1
|
Machado AF, Sanglard LP, Paez Hurtado SA, Chaves JV, Ajmal MA, Guimarães JD, Stevenson JS, Guimarães SEF, Gomez-Leon VE. Association of phenotypic traits and fertility in Holstein heifers: Body condition score, body weight, antral follicle count, anti-Müllerian hormone, and anogenital distance. J Dairy Sci 2025; 108:5372-5381. [PMID: 40054687 DOI: 10.3168/jds.2024-25923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/13/2025] [Indexed: 05/03/2025]
Abstract
The aim of this cross-sectional observational study was to assess whether nulliparous Holstein heifer fertility is associated with (1) energy reserve-related traits, such as BCS and BW; (2) ovarian reserve-related traits, such as anti-Müllerian hormone (AMH) and antral follicle count (AFC); and (3) development-related traits, such as anogenital distance (AGD) and vulval length (VUL). From August 2022 through July 2023, we used a prospective approach in which the phenotypic traits (BCS, AMH, AFC, AGD, BW, and VUL) of 698 Holstein heifers were measured once at approximately 12 mo of age (at the beginning of the breeding program). All heifers were submitted to the herd reproductive management from 367 ± 3 d of age and 297 kg of BW until 570 d of age, or 5 breedings. Fertility outcomes (age at first service, pregnancy per artificial insemination [P/AI] at first service, age at conception, and number of services per conception) were retrieved from software records. Pearson correlations were performed among phenotypic traits collected. The strongest correlations (r >0.5) observed were for AGD with VUL and AMH with AFC. Associations of phenotypic traits with fertility outcomes were determined using generalized linear models. Body condition score was the phenotypic trait most associated with fertility outcomes. Associations of AMH, AFC, AGD, BW, and VUL with fertility were not observed or were very weak. Furthermore, we divided the data into BCS tertiles and performed association analyses by category. The top BCS tertile was associated with greater BW (365.7 ± 1.8 vs. 356.0 ± 1.5 kg), greater P/AI at first service (65.0% ± 4.0% vs. 52.0% ± 4.0%), and fewer number of services per conception (1.5 ± 0.10 vs. 1.8 ± 0.09) compared with the bottom tertile. Moreover, AGD was greater in the top and bottom tertiles compared with the middle tertile. Finally, BCS was associated with time to conception based on the Cox proportional hazards survival analysis, indicating that heifers with greater BCS became pregnant earlier. Based on the results observed in the current study, we would expect benefits for fertility by improving management practices that result in heifers with greater BCS at first service, but ovarian reserve-related traits (AMH, AFC) and developmental traits (AGD, VUL) were not associated with fertility outcomes in our study.
Collapse
Affiliation(s)
- Andréia Ferreira Machado
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | | | | | - João Victor Chaves
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506; Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | - Muhammad Awais Ajmal
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506
| | - José Domingos Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | - Jeffrey S Stevenson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | - Victor E Gomez-Leon
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506.
| |
Collapse
|
2
|
Machado AF, Facioni Guimarães SE, Lollobrigida de S Netto D, Guimarães JD, Alves Torres CA, Sanglard LP, Gomez-Leon VE. Phenotypic and genetic relationships among anogenital distance, anti-Müllerian hormone, and in vitro embryo production in Gyr dairy cattle. J Dairy Sci 2024; 107:2512-2523. [PMID: 37863293 DOI: 10.3168/jds.2023-23497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Anti-Müllerian hormone (AMH) concentration and number of recovered oocytes (ROOC) are phenotypic parameters associated with in vitro embryo production (IVEP). More recently, anogenital distance (AGD) has been proposed as a proxy for fertility in dairy cattle that is easy to collect at a low cost. The aim of this study was to characterize the AGD and its phenotypic and genetic associations with AMH and IVEP in Bos indicus Gyr dairy cattle. The hypothesis was that the number of ROOC, in vitro-produced embryos, and AMH concentration would increase as the AGD decreases. From July to December 2021, a single morphometrical measurement of AGD was collected in 552 donors from 6 herds in Brazil. A subset of donors had AMH assayed on the same day. Only ovum pick-up events that occurred up to 12 mo preceding and 7 mo succeeding the AGD measurement were used to assess the association between AGD, AMH, and IVEP. Thus, 472 donors (1,551 ovum pick-up events and 140 donors with AMH) were considered in the analysis. A raw average was calculated for each individual donor's ROOC, viable oocytes, total produced embryos, viability rate, and embryo rate (defined as total produced embryos/viable oocytes). Comparisons were conducted within the age categories of 3 to <6 yr or 6 to <10 yr. Phenotypic associations were performed in SAS software (SAS Institute Inc., Cary, NC). Genetic correlations were estimated using the BLUPF90 family of programs. The AGD (128.7 mm ± 14; mean ± standard deviation) had a normal distribution and was highly variable (83 to 172 mm) among the Gyr population. Our experimental hypothesis was partially supported by a phenotypic association of a greater number of total produced embryos (R2 = 0.023) as AGD decreased. Our results failed to support an increase in AMH concentration along with a decrease in AGD. In addition, positive and low genetic correlations were observed between AGD and viable oocytes (r = 0.08), and embryo rate (r = 0.20). A greater number of viable oocytes and embryos were observed in donors in the high compared with intermediate and low ROOC categories within both age categories. The age interval of 3 to <6 yr showed a greater number of recovered and viable oocytes for the high AMH compared with the low category, but no differences were observed among the AGD categories. In summary, for the Gyr breed, AGD was phenotypically inversely associated with a quantity-related parameter, such as the total number of produced embryos. In contrast, AGD showed a low genetic correlation with qualitative-related outcomes such as viable oocytes and embryo rate. Further studies should be performed to validate these retrospective analyses and to better understand the association between AGD and IVEP.
Collapse
Affiliation(s)
- Andréia Ferreira Machado
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | | | | | - José Domingos Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | - Ciro A Alves Torres
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570
| | - Leticia P Sanglard
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Victor E Gomez-Leon
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506.
| |
Collapse
|
3
|
Dumesic DA, Hoyos LR, Chazenbalk GD, Naik R, Padmanabhan V, Abbott DH. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 2020; 159:R1-R13. [PMID: 31376813 DOI: 10.1530/rep-19-0197] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health. Prenatal testosterone treatment in monkeys and sheep have been particularly crucial in our understanding of developmental programming of PCOS because organ system differentiation in these species, as in humans, occurs during fetal life. These animal models, along with altricial rodents, produce permanent PCOS-like phenotypes variably characterized by LH hypersecretion from reduced steroid-negative feedback, hyperandrogenism, ovulatory dysfunction, increased adiposity, impaired glucose-insulin homeostasis and other metabolic abnormalities. The review concludes that DoHAD underlies the phenotypic expression of PCOS through an altered maternal endocrine-metabolic environment that can induce epigenetic modifications of fetal genetic susceptibility to PCOS after birth. It calls for improved maternal endocrine-metabolic health of PCOS women to lower their risks of pregnancy-related complications and to potentially reduce intergenerational susceptibility to PCOS and its metabolic derangements in offspring.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Luis R Hoyos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Puttabyatappa M, Guo X, Dou J, Dumesic D, Bakulski KM, Padmanabhan V. Developmental Programming: Sheep Granulosa and Theca Cell-Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology 2020; 161:bqaa094. [PMID: 32516392 PMCID: PMC7417881 DOI: 10.1210/endocr/bqaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to polycystic ovarian syndrome women, manifest reduced cyclicity, functional hyperandrogenism, and polycystic ovary (PCO) morphology. The PCO morphology results from increased follicular recruitment and persistence of antral follicles, a consequence of reduced follicular growth and atresia, and is driven by cell-specific gene expression changes that are poorly understood. Therefore, using RNA sequencing, cell-specific transcriptional changes were assessed in laser capture microdissection isolated antral follicular granulosa and theca cells from age 21 months control and prenatal T-treated (100 mg intramuscular twice weekly from gestational day 30 to 90; term: 147 days) sheep. In controls, 3494 genes were differentially expressed between cell types with cell signaling, proliferation, extracellular matrix, immune, and tissue development genes enriched in theca; and mitochondrial, chromosomal, RNA, fatty acid, and cell cycle process genes enriched in granulosa cells. Prenatal T treatment 1) increased gene expression of transforming growth factor β receptor 1 and exosome component 9, and decreased BCL6 corepressor like 1, BCL9 like, and MAPK interacting serine/threonine kinase 2 in both cells, 2) induced differential expression of 92 genes that included increased mitochondrial, ribosome biogenesis, ribonucleoprotein, and ubiquitin, and decreased cell development and extracellular matrix-related pathways in granulosa cells, and 3) induced differential expression of 56 genes that included increased noncoding RNA processing, ribosome biogenesis, and mitochondrial matrix, and decreased transcription factor pathways in theca cells. These data indicate that follicular function is affected by genes involved in transforming growth factor signaling, extracellular matrix, mitochondria, epigenetics, and apoptosis both in a common as well as a cell-specific manner and suggest possible mechanistic pathways for prenatal T treatment-induced PCO morphology in sheep.
Collapse
Affiliation(s)
| | - Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Daniel Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
6
|
Puttabyatappa M, Matiller V, Stassi AF, Salvetti NR, Ortega HH, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Ovarian SF1/DAX1/FOXO3. Reprod Sci 2020; 27:342-354. [PMID: 32046386 DOI: 10.1007/s43032-019-00029-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Prenatal testosterone (T) excess, partly via androgenic programming, enhances follicular recruitment/persistence in sheep as in women with polycystic ovarian syndrome (PCOS). Decreased anti-Mullerian hormone (AMH) in early growing and increased AMH in antral follicles may underlie enhanced recruitment and persistence, respectively. Changes in AMH may be mediated by steroidogenic factor 1 (SF1), an enhancer of AMH, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX1), that antagonizes SF1. Another mediator could be forkhead box 03 (FOXO3) which regulates follicular recruitment/atresia. To test if androgen-programmed changes in SF1, DAX1, and FOXO3 proteins contribute to follicular defects in prenatal T-treated sheep, ovaries from control, prenatal T-, and dihydrotestosterone (DHT)-treated (days 30-90 of gestation) animals at fetal day (FD) 90, FD140, and 1 and 2 years-of-age were studied. Prenatal T increased DAX1 in granulosa cells of primordial through large preantral and theca cells of large preantral follicles at FD140 and increased SF1 in the granulosa cells of preantral and antral and theca cells of large preantral follicle at 2 years-of-age. Prenatal T increased FOXO3 only in theca cells of preantral (FD140) and antral (2 years-of-age) follicles. Prenatal DHT increased DAX1 in granulosa cells from small preantral follicles at FD140 while increasing SF1 in granulosa cells from antral follicles at 1 year-of-age. These age-dependent changes in DAX1/SF1 partly via androgen-programming are consistent with changes in AMH and may contribute to the enhanced follicular recruitment/persistence, and multifollicular phenotype of prenatal T-treated females and may be of translational relevance to PCOS.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Room 7510 MSRB I, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5718, USA
| | - Valentina Matiller
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Antonela F Stassi
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Room 7510 MSRB I, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5718, USA.
| |
Collapse
|
7
|
Kelley AS, Puttabyatappa M, Ciarelli JN, Zeng L, Smith YR, Lieberman R, Pennathur S, Padmanabhan V. Prenatal Testosterone Excess Disrupts Placental Function in a Sheep Model of Polycystic Ovary Syndrome. Endocrinology 2019; 160:2663-2672. [PMID: 31436841 PMCID: PMC6804485 DOI: 10.1210/en.2019-00386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common condition of reproductive-aged women. In a well-validated sheep model of PCOS, testosterone (T) treatment of pregnant ewes culminated in placental insufficiency and intrauterine growth restriction of offspring. The purpose of this study was to explore specific mechanisms by which T excess compromises placental function in early, mid, and late gestation. Pregnant Suffolk sheep received T propionate 100 mg intramuscularly or control vehicle twice weekly from gestational days (GD) 30 to 90 (term = 147 days). Placental harvest occurred at GD 65, 90, and 140. Real-time RT-PCR was used to assess transcript levels of proinflammatory (TNF, IL1B, IL6, IL8, monocyte chemoattractant protein-1/chemokine ligand 2, cluster of differentiation 68), antioxidant (glutathione reductase and superoxide dismutase 1 and 2), and angiogenic [vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF1A)] genes. Lipid accumulation was assessed using triglyceride assays and Oil Red O staining. Placental measures of oxidative and nitrative stress included the thiobarbituric acid reactive substance assay and high-pressure liquid chromatography. Tissue fibrosis was assessed with Picrosirius Red staining. Student t tests and Cohen effect-size analyses were used for statistical analysis. At GD 65, T-treated placentomes showed increased lipid accumulation and collagen deposition. Notable findings at GD 90 were a significant increase in HIF1A expression and a large effect increase in VEGF expression. At GD 140, T-treated placentomes displayed large effect increases in expression of hypoxia and inflammatory markers. In summary, T treatment during early pregnancy induces distinct gestational age-specific effects on the placental milieu, which may underlie the previously observed phenotype of placental insufficiency.
Collapse
Affiliation(s)
- Angela S Kelley
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
8
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
9
|
Developmental Programming of PCOS Traits: Insights from the Sheep. Med Sci (Basel) 2019; 7:medsci7070079. [PMID: 31336724 PMCID: PMC6681354 DOI: 10.3390/medsci7070079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that results from a combination of multiple factors, including genetic, epigenetic, and environmental influences. Evidence from clinical and preclinical studies indicates that elevated intrauterine androgen levels increase the susceptibility of the female offspring to develop the PCOS phenotype. Additionally, early postnatal endocrine and metabolic imbalances may act as a "second-hit", which, through activational effects, might unmask or amplify the modifications programmed prenatally, thus culminating in the development of adult disease. Animal models provide unparalleled resources to investigate the effects of prenatal exposure to androgen excess and to elucidate the etiology and progression of disease conditions associated with this occurrence, such as PCOS. In sheep, prenatal treatment with testosterone disrupts the developmental trajectory of the fetus, culminating in adult neuroendocrine, ovarian, and metabolic perturbations that closely resemble those seen in women with PCOS. Our longitudinal studies clearly demonstrate that prenatal exposure to testosterone excess affects both the reproductive and the metabolic systems, leading to a self-perpetuating cycle with defects in one system having an impact on the other. These observations in the sheep suggest that intervention strategies targeting multiple organ systems may be required to prevent the progression of developmentally programmed disorders.
Collapse
|
10
|
Akbarinejad V, Gharagozlou F, Vojgani M, Shourabi E, Makiabadi MJM. Inferior fertility and higher concentrations of anti-Müllerian hormone in dairy cows with longer anogenital distance. Domest Anim Endocrinol 2019; 68:47-53. [PMID: 30851696 DOI: 10.1016/j.domaniend.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Anogenital distance (AGD), which is an indicator of prenatal androgen exposure, has been reported to have high variability and negative association with fertility in dairy cows. Prenatal exposure to androgens could influence the development of primordial follicles and size of ovarian reserve, which is related to reproduction. However, the relationship between AGD and size of ovarian reserve has not been studied. Therefore, the present study was conducted to determine the association between AGD and circulating anti-Müllerian hormone (AMH), as an indirect marker of ovarian reserve, and to evaluate serum AMH concentration and reproductive performance in dairy cows with short and long AGD. Anogenital distance was measured 28 to 32 d postpartum, and based on the median of AGD, cows were divided into 2 subsets including short (n = 43) and long (n = 43) AGD groups. Afterward, serum AMH was evaluated on the day of estrus in cows that were estrus-synchronized. Furthermore, reproductive data of dairy cows during the previous lactation period were collected from the herd database. Concentrations of serum AMH tended to be positively associated with length of AGD, and there was a tendency for higher serum AMH concentrations in the long (634.89 ± 74.52 pg/mL) than short (451.39 ± 45.92 pg/mL) AGD group (0.05 <P ≤ 0.10). There was a tendency for more days to first service, lower first service conception rate, and higher proportion of repeat breeders in long (99.95 ± 5.34 d, 30.23% and 32.56%, respectively) than short (89.07 ± 4.97 d, 48.84% and 16.28%, respectively) AGD cows (0.05 <P ≤ 0.10). Services per conception did not differ between short (2.30 ± 0.27) and long (2.93 ± 0.29) AGD cows (P > 0.05). Calving to conception interval was prolonged in long (194.30 ± 17.12 d) than short (147.14 ± 13.11 d) AGD cows (P ≤ 0.05). In conclusion, the present study revealed elevated serum AMH concentrations and poor reproductive performance in cows with longer AGD compared with cows with shorter AGD.
Collapse
Affiliation(s)
- V Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - F Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - E Shourabi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M J M Makiabadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Chávez-Genaro R, Anesetti G. First ovarian response to gonadotrophin stimulation in rats exposed to neonatal androgen excess. J Mol Histol 2018; 49:631-637. [PMID: 30302594 DOI: 10.1007/s10735-018-9800-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
This study analyzes the effects of neonatal androgenization on follicular growth and first ovulation in response to gonadotrophins, using a model of exogenous stimulation or the use of subcutaneous ovary grafts in castrated animals to replace the hypothalamus-pituitary signal. Neonatal rats (days 1-5) were treated with testosterone, dihydrotestosterone or vehicle. At juvenile period, rats were stimulated with PMSG, hCG (alone or combined) or used as ovarian donors to be grafted on castrated adult female rats. Ovulation and ovarian histology were analyzed in both groups. Animals treated with vehicle or dihydrotestosterone stimulated with gonadotrophins (pharmacological or by using an ovary graft) ovulated, showing a normal histological morphology whereas rats exposed to testosterone and injected with the same doses of gonadotrophins did not it. In this group, ovulation was reached using a higher dose of hCG. Ovaries in the testosterone group were characterized by the presence of follicles with atretic appearance and a larger size than those observed in control or dihydrotestosterone groups. A similar appearance was observed in testosterone ovary grafts although luteinization and some corpora lutea were also identified. Our findings suggest that neonatal exposure to aromatizable androgens induces a more drastic signalling on the ovarian tissue that those driven by non-aromatizable androgens in response to gonadotrophins.
Collapse
Affiliation(s)
- Rebeca Chávez-Genaro
- Histology and Embryology Department, School of Medicine, UdelaR, General Flores 2125, CP 11800, Montevideo, Uruguay.
| | - Gabriel Anesetti
- Histology and Embryology Department, School of Medicine, UdelaR, General Flores 2125, CP 11800, Montevideo, Uruguay
| |
Collapse
|
12
|
Knapczyk-Stwora K, Grzesiak M, Ciereszko RE, Czaja E, Koziorowski M, Slomczynska M. The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology 2018; 113:19-26. [DOI: 10.1016/j.theriogenology.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
13
|
Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol 2018; 465:36-47. [PMID: 28687450 DOI: 10.1016/j.mce.2017.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
It has been well established for decades that androgens, namely testosterone (T) plays an important role in female reproductive physiology as the precursor for oestradiol (E2). However, in the last decade a direct role for androgens, acting via the androgen receptor (AR), in female reproductive function has been confirmed. Deciphering the specific roles of androgens in ovarian function has been hindered as complete androgen resistant females cannot be generated by natural breeding. In addition, androgens can be converted into estrogens which has caused confusion when interpreting findings from pharmacological studies, as observed effects could have been mediated via the AR or estrogen receptor. The creation and analysis of genetic mouse models with global and cell-specific disruption of the Ar gene, the sole mediator of pure androgenic action, has now allowed the elucidation of a role for AR-mediated androgen actions in the regulation of normal and pathological ovarian function. This review aims to summarize findings from clinical, animal, pharmacological and novel genetic AR mouse models to provide an understanding of the important roles androgens play in the ovary, as well as providing insights into the human implications of these roles.
Collapse
Affiliation(s)
- K A Walters
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - D J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| |
Collapse
|
14
|
Caanen MR, Schouten NE, Kuijper EA, van Rijswijk J, van den Berg MH, van Dulmen-den Broeder E, Overbeek A, van Leeuwen FE, van Trotsenburg M, Lambalk CB. Effects of long-term exogenous testosterone administration on ovarian morphology, determined by transvaginal (3D) ultrasound in female-to-male transsexuals. Hum Reprod 2017; 32:1457-1464. [DOI: 10.1093/humrep/dex098] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
|
15
|
Puttabyatappa M, Irwin A, Martin JD, Mesquitta M, Veiga-Lopez A, Padmanabhan V. Developmental Programming: Gestational Exposure to Excess Testosterone Alters Expression of Ovarian Matrix Metalloproteases and Their Target Proteins. Reprod Sci 2017; 25:882-892. [PMID: 28299992 DOI: 10.1177/1933719117697127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifests reproductive defects that include multifollicular ovarian phenotype. Women with PCOS manifest increased ovarian matrix metalloproteinases (MMPs) activity. We tested the hypothesis that gestational T excess in sheep would alter ovarian expression of MMPs, tissue inhibitors of MMP (TIMP) and their target proteins laminin B (LAMB), collagen, tumor necrosis factor alpha (TNF), and connexin 43 (GJA1) consistent with increased MMP activity and that these changes are developmentally regulated. The ovarian content of these proteins was quantified by immunohistochemistry in fetal day 90, 140, and adult (21 months of age) ovaries. Prenatal T excess lowered GJA1 protein content in stroma and granulosa cells of primary follicles from fetal day 90 ovaries and decreased stromal MMP9, TIMP1, and LAMB in fetal day 140 ovaries. In the adult, prenatal T-treatment (1) increased MMP9 in theca cells of large preantral follicles and stroma, TNF in granulosa cells of small and large preantral follicles and theca cells of large preantral and antral follicles, and GJA1 in stroma, theca cells of large preantral follicles, and granulosa cells of antral follicles and (2) reduced TIMP1 in stroma, theca cells of large preantral and antral follicles, LAMB in stroma and small prenatral follicles, and collagen content in stroma and around antral follicles. These findings suggest a net increase in MMP activity and its target proteins TNF and GJA1 in prenatal T-treated adult but not in fetal ovaries and their potential involvement in the development of multifollicular morphology.
Collapse
Affiliation(s)
| | - Ashleigh Irwin
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jacob D Martin
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Makeda Mesquitta
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Almudena Veiga-Lopez
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,2 Department of Animal Sciences, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
16
|
Cernea M, Phillips R, Padmanabhan V, Coolen LM, Lehman MN. Prenatal testosterone exposure decreases colocalization of insulin receptors in kisspeptin/neurokinin B/dynorphin and agouti-related peptide neurons of the adult ewe. Eur J Neurosci 2016; 44:2557-2568. [PMID: 27543746 PMCID: PMC5067216 DOI: 10.1111/ejn.13373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
Insulin serves as a link between the metabolic and reproductive systems, communicating energy availability to the hypothalamus and enabling reproductive mechanisms. Adult Suffolk ewes prenatally exposed to testosterone (T) display an array of reproductive and metabolic dysfunctions similar to those seen in women with polycystic ovarian syndrome (PCOS), including insulin resistance. Moreover, prenatal T treatment alters neuropeptide expression in KNDy (co-expressing kisspeptin, neurokinin B/dynorphin) and agouti-related peptide (AgRP) neurons in the arcuate nucleus, two populations that play key roles in the control of reproduction and metabolism, respectively. In this study, we determined whether prenatal T treatment also altered insulin receptors in KNDy and AgRP neurons, as well as in preoptic area (POA) kisspeptin, pro-opiomelanocortin (POMC), and gonadotropin-releasing hormone (GnRH) neurons of the adult sheep brain. Immunofluorescent detection of the beta subunit of insulin receptor (IRβ) revealed that KNDy, AgRP and POMC neurons, but not GnRH or POA kisspeptin neurons, colocalize IRβ in control females. Moreover, prenatal T treatment decreased the percentage of KNDy and AgRP neurons that colocalized IRβ, consistent with reduced insulin sensitivity. Administration of the anti-androgen drug, Flutamide, during prenatal T treatment, prevented the reduction in IRβ colocalization in AgRP, but not in KNDy neurons, suggesting that these effects are programmed by androgenic and oestrogenic actions, respectively. These findings provide novel insight into the effects of prenatal T treatment on hypothalamic insulin sensitivity and raise the possibility that decreased insulin receptors, specifically within KNDy and AgRP neurons, may contribute to the PCOS-like phenotype of this animal model.
Collapse
Affiliation(s)
- Maria Cernea
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, Jackson, MS, 39232, USA
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Canada
| | - Rebecca Phillips
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, Jackson, MS, 39232, USA
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Canada
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program, The University of Michigan, Ann Arbor, MI, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, Jackson, MS, 39232, USA.
| |
Collapse
|
17
|
Jang H, Bhasin S, Guarneri T, Serra C, Schneider M, Lee MJ, Guo W, Fried SK, Pencina K, Jasuja R. The Effects of a Single Developmentally Entrained Pulse of Testosterone in Female Neonatal Mice on Reproductive and Metabolic Functions in Adult Life. Endocrinology 2015; 156:3737-46. [PMID: 26132920 PMCID: PMC4588815 DOI: 10.1210/en.2015-1117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early postnatal exposures to sex steroids have been well recognized to modulate predisposition to diseases of adulthood. There is a complex interplay between timing, duration and dose of endocrine exposures through environmental or dietary sources that may alter the sensitivity of target tissues to the exogenous stimuli. In this study, we determined the metabolic and reproductive programming effects of a single developmentally entrained pulse of testosterone (T) given to female mice in early postnatal period. CD-1 female mice pups were injected with either 5 μg of T enanthate (TE) or vehicle (control [CON] group) within 24 hours after birth and followed to adult age. A total of 66% of T-treated mice exhibited irregular cycling, anovulatory phenotype, and significantly higher ovarian weights than vehicle-treated mice. Longitudinal nuclear magnetic resonance measurements revealed that TE group had greater body weight, whole-body lean, and fat mass than the CON group. Adipose tissue cellularity analysis in TE group revealed a trend toward higher size and number than their littermate CONs. The brown adipose tissue of TE mice exhibited white fat infiltration with down-regulation of several markers, including uncoupling protein 1 (UCP-1), cell death-inducing DNA fragmentation factor, α-subunit-like effector A, bone morphogenetic protein 7 as well as brown adipose tissue differentiation-related transcription regulators. T-injected mice were also more insulin resistant than CON mice. These reproductive and metabolic reprogramming effects were not observed in animals exposed to TE at 3 and 6 weeks of age. Collectively, these data suggest that sustained reproductive and metabolic alterations may result in female mice from a transient exposure to T during a narrow postnatal developmental window.
Collapse
Affiliation(s)
- Hyeran Jang
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Tyler Guarneri
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carlo Serra
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mary Schneider
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mi-Jeong Lee
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Wen Guo
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Susan K Fried
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Karol Pencina
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism (H.J., S.B., T.G., C.S., W.G., K.P., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; and Boston Nutrition and Obesity Research Center (M.S., M.-J.L., S.K.F.), Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
18
|
Ortega HH, Veiga-Lopez A, Sreedharan S, del Luján Velázquez MM, Salvetti NR, Padmanabhan V. Developmental Programming: Does Prenatal Steroid Excess Disrupt the Ovarian VEGF System in Sheep? Biol Reprod 2015; 93:58. [PMID: 26178718 DOI: 10.1095/biolreprod.115.131607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
Prenatal testosterone (T), but not dihydrotestosterone (DHT), excess disrupts ovarian cyclicity and increases follicular recruitment and persistence. We hypothesized that the disruption in the vascular endothelial growth factor (VEGF) system contributes to the enhancement of follicular recruitment and persistence in prenatal T-treated sheep. The impact of T/DHT treatments from Days 30 to 90 of gestation on VEGFA, VEGFB, and their receptor (VEGFR-1 [FLT1], VEGFR-2 [KDR], and VEGFR-3 [FLT4]) protein expression was examined by immunohistochemistry on Fetal Days 90 and 140, 22 wk, 10 mo (postpubertal), and 21 mo (adult) of age. Arterial morphometry was performed in Fetal Day 140 and postpubertal ovaries. VEGFA and VEGFB expression were found in granulosa cells at all stages of follicular development with increased expression in antral follicles. VEGFA was present in theca interna, while VEGFB was present in theca interna/externa and stromal cells. All three receptors were expressed in the granulosa, theca, and stromal cells during all stages of follicular development. VEGFR-3 increased with follicular differentiation with the highest level seen in the granulosa cells of antral follicles. None of the members of the VEGF family or their receptor expression were altered by age or prenatal T/DHT treatments. At Fetal Day 140, area, wall thickness, and wall area of arteries from the ovarian hilum were larger in prenatal T- and DHT-treated females, suggestive of early androgenic programming of arterial differentiation. This may facilitate increased delivery of endocrine factors and thus indirectly contribute to the development of the multifollicular phenotype.
Collapse
Affiliation(s)
- Hugo Héctor Ortega
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Almudena Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Shilpa Sreedharan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Melisa María del Luján Velázquez
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Natalia Raquel Salvetti
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Padmanabhan V, Veiga-Lopez A, Herkimer C, Abi Salloum B, Moeller J, Beckett E, Sreedharan R. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep. Endocrinology 2015; 156:2678-92. [PMID: 25919188 PMCID: PMC4475717 DOI: 10.1210/en.2015-1235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.
Collapse
Affiliation(s)
| | | | - Carol Herkimer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Bachir Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Evan Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Rohit Sreedharan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
20
|
Abstract
Androgens mediate their actions via the androgen receptor (AR), a member of the nuclear receptor superfamily. AR-mediated androgen action is essential in male reproductive development and function; however, only in the last decade has the suspected but unproven role for AR-mediated actions in female reproduction been firmly established. Deciphering the specific roles and precise pathways by which AR-mediated actions regulate ovarian function has been hindered by confusion on how to interpret results from pharmacological studies using androgens that can be converted into oestrogens, which exert actions via the oestrogen receptors. The generation and analysis of global and cell-specific femaleArknockout mouse models have deduced a role for AR-mediated actions in regulating ovarian function, maintaining female fertility, and have begun to unravel the mechanisms by which AR-mediated androgen actions regulate follicle health, development and ovulation. Furthermore, observational findings from human studies and animal models provide substantial evidence to support a role for AR-mediated effects not only in normal ovarian function but also in the development of the frequent ovarian pathological disorder, polycystic ovarian syndrome (PCOS). This review focuses on combining the findings from observational studies in humans, pharmacological studies and animal models to reveal the roles of AR-mediated actions in normal and pathological ovarian function. Together these findings will enable us to begin understanding the important roles of AR actions in the regulation of female fertility and ovarian ageing, as well as providing insights into the role of AR actions in the androgen-associated reproductive disorder PCOS.
Collapse
|
21
|
Padmanabhan V, Salvetti NR, Matiller V, Ortega HH. Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 2014; 155:3649-60. [PMID: 25061847 PMCID: PMC4138569 DOI: 10.1210/en.2014-1266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prenatal testosterone (T) excess disrupts ovarian cyclicity and increases circulating estradiol levels as well as follicular recruitment and persistence culminating in multifollicular ovary similar to women with polycystic ovary syndrome. We tested whether prenatal T excess, by androgenic or estrogenic action, disrupts the steroid biosynthetic machinery in sheep in a cell-, follicle stage-, age-, and treatment-specific manner consistent with the ovarian disruptions and increased estradiol release. Impact of T/dihydrotestosterone (DHT) treatments from days 30-90 of gestation on steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, cytochrome P-450 17α-hydroxylase/C17, 20-lyase (CYP17A1), and cytochrome P-450 aromatase (CYP19A1) were examined on fetal day 90, 140 and 10 months (postpubertal), and 21 months (adult, no DHT group) of age by immunohistochemistry. All 4 markers changed in a cell-, follicle stage-, and age-specific manner. Both treatments increased steroidogenic acute regulatory protein expression in preantral follicles of postpubertal and adult females. Effects of prenatal T and DHT on 3β-hydroxysteroid dehydrogenase differed in a follicle- and age-specific manner. CYP17A1 was reduced in the theca interna of antral follicles by T, but not DHT, in 10- and 21-month-old females. CYP19A1 was reduced by both T and DHT at all ages barring an increase on fetal day 140. Reduced granulosa CYP19A1 and thecal CYP17A1 in adults likely disrupt the intrafollicular androgen/estrogen balance contributing to follicular persistence. The reduced thecal CYP17A1 expression suggests that the hyperandrogenic ovarian phenotype may originate from increased enzyme activity or alternatively via a different isoform of CYP17. The reduced CYP19A1 in antral follicles of adults indicates that the increased circulating estradiol release likely arises from the increased number of persisting follicles.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109-5404; and Department of Morphological Sciences (N.R.S., V.M., H.H.O.), Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, and Argentine National Research Council (CONICET), Buenos Aires, 1033 Argentina
| | | | | | | |
Collapse
|
22
|
Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats. Fertil Steril 2014; 102:1458-67. [PMID: 25150387 DOI: 10.1016/j.fertnstert.2014.07.1203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To identify aberrantly methylated candidate genes that are involved in the development of polycystic ovary syndrome (PCOS). DESIGN Animal model. SETTING University-affiliated laboratory. ANIMAL(S) Sprague-Dawley rats. INTERVENTION(S) The prenatally androgenized (PNA) rat model was established. Pregnant rats were treated with daily SC injections of T propionate during late gestation, and their female offspring were studied as adults. MAIN OUTCOME MEASURE(S) Serum glucose and hormone levels, ovary morphology and cell apoptosis, genome-wide CpG methylation, and expression of caspase-3 protein were measured. RESULT(S) In the PNA group, the levels of serum glucose, 17-hydroxyprogesterone, and T were significantly higher when compared with the control group. Ovarian morphology showed increased atretic follicles and cystic follicles. Using the MeDIP-chip approach, we identified 528 genes that were hypermethylated in PNA ovaries. Gene ontology analyses revealed that these genes are involved in a variety of reproductive development and biological processes. The methylation enrichments of Bcl2l1 and Scr5a1 observed in the PNA group by MeDIP-quantitative polymerase chain reaction assay were significantly higher than those obtained from the control group. Furthermore, the mRNA level of the Bcl2l1 gene was significantly decreased in the PNA group. The percentage of caspase-3-positive cells in the PNA group was obviously higher compared with the control group, by terminal deoxynucleotidyl transferase dUTP nick end labeling detection as well. CONCLUSION(S) DNA methylation alteration may be an important factor affecting the genes involved in the pathophysiological processes that result in the phenotype of PCOS.
Collapse
|
23
|
Developmental programming: Impact of prenatal testosterone treatment and postnatal obesity on ovarian follicular dynamics. J Dev Orig Health Dis 2014; 3:276-86. [PMID: 23766891 DOI: 10.1017/s2040174412000128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep with obesity exaggerating such defects. Developmental studies found ovarian reserve is similar in control and prenatal T sheep at fetal day 140, with prenatal T females showing increased follicular recruitment and persistence at 10 months of age (postpubertal). This study tested if prenatal T sheep show accelerated depletion prepubertally and if depletion of ovarian reserve would explain loss of cyclicity in prenatal T females and its amplification by postnatal obesity. Stereological examinations were performed at 5 (prepubertal, control and prenatal T) and 21 months (control, prenatal T and prenatal T obese, following estrus synchronization) of age. Obesity was induced by overfeeding from weaning. At 5 months, prenatal T females had 46% less primordial follicles than controls (P < 0.01), supportive of increased follicular depletion. Depletion rate was slower and a higher percentage of growing follicles was present in 21 month than 5 month old prenatal T females (P < 0.01). Postnatal obesity did not exaggerate the impact of prenatal T on follicular recruitment indicating that compounding effects of obesity on loss of cyclicity females is not due to depletion of ovarian reserve. Assessment of follicular dynamics across several time points during the reproductive life span (this and earlier study combined) provides evidence supportive of a shift in follicular dynamics in prenatal T females from one of accelerated follicular depletion initiated prior to puberty to stockpiling of growing follicles after puberty, a time point critical in the development of the polycystic ovary syndrome phenotype.
Collapse
|
24
|
Padmanabhan V, Veiga-Lopez A. Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 2014; 92:3199-210. [PMID: 25074449 PMCID: PMC4153374 DOI: 10.2527/jas.2014-7637] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Collapse
Affiliation(s)
- V Padmanabhan
- Departments of Pediatrics Obstetrics and Gynecology Molecular and Integrative Physiology Environmental Health Sciences, The University of Michigan, Ann Arbor 48108
| | | |
Collapse
|
25
|
Veiga-Lopez A, Beckett EM, Abi Salloum B, Ye W, Padmanabhan V. Developmental programming: prenatal BPA treatment disrupts timing of LH surge and ovarian follicular wave dynamics in adult sheep. Toxicol Appl Pharmacol 2014; 279:119-28. [PMID: 24923655 DOI: 10.1016/j.taap.2014.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022]
Abstract
Developmental exposure to BPA adversely affects reproductive function. In sheep, prenatal BPA treatment induces reproductive neuroendocrine defects, manifested as LH excess and dampened LH surge and perturbs early ovarian gene expression. In this study we hypothesized that prenatal BPA treatment will also disrupt ovarian follicular dynamics. Pregnant sheep were treated from days 30 to 90 of gestation with 3 different BPA doses (0.05, 0.5, or 5mg/kgBW/day). All female offspring were estrus synchronized and transrectal ultrasonography was performed daily for 22days to monitor ovarian follicular and corpora lutea dynamics. Blood samples were collected to assess preovulatory hormonal changes and luteal progesterone dynamics. Statistical analysis revealed that the time interval between the estradiol rise and the preovulatory LH surge was shortened in the BPA-treated females. None of the three BPA doses had an effect on corpora lutea, progestogenic cycles, and mean number or duration of ovulatory and non-ovulatory follicles. However, differences in follicular count trajectories were evident in all three follicular size classes (2-3mm, 4-5mm, and ≥6mm) of prenatal BPA-treated animals compared to controls. Number of follicular waves tended also to be more variable in the prenatal BPA-treated groups ranging from 2 to 5 follicular waves per cycle, while this was restricted to 3 to 4 waves in control females. These changes in ovarian follicular dynamics coupled with defects in time interval between estradiol rise and preovulatory LH release are likely to lead to subfertility in prenatal BPA-treated females.
Collapse
Affiliation(s)
- A Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - E M Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - B Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - W Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; The Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Beckett EM, Astapova O, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programing: impact of testosterone on placental differentiation. Reproduction 2014; 148:199-209. [PMID: 24840528 DOI: 10.1530/rep-14-0055] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gestational testosterone treatment causes maternal hyperinsulinemia, intrauterine growth retardation (IUGR), low birth weight, and adult reproductive and metabolic dysfunctions. Sheep models of IUGR demonstrate placental insufficiency as an underlying cause of IUGR. Placental compromise is probably the cause of fetal growth retardation in gestational testosterone-treated sheep. This study tested whether testosterone excess compromises placental differentiation by its androgenic action and/or via altered insulin sensitivity. A comparative approach of studying gestational testosterone (aromatizable androgen) against dihydrotestosterone (non-aromatizable androgen) or testosterone plus androgen antagonist, flutamide, was used to determine whether the effects of testosterone on placental differentiation were programed by its androgenic actions. Co-treatment of testosterone with the insulin sensitizer, rosiglitazone, was used to establish whether the effects of gestational testosterone on placentome differentiation involved compromised insulin sensitivity. Parallel cohorts of pregnant females were maintained for lambing and the birth weight of their offspring was recorded. Placental studies were conducted on days 65, 90, or 140 of gestation. Results indicated that i) gestational testosterone treatment advances placental differentiation, evident as early as day 65 of gestation, and culminates in low birth weight, ii) placental advancement is facilitated at least in part by androgenic actions of testosterone and is not a function of disrupted insulin homeostasis, and iii) placental advancement, while helping to increase placental efficiency, was insufficient to prevent IUGR and low-birth-weight female offspring. Findings from this study may be of relevance to women with polycystic ovary syndrome, whose reproductive and metabolic phenotype is captured by the gestational testosterone-treated offspring.
Collapse
Affiliation(s)
- E M Beckett
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - O Astapova
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - T L Steckler
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - A Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| | - V Padmanabhan
- Department of Pediatrics and the Reproductive Sciences ProgramUniversity of Michigan, 300 North Ingalls Building, Room 1138 SW, Ann Arbor, Michigan 48109-5404, USA
| |
Collapse
|
27
|
Wei ZT, Lu XL, Zhang G, Yu J, Li H, Jia GH, Li JT, Zhang JM. The long-term effects of superovulation on fertility and sexual behavior of male offspring in mice. J Assist Reprod Genet 2014; 31:555-60. [PMID: 24510149 DOI: 10.1007/s10815-014-0191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the long-term effects of superovulation on fertility and sexual behavior of male offspring in mice. METHOD The mice were superovaluted, and the fertility of male offspring (F1 generation and F2 generation) were evaluated in terms of the percentage of plugs and pregnancies, serum testosterone concentrations, and sperm motility. Furthermore, the sexual behavior of male offspring and sex ratio (F1 generation and F2 generation) were measured. RESULTS There were no significant differences in the percentage of plug and pregnancies, serum testosterone concentrations, sperm motilities and sex ratio between the offspring in naturally conceived group and superovulation groups (both F1 generation and F2 generation). The sperm hyperactivity at 90 min after incubation of F1 generation in naturally conceived group were higher than that of F1 generation in superovulation group, but the differences did not reach statistical significance. The offspring produced by superovaluted oocytes (both F1 generation and F2 generation) did not exhibit significant alterations in sexual behavior. CONCLUSIONS No significant alterations were found in fertility and sexual behavior of male offspring in mice produced by superovaluted oocytes compared with those of naturally conceived offspring.
Collapse
Affiliation(s)
- Zeng-Tao Wei
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, China, 250000
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Veiga-Lopez A, Wurst AK, Steckler TL, Ye W, Padmanabhan V. Developmental programming: postnatal estradiol amplifies ovarian follicular defects induced by fetal exposure to excess testosterone and dihydrotestosterone in sheep. Reprod Sci 2013; 21:444-55. [PMID: 24077439 DOI: 10.1177/1933719113503412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Excess of prenatal testosterone (T) induces reproductive defects including follicular persistence. Comparative studies with T and dihydrotestosterone (DHT) have suggested that follicular persistence is programmed via estrogenic actions of T. This study addresses the androgenic and estrogenic contributions in programming follicular persistence. Because humans are exposed to estrogenic environmental steroids from various sources throughout their life span and postnatal insults may also induce organizational and/or activational changes, we tested whether continuous postnatal exposure to estradiol (E) will amplify effects of prenatal steroids on ovarian function. Pregnant sheep were treated with T, DHT, E, or ED (E and DHT) from days 30 to 90 of gestation. Postnatally, a subset of the vehicle (C), T, and DHT females received an E implant. Transrectal ultrasonography was performed in the first breeding season during a synchronized cycle to monitor ovarian follicular dynamics. As expected, number of ≥8 mm follicles was higher in the T versus C group. Postnatal E reduced the number of 4 to 8 mm follicles in the DHT group. Percentage of females bearing luteinized follicles and the number of luteinized follicles differed among prenatal groups. Postnatal E increased the incidence of subluteal cycles in the prenatal T-treated females. Findings from this study confirm previous findings of divergences in programming effects of prenatal androgens and estrogens. They also indicate that some aspects of follicular dynamics are subject to postnatal modulation as well as support the existence of an extended organizational period or the need for a second insult to uncover the previously programmed event.
Collapse
Affiliation(s)
- A Veiga-Lopez
- 1Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
29
|
Knapczyk-Stwora K, Durlej-Grzesiak M, Ciereszko RE, Koziorowski M, Slomczynska M. Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction 2013; 145:265-76. [PMID: 23580948 DOI: 10.1530/rep-12-0236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Androgen deficiency during prenatal development may affect the expression of genes involved in the folliculogenesis regulation. In order to study the effect of antiandrogen on fetal ovarian development, pregnant gilts were injected with flutamide (for 7 days, 50 mg/kg bodyweight per day) or corn oil (control groups) starting on gestation days 43 (GD50), 83 (GD90), or 101 (GD108). The obtained fetal ovaries were fixed for histology and immunohistochemistry or frozen for real-time PCR. Morphological evaluation, TUNEL assay, and expression of selected factors (Ki-67, GATA binding transcription factor 4 (GATA4), E-Cadherin and tumor necrosis factor a (TNFa)) were performed. On GD90 and GD108, ovaries following flutamide administration showed a higher number of egg nests and lower number off ollicles than those in respective control groups. An increased mRNA and protein expression of Ki-67 was observed in flutamide-treated groups compared with controls on GD50 and GD108 but decreased expression was found on GD90. In comparison to control groups a higher percentage of TUNEL-positive cells was shown after flutamide exposure on GD50 and GD90 and a lower percentage of apoptotic cells was observed on GD108. These data were consistent with changes in TNF (TNFa) mRNA expression, which increased on GD90 and decreased on GD108. E-cadherin mRNA and protein expression was upregulated on GD50 and downregulated on GD90 and GD108. In conclusion diminished androgen action in porcine fetal ovaries during mid- and late gestation leads to changes in the expression of genes crucial for follicle formation. Consequently, delayed folliculogenesis was observed on GD90 and GD108. It seems however that androgens exhibit diverse biological effects depending on the gestational period.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
30
|
Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. Steroids 2013; 78:734-40. [PMID: 23701728 PMCID: PMC3700672 DOI: 10.1016/j.steroids.2013.05.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 02/04/2023]
Abstract
The etiology of the polycystic ovary syndrome (PCOS) remains unclear, despite its high prevalence among infertility disorders in women of reproductive age. Although there is evidence for a genetic component of the disorder, other causes, such as prenatal insults are considered among the potential factors that may contribute to the development of the syndrome. Over the past few decades, several animal models have been developed in an attempt to understand the potential contribution of exposure to excess steroids on the development of this syndrome. The current review summarizes the phenotypes of current animal models exposed to excess steroid during the prenatal and early postnatal period and how they compare with the phenotype seen in women with PCOS.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Professor, Departments of Pediatrics, Obstetrics and Gynecology, Molecular and Integrative Physiology, and Environmental Health Sciences, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1138, Phone: 734.647.0276 FAX: 734.615.5441
| | - Almudena Veiga-Lopez
- Research Investigator, Department of Pediatrics, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1135, Phone: 734.615.8607 FAX: 734.615.5441
| |
Collapse
|
31
|
Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 2013; 373:8-20. [PMID: 23084976 PMCID: PMC3568226 DOI: 10.1016/j.mce.2012.10.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/23/2012] [Accepted: 10/05/2012] [Indexed: 01/10/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a fertility disorder affecting 5-7% of reproductive-aged women. Women with PCOS manifest both reproductive and metabolic defects. Several animal models have evolved, which implicate excess steroid exposure during fetal life in the development of the PCOS phenotype. This review addresses the fetal and adult reproductive and metabolic consequences of prenatal steroid excess in sheep and the translational relevance of these findings to PCOS. By comparing findings in various breeds of sheep, the review targets the role of genetic susceptibility to fetal insults. Disruptions induced by prenatal testosterone excess are evident at both the reproductive and metabolic level with each influencing the other thus creating a self-perpetuating vicious cycle. The review highlights the need for identifying a common mediator of the dysfunctions at the reproductive and metabolic levels and developing prevention and treatment interventions targeting all sites of disruption in unison for achieving optimal success.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Professor, Departments of Pediatrics, Obstetrics and Gynecology, and Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1138, Phone: 734.647.0276, FAX: 734.615.5441
| | - Almudena Veiga-Lopez
- Research Investigator, Department of Pediatrics, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1135, Phone: 734.615.8607, FAX: 734.615.5441
| |
Collapse
|
32
|
Rae M, Grace C, Hogg K, Wilson LM, McHaffie SL, Ramaswamy S, MacCallum J, Connolly F, McNeilly AS, Duncan C. The pancreas is altered by in utero androgen exposure: implications for clinical conditions such as polycystic ovary syndrome (PCOS). PLoS One 2013; 8:e56263. [PMID: 23457541 PMCID: PMC3574134 DOI: 10.1371/journal.pone.0056263] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
Using an ovine model of polycystic ovary syndrome (PCOS), (pregnant ewes injected with testosterone propionate (TP) (100 mg twice weekly) from day (d)62 to d102 of d147 gestation (maternal injection - MI-TP)), we previously reported female offspring with normal glucose tolerance but hyperinsulinemia. We therefore examined insulin signalling and pancreatic morphology in these offspring using quantitative (Q) RT-PCR and western blotting. In addition the fetal pancreatic responses to MI-TP, and androgenic and estrogenic contributions to such responses (direct fetal injection (FI) of TP (20 mg) or diethylstilbestrol (DES) (20 mg) at d62 and d82 gestation) were assessed at d90 gestation. Fetal plasma was assayed for insulin, testosterone and estradiol, pancreatic tissue was cultured, and expression of key β-cell developmental genes was assessed by QRT-PCR. In female d62MI-TP offspring insulin signalling was unaltered but there was a pancreatic phenotype with increased numbers of β-cells (P<0.05). The fetal pancreas expressed androgen receptors in islets and genes involved in β-cell development and function (PDX1, IGF1R, INSR and INS) were up-regulated in female fetuses after d62MI-TP treatment (P<0.05-0.01). In addition the d62MI-TP pancreas showed increased insulin secretion under euglycaemic conditions (P<0.05) in vitro. The same effects were not seen in the male fetal pancreas or when MI-TP was started at d30, before the male programming window. As d62MI-TP increased both fetal plasma testosterone (P<0.05) and estradiol concentrations (P<0.05) we assessed the relative contribution of androgens and estrogens. FI-TP (commencing d62) (not FI-DES treatment) caused elevated basal insulin secretion in vitro and the genes altered by d62MI-TP treatment were similarly altered by FI-TP but not FI-DES. In conclusion, androgen over-exposure alters fetal pancreatic development and β-cell numbers in offspring. These data suggest that that there may be a primary pancreatic phenotype in models of PCOS, and that there may be a distinct male and female pancreas.
Collapse
Affiliation(s)
- Mick Rae
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Salvetti NR, Ortega HH, Veiga-Lopez A, Padmanabhan V. Developmental programming: impact of prenatal testosterone excess on ovarian cell proliferation and apoptotic factors in sheep. Biol Reprod 2012; 87:22, 1-10. [PMID: 22539681 DOI: 10.1095/biolreprod.112.100024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep, which include increased ovarian follicular recruitment and persistence. To test the hypothesis that follicular disruptions in T sheep stem from changes in the developmental ontogeny of ovarian proliferation and apoptotic factors, pregnant Suffolk sheep were injected twice weekly with T propionate or dihydrotestosterone propionate (DHT; a nonaromatizable androgen) from Days 30 to 90 of gestation. Changes in developmental expression of proliferating cell nuclear antigen (PCNA), BCL2, BAX, activated CASP3, and FAS/FASLG were determined at Fetal Days 90 and 140, 22 wk, 10 mo, and 21 mo of age by immunocytochemisty. Prenatal T treatment induced changes in expression of proliferative and apoptotic markers in a follicle-, age-, and steroid-specific manner. Changes in BAX were evident only during fetal life and PCNA, BCL2, and CASP3 only postnatally. Prenatal T and not DHT increased PCNA and decreased BCL2 in granulosa/theca cells of antral follicles at 10 and 21 mo but decreased CASP3 in granulosa/theca cells of antral follicles at 22 wk (prepubertal) and 10 and 21 mo. Both treatments decreased BAX immunostaining in granulosa cells of Fetal Day 90 primordial/primary follicles. Neither treatment affected FAS expression at any developmental time point in any follicular compartment. Effects on BAX appear to be programmed by androgenic actions and PCNA, BCL2, and CASP3 by estrogenic actions of T. Overall, the findings demonstrate that fetal exposure to excess T disrupts the ovarian proliferation/apoptosis balance, thus providing a basis for the follicular disruptions evidenced in these females.
Collapse
Affiliation(s)
- Natalia R Salvetti
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Argentina
| | | | | | | |
Collapse
|
34
|
|
35
|
Franks S. Animal models and the developmental origins of polycystic ovary syndrome: increasing evidence for the role of androgens in programming reproductive and metabolic dysfunction. Endocrinology 2012; 153:2536-8. [PMID: 22610962 DOI: 10.1210/en.2012-1366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN United Kingdom.
| |
Collapse
|
36
|
Huang YS, Chen YM, Liao PC, Lee YH, Gwo JC, Chen MC, Chang CF. Testosterone improves the transition of primary oocytes in artificial maturation eels (Anguilla japonica) by altering ovarian PTEN expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:777-787. [PMID: 21986810 DOI: 10.1007/s10695-011-9560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
In mammals, androgens appear to enhance the development of primary ovarian follicles, but PI3K (phosphoinositide 3-kinases) pathway is well recognized as one of the critical pathways in early follicular development. Roles of the PI3K were revealed by deletion of PTEN (phosphatase and tensin homolog on chromosome 10). PTEN is demonstrated to play an important role in the early stage of follicle development. In the Japanese eel, two forms of PTEN have been cloned, but what their functions on the development of early ovarian follicles are still not clear. The natural blockage and inducible of ovarian development was a benefit to address this question in the eel. Testosterone (T) shows to ameliorate the early ovarian development in the eel. The aims of this study were to elucidate the two forms of PTEN by cellular and physiological criteria and to study the effects of T on the ovarian PTEN production in the exogenous pituitary extracts-stimulated eel. Our results suggested that two forms of PTEN are existing in the Japanese eel, and eel ovarian development corresponded to the decrease in ovarian PTEN expression, vice versa. In addition, the supplement of T on eel early ovarian development can be attributed to its PTEN inhibitor role.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung, No. 700 Kaohsiung University Road, Nan Tzu Dist., Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abi Salloum B, Herkimer C, Lee JS, Veiga-Lopez A, Padmanabhan V. Developmental programming: prenatal and postnatal contribution of androgens and insulin in the reprogramming of estradiol positive feedback disruptions in prenatal testosterone-treated sheep. Endocrinology 2012; 153:2813-22. [PMID: 22454153 PMCID: PMC3359592 DOI: 10.1210/en.2011-2074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prenatal testosterone (T) excess compromises the estradiol (E(2)) positive feedback. This study tested the hypothesis that antagonizing androgen action or improving insulin sensitivity prenatally would prevent positive feedback disruptions from developing, whereas postnatal intervention with androgen antagonist or insulin sensitizer would ameliorate the severity of disruptions in prenatal T-treated females. The E(2) positive feedback response was tested at 16 wk of age in the following groups of animals: 1) control, 2) prenatal T, 3) prenatal T plus the androgen antagonist, flutamide, 4) prenatal T plus insulin sensitizer, rosiglitazone, 5) prenatal T and postnatal androgen antagonist, and 6) prenatal T and postnatal insulin sensitizer (n = 7-21 animals/group). Prenatal T treatment involved the administration of T propionate (100 mg, im) twice weekly from d 30 to 90 of gestation. Prenatal interventions involved daily sc administration of androgen antagonist (15 mg/kg) or oral administration of insulin sensitizer (8 mg) for the same duration. Postnatal treatments began at 8 wk of age and involved daily oral administration of androgen antagonist (15 mg/kg) or insulin sensitizer (0.11 mg/kg). None of the prenatal/postnatal interventions increased number of animals responding or prevented the time delay in LH surge response to the E(2) positive feedback challenge. In contrast, the postnatal treatment with androgen antagonist or insulin sensitizer increased total LH released in response to E(2) positive feedback challenge, compared with the T animals. Overall, these interventional studies indicate that timing and magnitude of the LH surge are programmed by different neuroendocrine mechanisms with postnatal androgens and insulin determining the size and prenatal estrogen likely the timing of the LH surge.
Collapse
Affiliation(s)
- Bachir Abi Salloum
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
38
|
van Houten ELAF, Kramer P, McLuskey A, Karels B, Themmen APN, Visser JA. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology 2012; 153:2861-9. [PMID: 22334715 DOI: 10.1210/en.2011-1754] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women in their reproductive age, is characterized by both reproductive and metabolic features. Recent studies in human, nonhuman primates, and sheep suggest that hyperandrogenism plays an important role in the development of PCOS. We investigated whether chronic dihydrotestosterone (DHT) exposure in mice reproduces both features of PCOS. Such a model would allow us to study the mechanism of association between the reproductive and metabolic features in transgenic mice. In this study, prepubertal female mice received a 90 d continuous release pellet containing the nonaromatizable androgen DHT or vehicle. At the end of the treatment period, DHT-treated mice were in continuous anestrous, their ovaries contained an increased number of atretic follicles, with the majority of atretic antral follicles having a cyst-like structure. Chronic DHT-exposed mice had significantly higher body weights (21%) than vehicle-treated mice. In addition, fat depots of DHT-treated mice displayed an increased number of enlarged adipocytes (P < 0.003). Leptin levels were elevated (P < 0.013), adiponectin levels were diminished (P < 0.001), and DHT-treated mice were glucose intolerant (P < 0.001). In conclusion, a mouse model of PCOS has been developed showing reproductive and metabolic characteristics associated with PCOS in women.
Collapse
|
39
|
Cox LA, Glenn JP, Spradling KD, Nijland MJ, Garcia R, Nathanielsz PW, Ford SP. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome. J Physiol 2012; 590:2873-84. [PMID: 22508961 DOI: 10.1113/jphysiol.2011.222398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, and Southwest National Primate Research Centre, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Veiga-Lopez A, Ye W, Padmanabhan V. Developmental programming: prenatal testosterone excess disrupts anti-Müllerian hormone expression in preantral and antral follicles. Fertil Steril 2012; 97:748-56. [PMID: 22245531 DOI: 10.1016/j.fertnstert.2011.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/08/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the impact of prenatal T excess on the expression of key ovarian regulators implicated in follicular recruitment and persistence using a large animal model of polycystic ovarian syndrome (PCOS). DESIGN Interventional, animal model study. SETTING Academic research unit. ANIMAL(S) A total of 25 female fetuses, 14 prepubertal female, and 24 adult female Suffolk sheep. INTERVENTION(S) Prenatal T treatment. MAIN OUTCOME MEASURE(S) Immunohistochemical determination of expression of anti-Müllerian hormone (AMH), kit ligand, and growth differentiation factor 9 (GDF9) in fetal, prepubertal, and adult ovarian tissues. RESULT(S) Prenatal T treatment reduced the AMH protein expression in granulosa cells (GC) of preantral follicles and increased its expression in antral follicles compared with age-matched adult controls. These differences were not evident in prepubertal animals. Protein expression of GDF9 and kit ligand was not altered at any of the developmental time points studied. CONCLUSION(S) Prenatal T exposure is associated with changes in AMH expression in preantral and antral follicles in adult ovaries, similar to findings in women with PCOS. These findings indicate that abnormal folliculogenesis in PCOS may be at least in part mediated by changes in AMH expression.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5404, USA
| | | | | |
Collapse
|
41
|
Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC. Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 2012; 153:450-61. [PMID: 22087026 DOI: 10.1210/en.2011-1607] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the hallmarks of polycystic ovary syndrome (PCOS) is increased ovarian androgen secretion that contributes to the ovarian, hormonal, and metabolic features of this condition. Thecal cells from women with PCOS have an enhanced capacity for androgen synthesis. To investigate whether this propensity is a potential cause, rather than a consequence, of PCOS, we used an ovine prenatal androgenization model of PCOS and assessed ewes at 11 months of age. Pregnant Scottish Greyface ewes were administered 100 mg testosterone propionate (TP) or vehicle control twice weekly from d 62 to 102 of gestation, and female offspring (TP = 9, control = 5) were studied. Prenatal TP exposure did not alter ovarian morphology or cyclicity, or plasma androgen, estrogen, and gonadotropin concentrations, at this stage. However, follicle function was reprogrammed in vivo with increased proportions of estrogenic follicles (P < 0.05) in the TP-exposed cohort. Furthermore, in vitro the thecal cells of follicles (>4 mm) secreted more LH-stimulated androstenedione after prenatal androgenization (P < 0.05), associated with increased basal expression of thecal StAR (P < 0.01), CYP11A (P < 0.05), HSD3B1 (P < 0.01), CYP17 (P < 0.05), and LHR (P < 0.05). This provides the first evidence of increased thecal androgenic capacity in the absence of a PCOS phenotype, suggesting a thecal defect induced during fetal life.
Collapse
Affiliation(s)
- Kirsten Hogg
- Medical Research Council, Centre for Reproductive Health, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4SA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Tyndall V, Broyde M, Sharpe R, Welsh M, Drake AJ, McNeilly AS. Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction 2012; 143:21-33. [PMID: 22016380 PMCID: PMC3245827 DOI: 10.1530/rep-11-0239] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/19/2011] [Indexed: 11/08/2022]
Abstract
We investigated the effects of different windows of testosterone propionate (TP) treatment during foetal and neonatal life in female rats to determine whether and when excess androgen exposure would cause disruption of adult reproductive function. Animals were killed prepubertally at d25 and as adults at d90. Plasma samples were taken for hormone analysis and ovaries serial sectioned for morphometric analyses. In prepubertal animals, only foetal+postnatal and late postnatal TP resulted in increased body weights, and an increase in transitory, but reduced antral follicle numbers without affecting total follicle populations. Treatment with TP during both foetal+postnatal life resulted in the development of streak ovaries with activated follicles containing oocytes that only progressed to a small antral (smA) stage and inactive uteri. TP exposure during foetal or late postnatal life had no effect upon adult reproductive function or the total follicle population, although there was a reduction in the primordial follicle pool. In contrast, TP treatment during full postnatal life (d1-25) resulted in anovulation in adults (d90). These animals were heavier, had a greater ovarian stromal compartment, no differences in follicle thecal cell area, but reduced numbers of anti-Mullerian hormone-positive smA follicles when compared with controls. Significantly reduced uterine weights lead reduced follicle oestradiol production. These results support the concept that androgen programming of adult female reproductive function occurs only during specific time windows in foetal and neonatal life with implications for the development of polycystic ovary syndrome in women.
Collapse
Affiliation(s)
- Victoria Tyndall
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Marie Broyde
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Richard Sharpe
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Michelle Welsh
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Amanda J Drake
- Endocrinology Unit University/BHF Centre for Cardiovascular ScienceThe Queens Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Alan S McNeilly
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| |
Collapse
|
43
|
Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology 2011; 152:4974-83. [PMID: 22009729 PMCID: PMC3384818 DOI: 10.1210/en.2011-1182] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prenatal testosterone (T) treatment leads to polycystic ovarian morphology, enhanced follicular recruitment/depletion, and increased estradiol secretion. This study addresses whether expression of key ovarian genes and microRNA are altered by prenatal T excess and whether changes are mediated by androgenic or estrogenic actions of T. Pregnant Suffolk ewes were treated with T or T plus the androgen receptor antagonist, flutamide (T+F) from d 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, and key ovarian regulators were measured by RT-PCR using RNA obtained from fetal ovaries collected on d 65 [n = 4, 5, and 5 for T, T+F, and control groups, respectively] and d 90 (n = 5, 7, 4) of gestation. Additionally, fetal d 90 RNA were hybridized to multispecies microRNA microarrays. Prenatal T decreased (P < 0.05) Cyp11a1 expression (3.7-fold) in d 90 ovaries and increased Cyp19 (3.9-fold) and 5α-reductase (1.8-fold) expression in d 65 ovaries. Flutamide prevented the T-induced decrease in Cyp11a1 mRNA at d 90 but not the Cyp19 and 5α-reductase increase in d 65 ovaries. Cotreatment with T+F increased Cyp11a1 (3.0-fold) expression in d 65 ovaries, relative to control and T-treated ovaries. Prenatal T altered fetal ovarian microRNA expression, including miR-497 and miR-15b, members of the same family that have been implicated in insulin signaling. These studies demonstrate that maternal T treatment alters fetal ovarian steroidogenic gene and microRNA expression and implicate direct actions of estrogens in addition to androgens in the reprogramming of ovarian developmental trajectory leading up to adult reproductive pathologies.
Collapse
|
44
|
Hogg K, Wood C, McNeilly AS, Duncan WC. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep. PLoS One 2011; 6:e24877. [PMID: 21935484 PMCID: PMC3173482 DOI: 10.1371/journal.pone.0024877] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/22/2011] [Indexed: 12/23/2022] Open
Abstract
Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS). We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin–like growth factor (IGF) and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5) or testosterone propionate (TP; n = 9) twice weekly (100 mg; i.m) from d62–102 (gestation 147 days). In a novel treatment paradigm, a second cohort received a direct C (n = 4) or TP (20 mg; n = 7) fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (P<0.05) and the histological presence of fatty liver (P<0.05) independent of central obesity. Additionally, hepatic androgen receptor (AR; P<0.05), glucocorticoid receptor (GR; P<0.05), UDP- glucose ceramide glucosyltransferase (UGCG; P<0.05) and IGF1 (P<0.01) expression were upregulated. The direct fetal intervention (C and TP) led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated in the fetal controls (P<0.05) and this was opposed by fetal TP (P<0.05). Hepatic estrogen receptor (ERα; P<0.05) and mitogen activated protein kinase kinase 4 (MAP2K4; P<0.05) were increased following fetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.
Collapse
Affiliation(s)
- Kirsten Hogg
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
45
|
Padmanabhan V, Veiga-Lopez A. Developmental origin of reproductive and metabolic dysfunctions: androgenic versus estrogenic reprogramming. Semin Reprod Med 2011; 29:173-86. [PMID: 21710394 DOI: 10.1055/s-0031-1275519] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and metabolic defects. A large number of animal models have evolved to understand the etiology of PCOS. These models provide support for the contributing role of excess steroids during development in programming the PCOS phenotype. However, considerable phenotypic variability is evident across animal models, depending on the quality of the steroid administered and the perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models that have evolved in the last decade to delineate the relative roles of androgens and estrogens in relation to the timing of exposure in programming the various dysfunctions that are part and parcel of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal metabolic environment in exaggerating the severity of the phenotype, the translational relevance of the various animal models to PCOS, and areas for future research.
Collapse
|
46
|
Hogg K, McNeilly AS, Duncan WC. Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine fetal ovary. Endocrinology 2011; 152:2048-59. [PMID: 21325046 DOI: 10.1210/en.2010-1219] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure of a female fetus to increased androgens in utero results in an adult phenotype reminiscent of polycystic ovary syndrome. We investigated whether prenatal androgens could directly alter the structure and function of the fetal ovary. We examined fetal ovarian cell proliferation, germ cell volume, and the expression of steroid receptors and steroidogenic enzymes. In addition, we studied the inhibitors of differentiation (Ids) and the SLIT/Roundabout developmental pathways. Female fetuses were collected from ewes treated with 100 mg testosterone propionate (TP) or vehicle control (C), twice weekly from d 60 to 70 (C = 3, TP = 6) or d 90 (C = 6, TP = 8). Female fetuses were also collected at d 70 after a single injection of TP (20 mg) or vehicle C into the fetal flank at d 60 (C = 4, TP = 8). Prenatal androgenization had no effect on fetal ovarian morphology, cell proliferation, or germ cell volume. However, there was a reduction in the expression of StAR, CYP11A, CYP17, and LHR at d 90 of gestation. There was also an increase in Id1 immunostaining at d 90 and an increase in Id3 immunostaining at d 70. Direct injection of TP into the fetus down-regulated ovarian CYP11A, estrogen receptor α and β mRNA, and ROBO1 and up-regulated CYP19, androgen receptor immunostaining, and Id3 mRNA and protein. Although at d 90 prenatal androgenization does not result in structural changes of the fetal ovary, there are functional changes that may impact on ovarian development. TP has direct actions on the fetal ovary, and these may contribute to the adult ovarian phenotype in the ovine model of polycystic ovary syndrome.
Collapse
Affiliation(s)
- Kirsten Hogg
- Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4SA, UK.
| | | | | |
Collapse
|
47
|
Veiga-Lopez A, Steckler TL, Abbott DH, Welch KB, MohanKumar PS, Phillips DJ, Refsal K, Padmanabhan V. Developmental programming: impact of excess prenatal testosterone on intrauterine fetal endocrine milieu and growth in sheep. Biol Reprod 2010; 84:87-96. [PMID: 20739662 DOI: 10.1095/biolreprod.110.086686] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Prenatal testosterone excess in sheep leads to reproductive and metabolic disruptions that mimic those seen in women with polycystic ovary syndrome. Comparison of prenatal testosterone-treated sheep with prenatal dihydrotestosterone-treated sheep suggests facilitation of defects by androgenic as well as androgen-independent effects of testosterone. We hypothesized that the disruptive impact of prenatal testosterone on adult pathology may partially depend on its conversion to estrogen and consequent changes in maternal and fetal endocrine environments. Pregnant Suffolk sheep were administered either cottonseed oil (control) or testosterone propionate in cottonseed oil (100 mg, i.m. twice weekly), from Day 30 to Day 90 of gestation (term is ~147 d). Maternal (uterine) and fetal (umbilical) arterial samples were collected at Days 64-66, 87-90, and 139-140 (range; referred to as D65, D90, and D140, respectively) of gestation. Concentrations of gonadal and metabolic hormones, as well as differentiation factors, were measured using liquid chromatography/mass spectrometer, radioimmunoassay, or ELISA. Findings indicate that testosterone treatment produced maternal and fetal testosterone levels comparable to adult males and D65 control male fetuses, respectively. Testosterone treatment increased fetal estradiol and estrone levels during the treatment period in both sexes, supportive of placental aromatization of testosterone. These steroidal changes were followed by a reduction in maternal estradiol levels at term, a reduction in activin A availability, and induction of intrauterine growth restriction in D140 female fetuses. Overall, our findings provide the first direct evidence in support of the potential for both androgenic as well as estrogenic contribution in the development of adult reproductive and metabolic pathology in prenatal testosterone-treated sheep.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5404, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Veiga-Lopez A, Lee JS, Padmanabhan V. Developmental programming: insulin sensitizer treatment improves reproductive function in prenatal testosterone-treated female sheep. Endocrinology 2010; 151:4007-17. [PMID: 20555028 PMCID: PMC2940534 DOI: 10.1210/en.2010-0124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/14/2010] [Indexed: 01/16/2023]
Abstract
Prenatal testosterone (T) excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested the hypothesis that insulin resistance contributes toward severity of reproductive disruptions in prenatally T-treated females. Pregnant sheep were injected im with 100 mg of T-propionate semiweekly from d 30-90 of gestation. Immediately after the first breeding season, a subset of controls and prenatal T-treated (TR) sheep were administered an insulin sensitizer (rosiglitazone; 8 mg/d) orally for 8 months. Untreated control and prenatal T-treated females (T group) were studied in parallel. Biochemical analyses revealed rosiglitazone to be safe for use in sheep. Glucose tolerance tests performed before and after the insulin sensitizer treatment found that insulin sensitizer decreased cumulative insulin, cumulative insulin/glucose ratio, and insulin area under the curve by about 50% and increased the insulin sensitivity index by about 70% in the TR compared with the T group. Twenty percent of TR females showed a reduced number of cycles in the second relative to first breeding season as opposed to 80% of T group females showing such deterioration. Insulin sensitizer treatment also decreased the number of aberrant cycles (>/=18 d) during the second breeding season in the TR group relative to the first as opposed to the T group females showing an increase in the second breeding season relative to the first. These findings provide evidence that insulin sensitizer treatment prevents further deterioration of the reproductive axis in prenatal T-treated sheep, a finding of translational relevance to women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404, USA
| | | | | |
Collapse
|
49
|
Padmanabhan V, Sarma HN, Savabieasfahani M, Steckler TL, Veiga-Lopez A. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators. INTERNATIONAL JOURNAL OF ANDROLOGY 2010; 33:394-404. [PMID: 20070410 PMCID: PMC3970726 DOI: 10.1111/j.1365-2605.2009.01024.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an oestrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive/metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine/ovarian defects, insulin resistance and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to oestradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30 to 90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/mL BPA, culminated in low birth weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine disrupting chemicals.
Collapse
Affiliation(s)
- V Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, The University of Michigan, Ann Arbor, MI48109, USA.
| | | | | | | | | |
Collapse
|
50
|
Ortega HH, Rey F, Velazquez MML, Padmanabhan V. Developmental programming: effect of prenatal steroid excess on intraovarian components of insulin signaling pathway and related proteins in sheep. Biol Reprod 2010; 82:1065-75. [PMID: 20147730 DOI: 10.1095/biolreprod.109.082719] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prenatal testosterone (T) excess increases ovarian follicular recruitment, follicular persistence, insulin resistance, and compensatory hyperinsulinemia. Considering the importance of insulin in ovarian physiology, in this study, using prenatal T- and dihydrotestosterone (DHT, a nonaromatizable androgen)-treated female sheep, we tested the hypothesis that prenatal androgen excess alters the intraovarian insulin signaling cascade and metabolic mediators that have an impact on insulin signaling. Changes in ovarian insulin receptor (INSRB), insulin receptor substrate 1 (IRS1), mammalian target of rapamycin (MTOR), phosphatidylinositol 3-kinase (PIK3), peroxisome proliferator-activated receptor-gamma (PPARG), and adiponectin proteins were determined at fetal (Days 90 and 140), postpubertal (10 mo), and adult (21 mo) ages by immunohistochemistry. Results indicated that these proteins were expressed in granulosa, theca, and stromal compartments, with INSRB, IRS1, PPARG, and adiponectin increasing in parallel with advanced follicular differentiation. Importantly, prenatal T excess induced age-specific changes in PPARG and adiponectin expression, with increased PPARG expression evident during fetal life and decreased antral follicular adiponectin expression during adult life. Comparison of developmental changes in prenatal T and DHT-treated females found that the effects on PPARG were programmed by androgenic actions of T, whereas the effects on adiponectin were likely by its estrogenic action. These results suggest a role for PPARG in the programming of ovarian disruptions by prenatal T excess, including a decrease in antral follicular adiponectin expression and a contributory role for adiponectin in follicular persistence and ovulatory failure.
Collapse
Affiliation(s)
- Hugo H Ortega
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina
| | | | | | | |
Collapse
|