the high expression level of Atp1b1 mRNA. Compared with Day 1, the mRNA level of Atp1b1 on Days 3 and 4 increased by 3.5 ± 0.5 and 4.5 ± 0.5 fold, respectively. When the embryo invaded through epithelial cells into the maternal stromal compartment on day 5, Atp1b1 expression decreased to a basal level. Progesterone stimulated Atp1b1 expression by 2.8 ± 1 fold compared with oil in ovariectomized mice at 24 hours after treatment. Expression of Atp1b1 was further upregulated to 4 ± 0.4 fold by estrogen and progesterone. Based on time-course study, progesterone rapidly induced Atp1b1 expression at 6 and 12 hours (13.7 ± 0.5 and 16.6 ± 1.4, respectively); furthermore, this upregulation was blocked by RU486 (progesterone receptor antagonist). Transcription activity of the Atp1b1 promoter was (Day 1 = day of vaginal plug) stimulated by CCAAT/enhancer binding protein beta (Cebpb). In conclusion, Atp1b1 was highly expressed in luminal epithelium during peri-implantation and upregulated by progesterone.
Collapse
Affiliation(s)
- Wen-Bo Deng
- College of Life Science, Xiamen University, Xiamen, China; Department of Biology, Shantou University, Shantou, China
| | | | | | | | | | | |
Collapse
|
21
|
Kawagoe J, Li Q, Mussi P, Liao L, Lydon JP, DeMayo FJ, Xu J. Nuclear receptor coactivator-6 attenuates uterine estrogen sensitivity to permit embryo implantation. Dev Cell 2013; 23:858-65. [PMID: 23079602 DOI: 10.1016/j.devcel.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/26/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
Abstract
Uterine receptivity to embryo implantation is coordinately regulated by 17β-estradiol (E(2)) and progesterone (P(4)). Although increased E(2) sensitivity causes infertility, the mechanisms underlying the modulation of E(2) sensitivity are unknown. We show that nuclear receptor coactivator-6 (NCOA6), a reported coactivator for estrogen receptor α (ERα), actually attenuates E(2) sensitivity to determine uterine receptivity to embryo implantation under normal physiological conditions. Specifically, conditional knockout of Ncoa6 in uterine epithelial and stromal cells does not decrease, but rather markedly increases E(2) sensitivity, which disrupts embryo implantation and inhibits P(4)-regulated genes and decidual response. NCOA6 enhances ERα ubiquitination and accelerates its degradation, while loss of NCOA6 causes ERα accumulation in stromal cells during the preimplantation period. During the same period, NCOA6 deficiency also caused a failure in downregulation of steroid receptor coactivator-3 (SRC-3), a potent ERα coactivator. Therefore, NCOA6 controls E(2) sensitivity and uterine receptivity by regulating multiple E(2)-signaling components.
Collapse
Affiliation(s)
- Jun Kawagoe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang L, Patterson AL, Zhang L, Teixeira JM, Pru JK. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod Biol Endocrinol 2012; 10:75. [PMID: 22958837 PMCID: PMC3462133 DOI: 10.1186/1477-7827-10-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Beta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways. METHODS To investigate the role of beta-catenin in progesterone (P₄) signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial), but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E₂) and P₄ was also determined. RESULTS Conditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E₂-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E₂. However, exposure of ovariectomized mutant female mice to a combined E₂ and P₄ hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E₂-induced epithelial proliferation by P₄ and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1 CONCLUSIONS Three salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P₄ and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P₄ signaling to the epithelium, a process that intimately involves mesenchymal beta-catenin. Third, the technical feasibility of deleting genes in the mesenchymal compartment of the uterus in an effort to understand decidualization and post-natal interactions with the overlying epithelium has been demonstrated. It is concluded that beta-catenin plays an integral role in selective P₄-directed epithelial-mesenchymal communication in both the estrous cycling and gravid uterus.
Collapse
Affiliation(s)
- Ling Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Amanda L Patterson
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Lihua Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jose M Teixeira
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
24
|
Large MJ, DeMayo FJ. The regulation of embryo implantation and endometrial decidualization by progesterone receptor signaling. Mol Cell Endocrinol 2012; 358:155-65. [PMID: 21821095 PMCID: PMC3256265 DOI: 10.1016/j.mce.2011.07.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/17/2022]
Abstract
During the early stages of pregnancy, fertilized embryos must attach to the uterine epithelium, invade into the underlying uterine stroma, and the stroma must then differentiate in a process termed decidualization in order for a successful pregnancy to be initiated. The steroid hormone progesterone (P4) is an integral mediator of these early pregnancy events, exerting its effects via the progesterone receptor (PR). Insights gained from the use of mouse models and genomic profiling has identified many of the key molecules enlisted by PR to execute the paradigm of early pregnancy. This review describes several of the molecules through which the PR exerts its pleiotropic effects including ligands, receptors, chaperones, signaling proteins and transcription factors. Understanding these molecules and their concatenation is of vital importance to our ability to clinically treat reproductive health problems like infertility and endometriosis.
Collapse
Affiliation(s)
- Michael J. Large
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 (USA)
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 (USA)
| |
Collapse
|
25
|
Niessen NA, Balthazart J, Ball GF, Charlier TD. Steroid receptor coactivator 2 modulates steroid-dependent male sexual behavior and neuroplasticity in Japanese quail (Coturnix japonica). J Neurochem 2011; 119:579-93. [PMID: 21854393 DOI: 10.1111/j.1471-4159.2011.07438.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. Steroid receptor coactivator-2 (SRC-2) modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real-time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with antisense as compared with controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail.
Collapse
|
26
|
Suresh PS, Jayachandra KC, Medhamurthy R. The effect of progesterone replacement on gene expression in the corpus luteum during induced regression and late luteal phase in the bonnet monkey (Macaca radiata). Reprod Biol Endocrinol 2011; 9:20. [PMID: 21291521 PMCID: PMC3038151 DOI: 10.1186/1477-7827-9-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/03/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In higher primates, although LH/CG play a critical role in the control of corpus luteum (CL) function, the direct effects of progesterone (P4) in the maintenance of CL structure and function are unclear. Several experiments were conducted in the bonnet monkey to examine direct effects of P4 on gene expression changes in the CL, during induced luteolysis and the late luteal phase of natural cycles. METHODS To identify differentially expressed genes encoding PR, PR binding factors, cofactors and PR downstream signaling target genes, the genome-wide analysis data generated in CL of monkeys after LH/P4 depletion and LH replacement were mined and validated by real-time RT-PCR analysis. Initially, expression of these P4 related genes were determined in CL during different stages of luteal phase. The recently reported model system of induced luteolysis, yet capable of responsive to tropic support, afforded an ideal situation to examine direct effects of P4 on structure and function of CL. For this purpose, P4 was infused via ALZET pumps into monkeys 24 h after LH/P4 depletion to maintain mid luteal phase circulating P4 concentration (P4 replacement). In another experiment, exogenous P4 was supplemented during late luteal phase to mimic early pregnancy. RESULTS Based on the published microarray data, 45 genes were identified to be commonly regulated by LH and P4. From these 19 genes belonging to PR signaling were selected to determine their expression in LH/P4 depletion and P4 replacement experiments. These 19 genes when analyzed revealed 8 genes to be directly responsive to P4, whereas the other genes to be regulated by both LH and P4. Progesterone supplementation for 24 h during the late luteal phase also showed changes in expression of 17 out of 19 genes examined. CONCLUSION These results taken together suggest that P4 regulates, directly or indirectly, expression of a number of genes involved in the CL structure and function.
Collapse
Affiliation(s)
- Padmanaban S Suresh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Kadthur C Jayachandra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Rudraiah Medhamurthy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
27
|
Yore MA, Im D, Webb LK, Zhao Y, Chadwick JG, Molenda-Figueira HA, Haidacher SJ, Denner L, Tetel MJ. Steroid receptor coactivator-2 expression in brain and physical associations with steroid receptors. Neuroscience 2010; 169:1017-28. [PMID: 20678994 PMCID: PMC2921768 DOI: 10.1016/j.neuroscience.2010.05.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/11/2010] [Accepted: 05/24/2010] [Indexed: 12/18/2022]
Abstract
Estradiol and progesterone bind to their respective receptors in the hypothalamus and hippocampus to influence a variety of behavioral and physiological functions, including reproduction and cognition. Work from our lab and others has shown that the nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and SRC-2, are essential for efficient estrogen receptor (ER) and progestin receptor (PR) transcriptional activity in brain and for hormone-dependent behaviors. While the expression of SRC-1 in brain has been studied extensively, little is known about the expression of SRC-2 in brain. In the present studies, we found that SRC-2 was highly expressed throughout the hippocampus, amygdala and hypothalamus, including the medial preoptic area (MPOA), ventral medial nucleus (VMN), arcuate nucleus (ARC), bed nucleus of the stria terminalis, supraoptic nucleus and suprachiasmatic nucleus. In order for coactivators to function with steroid receptors, they must be expressed in the same cells. Indeed, SRC-2 and ER(alpha) were coexpressed in many cells in the MPOA, VMN and ARC, all brain regions known to be involved in female reproductive behavior and physiology. While in vitro studies indicate that SRC-2 physically associates with ER and PR, very little is known about receptor-coactivator interactions in brain. Therefore, we used pull-down assays to test the hypotheses that SRC-2 from hypothalamic and hippocampal tissue physically associate with ER and PR subtypes in a ligand-dependent manner. SRC-2 from both brain regions interacted with ER(alpha) bound to agonist, but not in the absence of ligand or in the presence of the selective ER modulator, tamoxifen. Analysis by mass spectrometry confirmed these ligand-dependent interactions between ER(alpha) and SRC-2 from brain. In dramatic contrast, SRC-2 from brain showed little to no interaction with ERbeta. Interestingly, SRC-2 from both brain regions interacted with PR-B, but not PR-A, in a ligand-dependent manner. Taken together, these findings reveal that SRC-2 is expressed in brain regions known to mediate a variety of steroid-dependent functions. Furthermore, SRC-2 is expressed in many ER(alpha) containing cells in the hypothalamus. Finally, SRC-2 from brain interacts with ER and PR in a subtype-specific manner, which may contribute to the functional differences of these steroid receptor subtypes in brain.
Collapse
Affiliation(s)
| | - DaEun Im
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
| | - Lena K. Webb
- Neuroscience Program, Skidmore College, Saratoga Springs, NY 12866
| | - Yingxin Zhao
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Heather A. Molenda-Figueira
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003
| | - Sigmund J. Haidacher
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Larry Denner
- Department of Internal Medicine, Stark Diabetes Center, McCoy Stem Cells and Diabetes Mass Spectrometry Research Laboratory, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA 02481
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
28
|
Lee DK, Kurihara I, Jeong JW, Lydon JP, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of ERalpha activity by COUP-TFII is essential for successful implantation and decidualization. Mol Endocrinol 2010; 24:930-40. [PMID: 20219888 PMCID: PMC2870934 DOI: 10.1210/me.2009-0531] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/02/2010] [Indexed: 11/19/2022] Open
Abstract
Synchrony between embryo competency and uterine receptivity is essential for successful implantation. Mice with ablation of chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the uterus (PR(Cre/+);COUP-TFII(flox/flox)) exhibit implantation defects and increased estrogen receptor (ER)alpha activity in the luminal epithelium, suggesting high ERalpha activity may disrupt the window of uterine receptivity. To determine whether increased ERalpha activity in the PR(Cre/+);COUP-TFII(flox/flox) uterus is the cause of defective implantation, we assessed whether inhibition of ERalpha activity could rescue the PR(Cre/+);COUP-TFII(flox/flox) uterine implantation defect. ICI 182,780 (ICI), a pure ERalpha antagonist, was administered to PR(Cre/+);COUP-TFII(flox/flox) mutant and COUP-TFII(flox/flox) control mice during the receptive period, and the number of implantation sites was examined. COUP-TFII(flox/flox) control mice treated with oil or ICI showed the normal number of implantation sites. As expected, no implantation sites were observed in PR(Cre/+);COUP-TFII(flox/flox) mutant mice treated with oil, consistent with previous observations. In contrast, implantation sites were greatly increased in ICI-treated PR(Cre/+);COUP-TFII(flox/flox) mutant mice, albeit at a reduced number in comparison with the control mice. ICI treatment was also able to restore the expression of Wnt4 and bone morphogenetic protein 2, important for endometrial decidualization in the PR(Cre/+);COUP-TFII(flox/flox) mutant mice. To confirm that the rescue of embryo attachment and decidualization is a consequence of a reduced ERalpha activity upon ICI treatment, we showed a reduction of the expression of ERalpha target genes in PR(Cre/+);COUP-TFII(flox/flox) mutant mice. Because COUP-TFII was also shown in our laboratory to be important for placentation during pregnancy, we asked whether ICI treatment could also rescue the placentation defect to allow full-term pregnancy in these mice. We found that whereas mice were born in COUP-TFII(flox/flox) control mice given ICI, no pups were born in the PR(Cre/+);COUP-TFII(flox/flox) mutant mice, suggesting that the increased ERalpha activity is not the reason for placentation defects. These results demonstrate that during the periimplantation period, COUP-TFII regulates embryo attachment and decidualization through controlling ERalpha activity. However, COUP-TFII expression is still required in the postimplantation period to facilitate placentation.
Collapse
Affiliation(s)
- Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 2010; 120:1004-15. [PMID: 20364098 DOI: 10.1172/jci41210] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications.
Collapse
Affiliation(s)
- Hyunjung Jade Lim
- Department of Biomedical Science and Technology, IBST, RCTC, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, Korea.
| | | |
Collapse
|
30
|
Franco HL, Lee KY, Broaddus RR, White LD, Lanske B, Lydon JP, Jeong JW, DeMayo FJ. Ablation of Indian hedgehog in the murine uterus results in decreased cell cycle progression, aberrant epidermal growth factor signaling, and increased estrogen signaling. Biol Reprod 2010; 82:783-90. [PMID: 20056671 PMCID: PMC2842491 DOI: 10.1095/biolreprod.109.080259] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Conditional ablation of Indian hedgehog (Ihh) in the murine uterus results in mice that are sterile because of defects in embryo implantation. We performed microarray analysis on these mice at the time point at which the Ihh target genes are induced by the administration of exogenous hormone to mimic Day 3.5 of pregnancy. This analysis identified 863 genes altered by the conditional ablation of Ihh. Of these, genes that regulated the cell cycle were overrepresented. In addition, genes involved in epidermal growth factor (EGF) and estrogen (E2) signaling were found to be deregulated upon Ihh ablation. Furthermore, upon conditional ablation of Ihh, 15-mo-old mice exhibited hallmarks of estrogenized uteri, such as cystically dilated glands and hyalinized stroma. Thus, Ihh regulates embryo implantation by having an impact on the cell cycle, EGF signaling, and E2 signaling.
Collapse
Affiliation(s)
- Heather L. Franco
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Kevin Y. Lee
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Russell R. Broaddus
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa D. White
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - John P. Lydon
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jae-Wook Jeong
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Francesco J. DeMayo
- Departments of Molecular and Cellular Biology and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Correspondence: Francesco J. DeMayo, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030. FAX: 713 790 1275; e-mail:
| |
Collapse
|
31
|
Diao H, Xiao S, Cui J, Chun J, Xu Y, Ye X. Progesterone receptor-mediated up-regulation of transthyretin in preimplantation mouse uterus. Fertil Steril 2010; 93:2750-3. [PMID: 20188365 DOI: 10.1016/j.fertnstert.2010.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 01/31/2023]
Abstract
Transthyretin (TTR), a carrier for thyroxine and retinol, has its messenger RNA (mRNA) expressed in the glandular endometrial epithelium and its protein detected in the glandular endometrial epithelium and the uterine lumen. TTR mRNA is dramatically up-regulated in the preimplantation mouse uterus as well as the P-treated ovariectomized mouse uterus, and in both situations the up-regulation of TTR is blocked by treatment with the P receptor antagonist RU486.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yin P, Lin Z, Reierstad S, Wu J, Ishikawa H, Marsh EE, Innes J, Cheng Y, Pearson K, Coon JS, Kim JJ, Chakravarti D, Bulun SE. Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells. Cancer Res 2010; 70:1722-30. [PMID: 20124487 DOI: 10.1158/0008-5472.can-09-2612] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uterine leiomyoma is the most common tumor of the female genital tract and the leading cause of hysterectomy. Although progesterone stimulates the proliferation of uterine leiomyoma cells, the mechanism of progesterone action is not well understood. We used chromatin immunoprecipitation (ChIP)-cloning approach to identify progesterone receptor (PR) target genes in primary uterine leiomyoma smooth muscle cells. We identified 18 novel PR-binding sites, one of which was located 20.5 kb upstream of the transcriptional start site of the Krüppel-like transcription factor 11 (KLF11) gene. KLF11 mRNA levels were minimally downregulated by progesterone but robustly upregulated by the progesterone antagonist RU486. Luciferase reporter assays showed significant baseline and RU486-inducible promoter activity in the KLF11 basal promoter or distal PR-binding region, both of which contained multiple Sp1-binding sequences but lacked classic progesterone response elements. RU486 stimulated recruitment of Sp1, RNA polymerase II, PR, and the coactivators SRC-1 and SRC-2 to the distal region and basal promoter. siRNA knockdown of PR increased KLF11 expression, whereas knockdown of KLF11 increased leiomyoma cell proliferation and abolished the antiproliferative effect of RU486. In vivo, KLF11 expression was significantly lower in leiomyoma tissues compared with adjacent myometrial tissues. Taken together, using a ChIP-cloning approach, we uncovered KLF11 as an integrator of PR signaling and proliferation in uterine leiomyoma cells.
Collapse
Affiliation(s)
- Ping Yin
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scarpin KM, Graham JD, Mote PA, Clarke CL. Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. NUCLEAR RECEPTOR SIGNALING 2009; 7:e009. [PMID: 20087430 PMCID: PMC2807635 DOI: 10.1621/nrs.07009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022]
Abstract
Progesterone is a critical regulator of normal female reproductive function, with diverse tissue-specific effects in the human. The effects of progesterone are mediated by its nuclear receptor (PR) that is expressed as two isoforms, PRA and PRB, which are virtually identical except that PRA lacks 164 amino acids that are present at the N-terminus of PRB. Considerable in vitro evidence suggests that the two PRs are functionally distinct and in animals, tissue-specific distribution patterns of PRA and PRB may account for some of the diversity of progesterone effects. In the human, PRA and PRB are equivalently expressed in most target cells, suggesting that alternative mechanisms control the diversity of progesterone actions. PR mediates the effects of progesterone by association with a range of coregulatory proteins and binding to specific target sequences in progesterone-regulated gene promoters. Ligand activation of PR results in redistribution into discrete subnuclear foci that are detectable by immunofluorescence, probably representing aggregates of multiple transcriptionally active PR-coregulator complexes. PR foci are aberrant in cancers, suggesting that the coregulator composition and number of complexes is altered. A large family of coregulators is now described and the range of proteins known to bind PR exceeds the complement required for transcriptional activation, suggesting that in the human, tissue-specific coregulator expression may modulate progesterone response. In this review, we examine the role of nuclear localization of PR, coregulator association and tissue-specific expression in modulating progesterone action in the human.
Collapse
Affiliation(s)
- Katherine M Scarpin
- Westmead Institute for Cancer Research, Westmead Millennium Institute, University of Sydney Western Clinical School, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
34
|
Tetel MJ. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators. Psychoneuroendocrinology 2009; 34 Suppl 1:S9-19. [PMID: 19541426 PMCID: PMC2795054 DOI: 10.1016/j.psyneuen.2009.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 01/05/2023]
Abstract
Steroid hormones act in the central and peripheral nervous systems to regulate a variety of functions, including development, cell proliferation, cognition and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the nuclear receptor superfamily of transcriptional activators. A variety of cell culture studies reveal that nuclear receptor coactivators are recruited to the steroid receptor complex and are critical in modulating steroid-dependent transcription. Thus, in addition to the availability of the hormone and its receptor, the expression of nuclear receptor coactivators is essential for modulating steroid receptor-mediated transcription. This review will discuss the significance of nuclear receptor coactivators in modulating steroid-dependent gene expression in the central and peripheral nervous systems and the regulation of behavior.
Collapse
Affiliation(s)
- Marc J. Tetel
- Neuroscience Program, Wellesley College, 106 Central St., Wellesley, MA 02481
| |
Collapse
|
35
|
Kim JJ, Sefton EC, Bulun SE. Progesterone receptor action in leiomyoma and endometrial cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:53-85. [PMID: 20374701 DOI: 10.1016/s1877-1173(09)87002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone is a key hormone in the regulation of uterine function. In the normal physiological context, progesterone is primarily involved in remodeling of the endometrium and maintaining a quiescent myometrium. When pathologies of the uterus develop, specifically, endometrial cancer and uterine leiomyoma, response to progesterone is usually altered. Progesterone acts through mainly two isoforms of the progesterone receptor (PR), PRA and PRB which have been reported to exhibit different transcriptional activities. Studies examining the expression and function of the PRs in the normal endometrium and myometrium as well as in endometrial cancer and uterine leiomyoma are summarized here. The clinical use of progestins and the transcriptional activity of the PR on genes specific to endometrial cancer and leiomyoma are described. An increased understanding of the differential expression of PRs and response to progesterone in these two diseases is critical in order to develop more efficient and targeted therapies.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
36
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
37
|
Abstract
Steroid hormones act both in the brain and throughout the body to influence behaviour and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical for modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review discusses the mounting evidence indicating that nuclear receptor coactivators are critical for modulating steroid hormone action in the brain and in the regulation of behaviour.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
38
|
Chopra AR, Louet JF, Saha P, An J, DeMayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard CB, O'Malley BW. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 2008; 322:1395-9. [PMID: 19039140 PMCID: PMC2668604 DOI: 10.1126/science.1164847] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.
Collapse
Affiliation(s)
- Atul R. Chopra
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jean-Francois Louet
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Franco DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Saul Karpen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lawrence Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
39
|
Franco HL, Jeong JW, Tsai SY, Lydon JP, DeMayo FJ. In vivo analysis of progesterone receptor action in the uterus during embryo implantation. Semin Cell Dev Biol 2008; 19:178-86. [DOI: 10.1016/j.semcdb.2007.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/29/2007] [Indexed: 11/17/2022]
|