1
|
Barsky ST, Monks DA. The role of androgens and global and tissue-specific androgen receptor expression on body composition, exercise adaptation, and performance. Biol Sex Differ 2025; 16:28. [PMID: 40269952 PMCID: PMC12016402 DOI: 10.1186/s13293-025-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/23/2025] [Indexed: 04/25/2025] Open
Abstract
Gonadal testosterone stimulates skeletal muscle anabolism and contributes to sexually differentiated adipose distribution through incompletely understood mechanisms. Observations in humans and animal models have indicated a major role for androgen receptor (AR) in mediating sex differences in body composition throughout the lifespan. Traditional surgical, genetic and pharmacological studies have tested systemic actions of circulating androgens, and more recent transgenic approaches have allowed for tests of AR gene function in specific androgen responsive niches contributing to body composition, including: skeletal muscle and surrounding interstitial cells, white and brown adipose, as well as trabecular and cortical bone. Less well understood is how these functions of gonadal androgens interact with exercise. Here, we summarize the understood mechanisms of action of AR and its interactions with exercise, specifically on outcomes of body composition and muscle function, and the global- and tissue-specific role of AR in regulating skeletal muscle, adipose, and bone morphology. Additionally, we describe the known effects of androgen and AR manipulation on female body composition, muscle morphology, and sport performance, while highlighting a need for greater inclusion of female subjects in human and animal muscle physiology and endocrinology research.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, 3359 Mississauga Road North, Deerfield Hall DH4098, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Barman M, Giribabu N, Salleh N. Roles of thyroid and leptin hormones and their crosstalk in male reproductive functions: an updated review. Endocrine 2025; 87:891-906. [PMID: 39412610 DOI: 10.1007/s12020-024-04069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/06/2024] [Indexed: 02/22/2025]
Abstract
PURPOSE This review aims to provide updated information regarding the role of thyroid and leptin hormones and their crosstalk in affecting the male reproductive function in hypothyroid and obesity conditions. METHOD A wide literature search was made using online search engines on published articles using keywords including thyroid hormone, hypothyroidism, leptin hormone, hyperleptinemia, obesity, the relationship between thyroid and leptin hormones and male reproduction, and hypothyroidism, obesity, and male reproduction. RESULTS All information pertaining thyroid and leptin hormone effects on male reproduction, hypothyroidism, hyperleptinemia, and obesity effect on male fertility as well as the related molecular mechanisms are obtained. CONCLUSION Thyroid and leptin hormones individually play a significant role in male reproduction. Alterations of these hormones' levels could adversely affect the male reproductive functions. PI3K/AKT signaling was found to be the major signaling pathway involved in mediating the effect of both hormones on male reproduction. Impaired crosstalk between the two hormones may occur in hypothyroidism with obesity which would contribute towards male reproductive dysfunction.
Collapse
Affiliation(s)
- Madhumanti Barman
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
- Human Reproduction Research Group, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
- Human Reproduction Research Group, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
- Human Reproduction Research Group, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Mauvais-Jarvis F, Lindsey SH. Metabolic benefits afforded by estradiol and testosterone in both sexes: clinical considerations. J Clin Invest 2024; 134:e180073. [PMID: 39225098 PMCID: PMC11364390 DOI: 10.1172/jci180073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Testosterone (T) and 17β-estradiol (E2) are produced in male and female humans and are potent metabolic regulators in both sexes. When E2 and T production stops or decreases during aging, metabolic dysfunction develops and promotes degenerative metabolic and vascular disease. Here, we discuss the shared benefits afforded by E2 and T for metabolic function human females and males. In females, E2 is central to bone and vascular health, subcutaneous adipose tissue distribution, skeletal muscle insulin sensitivity, antiinflammatory immune function, and mitochondrial health. However, T also plays a role in female skeletal, vascular, and metabolic health. In males, T's conversion to E2 is fundamental to bone and vascular health, as well as prevention of excess visceral adiposity and the promotion of insulin sensitivity via activation of the estrogen receptors. However, T and its metabolite dihydrotestosterone also prevent excess visceral adiposity and promote skeletal muscle growth and insulin sensitivity via activation of the androgen receptor. In conclusion, T and E2 are produced in both sexes at sex-specific concentrations and provide similar and potent metabolic benefits. Optimizing levels of both hormones may be beneficial to protect patients from cardiometabolic disease and frailty during aging, which requires further study.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Medicine Service, Section of Endocrinology, Hormone Therapy Clinic, Southeast Louisiana VA Medical Center, New Orleans, Louisiana, USA
- Deming Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
| | - Sarah H. Lindsey
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
5
|
Sakai H, Imai Y. Cell-specific functions of androgen receptor in skeletal muscles. Endocr J 2024; 71:437-445. [PMID: 38281756 DOI: 10.1507/endocrj.ej23-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Androgens play a vital role not only in promoting the development of male sexual characteristics but also in exerting diverse physiological effects, including the regulation of skeletal muscle growth and function. Given that the effects of androgens are mediated through androgen receptor (AR) binding, an understanding of AR functionality is crucial for comprehending the mechanisms of androgen action on skeletal muscles. Drawing from insights gained using conditional knockout mouse models facilitated by Cre/loxP technology, we review the cell-specific functions of AR in skeletal muscles. We focus on three specific cell populations expressing AR within skeletal muscles: skeletal muscle cells, responsible for muscle contraction; satellite cells, which are essential stem cells contributing to the growth and regeneration of skeletal muscles; and mesenchymal progenitors, situated in interstitial areas and playing a crucial role in muscle homeostasis. Furthermore, the indirect effects of androgens on skeletal muscle through extra-muscle tissue are essential, especially for the regulation of skeletal muscle mass. The regulation of genes by AR varies across different cell types and contexts, including homeostasis, regeneration and hypertrophy of skeletal muscles. The varied mechanisms orchestrated by AR collectively influence the physiology of skeletal muscles.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| |
Collapse
|
6
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
7
|
Harnichar AE, Zubiría MG, Giordano AP, Miguel I, Rey MA, Spinedi E, Giovambattista A. Inhibitory effect of androgens on white adipose tissue thermogenic capacity. Mol Cell Endocrinol 2022; 543:111542. [PMID: 34995681 DOI: 10.1016/j.mce.2021.111542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/29/2023]
Abstract
White adipose tissue (WAT) browning has gained interest due to its impact in obesity. Here, we evaluated the effect of androgens on the Ucp1-dependent thermogenic process from inguinal (IAT) and retroperitoneal (RPAT) WAT. Surgically androgens depleted rats (ODX) showed basal thermogenic activation (room temperature) in both WAT depots, which expressed higher levels of Ucp1, Prdm16 and Pgc1a. WAT pads from ODX cold-exposed rats (ODX-C) expressed increased levels of Ucp1 and Pgc1a and showed high UCP1 protein content. In primary beige adipocyte cultures, testosterone decreased the mitochondrial marker Cox8b and mitochondrial content. Finally, testosterone and dihydrotestosterone (DHT) decreased the expression of Ucp1, Pcg1a and Prdm16 in forskolin-stimulated beige adipocytes, an effect that was prevented by the antiandrogen flutamide. In conclusion, androgen deficient rats developed WAT depots with enhanced basal and cold-stimulated thermogenic activity. Additionally, in vitro androgen treatments inhibited the thermogenic program, effect which was mediated by the androgen receptor pathway.
Collapse
Affiliation(s)
- Alejandro Ezequiel Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina
| | - María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina; Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Alejandra Paula Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina
| | - Ignacio Miguel
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina
| | - Eduardo Spinedi
- Centre of Experimental and Applied Endocrinology (CENEXA, UNLP-CONICET), La Plata Medical School, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), 526 10 y 11, La Plata, 1900, Argentina; Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
| |
Collapse
|
8
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
9
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
10
|
The Role of Diet and Weight Loss in Improving Secondary Hypogonadism in Men with Obesity with or without Type 2 Diabetes Mellitus. Nutrients 2019; 11:nu11122975. [PMID: 31817436 PMCID: PMC6950423 DOI: 10.3390/nu11122975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Despite growing recognition of the issue, obesity represents one of the most common public health problems, and its rates are still increasing globally. Among the number of comorbidities and complications associated with obesity, hypogonadism is listed, and this disorder, although frequently neglected, is characterized by a relevant impact on both quality of life and life expectancy. It is generally accepted that hypogonadism secondary to obesity is functional since it is reversible following weight loss. This review summarizes all current research examining the bidirectional relationship between excess body weight and low testosterone levels. Specifically, it evaluates the role that diet, with or without physical activity, plays in improving body weight and hypogonadism in adult and elderly men with obesity, with or without type 2 diabetes mellitus.
Collapse
|
11
|
Lanciotti L, Cofini M, Leonardi A, Bertozzi M, Penta L, Esposito S. Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071268. [PMID: 30970592 PMCID: PMC6480640 DOI: 10.3390/ijerph16071268] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
Abstract
Complete androgen insensitivity syndrome (CAIS) is an X-linked recessive genetic disorder resulting from maternally inherited or de novo mutations involving the androgen receptor gene, situated in the Xq11-q12 region. The diagnosis is based on the presence of female external genitalia in a 46, XY human individual, with normally developed but undescended testes and complete unresponsiveness of target tissues to androgens. Subsequently, pelvic ultrasound or magnetic resonance imaging (MRI) could be helpful in confirming the absence of Mullerian structures, revealing the presence of a blind-ending vagina and identifying testes. CAIS management still represents a unique challenge throughout childhood and adolescence, particularly regarding timing of gonadectomy, type of hormonal therapy, and psychological concerns. Indeed this condition is associated with an increased risk of testicular germ cell tumour (TGCT), although TGCT results less frequently than in other disorders of sex development (DSD). Furthermore, the majority of detected tumoral lesions are non-invasive and with a low probability of progression into aggressive forms. Therefore, histological, epidemiological, and prognostic features of testicular cancer in CAIS allow postponing of the gonadectomy until after pubertal age in order to guarantee the initial spontaneous pubertal development and avoid the necessity of hormonal replacement therapy (HRT) induction. However, HRT is necessary after gonadectomy in order to prevent symptoms of hypoestrogenism and to maintain secondary sexual features. This article presents differential clinical presentations and management in patients with CAIS to emphasize the continued importance of standardizing the clinical and surgical approach to this disorder.
Collapse
Affiliation(s)
- Lucia Lanciotti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Alberto Leonardi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Mirko Bertozzi
- Pediatric Surgery, Azienda Ospedaliera Santa Maria della Misericordia, 20122 Perugia, Italy.
| | - Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
12
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Abstract
Sex differences exist in the regulation of energy homeostasis. Better understanding of the underlying mechanisms for sexual dimorphism in energy balance may facilitate development of gender-specific therapies for human diseases, e.g. obesity. Multiple organs, including the brain, liver, fat and muscle, play important roles in the regulations of feeding behavior, energy expenditure and physical activity, which therefore contribute to the maintenance of energy balance. It has been increasingly appreciated that this multi-organ system is under different regulations in male vs. female animals. Much of effort has been focused on roles of sex hormones (including androgens, estrogens and progesterone) and sex chromosomes in this sex-specific regulation of energy balance. Emerging evidence also indicates that other factors (not sex hormones/receptors and not encoded by the sex chromosomes) exist to regulate energy homeostasis differentially in males vs. females. In this review, we summarize factors and signals that have been shown to regulate energy homeostasis in a sexually dimorphic fashion and propose a framework where these factors and signals may be integrated to mediate sex differences in energy homeostasis.
Collapse
Affiliation(s)
- Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
14
|
Bi Y, Jiang M, Guo W, Guan X, Xu M, Ren S, Yang D, Gaikwad NW, Selcer KW, Xie W. Sex-Dimorphic and Sex Hormone-Dependent Role of Steroid Sulfatase in Adipose Inflammation and Energy Homeostasis. Endocrinology 2018; 159:3365-3377. [PMID: 30060148 PMCID: PMC6112598 DOI: 10.1210/en.2018-00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Steroid sulfatase (STS), a desulfating enzyme that converts steroid sulfates to hormonally active steroids, plays an important role in the homeostasis of sex hormones. STS is expressed in the adipose tissue of both male and female mice, but the role of STS in the development and function of adipose tissue remains largely unknown. In this report, we show that the adipose expression of Sts was induced in the high-fat diet (HFD) and ob/ob models of obesity and type 2 diabetes. Transgenic overexpression of the human STS in the adipose tissue of male mice exacerbated the HFD-induced metabolic phenotypes, including increased body weight gain and fat mass, and worsened insulin sensitivity, glucose tolerance, and energy expenditure, which were accounted for by adipocyte hypertrophy, increased adipose inflammation, and dysregulation of adipogenesis. The metabolic harm of the STS transgene appeared to have resulted from increased androgen activity in the adipose tissue, and castration abolished most of the phenotypes. Interestingly, the transgenic effects were sex specific, because the HFD-fed female STS transgenic mice exhibited improved metabolic functions, which were associated with attenuated adipose inflammation. The metabolic benefit of the STS transgene in female mice was accounted for by increased estrogenic activity in the adipose tissue, whereas such benefit was abolished upon ovariectomy. Our results revealed an essential role of the adipose STS in energy homeostasis in sex- and sex hormone-dependent manner. The adipose STS may represent a therapeutic target for the management of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yuhan Bi
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mengxi Jiang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weiwei Guo
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meishu Xu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Da Yang
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Harada N. Role of androgens in energy metabolism affecting on body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity: lessons from a meta-analysis and rodent studies. Biosci Biotechnol Biochem 2018; 82:1667-1682. [PMID: 29957125 DOI: 10.1080/09168451.2018.1490172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Testosterone is a sex hormone produced by testicular Leydig cells in males. Blood testosterone concentrations increase at three time-periods in male life-fetal, neonatal (which can be separated into newborn and infant periods), and pubertal stages. After peaking in the early 20s, the blood bioactive testosterone level declines by 1-2% each year. It is increasingly apparent that a low testosterone level impairs general physical and mental health in men. Here, this review summarizes recent systematic reviews and meta-analyses of epidemiological studies in males (including cross-sectional, longitudinal, and androgen deprivation studies, and randomized controlled testosterone replacement trials) in relation to testosterone and obesity, body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity. Furthermore, underlying mechanisms are discussed using data from rodent studies involving castration or androgen receptor knockout. This review provides an update understanding of the role of testosterone in energy metabolism. Abbreviations AR: androgen receptor; CV: cardiovascular; FDA: US Food and Drug Administration; HFD: high-fat diet; KO: knockout; MetS: metabolic syndrome; RCT: randomized controlled trial; SHBG: sex hormone binding globulin; SRMA: systematic review and meta-analysis; TRT: testosterone replacement therapy; T2DM:type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Naoki Harada
- a Division of Applied Life Sciences , Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Sakai , Osaka , Japan
| |
Collapse
|
16
|
Russell PK, Mangiafico S, Fam BC, Clarke MV, Marin ES, Andrikopoulos S, Wiren KM, Zajac JD, Davey RA. The androgen receptor in bone marrow progenitor cells negatively regulates fat mass. J Endocrinol 2018; 237:15-27. [PMID: 29386237 DOI: 10.1530/joe-17-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
It is well established that testosterone negatively regulates fat mass in humans and mice; however, the mechanism by which testosterone exerts these effects is poorly understood. We and others have shown that deletion of the androgen receptor (AR) in male mice results in a phenotype that mimics the three key clinical aspects of hypogonadism in human males; increased fat mass and decreased bone and muscle mass. We now show that replacement of the Ar gene specifically in mesenchymal progenitor cells (PCs) residing in the bone marrow of Global-ARKO mice, in the absence of the AR in all other tissues (PC-AR Gene Replacements), completely attenuates their increased fat accumulation. Inguinal subcutaneous white adipose tissue and intra-abdominal retroperitoneal visceral adipose tissue depots in PC-AR Gene Replacement mice were 50-80% lower than wild-type (WT) and 75-90% lower than Global-ARKO controls at 12 weeks of age. The marked decrease in subcutaneous and visceral fat mass in PC-AR Gene Replacements was associated with an increase in the number of small adipocytes and a healthier metabolic profile compared to WT controls, characterised by normal serum leptin and elevated serum adiponectin levels. Euglycaemic/hyperinsulinaemic clamp studies reveal that the PC-AR Gene Replacement mice have improved whole-body insulin sensitivity with higher glucose infusion rates compared to WT mice and increased glucose uptake into subcutaneous and intra-abdominal fat. In conclusion, these data provide the first evidence for an action of androgens via the AR in mesenchymal bone marrow PCs to negatively regulate fat mass and improve metabolic function.
Collapse
Affiliation(s)
- Patricia K Russell
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Salvatore Mangiafico
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Barbara C Fam
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michele V Clarke
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Evelyn S Marin
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Kristine M Wiren
- Research ServiceVeterans Affairs Medical Center, Portland, Oregon, USA
- Departments of Medicine and Behavioral NeuroscienceOregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey D Zajac
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of MedicineAustin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
17
|
Jia Y, Yee JK, Wang C, Nikolaenko L, Diaz-Arjonilla M, Cohen JN, French SW, Liu PY, Lue Y, Lee WNP, Swerdloff RS. Testosterone protects high-fat/low-carbohydrate diet-induced nonalcoholic fatty liver disease in castrated male rats mainly via modulating endoplasmic reticulum stress. Am J Physiol Endocrinol Metab 2018; 314:E366-E376. [PMID: 28928235 PMCID: PMC5966753 DOI: 10.1152/ajpendo.00124.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously showed that testosterone (T) deficiency enhanced high-fat/low-carbohydrate diet (HFD)-induced hepatic steatosis in rats independent of insulin resistance and that T replacement reduced hepatic macrovesicular fat accumulation and inflammation. The present report explores the mechanism of T's protective effects on HFD-induced steatohepatitis. Adult male rats were randomized into four treatment groups for 15 wk: intact rats on regular chow diet or HFD, and castrated rats on HFD with or without T replacement. Fatty acid β-oxidation and de novo synthesis were not changed by castration and T replacement, but expression of lipid export proteins ApoB100 and microsomal triglyceride transfer protein (MTP) was suppressed by HFD in both intact and castrated rats but restored by T replacement. Macrovesicular lipid droplet-related proteins perilipin 1 and fat-specific protein 27 were increased by HFD in castrated rats and suppressed by T replacement. Higher activation/expression of ER stress proteins (PERK, IRE-1α, JNK, NF-κB, and CHOP) was demonstrated in castrated rats fed HFD compared with intact animals, and T replacement suppressed these changes. We conclude that 1) HFD leads to ApoB100/MTP suppression reducing export of lipids; 2) castration promotes progression to steatohepatitis through activation of the ER stress pathway and enhancement of macrovesicular droplet protein expression; and 3) testosterone suppresses ER stress, inhibits the formation of macrovesicular lipid droplets, promotes lipid export, and ameliorates steatohepatitis induced by HFD and castration.
Collapse
Affiliation(s)
- Yue Jia
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Jennifer K Yee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Liana Nikolaenko
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Maruja Diaz-Arjonilla
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Joshua N Cohen
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Peter Y Liu
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - YanHe Lue
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Wai-Nang P Lee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Ronald S Swerdloff
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| |
Collapse
|
18
|
|
19
|
Androgen receptors and muscle: a key mechanism underlying life history trade-offs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:51-60. [DOI: 10.1007/s00359-017-1222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
|
20
|
|
21
|
Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: Sex differences in C57BL6/J mice. Brain Behav 2017; 7:e00708. [PMID: 28638713 PMCID: PMC5474711 DOI: 10.1002/brb3.708] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Animal studies can be a great tool to investigate sex differences in a variety of different ways, including behavioral and physiological responses to drug treatments and different "lifestyle variables" such as diets. Consumption of both high-fat diets and alcohol is known to affect anxiety behaviors and overall health. This project investigated how high-fat diet and alcohol access and its combination affected the behavior and physiology of male and female C57BL/6J mice. METHOD Mice were separated into three food groups: high-fat diet, 10% fat diet, and regular chow, and each group was paired with either water or 10% alcohol. Behavioral assays included diet and alcohol preference, light-dark box, open field, and feeding and drinking measurements. Physiological measures included glucose tolerance tests and measurement of brain-derived neurotrophic factor, insulin, and leptin levels. RESULTS Females and males differed in the open field, as male mice decreased activity, while females increased activity when consuming high-fat diet. While females consumed more ethanol than males, alcohol consumption was able to improve glucose tolerance and increase anxiety in both sexes. Lastly, females were more resistant to the physiological changes caused by high-fat diet than males, as females consuming high-fat diet exhibited decreased insulin secretion, less change to brain-derived neurotrophic factor levels, and better glucose tolerance than males consuming high-fat diet. CONCLUSION These results suggest that the response to high-fat diet and alcohol consumption is sex dependent and that males are more affected both behaviorally and physiologically by high-fat diet compared to females.
Collapse
Affiliation(s)
- Rachel R Gelineau
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Nicole L Arruda
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Jasmin A Hicks
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | | | - Aikaterini Hatzidis
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Joseph A Seggio
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| |
Collapse
|
22
|
Ng Tang Fui M, Hoermann R, Grossmann M. Effect of Testosterone Treatment on Adipokines and Gut Hormones in Obese Men on a Hypocaloric Diet. J Endocr Soc 2017; 1:302-312. [PMID: 29264488 PMCID: PMC5686636 DOI: 10.1210/js.2017-00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
Context In obese men with lowered testosterone levels, testosterone treatment augments diet-associated loss of body fat. Objective We hypothesized that testosterone treatment modulates circulating concentrations of hormonal mediators of fat mass and energy homeostasis in obese men undergoing a weight loss program. Design Prespecified secondary analysis of a randomized, double-blind, placebo-controlled trial. Setting Tertiary referral center. Participants Obese men (body mass index ≥30 kg/m2) with a repeated total testosterone level ≤12 nmol/L. Intervention One hundred participants mean age 53 years (interquartile range 47 to 60 years) receiving 10 weeks of a very low-energy diet followed by 46 weeks of weight maintenance were randomly assigned at baseline to 56 weeks of intramuscular testosterone undecanoate (cases, n = 49) or matching placebo (controls, n = 51). Eighty-two men completed the study. Main outcomes Between-group differences in leptin, adiponectin, ghrelin, glucagon like peptide-1, gastric inhibitory polypeptide, peptide YY, pancreatic polypeptide, and amylin levels. Results At study end, compared with controls, cases had greater reductions in leptin [mean adjusted difference (MAD), -3.6 ng/mL (95% CI, -5.3 to -1.9); P < 0.001]. The change in leptin levels between cases and controls was dependent on baseline fat mass, as the between-group difference progressively increased with increasing fat mass [MAD, -0.26 ng/mL (95% CI, -0.31 to -0.26); P = 0.001 per 1 kg of baseline fat mass]. Weight loss-associated changes in other hormones persisted during the weight maintenance phase but were not modified by testosterone treatment. Conclusions Testosterone treatment led to reductions in leptin beyond those achieved by diet-associated weight loss. Testosterone treatment may reduce leptin resistance in obese men.
Collapse
Affiliation(s)
- Mark Ng Tang Fui
- Department of Medicine, and.,Department of Endocrinology, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084 Australia
| | | | - Mathis Grossmann
- Department of Medicine, and.,Department of Endocrinology, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084 Australia
| |
Collapse
|
23
|
Huang CK, Lee SO, Chang E, Pang H, Chang C. Androgen receptor (AR) in cardiovascular diseases. J Endocrinol 2016; 229:R1-R16. [PMID: 26769913 PMCID: PMC4932893 DOI: 10.1530/joe-15-0518] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/13/2016] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize the effects of androgen/AR on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as the metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension, and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors; however, generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis; however, targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy compared with age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- George Whipple Lab for Cancer ResearchDepartments of Pathology, Urology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Soo Ok Lee
- George Whipple Lab for Cancer ResearchDepartments of Pathology, Urology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Eugene Chang
- George Whipple Lab for Cancer ResearchDepartments of Pathology, Urology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA Department of MedicineCase Cardiovascular Institute Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Haiyan Pang
- George Whipple Lab for Cancer ResearchDepartments of Pathology, Urology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer ResearchDepartments of Pathology, Urology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA Sex Hormone Research CenterChina Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
O'Hara L, Smith LB. Development and Characterization of Cell-Specific Androgen Receptor Knockout Mice. Methods Mol Biol 2016; 1443:219-248. [PMID: 27246343 DOI: 10.1007/978-1-4939-3724-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conditional gene targeting has revolutionized molecular genetic analysis of nuclear receptor proteins, however development and analysis of such conditional knockouts is far from simple, with many caveats and pitfalls waiting to snare the novice or unprepared. In this chapter, we describe our experience of generating and analyzing mouse models with conditional ablation of the androgen receptor (AR) from tissues of the reproductive system and other organs. The guidance, suggestions, and protocols outlined in the chapter provide the key starting point for analyses of conditional-ARKO mice, completing them as described provides an excellent framework for further focussed project-specific analyses, and applies equally well to analysis of reproductive tissues from any mouse model generated through conditional gene targeting.
Collapse
Affiliation(s)
- Laura O'Hara
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
25
|
Navarro G, Allard C, Xu W, Mauvais-Jarvis F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 2015; 23:713-9. [PMID: 25755205 PMCID: PMC4380643 DOI: 10.1002/oby.21033] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In men, androgen deprivation contributes to the development of metabolic syndrome and type 2 diabetes (T2D). In women, androgen excess predisposes to insulin resistance and T2D. There is a bidirectional modulation of glucose homeostasis by androgens in males and females that is analyzed in this review. METHODS We reviewed the literature in both rodents and humans on the role of androgens and the androgen receptor (AR) in the control of glucose and energy metabolism in health, obesity, and T2D. RESULTS Sex-specific activation of AR in the hypothalamus, skeletal muscle, liver, adipose tissue, and pancreatic islet β-cells accounts for maintenance or disruption in energy metabolism and glucose homeostasis. CONCLUSIONS We argue that AR is a target to prevent androgen-related metabolic disorders.
Collapse
Affiliation(s)
- Guadalupe Navarro
- Division of Endocrinology & Metabolism, Department of Medicine, Stanford University, Stanford, CA 94305-5165, USA
| | - Camille Allard
- Section of Endocrinology & Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Weiwei Xu
- Section of Endocrinology & Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology & Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
O’Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith LB. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS One 2015; 10:e0121657. [PMID: 25799562 PMCID: PMC4370825 DOI: 10.1371/journal.pone.0121657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/11/2015] [Indexed: 12/02/2022] Open
Abstract
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.
Collapse
Affiliation(s)
- Laura O’Hara
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Curley
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Tedim Ferreira
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lyndsey Cruickshanks
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Milne
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee B. Smith
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Fagman JB, Wilhelmson AS, Motta BM, Pirazzi C, Alexanderson C, De Gendt K, Verhoeven G, Holmäng A, Anesten F, Jansson JO, Levin M, Borén J, Ohlsson C, Krettek A, Romeo S, Tivesten Å. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice. FASEB J 2014; 29:1540-50. [PMID: 25550469 PMCID: PMC4470404 DOI: 10.1096/fj.14-259234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)–dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)–deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (−41%; thoracic aorta), subcutaneous fat mass (−44%), and cholesterol levels (−35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism.—Fagman, J. B., Wilhelmson, A. S., Motta, B. M., Pirazzi, C., Alexanderson, C., De Gendt, K., Verhoeven, G., Holmäng, A., Anesten, F., Jansson, J.-O., Levin, M., Borén, J., Ohlsson, C., Krettek, A., Romeo, S., Tivesten, A. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.
Collapse
Affiliation(s)
- Johan B Fagman
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna S Wilhelmson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Benedetta M Motta
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carlo Pirazzi
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camilla Alexanderson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karel De Gendt
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Verhoeven
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Holmäng
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Anesten
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Levin
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Krettek
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Tivesten
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-Hilczer J, Kula K, Szarras-Czapnik M, Milne L, Mitchell RT, Smith LB. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J 2014; 29:894-910. [PMID: 25404712 PMCID: PMC4422361 DOI: 10.1096/fj.14-255729] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men.
Collapse
Affiliation(s)
- Laura O'Hara
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Kerry McInnes
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Ioannis Simitsidellis
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Morgan
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Nina Atanassova
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jolanta Slowikowska-Hilczer
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Kula
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Szarras-Czapnik
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Laura Milne
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Rod T Mitchell
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Lee B Smith
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
29
|
Rana K, Davey RA, Zajac JD. Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl 2014; 16:169-77. [PMID: 24480924 PMCID: PMC3955325 DOI: 10.4103/1008-682x.122590] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.
Collapse
Affiliation(s)
| | | | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
30
|
Yu IC, Lin HY, Sparks JD, Yeh S, Chang C. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes 2014; 63:3180-8. [PMID: 25249645 PMCID: PMC4171661 DOI: 10.2337/db13-1505] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. Androgen-deprivation therapy (ADT) is the first-line treatment and fundamental management for men with advanced PCa to suppress functions of androgen/androgen receptor (AR) signaling. ADT is effective at improving cancer symptoms and prolonging survival. However, epidemiological and clinical studies support the notion that testosterone deficiency in men leads to the development of metabolic syndrome that increases cardiovascular disease risk. The underlying mechanisms by which androgen/AR signaling regulates metabolic homeostasis in men are complex, and in this review, we discuss molecular mechanisms mediated by AR signaling that link ADT to metabolic syndrome. Results derived from various AR knockout mouse models reveal tissue-specific AR signaling that is involved in regulation of metabolism. These data suggest that steps be taken early to manage metabolic complications associated with PCa patients receiving ADT, which could be accomplished using tissue-selective modulation of AR signaling and by treatment with insulin-sensitizing agents.
Collapse
Affiliation(s)
- I-Chen Yu
- Department of Pathology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Department of Urology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY
| | - Hung-Yun Lin
- Department of Pathology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Department of Urology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY
| | - Janet D Sparks
- Department of Pathology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Department of Urology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY
| | - Shuyuan Yeh
- Department of Pathology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Department of Urology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY
| | - Chawnshang Chang
- Department of Pathology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Department of Urology, George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
31
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
32
|
Huang CK, Pang H, Wang L, Niu Y, Luo J, Chang E, Sparks JD, Lee SO, Chang C. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension 2014; 63:1345-53. [PMID: 24688120 DOI: 10.1161/hypertensionaha.113.02804] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The male sex has a higher risk to develop coronary artery diseases, including atherosclerosis. The androgen receptor (AR) is expressed in several atherosclerosis-associated cell types, including monocytes/macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs), but its pathophysiological role in each cell type during the development of atherosclerotic lesions remains unclear. Using the Cre-loxP system, we selectively knocked out AR in these 3 cell types and the resultant AR knockout (ARKO) mice, monocyte/macrophage ARKO, EC-ARKO, and SMC-ARKO, were then crossed with the low-density lipoprotein receptor (LDLR) deficient (LDLR(-/-)) mice to develop monocyte/macrophage ARKO-LDLR(-/-), EC-ARKO-LDLR(-/-), and SMC-ARKO-LDLR(-/-) mice for the study of atherosclerosis. The results showed that the monocyte/macrophage ARKO-LDLR(-/-) mice had reduced atherosclerosis compared with the wild-type-LDLR(-/-) control mice. However, no significant difference was detected in EC-ARKO-LDLR(-/-) and SMC-ARKO-LDLR(-/-) mice compared with wild-type-LDLR(-/-) mice, suggesting that the AR in monocytes/macrophages, and not in ECs and SMCs, plays a major role to promote atherosclerosis. Molecular mechanism dissection suggested that AR in monocytes/macrophages upregulated the tumor necrosis factor-α, integrin β2, and lectin-type oxidized LDL receptor 1 molecules that are involved in 3 major inflammation-related processes in atherosclerosis, including monocytes/macrophages migration and adhesion to human umbilical vein ECs, and subsequent foam cell formation. Targeting AR via the AR degradation enhancer, ASC-J9, in wild-type-LDLR(-/-) mice showed similar effects as seen in monocyte/macrophage ARKO-LDLR(-/-) mice with little influence on lipid profile. In conclusion, the AR in monocytes/macrophages plays key roles in atherosclerosis and targeting AR with ASC-J9 may represent a new potential therapeutic approach to battle atherosclerosis.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Wilmot Cancer Center, University of Rochester Medical Center, 601 Elmwood Ave, Box 626, Rochester, NY 14642. or Lin Wang, Chawnshang Chang Sex Hormone Research Center, The Kidney and Blood Purification Center, Tianjin Institute of Urology, Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, China 300211. E-mail
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nikolaenko L, Jia Y, Wang C, Diaz-Arjonilla M, Yee JK, French SW, Liu PY, Laurel S, Chong C, Lee K, Lue Y, Lee WNP, Swerdloff RS. Testosterone replacement ameliorates nonalcoholic fatty liver disease in castrated male rats. Endocrinology 2014; 155:417-28. [PMID: 24280056 PMCID: PMC5393315 DOI: 10.1210/en.2013-1648] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease is common in developed countries and is associated with obesity, metabolic syndrome, and type 2 diabetes. T deficiency is a risk factor for developing these metabolic deficiencies, but its role in hepatic steatosis has not been well studied. We investigated the effects of T on the pathogenesis of hepatic steatosis in rats fed a high-fat diet (HFD). Adult male rats were randomly placed into four groups and treated for 15 weeks: intact rats on regular chow diet (RCD), intact rats on liquid HFD (I+HFD), castrated rats on HFD (C+HFD), and castrated rats with T replacement on HFD (C+HFD+T). Fat contributed 71% energy to the HFD but only 16% of energy to the RCD. Serum T level was undetectable in castrated rats, and T replacement led to 2-fold higher mean serum T levels than in intact rats. C+HFD rats gained less weight but had higher percentage body fat than C+HFD+T. Severe micro- and macrovesicular fat accumulated in hepatocytes with multiple inflammatory foci in the livers of C+HFD. I+HFD and C+HFD+T hepatocytes demonstrated only mild to moderate microvesicular steatosis. T replacement attenuated HFD-induced hepatocyte apoptosis in castrated rats. Serum glucose and insulin levels were not increased with HFD in any group. Immunoblots showed that insulin-regulated proteins were not changed in any group. This study demonstrates that T deficiency may contribute to the severity of hepatic steatosis and T may play a protective role in hepatic steatosis and nonalcoholic fatty liver disease development without insulin resistance.
Collapse
Affiliation(s)
- L Nikolaenko
- Divisions of Endocrinology, Departments of Medicine (L.N., Y.J., C.W., M.D.-A., P.Y.L., S.L., C.C., K.L., Y.L., R.S.S.) and Pediatrics (J.K.Y., W.N.P.L.), and Department of Pathology (S.W.F.) Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California 90509
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang C, Yeh S, Lee SO, Chang TM. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells. NUCLEAR RECEPTOR SIGNALING 2013; 11:e001. [PMID: 24653668 PMCID: PMC3960937 DOI: 10.1621/nrs.11001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in
vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases.
Collapse
Affiliation(s)
- Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Soo Ok Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Ta-Min Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| |
Collapse
|
35
|
Fuente-Martín E, Argente-Arizón P, Ros P, Argente J, Chowen JA. Sex differences in adipose tissue: It is not only a question of quantity and distribution. Adipocyte 2013; 2:128-34. [PMID: 23991358 PMCID: PMC3756100 DOI: 10.4161/adip.24075] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes.
Collapse
|
36
|
Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Res 2013; 11:938-50. [PMID: 23859805 DOI: 10.1016/j.scr.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 11/21/2022] Open
Abstract
Gender differences have been described in osteoporosis with females having a higher risk of osteoporosis than males. The differentiation of bone marrow stromal cells (BMSCs) into bone or fat is a critical step for osteoporosis. Here we demonstrated that loss of the androgen receptor (AR) in BMSCs suppressed osteogenesis but promoted adipogenesis. The mechanism dissection studies revealed that AR deficiency suppressed osteogenesis-related genes to inhibit osteoblast differentiation from BMSCs. Knockout of AR promoted adipogenesis of BMSCs via Akt activation through IGFBP3-mediated IGF signaling, and the 5' promoter assay and chromatin immunoprecipitation assays further proved that AR could modulate IGFBP3 expression at the transcriptional level. Finally, addition of IGF inhibitors successfully masked the AR deficiency-induced Akt activation, and inhibitions of Akt, IGF1, and IGF2 pathways reversed the AR depletion effects on the adipogenesis process. These results suggested that AR-mediated changes in IGFBP3 might modulate the IGF-Akt axis to regulate adipogenesis in BMSCs.
Collapse
|
37
|
Shi H, Kumar SPDS, Liu X. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:193-250. [PMID: 23317786 PMCID: PMC3632385 DOI: 10.1016/b978-0-12-386933-3.00006-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Biology, Center for Physiology and Neuroscience, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
38
|
Mullican SE, Tomaru T, Gaddis CA, Peed LC, Sundaram A, Lazar MA. A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Mol Endocrinol 2012. [PMID: 23192980 DOI: 10.1210/me.2012-1267] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adipose-specific gene deletion in mice is crucial in determining gene function in adipocyte homeostasis and the development of obesity. We noted 100% mortality when the Hdac3 gene was conditionally deleted using Fabp4-Cre mice, the most commonly used model of adipose-targeted Cre recombinase. However, this surprising result was not reproduced using other models of adipose targeting of Cre, including a novel Retn-Cre mouse. These findings underscore the need for caution when interpreting data obtained using Fabp4-Cre mice and should encourage the use of additional or alternative adipose-targeting Cre mouse models before drawing conclusions about in vivo adipocyte-specific functions.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O'Rourke RW, Roberts CT. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012; 153:3100-10. [PMID: 22547568 PMCID: PMC3380299 DOI: 10.1210/en.2011-2111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
McInnes KJ, Smith LB, Hunger NI, Saunders PTK, Andrew R, Walker BR. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes 2012; 61:1072-81. [PMID: 22415878 PMCID: PMC3331763 DOI: 10.2337/db11-1136] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/26/2012] [Indexed: 01/15/2023]
Abstract
Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet-induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency.
Collapse
Affiliation(s)
- Kerry J McInnes
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
41
|
De Gendt K, Verhoeven G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol 2012; 352:13-25. [PMID: 21871526 DOI: 10.1016/j.mce.2011.08.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022]
Abstract
This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results.
Collapse
Affiliation(s)
- Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|
42
|
Mammi C, Calanchini M, Antelmi A, Cinti F, Rosano GMC, Lenzi A, Caprio M, Fabbri A. Androgens and adipose tissue in males: a complex and reciprocal interplay. Int J Endocrinol 2012; 2012:789653. [PMID: 22235202 PMCID: PMC3253446 DOI: 10.1155/2012/789653] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/15/2011] [Indexed: 12/28/2022] Open
Abstract
Clinical evidence shows that in males obesity is frequently associated with hypogonadism and vice versa; also, low testosterone levels have been considered a "hallmark" of metabolic syndrome in men. These observations indicate that there is a strict connection between anatomically and functionally distinct cell types such as white adipocytes and Leydig cells, that synthesize testosterone. Adipose tissue is able to control several functions of the testis through its products secreted in the bloodstream. On the other hand, circulating levels of testosterone and estradiol deeply affect adipocyte proliferation, differentiation, and fat mass distribution, hereby controlling critical metabolic functions, such as food intake, insulin sensitivity, vascular reactivity, and immunity. This paper highlights the existing clinical and experimental evidence linking androgens and adipose tissue and illustrates the consequences occurring when the balance between fat mass distribution and eugonadism is lost.
Collapse
Affiliation(s)
- Caterina Mammi
- Centre of Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, 235 00163 Rome, Italy
- *Caterina Mammi:
| | - Matilde Calanchini
- Unit of Endocrinology, S. Eugenio & CTO A. Alesini Hospitals, Department of Internal Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Antelmi
- Centre of Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, 235 00163 Rome, Italy
| | - Francesca Cinti
- Centre of Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, 235 00163 Rome, Italy
| | - Giuseppe M. C. Rosano
- Centre of Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, 235 00163 Rome, Italy
| | - Andrea Lenzi
- Department of Medical Pathophysiology, University of Rome “La Sapienza”, Rome, Italy
| | - Massimiliano Caprio
- Centre of Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, 235 00163 Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology, S. Eugenio & CTO A. Alesini Hospitals, Department of Internal Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
43
|
Rana K, Fam BC, Clarke MV, Pang TPS, Zajac JD, MacLean HE. Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. Am J Physiol Endocrinol Metab 2011; 301:E767-78. [PMID: 21712531 DOI: 10.1152/ajpendo.00584.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In men, as testosterone levels decrease, fat mass increases and muscle mass decreases. Increased fat mass in men, in particular central obesity, is a major risk factor for type 2 diabetes, cardiovascular disease, and all-cause mortality. Testosterone treatment has been shown to decrease fat mass and increase fat-free mass. We hypothesize that androgens act directly via the DNA binding-dependent actions of the androgen receptor (AR) to regulate genes controlling fat mass and metabolism. The aim of this study was to determine the effect of a global DNA binding-dependent (DBD) AR knockout (DBD-ARKO) on the metabolic phenotype in male mice by measuring body mass, fat mass, food intake, voluntary physical activity, resting energy expenditure, substrate oxidation rates, serum glucose, insulin, lipid, and hormone levels, and metabolic gene expression levels and second messenger protein levels. DBD-ARKO males have increased adiposity despite a decreased total body mass compared with wild-type (WT) males. DBD-ARKO males showed reduced voluntary activity, decreased food intake, increased serum leptin and adiponectin levels, an altered lipid metabolism gene profile, and increased phosphorylated CREB levels compared with WT males. This study demonstrates that androgens acting via the DNA binding-dependent actions of the AR regulate fat mass and metabolism in males and that the increased adiposity in DBD-ARKO male mice is associated with decreased voluntary activity, hyperleptinemia and hyperadiponectinemia and not with insulin resistance, increased food intake, or decreased resting energy expenditure.
Collapse
Affiliation(s)
- Kesha Rana
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, Thompson TC. Castration-induced changes in mouse epididymal white adipose tissue. Mol Cell Endocrinol 2011; 345:58-67. [PMID: 21782885 PMCID: PMC3867123 DOI: 10.1016/j.mce.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
We analyzed the effects of castration on epididymal white adipose tissue (WAT) in C57BL/6J mice which were fed a regular or high-fat diet. Fourteen days following surgical castration profound effects on WAT tissue such as reductions in WAT wet weight and WAT/body weight ratio, induction of lipolysis and morphologic changes characterized by smaller adipocytes, and increased stromal cell compartment were documented in both dietary groups. Castrated animals had decreased serum leptin levels independent of diet but diet-dependent decreases in serum adiponectin and resistin. The castrated high-fat group had dramatically lower serum triglyceride levels. Immunohistochemical analysis revealed higher staining for smooth muscle actin, macrophage marker Mac-3, and Cxcl5 in the castrated than in the control mice in both dietary groups. We also detected increased fatty-acid synthase expression in the stromal compartment of WAT in the regular-diet group. Castration also reduces the expression of androgen receptor in WAT in the regular-diet group. We conclude that castration reduces tissue mass and affects biologic function of WAT in mice.
Collapse
Affiliation(s)
- Daniel Floryk
- Department of Genitourinary Medical Oncology - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Semirale AA, Zhang XW, Wiren KM. Body composition changes and inhibition of fat development in vivo implicates androgen in regulation of stem cell lineage allocation. J Cell Biochem 2011; 112:1773-86. [PMID: 21381083 DOI: 10.1002/jcb.23098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Androgens regulate body composition in youth and declining testosterone that occurs with aging is associated with muscle wasting, increased fat mass and osteopenia. Transgenic mice with targeted androgen receptor (AR) over-expression in mesenchymal stem cells (MSC) were generated to explore the role of androgen signaling in the regulation of body composition. Transgenic males, but not females, were shorter and have reduced body weight and visceral fat accumulation. Dual-energy X-ray absorptiometry (DXA) revealed significant reductions in fat mass with a reciprocal increase in lean mass, yet no difference in food consumption or locomotor activity was observed. Adipose tissue weight was normal in brown fat but reduced in both gonadal and perirenal depots, and reduced hyperplasia was observed with smaller adipocyte size in visceral and subcutaneous white adipose tissue. Although serum leptin, adiponectin, triglyceride, and insulin levels were no different between the genotypes, intraperitoneal glucose tolerance testing (IPGTT) showed improved glucose clearance in transgenic males. High levels of the AR transgene are detected in MSCs but not in mature fat tissue. Reduced fibroblast colony forming units indicate fewer progenitor cells resident in the marrow in vivo. Precocious expression of glucose transporter 4 (GLUT4), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT enhancer-binding protein α (C/EBPα) was observed in proliferating precursor cultures from transgenic mice compared to controls. In more mature cultures, there was little difference between the genotypes. We propose a mechanism where enhanced androgen sensitivity can alter lineage commitment in vivo to reduce progenitor number and fat development, while increasing the expression of key factors to promote smaller adipocytes with improved glucose clearance.
Collapse
Affiliation(s)
- Anthony A Semirale
- Research Service, Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
46
|
McInnes KJ, Brown KA, Hunger NI, Simpson ER. Regulation of LKB1 expression by sex hormones in adipocytes. Int J Obes (Lond) 2011; 36:982-5. [PMID: 21876548 DOI: 10.1038/ijo.2011.172] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In the adipose tissue, activation of AMP-activated protein kinase (AMPK) by phosphorylation favours local fatty acid oxidation and inhibition of lipogenesis. We have previously shown that the potent androgen dihydrotestosterone (DHT) can inhibit phosphorylation of AMPK in adipose tissue and 3T3-L1 adipocytes in a dose-dependent manner. This negative effect of DHT was reversed by oestrogen treatment. The purpose of this current study was to determine the underlying mechanisms whereby androgens and oestrogens can regulate AMPK phosphorylation in adipocytes, and whether this mechanism is receptor dependent. RESULTS Phosphorylation of AMPK was assessed by western blot in cells treated for 24 h with testosterone or DHT (1-1000 nM). Testosterone and DHT significantly inhibited basal phosphorylation of AMPK. Addition of the androgen receptor antagonist Flutamide (1 μM) to the media reversed the negative effect of testosterone and DHT by returning AMPK phosphorylation levels to those of basal. To further dissect the mechanism underlying AMPK inhibition by testosterone or DHT, we examined the mRNA expression of the upstream activator of AMPK, namely LKB1. Testosterone and DHT treatment of murine 3T3-L1 or human SGBS adipocytes for 24 h significantly decreased the mRNA expression of LKB1. In contrast, 17β-estradiol treatment increased LKB1 mRNA, an effect mediated by oestrogen receptor alpha. CONCLUSION We conclude that regulation of AMPK phosphorylation by androgens and oestrogens is receptor-dependent, and demonstrate for the first time that LKB1 is regulated by sex hormones in adipocytes.
Collapse
Affiliation(s)
- K J McInnes
- Endocrinology Unit, BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
47
|
Corona G, Rastrelli G, Morelli A, Vignozzi L, Mannucci E, Maggi M. Hypogonadism and metabolic syndrome. J Endocrinol Invest 2011; 34:557-67. [PMID: 21720206 DOI: 10.3275/7806] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The relationship between metabolic syndrome (MetS), male hypogonadism and their possible interaction in cardiovascular (CV) risk stratification are not completely understood. AIM We reviewed relationships between testosterone (T) and MetS emphasizing their possible interaction in the pathogenesis of CV diseases. MATERIALS AND METHODS A systematic search of published evidence was performed using Medline (1969 to January 2011). RESULTS Cross-sectional data have shown that subjects with MetS have lower levels of total T (TT) (about 3 nmol/l), as hypogonadism is more evident in subjects with than in those without erectile dysfunction (ED) than in those without. Longitudinal evidence shows that low T is allocated with a higher risk of subsequent development of MetS, although the reverse condition is also possible. Which are the factors in MetS responsible for the low T is not completely clarified. In clinical studies, increased waist circumference is the major determinant of MetS-associated hypogonadism. Our experiments in rabbits do not support the idea that visceral fat is the main determinant of MetS-associated male hypogonadism. Only few randomized clinical trials have evaluated the impact of T replacement therapy (TRT) in patients with MetS. Available evidence suggests that TRT decreases visceral fat accumulation and ameliorates insulin sensitivity, whereas androgen deprivation increases abdominal adiposity. CONCLUSIONS The clinical significance of the MetS-associated hypogonadism needs further clarifications. In particular, it has not been completely clarified if low T might be considered a cause or a consequence of MetS. The benefit of TRT in term of the reduction of CV risk needs to be confirmed in larger and longer studies.
Collapse
Affiliation(s)
- G Corona
- Andrology and Sexual Medicine Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Androgen acting through the androgen receptor (AR) is known to be essential for male sexual differentiation and development. Using Cre-lox technology, we have generated the floxed AR mice, which have been bred with general or tissue-specific Cre expressing transgenic mice to knock out the AR gene in specific target cells. Our findings indicated that AR is required for sexual development and that loss of AR can have significant effects on many aspects of physiological functions and disease progression, such as immune function, metabolism, and tumorigenesis. Furthermore, our strategy can generate AR knockout (ARKO) in female mice, which allows researchers to study the AR function in the female. In brief, our floxed AR mouse model provides a powerful tool to study in vivo AR functions in selective tissues and cell types and has made possible several research breakthroughs in the field of endocrinology.
Collapse
|
49
|
Mauvais-Jarvis F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 2011; 22:24-33. [PMID: 21109497 PMCID: PMC3011051 DOI: 10.1016/j.tem.2010.10.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/31/2023]
Abstract
Because of increasing life expectancy, the contribution of age-related estrogen or androgen deficiency to obesity and type 2 diabetes will become a new therapeutic challenge. This review integrates current concepts on the mechanisms through which estrogen receptors (ERs) and androgen receptor (AR) regulate energy homeostasis in rodents and humans. In females, estrogen maintains energy homeostasis via ERα and ERβ, by suppressing energy intake and lipogenesis, enhancing energy expenditure, and ameliorating insulin secretion and sensitivity. In males, testosterone is converted to estrogen and maintains fuel homeostasis via ERs and AR, which share related functions to suppress adipose tissue accumulation and improve insulin sensitivity. We suggest that ERs and AR could be potential targets in the prevention of age-related metabolic disorders.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
50
|
Brown LM, Clegg DJ. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J Steroid Biochem Mol Biol 2010; 122:65-73. [PMID: 20035866 PMCID: PMC2889220 DOI: 10.1016/j.jsbmb.2009.12.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/19/2009] [Accepted: 12/15/2009] [Indexed: 12/14/2022]
Abstract
In recent years, obesity and its associated health disorders and costs have increased. Accumulation of adipose tissue, or fat, in the intra-abdominal adipose depot is associated with an increased risk of developing cardiovascular problems, type-2 diabetes mellitus, certain cancers, and other disorders like the metabolic syndrome. Males and females differ in terms of how and where their body fat is stored, in their hormonal secretions, and in their neural responses to signals regulating weight and body fat distribution. Men and post-menopausal women accumulate more fat in their intra-abdominal depots than pre-menopausal women, resulting in a greater risk of developing complications associated with obesity. The goal of this review is to discuss the current literature on sexual dimorphisms in body weight regulation, adipose tissue accrual and deposition.
Collapse
Affiliation(s)
- LM Brown
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412
| | - DJ Clegg
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8854
- Corresponding author at: Deborah J. Clegg, RD, PhD, Assistant Professor, Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd., K5.252, Dallas, TX 75390-8854, Tel: 214-648-3401, Fax: 214-648-8720, (D. Clegg)
| |
Collapse
|