1
|
de Dreuille B, Nicolle R, Cros J, Cazals-Hatem D, Chassac A, Poté N, Le Beyec-Le Bihan J, Bado A, Le Gall M, Joly F. Identification of Pappalysin-2 (PAPP-A2), a modulator of Insulin-like Growth Factor-1 pathway, as a potential marker of teduglutide efficacy in patients with short bowel syndrome. Clin Nutr 2025; 50:128-136. [PMID: 40414050 DOI: 10.1016/j.clnu.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/04/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Teduglutide, a glucagon-like peptide-2 (GLP-2) analog, is indicated to treat short bowel syndrome (SBS) since 2015. It has been shown to reduce parenteral support (PS) in SBS patients, although patients' response is quite heterogeneous. The exact mechanisms of action of GLP-2 on intestinal cells are still poorly understood. The aim of this study was to explore the intestinal action of teduglutide to identify molecular mechanisms underlying response heterogeneity. METHODS A retrospective study was conducted in 39 SBS patients treated with teduglutide for at least 6 months. Intestinal biopsy specimens collected before and after treatment initiation were selected and analyzed by RNA sequencing to identify genes differentially expressed and pathways regulated following teduglutide treatment. RESULTS Of the 39 patients included in the study, 29 (74%) had a colon in continuity. The overall response to teduglutide was a reduction by 75% (interquartile range: 42-100) in PS volume. Among the genes differentially expressed in the small bowel during teduglutide treatment, the most significantly upregulated gene was PAPPA2 (q-value < 0.0001), encoding the metalloproteinase Pappalysin-2 (PAPPA-2) involved in Insulin-like Growth Factor (IGF) bioavailability. The best responders to teduglutide showed a lower PAPPA2 expression at baseline (p < 0.01). PAPPA2 expression at baseline also correlated positively with the percentage of remnant colon (p < 0.001). CONCLUSION We identified a new stakeholder, PAPPA-2, known to modulate IGF bioavailability, as playing a possible role in GLP-2 mechanism of action in human with SBS. We showed by association the existence of a greater spontaneous intestinal adaptation in SBS patients with a colon in continuity that could reduce sensitivity to teduglutide. Additionally, we suggest that initial PAPPA2 expression could serve as a predictive biomarker for teduglutide efficacy.
Collapse
Affiliation(s)
- Brune de Dreuille
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France; Gastroenterology and Nutritional Support Department, Hôpital Beaujon (AP-HP), Clichy, France
| | - Rémy Nicolle
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France
| | - Jérôme Cros
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France; Pathology Department, Hôpital Beaujon (AP-HP), Clichy, France
| | | | - Anaïs Chassac
- Pathology Department, Hôpital Bichat (AP-HP), Paris, France
| | - Nicolas Poté
- Pathology Department, Hôpital Bichat (AP-HP), Paris, France
| | - Johanne Le Beyec-Le Bihan
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France; Endocrine and Oncological Biochemistry Department, Hôpital Pitié-Salpêtrière (AP-HP)-Sorbonne University, Paris, France
| | - André Bado
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, Université Paris Cité, 75018 Paris, France; Gastroenterology and Nutritional Support Department, Hôpital Beaujon (AP-HP), Clichy, France.
| |
Collapse
|
2
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Wang X, Chen H, Han S, Li L, Chen H, Yang B. The real-world analysis of adverse events with teduglutide: a pharmacovigilance study based on the FAERS database. Front Pharmacol 2024; 15:1404658. [PMID: 39329127 PMCID: PMC11424547 DOI: 10.3389/fphar.2024.1404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Teduglutide, the first glucagon-like peptide 2 analogue, has been demonstrated to facilitate the absorption of gut nutrient and lessen the need for parenteral assistance in patients with Short Bowel Syndrome (SBS). However, its adverse drug events (AEs) are primarily documented in clinical trials, with a deficit in real-world data. This study evaluates the AEs profile of teduglutide based on Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) data. METHOD A disproportionality analysis of FAERS data from Quarter 1 (Q1) 2013 to Quarter 3 (Q3) 2023 was conducted to examine the association between teduglutide and adverse events, employing Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM) methods. RESULTS Out of 13,809,302 reports in the FAERS database, 10,114 reports identified teduglutide as the "primary suspect" in AEs identification. During the dosing observation period, the median occurrence of adverse events was 393 days (interquartile range [IQR] 97-996 days). Teduglutide-associated AEs occurred in 27 System Organ Classes (SOC), of which renal and urinary disorders is not mentioned in the specification. Based on the four algorithms, a total of 260 major disproportionality preferred terms (PTs) were filtered out, including previously unreported AEs including weight decreased (n = 805), vascular device infection (n = 683), dehydration (n = 596) and nephrolithiasis (n = 146). CONCLUSION Our findings corroborate the AEs listed in the teduglutide prescribing information and additionally unveil new adverse reaction signals such as nephrolithiasis. These discoveries could aid in clinical monitoring and risk identification for teduglutide.
Collapse
Affiliation(s)
- Xiaogan Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuangshuang Han
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingbo Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongjin Chen
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bolin Yang
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zhang JS, Li S, Cheng X, Tan XC, Huang YL, Dong HJ, Xue R, Zhang Y, Li JC, Feng XX, Deng Y, Zhang YZ. Far-Infrared Therapy Based on Graphene Ameliorates High-Fat Diet-Induced Anxiety-Like Behavior in Obese Mice via Alleviating Intestinal Barrier Damage and Neuroinflammation. Neurochem Res 2024; 49:1735-1750. [PMID: 38530508 DOI: 10.1007/s11064-024-04133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1β, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Cheng
- Hebei North University, Hebei, 075000, China
| | - Xiao-Cui Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yu-Long Huang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
5
|
Chen ME, Naeini SM, Srikrishnaraj A, Drucker DJ, Fesler Z, Brubaker PL. Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1829-1842. [PMID: 35218981 PMCID: PMC9123588 DOI: 10.1016/j.jcmgh.2022.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-21-33 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell-cycle dynamics and numbers. METHODS Lgr5-Enhanced green-fluorescent protein - internal ribosome entry site - Cre recombinase - estrogen receptor T2 (eGFP-IRES-creERT2) mice were acutely administered human Glycine2 (Gly2)-GLP-2, or the GLP-2-receptor antagonist, GLP-23-33. Intestinal epithelial insulin-like growth factor-1-receptor knockout and control mice were treated chronically with human Gly2 (hGly2)-GLP-2. Cell-cycle parameters were determined by 5-Ethynyl-2'-deoxyuridine (EdU), bromodeoxyuridine, antibody #Ki67, and phospho-histone 3 labeling and cell-cycle gene expression. RESULTS Acute hGly2-GLP-2 treatment increased the proportion of eGFP+EdU+/OLFM4+EdU+ cells by 11% to 22% (P < .05), without affecting other cell-cycle markers. hGly2-GLP-2 treatment also increased the ratio of eGFP+ cells in early to late S-phase by 97% (P < .001), and increased the proportion of eGFP+ cells entering S-phase by 218% (P < .001). hGly2-GLP-2 treatment induced jejunal expression of genes involved in cell-cycle regulation (P < .05), and increased expression of Mcm3 in the Lgr5-expressing cells by 122% (P < .05). Conversely, GLP-23-33 reduced the proportion of eGFP+EdU+ cells by 27% (P < .05), as well as the expression of jejunal cell-cycle genes (P < .05). Finally, chronic hGly2-GLP-2 treatment increased the number of OLFM4+ cells/crypt (P < .05), in an intestinal epithelial insulin-like growth factor-1-receptor-dependent manner. CONCLUSIONS These findings expand the actions of GLP-2 to encompass acute stimulation of Lgr5+ ISC S-phase entry through the GLP-2R, and chronic induction of Lgr5+ ISC expansion through downstream intestinal insulin-like growth factor-1 signaling.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Drucker
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zivit Fesler
- Department of Physiology, Toronto, Ontario, Canada
| | - Patricia L. Brubaker
- Department of Physiology, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Correspondence Address correspondence to: Patricia L. Brubaker, PhD, Medical Sciences Building, Room 3366, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. fax: 1 (416) 978-4940.
| |
Collapse
|
6
|
Unveiling the Roles of Low-Density Lipoprotein Receptor-Related Protein 6 in Intestinal Homeostasis, Regeneration and Oncogenesis. Cells 2021; 10:cells10071792. [PMID: 34359960 PMCID: PMC8307932 DOI: 10.3390/cells10071792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Intestinal epithelial self-renewal is tightly regulated by signaling pathways controlling stem cell proliferation, determination and differentiation. In particular, Wnt/β-catenin signaling controls intestinal crypt cell division, survival and maintenance of the stem cell niche. Most colorectal cancers are initiated by mutations activating the Wnt/β-catenin pathway. Wnt signals are transduced through Frizzled receptors and LRP5/LRP6 coreceptors to downregulate GSK3β activity, resulting in increased nuclear β-catenin. Herein, we explored if LRP6 expression is required for maintenance of intestinal homeostasis, regeneration and oncogenesis. Mice with an intestinal epithelial cell-specific deletion of Lrp6 (Lrp6IEC-KO) were generated and their phenotype analyzed. No difference in intestinal architecture nor in proliferative and stem cell numbers was found in Lrp6IEC-KO mice in comparison to controls. Nevertheless, using ex vivo intestinal organoid cultures, we found that LRP6 expression was critical for crypt cell proliferation and stem cell maintenance. When exposed to dextran sodium sulfate, Lrp6IEC-KO mice developed more severe colitis than control mice. However, loss of LRP6 did not affect tumorigenesis in ApcMin/+ mice nor growth of human colorectal cancer cells. By contrast, Lrp6 silencing diminished anchorage-independent growth of BRafV600E-transformed intestinal epithelial cells (IEC). Thus, LRP6 controls intestinal stem cell functionality and is necessary for BRAF-induced IEC oncogenesis.
Collapse
|
7
|
George AT, Di Cocco P, Benedetti E, Boulay BR, Carroll RE. Teduglutide Therapy in 2 Patients With Short-Bowel Syndrome and Familial Adenomatous Polyposis. JPEN J Parenter Enteral Nutr 2021; 45:839-843. [PMID: 32829492 DOI: 10.1002/jpen.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Alvin T George
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pierpaolo Di Cocco
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Enrico Benedetti
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Brian R Boulay
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Robert E Carroll
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Billeschou A, Hunt JE, Ghimire A, Holst JJ, Kissow H. Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation. Biomedicines 2021; 9:biomedicines9010046. [PMID: 33430185 PMCID: PMC7825593 DOI: 10.3390/biomedicines9010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Intestinal adaptation is an important response and a natural repair mechanism in acute intestinal injury and is critical for recovery. Glucagon-like peptide 2 (GLP-2) has been demonstrated to enhance mucosal repair following intestinal damage. In this study, we aimed to investigate the role of GLP-2 receptor activation on intestinal protection and adaptation upon chemotherapy-induced intestinal injury. The injury was induced with a single injection of 5-fluorouracil in female GLP-2 receptor knockout (GLP-2R(-/-)) mice and their wild type (WT) littermates. The mice were euthanized in the acute or the recovery phase of the injury; the small intestines were analysed for weight changes, morphology, histology, inflammation, apoptosis and proliferation. In the acute phase, only inflammation was slightly increased in the GLP-2R(-/-) mice compared to WT. In the recovery phase, we observed the natural compensatory response with an increase in small intestinal weight, crypt depth and villus height in WT mice, and this was absent in the GLP-2R(-/-) mice. Both genotypes responded with hyperproliferation. From this, we concluded that GLP-2R signalling does not have a major impact on acute intestinal injury but is pivotal for the adaptive response in the small intestine.
Collapse
Affiliation(s)
- Anna Billeschou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (A.B.); (J.E.H.); (A.G.); (J.J.H.)
| | - Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (A.B.); (J.E.H.); (A.G.); (J.J.H.)
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Aruna Ghimire
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (A.B.); (J.E.H.); (A.G.); (J.J.H.)
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (A.B.); (J.E.H.); (A.G.); (J.J.H.)
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (A.B.); (J.E.H.); (A.G.); (J.J.H.)
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
9
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Rigalli JP, Ruiz ML, Villanueva SSM, Mottino AD. Intraluminal nutrients acutely strengthen rat intestinal MRP2 barrier function by a glucagon-like peptide-2-mediated mechanism. Acta Physiol (Oxf) 2020; 230:e13514. [PMID: 32476256 DOI: 10.1111/apha.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023]
Abstract
AIM MRP2 is an intestinal ABC transporter that prevents the absorption of dietary xenobiotics. The aims of this work were: (1) to evaluate whether a short-term regulation of intestinal MRP2 barrier function takes place in vivo after luminal incorporation of nutrients and (2) to explore the underlying mechanism. METHODS MRP2 activity and localization were assessed in an in vivo rat model with preserved irrigation and innervation. Nutrients were administered into distal jejunum. After 30-minutes treatments, MRP2 activity was assessed in proximal jejunum by quantifying the transport of the model substrate 2,4-dinitrophenyl-S-glutathione. MRP2 localization was determined by quantitative confocal microscopy. Participation of extracellular mediators was evaluated using selective inhibitors and by immunoneutralization. Intracellular pathways were explored in differentiated Caco-2 cells. RESULTS Oleic acid, administered intraluminally at dietary levels, acutely stimulated MRP2 insertion into brush border membrane. This was associated with increased efflux activity and, consequently, enhanced barrier function. Immunoneutralization of the gut hormone glucagon-like peptide-2 (GLP-2) prevented oleic acid effect on MRP2, demonstrating the participation of this trophic factor as a main mediator. Further experiments using selective inhibitors demonstrated that extracellular adenosine synthesis and its subsequent binding to enterocytic A2B adenosine receptor (A2BAR) take place downstream GLP-2. Finally, studies in intestinal Caco-2 cells revealed the participation of A2BAR/cAMP/PKA intracellular pathway, ultimately leading to increased MRP2 localization in apical domains. CONCLUSION These findings reveal an on-demand, acute regulation of MRP2-associated barrier function, constituting a novel physiological mechanism of protection against the absorption of dietary xenobiotics in response to food intake.
Collapse
Affiliation(s)
- Guillermo N. Tocchetti
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
- Department of Clinical Pharmacology and Pharmacoepidemiology University of Heidelberg Heidelberg Germany
| | - Camila J. Domínguez
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Maite R. Arana
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Juan P. Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology University of Heidelberg Heidelberg Germany
| | - María L. Ruiz
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Silvina S. M. Villanueva
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Aldo D. Mottino
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| |
Collapse
|
10
|
Zhang XY, Chen J, Yi K, Peng L, Xie J, Gou X, Peng T, Tang L. Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut Microbes 2020; 12:1-18. [PMID: 33222603 PMCID: PMC7714487 DOI: 10.1080/19490976.2020.1842990] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phlorizin (PHZ) is one of phytonutrients in apples that contributes to the health-promoting effect implicated by the saying, 'an apple a day keeps the doctor away'. PHZ was firstly identified as a competitive inhibitor of sodium-glucose co-transporters-2 (SGLT2); however, its low bioavailability makes it hard to fully explain its pharmacological mechanisms. This study aimed to investigate the ameliorating effect of PHZ on high-fat diet (HFD)-induced obesity via modulating the "gut microbiota-barrier axis". Firstly, C57BL/6 J mice were fed a normal chow diet (NCD) or HFD coadministered with or without PHZ for 12 weeks. Our results showed that PHZ supplementation significantly reduced HFD-induced body weight gain (P < .001), alleviated metabolic disorders (MDs) like insulin resistance (P < .001) and elevation of serum lipopolysaccharides (LPS) (P < .001), attenuated HFD-induced gut microbiota alterations, enhanced short-chain fatty acids (SCFAs) production (P < .001), and inhibited fecal LPS production (P < .001). To investigate the role of the fecal microbiota in the observed beneficial effects, a fecal microbiota transplantation (FMT) experiment was performed by transplanting the feces of the four groups of mice (as donor mice) daily collected from the fourth week to a new batch of acclimatized HFD-fed mice. Our results confirmed that feeding the gut contents of the PHZ-modulated mice could attenuate HFD-induced MDs, accompanied by enhanced glucagon-like peptide 2 (GLP-2) secretion (P < .001) and restoration of HFD-induced damage in the gut epithelial barrier. This study has provided evidence that the "gut microbiota-barrier axis" was an alternative target for the anti-obesity effect of PHZ. This work has also provided an explanation for the high efficacy of PHZ despite the low bioavailability, and PHZ holds great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China,CONTACT Xiao-yu Zhang College of Life Sciences, Sichuan Normal University, Chengdu610101, China
| | - Jiang Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China,College of Life Sciences, Sichuan University, Chengdu, P.R. China,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P.R. China
| | - Kang Yi
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China
| | - Ling Peng
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China
| | - Xun Gou
- College of Life Sciences, Sichuan Normal University, Chengdu, P.R. China
| | - Tong Peng
- R&D Department, Keystonecare Technology (Chengdu) Co., Ltd, Chengdu, P.R. China
| | - Lin Tang
- College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
11
|
Azmy Nabeh O, Ishak Attallah M, El-Sayed El-Gawhary N. The pivotal relation between glucagon-like peptides, NFκB and inflammatory bowel disease. Clin Exp Pharmacol Physiol 2020; 47:1641-1648. [PMID: 32511781 DOI: 10.1111/1440-1681.13361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022]
Abstract
Glucagon-like peptides (GLPs), GLP-1 and GLP-2, are released from intestinal enteroendocrine cells (L cells) in response to ingested nutrients. GLP-1 plays a crucial role in lowering blood glucose and controlling body weight, through stimulating the islet ß cells of pancreas to secrete insulin, inhibiting gastric emptying, and reducing food ingestion. Therefore, GLP-1 receptor agonists are now used in the treatment of obese patients with type 2 diabetes mellitus (T2DM). GLP-2, on the other hand, is used as a novel therapy for short bowel syndrome (SBS) through its ability to restore intestinal homeostasis and induce epithelial proliferation. GLPs and the inhibitors of their degradation enzymes, dipeptidyl peptidase-IV (DPP-IV) inhibitors, have many anti-inflammatory actions. Many animal-based clinical trials have proved that GLP-based therapy has a pivotal role in the management of inflammatory bowel disease (IBD), possibly through regulating the transcription factor nuclear factor kappa-ligand B (NFκB). NFκB controls the production and secretion of many cytokines and chemokines encountered in the pathophysiology of IBD such as interleukin (IL-1β-IL-12, IL-13, IL-21, IL-22, IL-6) and tumour necrosis factor-alpha (TNF-α) and hence, may provide a promising therapeutic option.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magdy Ishak Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
12
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|
13
|
Markovic MA, Srikrishnaraj A, Tsang D, Brubaker PL. Requirement for the intestinal epithelial insulin-like growth factor-1 receptor in the intestinal responses to glucagon-like peptide-2 and dietary fat. FASEB J 2020; 34:6628-6640. [PMID: 32212202 DOI: 10.1096/fj.202000169r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances the enterocyte chylomicron production. However, GLP-2 is known to require the intestinal-epithelial insulin-like growth factor-1 receptor (IE-IGF-1R) for its other actions to increase intestinal growth and barrier function. The role of the IE-IGF-1R in enterocyte lipid handling was thus tested in the GLP-2 signaling pathway, as well as in response to a Western diet (WD). IE-IGF-1R knockout (KO) and control mice were treated for 11 days with h(GLY2 )GLP-2 or fed a WD for 18 weeks followed by a duodenal fat tolerance test with C14 -labeled triolein. Human Caco-2BBE cells were treated with an IGF-1R antagonist or signaling inhibitors to determine triglyceride-associated protein expression. The IE-IGF-1R was required for GLP-2-induced increases in CD36 and FATP-4 in chow-fed mice, and for expression in vitro; FATP-4 also required PI3K/Akt. Although WD-fed IE-IGF-1R KO mice demonstrated normal CD36 expression, the protein was incorrectly localized 2h post-duodenal fat administration. IE-IGF-1R KO also prevented the WD-induced increase in MTP and decrease in APOC3, increased jejunal mucosal C14 -fat accumulation, and elevated plasma triglyceride and C14 -fat levels. Collectively, these studies elucidate new roles for the IE-IGF-1R in enterocyte lipid handling, under basal conditions and in response to GLP-2 and WD-feeding.
Collapse
Affiliation(s)
| | | | - Derek Tsang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
The regulation of glycemia is under a tight neuronal detection of glucose levels performed by the gut-brain axis and an efficient efferent neuronal message sent to the peripheral organs, as the pancreas to induce insulin and inhibit glucagon secretions. The neuronal detection of glucose levels is performed by the autonomic nervous system including the enteric nervous system and the vagus nerve innervating the gastro-intestinal tractus, from the mouth to the anus. A dysregulation of this detection leads to the one of the most important current health issue around the world i.e. diabetes mellitus. Furthemore, the consequences of diabetes mellitus on neuronal homeostasis and activities participate to the aggravation of the disease establishing a viscious circle. Prokaryotic cells as bacteria, reside in our gut. The strong relationship between prokaryotic cells and our eukaryotic cells has been established long ago, and prokaryotic and eukaryotic cells in our body have evolved synbiotically. For the last decades, studies demonstrated the critical role of the gut microbiota on the metabolic control and how its shift can induce diseases such as diabetes. Despite an important increase of knowledge, few is known about 1) how the gut microbiota influences the neuronal detection of glucose and 2) how the diabetes mellitus-induced gut microbiota shift observed participates to the alterations of autonomic nervous system and the gut-brain axis activity.
Collapse
Affiliation(s)
- Estelle Grasset
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Dyslipidemia', F-31432, Toulouse, Cedex 4, France
| |
Collapse
|
15
|
Austin K, Tsang D, Chalmers JA, Maalouf MF, Brubaker PL. Insulin-like growth factor-binding protein-4 inhibits epithelial growth and proliferation in the rodent intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G206-G219. [PMID: 29631376 DOI: 10.1152/ajpgi.00349.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin-like growth factor-binding protein-4 (IGFBP-4) is a binding protein that modulates the action of insulin-like growth factor-1 (IGF-1), a growth factor whose presence is required for the intestinotrophic effects of glucagon-like peptide-2 (GLP-2). GLP-2 is a gut hormone that uses both IGF-1 and epidermal growth factor (EGF) as intermediary factors to promote intestinal growth. Therefore, to elucidate the mechanism through which IGFBP-4 regulates IGF-1 activity in the intestine, proliferation assays were conducted using rat intestinal epithelial cells (IEC-6). IGF-1 and EGF synergistically enhanced proliferation, an effect that was dose-dependently decreased by IGFBP-4 ( P < 0.05-0.001) in an IGF-1 receptor (R)- and MEK1/2- but not a phosphatidylinositol 3-kinase-dependent manner ( P > 0.05 for IGFBP-4 effects with IGF-1R and MEK1/2 inhibitors). Intestinal organoids derived from IGFBP-4 knockout mice demonstrated significantly greater Ki-67 expression and an enhanced surface area increase in response to IGF-1 treatment, compared with organoids from control mice ( P < 0.05-0.01). GLP-2 is also known to increase the mucosal expression of IGFBP-4 mRNA. To investigate whether this occurs through the actions of its intermediaries, IGF-1 and EGF, inducible intestinal epithelial-IGF-1R knockout and control mice were treated for 10 days with and without the pan-ErbB inhibitor, CI-1033. However, no differences in mucosal IGFBP-4 mRNA expression were found for any of the treatment groups ( P > 0.05). Consistently, IEC-6 cells treated with IGF-1 and/or EGF displayed no alteration in IGFBP-4 mRNA or in cellular and secreted IGFBP-4 protein ( P > 0.05). Overall, this study establishes that endogenous IGFBP-4 plays an important role in inhibiting IGF-1-induced intestinal epithelial proliferation and that mucosal IGFBP-4 expression is independent of IGF-1 and EGF. NEW & NOTEWORTHY This study demonstrates, for the first time, the inhibitory role of locally expressed insulin-like growth factor-binding protein-4 (IGFBP-4) on the intestinal proliferative actions of IGF-1 and supports the notion of the synergistic roles of IGF-1 and EGF in promoting intestinal epithelial growth. In turn, intestinal IGFBP-4 expression was not found to be regulated by IGF-1 and/or EGF.
Collapse
Affiliation(s)
- Kaori Austin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Tsang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael F Maalouf
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Orhan A, Gögenur I, Kissow H. The Intestinotrophic Effects of Glucagon-Like Peptide-2 in Relation to Intestinal Neoplasia. J Clin Endocrinol Metab 2018; 103:2827-2837. [PMID: 29741675 DOI: 10.1210/jc.2018-00655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone with intestinotrophic and antiapoptotic effects. The hormone's therapeutic potential in intestinal diseases and relation to intestinal neoplasia has raised great interest among researchers. This article reviews and discusses published experimental and clinical studies concerning the growth-stimulating and antiapoptotic effects of GLP-2 in relation to intestinal neoplasia. EVIDENCE ACQUISITION The data used in this narrative review were collected through literature research in PubMed using English keywords. All studies to date examining GLP-2's relation to intestinal neoplasms have been reviewed in this article, as the studies on the matter are sparse. EVIDENCE SYNTHESIS GLP-2 has been found to stimulate intestinal growth through secondary mediators and through the involvement of Akt phosphorylation. Studies on rodents have shown that exogenously administered GLP-2 increases the growth and incidence of adenomas in the colon, suggesting that GLP-2 may play an important role in the progression of intestinal tumors. Clinical studies have found that exogenous GLP-2 treatment is well tolerated for up to 30 months, but the tolerability for even longer periods of treatment has not been examined. CONCLUSION Exogenous GLP-2 is currently available as teduglutide for the treatment of short bowel syndrome. However, the association between exogenous GLP-2 treatment and intestinal neoplasia in humans has not been fully identified. This leads to a cause for concern regarding the later risk of the development or progression of intestinal tumors with long-term GLP-2 treatment. Therefore, further research regarding GLP-2's potential relation to intestinal cancers is needed.
Collapse
Affiliation(s)
- Adile Orhan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- NNF Center of Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, Wizzard PR, Li J, Bigam DL, Brubaker PL, Turner JM, Wales PW. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2017; 312:G390-G404. [PMID: 28104586 DOI: 10.1152/ajpgi.00281.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) treatment enhance intestinal adaptation. To determine whether these growth factors exert synergistic effects on intestinal growth and function, GLP-2 and EGF-containing media (EGF-cm) were administered, alone and in combination, in neonatal piglet models of short bowel syndrome (SBS). Neonatal Landrace-Large White piglets were block randomized to 75% midintestinal [jejunoileal (JI) group] or distal intestinal [jejunocolic (JC) group] resection or sham control, with 7-day infusion of saline (control), intravenous human GLP-2 (11 nmol·kg-1·day-1) alone, enteral EGF-cm (80 μg·kg-1·day-1) alone, or GLP-2 and EGF-cm in combination. Adaptation was assessed by intestinal length, histopathology, Üssing chamber analysis, and real-time quantitative PCR of intestinal growth factors. Combined EGF-cm and GLP-2 treatment increased intestinal length in all three surgical models (P < 0.01). EGF-cm alone selectively increased bowel weight per length and jejunal villus height in the JI group only. The JC group demonstrated increased intestinal weight and villus height (P < 0.01) when given either GLP-2 alone or in combination with EGF-cm, with no effect of EGF-cm alone. Jejunal permeability of mannitol and polyethylene glycol decreased with combination therapy in both SBS groups (P < 0.05). No difference was observed in fat absorption or body weight gain. IGF-1 mRNA was differentially expressed in JI vs. JC piglets with treatment. Combined treatment with GLP-2 and EGF-cm induced intestinal lengthening and decreased permeability, in addition to the trophic effects of GLP-2 alone. Our findings demonstrate the benefits of novel combination GLP-2 and EGF treatment for neonatal SBS, especially in the JC model representing most human infants with SBS.NEW & NOTEWORTHY Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) are intestinotrophic, with demonstrated benefit in both animal models and human studies of short bowel syndrome (SBS). The current research shows that over and above known trophic effects, the combination of GLP-2 and EGF synergistically lengthens the bowel in neonatal piglet models of SBS. Most notable benefit occurred with resection of the terminal ileum, the common clinical anatomy seen in neonatal SBS and associated with least de novo lengthening postsurgery.
Collapse
Affiliation(s)
- David W Lim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Donna F Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuru Muto
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob R Koepke
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery and Group for the Improvement of Intestinal Function and Treatment, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
18
|
Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition. Cell Mol Gastroenterol Hepatol 2017; 3:447-468. [PMID: 28462383 PMCID: PMC5403977 DOI: 10.1016/j.jcmgh.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal epithelial cell (IEC) responses and attenuate mucosal atrophy in several TPN models. However, it remains unclear whether these 2 factors use distinct or overlapping signaling pathways to improve IEC responses. We investigated the interaction of GLP-2 and EGF signaling in a mouse TPN model and in patients deprived of enteral nutrition. METHODS Adult C57BL/6J, IEC-Egfrknock out (KO) and IEC-pik3r1KO mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC responses were assessed by histologic, gene, and protein expression analyses. In patients undergoing planned looped ileostomies, fed and unfed ileum was analyzed. RESULTS Enteral nutrient deprivation reduced endogenous EGF and GLP-2 signaling in mice and human beings. In the mouse TPN model, exogenous EGF or GLP-2 attenuated mucosal atrophy and restored IEC proliferation. The beneficial effects of EGF and GLP-2 were decreased upon Gefitinib treatment and in TPN-treated IEC-EgfrKO mice, showing epidermal growth factor-receptor dependency for these IEC responses. By contrast, in TPN-treated IEC-pi3kr1KO mice, the beneficial actions of EGF were lost, although GLP-2 still attenuated mucosal atrophy. CONCLUSIONS Upon enteral nutrient deprivation, exogenous GLP-2 and EGF show strong interdependency for improving IEC responses. Understanding the differential requirements for phosphatidylinositol 3-kinase/phosphoAKT (Ser473) signaling may help improve future therapies to prevent mucosal atrophy.
Collapse
Key Words
- EGF
- EGF, epidermal growth factor
- EGFR
- EGFR, epidermal growth factor receptor
- GLP-2
- GLP-2 (3-33), glucagon-like peptide 2 antagonist
- GLP-2, glucagon-like peptide 2
- GLP2R, glucagon-like peptide 2 receptor
- IEC, intestinal epithelial cell
- IGF-1, insulin-like growth factor 1
- ISC, intestinal stem cell
- IV, intravenous
- KO, knock out
- Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5
- Mucosal Atrophy
- PCNA, proliferating cell nuclear antigen
- PCR, polymerase chain reaction
- PI3K
- PI3K, phosphatidylinositol 3-kinase
- PI3KR1, phosphatidylinositol 3-kinase p85a
- SBS, short-bowel syndrome
- TNF, tumor necrosis factor
- TPN, total parenteral nutrition
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- Total Parenteral Nutrition
- WT, wild-type
- bp, base pair
- mRNA, messenger RNA
Collapse
|
19
|
De Ita-Pérez DL, Díaz-Muñoz M. Synchronization by Daytime Restricted Food Access Modulates the Presence and Subcellular Distribution of β-Catenin and Its Phosphorylated Forms in the Rat Liver. Front Endocrinol (Lausanne) 2017; 8:14. [PMID: 28220106 PMCID: PMC5292920 DOI: 10.3389/fendo.2017.00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
β-catenin, the principal effector of the Wnt pathway, is also one of the cadherin cell adhesion molecules; therefore, it fulfills signaling and structural roles in most of the tissues and organs. It has been reported that β-catenin in the liver regulates metabolic responses such as gluconeogenesis and histological changes in response to obesity-promoting diets. The function and cellular location of β-catenin is finely modulated by coordinated sequences of phosphorylation-dephosphorylation events. In this article, we evaluated the levels and cellular localization of liver β-catenin variants, more specifically β-catenin phosphorylated in serine 33 (this phosphorylation provides recognizing sites for β-TrCP, which results in ubiquitination and posterior proteasomal degradation of β-catenin) and β-catenin phosphorylated in serine 675 (phosphorylation that enhances signaling and transcriptional activity of β-catenin through recruitment of different transcriptional coactivators). β-catenin phosphorylated in serine 33 in the nucleus shows day-night fluctuations in their expression level in the Ad Libitum group. In addition, we used a daytime restricted feeding (DRF) protocol to show that the above effects are sensitive to food access-dependent circadian synchronization. We found through western blot and immunohistochemical analyses that DRF protocol promoted (1) higher total β-catenins levels mainly associated with the plasma membrane, (2) reduced the presence of cytoplasmic β-catenin phosphorylated in serine 33, (3) an increase in nuclear β-catenin phosphorylated in serine 675, (4) differential co-localization of total β-catenins/β-catenin phosphorylated in serine 33 and total β-catenins/β-catenin phosphorylated in serine 675 at different temporal points along day and in fasting and refeeding conditions, and (5) differential liver zonation of β-catenin variants studied along hepatic acinus. In conclusion, the present data comprehensively characterize the effect food synchronization has on the presence, subcellular distribution, and liver zonation of β-catenin variants. These results are relevant to understand the set of metabolic and structural liver adaptations that are associated with the expression of the food entrained oscillator (FEO).
Collapse
Affiliation(s)
- Dalia Luz De Ita-Pérez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
- *Correspondence: Mauricio Díaz-Muñoz,
| |
Collapse
|
20
|
Schall KA, Holoyda KA, Isani M, Schlieve C, Salisbury T, Khuu T, Debelius JW, Moats RA, Pollack HA, Lien CL, Fowler K, Hou X, Knight R, Grikscheit TC. Intestinal adaptation in proximal and distal segments: Two epithelial responses diverge after intestinal separation. Surgery 2016; 161:1016-1027. [PMID: 28011012 DOI: 10.1016/j.surg.2016.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND In short bowel syndrome, luminal factors influence adaptation in which the truncated intestine increases villus lengths and crypt depths to increase nutrient absorption. No study has evaluated the effect of adaptation within the distal intestine after intestinal separation. We evaluated multiple conditions, including Igf1r inhibition, in proximal and distal segments after intestinal resection to evaluate the epithelial effects of the absence of mechanoluminal stimulation. METHODS Short bowel syndrome was created in adult male zebrafish by performing a proximal stoma with ligation of the distal intestine. These zebrafish with short bowel syndrome were compared to sham-operated zebrafish. Groups were treated with the Igf1r inhibitor NVP-AEW541, DMSO, a vehicle control, or water for 2 weeks. Proximal and distal intestine were analyzed by hematoxylin and eosin for villus epithelial circumference, inner epithelial perimeter, and circumference. We evaluated BrdU+ cells, including costaining for β-catenin, and the microbiome was evaluated for changes. Reverse transcription quantitative polymerase chain reaction was performed for β-catenin, CyclinD1, Sox9a, Sox9b, and c-Myc. RESULTS Proximal intestine demonstrated significantly increased adaptation compared to sham-operated proximal intestine, whereas the distal intestine showed no adaptation in the absence of luminal flow. Addition of the Igf1r inhibitor resulted in decreased adaption in the distal intestine but an increase in distal proliferative cells and proximal β-catenin expression. While some proximal proliferative cells in short bowel syndrome colocalized β-catenin and BrdU, the distal proliferative cells did not co-stain for β-catenin. Sox9a increased in the distal limb after division but not after inhibition with the Igf1r inhibitor. There was no difference in alpha diversity or species richness of the microbiome between all groups. CONCLUSION Luminal flow in conjunction with short bowel syndrome significantly increases intestinal adaption within the proximal intestine in which proliferative cells contain β-catenin. Addition of an Igf1r inhibitor decreases adaptation in both proximal and distal limbs while increasing distal proliferative cells that do not colocalize β-catenin. Igf1r inhibition abrogates the increase in distal Sox9a expression that otherwise occurs in short bowel syndrome. Mechanoluminal flow is an important stimulus for intestinal adaptation.
Collapse
Affiliation(s)
- Kathy A Schall
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Kathleen A Holoyda
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Mubina Isani
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Christopher Schlieve
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Tasha Salisbury
- Department of Radiology, USC Keck School of Medicine, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA
| | - Thien Khuu
- Department of Radiology, USC Keck School of Medicine, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA
| | - Justine W Debelius
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rex A Moats
- Department of Radiology, USC Keck School of Medicine, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA
| | - Harvey A Pollack
- Department of Radiology, USC Keck School of Medicine, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA
| | - Ching-Ling Lien
- Division of Cardiothoracic Surgery, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Kathryn Fowler
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Xiaogang Hou
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Tracy C Grikscheit
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA.
| |
Collapse
|
21
|
Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2016; 79:233-249. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. METHODS This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. RESULTS Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. CONCLUSION This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Collapse
Affiliation(s)
- Bronwen J Mayo
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma H Bateman
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Smither BR, Pang HYM, Brubaker PL. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine. Endocrinology 2016; 157:2660-70. [PMID: 27187177 DOI: 10.1210/en.2016-1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), stimulates growth, survival, and function of the intestinal epithelium through increased crypt cell proliferation, and a long-acting analog has recently been approved to enhance intestinal capacity in patients with short bowel syndrome. The goal of the present study was to determine whether GLP-2-induced crypt cell proliferation requires a full complement of B-cell lymphoma Moloney murine leukemia virus insertion region-1 homolog (Bmi-1), using the Bmi-1(eGFP/+) mouse model in comparison with age- and sex-matched Bmi-1(+/+) littermates. Bmi-1 is a member of the polycomb-repressive complex family that promotes stem cell proliferation and self-renewal and is expressed by both stem cells and transit-amplifying (TA) cells in the crypt. The acute (6 h) and chronic (11 d) proliferative responses to long-acting human (Gly(2))GLP-2 in the crypt TA zone, but not in the active or reserve stem cell zones, were both impaired by Bmi-1 haploinsufficiency. Similarly, GLP-2-induced crypt regeneration after 10-Gy irradiation was reduced in the Bmi-1(eGFP/+) animals. Despite these findings, chronic GLP-2 treatment enhanced overall intestinal growth in the Bmi-1(eGFP/+) mice, as demonstrated by increases in small intestinal weight per body weight and in the length of the crypt-villus axis, in association with decreased apoptosis and an adaptive increase in crypt epithelial cell migration rate. The results of these studies therefore demonstrate that a full complement of Bmi-1 is required for the intestinal proliferative effects of GLP-2 in both the physiological and pathological setting, and mediates, at least in part, the proliferation kinetics of cells in the TA zone.
Collapse
Affiliation(s)
- Bradley R Smither
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hilary Y M Pang
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Patricia L Brubaker
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
23
|
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition.
Collapse
|
24
|
Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 2016; 17:297-312. [PMID: 26712364 DOI: 10.1111/obr.12370] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue.
Collapse
Affiliation(s)
- L-G Hersoug
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Møller
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Lim DW, Wales PW, Turner JM, Bigam DL, Brubaker PL. On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opin Ther Targets 2016; 20:819-30. [DOI: 10.1517/14728222.2016.1146695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David W. Lim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Paul W. Wales
- Department of Surgery, University of Toronto & Hospital for Sick Children, Toronto, ON, Canada
| | - Justine M. Turner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - David L. Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Patricia L. Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Austin K, Imam NA, Pintar JE, Brubaker PL. IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine. Endocrinology 2015; 156:429-36. [PMID: 25514089 PMCID: PMC4298331 DOI: 10.1210/en.2014-1829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) is an enteroendocrine hormone that stimulates the growth of the intestinal epithelium. We have previously demonstrated that GLP-2 exerts its intestinotropic effect through an indirect mechanism that requires both IGF-1 and the intestinal epithelial IGF-1 receptor. However, the biological activity of IGF-1 is modulated by IGF binding proteins (IGFBPs), including IGFBP-4, which is highly expressed in the intestine. To determine the role of IGFBP-4 in the tropic effects of GLP-2, IGFBP-4 knockout (KO) and control mice were treated with degradation-resistant GLP-2 or vehicle for 10 days. Comparable levels of IGFBP-1-3/5-7 mRNAs were observed in the intestinal mucosa of all animals. IGFBP-4 KO mice had greater small intestinal weight and length, and deeper crypts (P < .05) as compared with controls, suggesting that IGFBP-4 has an inhibitory role in basal intestinal growth. However, small intestinal weight, crypt-villus height and crypt cell proliferation increased in response to GLP-2 in control mice (P < .05), and these changes were abrogated with IGFBP-4 KO. In contrast, pregnancy-associated plasma protein-A KO mice, which have increased levels of circulating IGFBP-4, demonstrated a normal intestinotropic response to GLP-2. Finally, GLP-2 treatment of control mice significantly increased IGFBP-4 mRNA expression in the jejunal mucosa (P < .05), a finding that was recapitulated by GLP-2 treatment of fetal rat intestinal cells in culture (10(-8)M for 2 h; P < .05). Collectively, these results indicate that the IGF-I-modulating protein, IGFBP-4, exerts a negative effect on basal intestinal growth but plays a positive regulatory role in the intestinotropic actions of GLP-2.
Collapse
Affiliation(s)
- Kaori Austin
- Departments of Physiology (K.A., N.A.I., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8; and Department of Neuroscience and Cell Biology (J.E.P.), Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | | | | |
Collapse
|
27
|
Andres SF, Santoro MA, Mah AT, Keku JA, Bortvedt AE, Blue RE, Lund PK. Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs. Am J Physiol Gastrointest Liver Physiol 2015; 308:G100-11. [PMID: 25394660 PMCID: PMC4297856 DOI: 10.1152/ajpgi.00287.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The insulin receptor (IR) regulates nutrient uptake and utilization in multiple organs, but its role in the intestinal epithelium is not defined. This study developed a mouse model with villin-Cre (VC) recombinase-mediated intestinal epithelial cell (IEC)-specific IR deletion (VC-IR(Δ/Δ)) and littermate controls with floxed, but intact, IR (IR(fl/fl)) to define in vivo roles of IEC-IR in mice fed chow or high-fat diet (HFD). We hypothesized that loss of IEC-IR would alter intestinal growth, biomarkers of intestinal epithelial stem cells (IESC) or other lineages, body weight, adiposity, and glucose or lipid handling. In lean, chow-fed mice, IEC-IR deletion did not affect body or fat mass, plasma glucose, or IEC proliferation. In chow-fed VC-IR(Δ/Δ) mice, mRNA levels of the Paneth cell marker lysozyme (Lyz) were decreased, but markers of other differentiated lineages were unchanged. During HFD-induced obesity, IR(fl/fl) and VC-IR(Δ/Δ) mice exhibited similar increases in body and fat mass, plasma insulin, mRNAs encoding several lipid-handling proteins, a decrease in Paneth cell number, and impaired glucose tolerance. In IR(fl/fl) mice, HFD-induced obesity increased circulating cholesterol; numbers of chromogranin A (CHGA)-positive enteroendocrine cells (EEC); and mRNAs encoding Chga, glucose-dependent insulinotrophic peptide (Gip), glucagon (Gcg), Lyz, IESC biomarkers, and the enterocyte cholesterol transporter Scarb1. All these effects were attenuated or lost in VC-IR(Δ/Δ) mice. These results demonstrate that IEC-IR is not required for normal growth of the intestinal epithelium in lean adult mice. However, our findings provide novel evidence that, during HFD-induced obesity, IEC-IR contributes to increases in EEC, plasma cholesterol, and increased expression of Scarb1 or IESC-, EEC-, and Paneth cell-derived mRNAs.
Collapse
Affiliation(s)
- Sarah F. Andres
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - M. Agostina Santoro
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Amanda T. Mah
- 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Adeola Keku
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Amy E. Bortvedt
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - R. Eric Blue
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - P. Kay Lund
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| |
Collapse
|
28
|
Shen Q, Maitin V. Obesity-Associated Gut Microbiota. DIET-MICROBE INTERACTIONS IN THE GUT 2015:149-171. [DOI: 10.1016/b978-0-12-407825-3.00011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1147-68. [PMID: 25342047 PMCID: PMC4269678 DOI: 10.1152/ajpgi.00088.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question.
Collapse
Affiliation(s)
- Per T. Sangild
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,2Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark;
| | - Denise M. Ney
- 3Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin;
| | | | - Andreas Vegge
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,5Diabetes Pharmacology, Novo Nordisk, Måløv, Denmark; and
| | - Douglas Burrin
- 6USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
30
|
Enteral nutrition in the management of pediatric intestinal failure. J Pediatr 2014; 165:1085-90. [PMID: 25242686 PMCID: PMC4253063 DOI: 10.1016/j.jpeds.2014.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022]
|
31
|
El-Jamal N, Erdual E, Neunlist M, Koriche D, Dubuquoy C, Maggiotto F, Chevalier J, Berrebi D, Dubuquoy L, Boulanger E, Cortot A, Desreumaux P. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2014; 307:G274-85. [PMID: 24875097 DOI: 10.1152/ajpgi.00389.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The glucagon-like peptide 2 (GLP-2) is an intestinotrophic hormone with growth promoting and anti-inflammatory actions. However, the full biological functions of GLP-2 and the localization of its receptor (GLP-2R) remain controversial. Among cell lines tested, the expression of GLP-2R transcript was detected in human colonic myofibroblasts (CCD-18Co) and in primary culture of rat enteric nervous system but not in intestinal epithelial cell lines, lymphocytes, monocytes, or endothelial cells. Surprisingly, GLP-2R was expressed in murine (GLUTag), but not human (NCI-H716) enteroendocrine cells. The screening of GLP-2R mRNA in mice organs revealed an increasing gradient of GLP-2R toward the distal gut. An unexpected expression was detected in the mesenteric fat, mesenteric lymph nodes, bladder, spleen, and liver, particularly in hepatocytes. In two mice models of trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis, the colonic expression of GLP-2R mRNA was decreased by 60% compared with control mice. Also, GLP-2R mRNA was significantly downregulated in intestinal tissues of inflammatory bowel disease patients. Therapeutically, GLP-2 showed a weak restorative effect on intestinal inflammation during TNBS-induced colitis as assessed by macroscopic score and inflammatory markers. Finally, GLP-2 treatment accelerated mouse liver regeneration following partial hepatectomy as assessed by histological and molecular analyses. In conclusion, the limited therapeutic effect of GLP-2 on colonic inflammation dampens its utility in the management of severe inflammatory intestinal disorders. However, the role of GLP-2 in liver regeneration is a novelty that might introduce GLP-2 into the management of liver diseases and emphasizes on the importance of elucidating other extraintestinal functions of GLP-2.
Collapse
Affiliation(s)
- Noura El-Jamal
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; Intestinal Biotech Development, Lille, France
| | - Edmone Erdual
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | | | - Dine Koriche
- CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France
| | - Caroline Dubuquoy
- INSERM U995, Lille, France; Intestinal Biotech Development, Lille, France
| | - Francois Maggiotto
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | | | - Dominique Berrebi
- Université Paris-Sud, Laboratoire "Cytokines, Chimiokines et Immunopathologie," Unité Mixte de Recherche S996, Clamart, France; INSERM, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Clamart, France; Service d'Anatomie et de Cytologie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur Associé 1320, Hôpital Robert Debré, France; Université Denis Diderot, Université Paris 7, Paris, France; and
| | - Laurent Dubuquoy
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | - Eric Boulanger
- Université Lille Nord de France, Lille, France; EA 2693, Lille, France
| | - Antoine Cortot
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France
| | - Pierre Desreumaux
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France;
| |
Collapse
|
32
|
Guan X. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R585-96. [PMID: 24990862 DOI: 10.1152/ajpregu.00096.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiota-derived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine L cells in the gut and coreleased from preproglucagonergic neurons in the brain stem. Glucagon-like peptides are proposed as key mediators for bariatric surgery-improved glycemic control and energy balance. Little is known about the GLP-2 receptor (Glp2r)-mediated physiological roles in the control of food intake and glucose homeostasis, yet Glp1r has been studied extensively. This review will highlight the physiological relevance of the central nervous system (CNS) Glp2r in the control of energy balance and glucose homeostasis and focuses on cellular mechanisms underlying the CNS Glp2r-mediated neural circuitry and intracellular PI3K signaling pathway. New evidence (obtained from Glp2r tissue-specific KO mice) indicates that the Glp2r in POMC neurons is essential for suppressing feeding behavior, gastrointestinal motility, and hepatic glucose production. Mice with Glp2r deletion selectively in POMC neurons exhibit hyperphagic behavior, accelerated gastric emptying, glucose intolerance, and hepatic insulin resistance. GLP-2 differentially modulates postsynaptic membrane excitability of hypothalamic POMC neurons in Glp2r- and PI3K-dependent manners. GLP-2 activates the PI3K-Akt-FoxO1 signaling pathway in POMC neurons by Glp2r-p85α interaction. Intracerebroventricular GLP-2 augments glucose tolerance, suppresses glucose production, and enhances insulin sensitivity, which require PI3K (p110α) activation in POMC neurons. Thus, the CNS Glp2r plays a physiological role in the control of food intake and glucose homeostasis. This review will also discuss key questions for future studies.
Collapse
Affiliation(s)
- Xinfu Guan
- U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics; and Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
33
|
Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, Holzenberger M, Gonska T, Brubaker PL. The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 2014; 155:370-9. [PMID: 24265452 DOI: 10.1210/en.2013-1871] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinal growth-promoting hormone used to treat short bowel syndrome. GLP-2 promotes intestinal growth through a mechanism that involves both IGF-1 and the intestinal-epithelial IGF-1 receptor (IE-IGF-1R). GLP-2 also enhances intestinal barrier function, but through an unknown mechanism. We therefore hypothesized that GLP-2-enhanced barrier function requires the IE-IGF-1R and is mediated through alterations in expression and localization of tight junction proteins. Conditional IE-IGF-1R-null and control mice were treated with vehicle or degradation-resistant Gly(2)-GLP-2 for 10 days; some animals also received irinotecan to induce enteritis. Mice were then examined for gastrointestinal permeability to 4-kDa fluorescein isothiocyanate-dextran, jejunal resistance using Ussing chambers, tight junction structure by electron microscopy, and expression and localization of tight junction proteins by immunoblot and immunohistofluorescence, respectively. GLP-2 treatment decreased permeability to 4-kDa fluorescein isothiocyanate-dextran and increased jejunal resistance (P <.05-.01), effects that were lost in IE-IGF-1R-null mice. Electron microscopy did not reveal major structural changes in the tight junctions in any group of animals. However, the tight junctional proteins claudin-3 and -7 were upregulated by GLP-2 in control (P <.05-.01) but not null mice, whereas IE-IGF-1R deletion induced a shift in occludin localization from apical to intracellular domains; no changes were observed in expression or distribution of claudin-15 and zona occludins-1. Finally, in irinotecan-induced enteritis, GLP-2 normalized epithelial barrier function in control (P < .05) but not knockout animals. In conclusion, the effects of GLP-2 on intestinal barrier function are dependent on the IE-IGF-1R and involve modulation of key components of the tight junctional complex.
Collapse
Affiliation(s)
- Charlotte X Dong
- Departments of Physiology (C.X.D., W.Z., C.S., K.J.R., P.L.B.), Pediatrics (T.G.), and Medicine (P.L.B.), University of Toronto, Toronto, Ontario M5S 1A8 Canada; Department of Paediatric Laboratory Medicine (C.A.), and Physiology and Experimental Medicine, Research Institute (T.G.), The Hospital for Sick Children, Toronto M5G 1X8, Canada; Centre National de la Recherche Scientifique (S.R.), Institut Curie, Paris, 75248 France; and Inserm (M.H.), Hôpital St-Antoine, Paris, 75005 France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mao J, Hu X, Xiao Y, Yang C, Ding Y, Hou N, Wang J, Cheng H, Zhang X. Overnutrition stimulates intestinal epithelium proliferation through β-catenin signaling in obese mice. Diabetes 2013; 62:3736-46. [PMID: 23884889 PMCID: PMC3806619 DOI: 10.2337/db13-0035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is a major risk factor for type 2 diabetes and cardiovascular diseases. And overnutrition is a leading cause of obesity. After most nutrients are ingested, they are absorbed in the small intestine. Signals from β-catenin are essential to maintain development of the small intestine and homeostasis. In this study, we used a hyperphagia db/db obese mouse model and a high-fat diet (HFD)-induced obesity mouse model to investigate the effects of overnutrition on intestinal function and β-catenin signaling. The β-catenin protein was upregulated along with inactivation of glycogen synthase kinase (GSK)-3β in the intestines of both db/db and HFD mice. Proliferation of intestinal epithelial stem cells, villi length, nutrient absorption, and body weight also increased in both models. These changes were reversed by caloric restriction in db/db mice and by β-catenin inhibitor JW55 (a small molecule that increases β-catenin degradation) in HFD mice. Parallel, in vitro experiments showed that β-catenin accumulation and cell proliferation stimulated by glucose were blocked by the β-catenin inhibitor FH535. And the GSK-3 inhibitor CHIR98014 in an intestinal epithelial cell line increased β-catenin accumulation and cyclin D1 expression. These results suggested that, besides contribution to intestinal development and homeostasis, GSK-3β/β-catenin signaling plays a central role in intestinal morphological and functional changes in response to overnutrition. Manipulating the GSK-3β/β-catenin signaling pathway in intestinal epithelium might become a therapeutic intervention for obesity induced by overnutrition.
Collapse
Affiliation(s)
- Jiaming Mao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaomin Hu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yao Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chao Yang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yi Ding
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jue Wang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China
- Corresponding author: Xiuqin Zhang,
| |
Collapse
|
35
|
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 2013; 76:561-83. [PMID: 24161075 DOI: 10.1146/annurev-physiol-021113-170317] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a 33-amino-acid proglucagon-derived peptide secreted from enteroendocrine L cells. GLP-2 circulates at low basal levels in the fasting period, and plasma levels rise rapidly after food ingestion. Renal clearance and enzymatic inactivation control the elimination of bioactive GLP-2. GLP-2 increases mesenteric blood flow and activates proabsorptive pathways in the gut, facilitating nutrient absorption. GLP-2 also enhances gut barrier function and induces proliferative and cytoprotective pathways in the small bowel. The actions of GLP-2 are transduced via a single G protein-coupled receptor (GLP-2R), expressed predominantly within the gastrointestinal tract. Disruption of GLP-2R signaling increases susceptibility to gut injury and impairs the adaptive mucosal response to refeeding. Sustained augmentation of GLP-2R signaling reduces the requirement for parenteral nutrition in human subjects with short-bowel syndrome. Hence GLP-2 integrates nutrient-derived signals to optimize mucosal integrity and energy absorption.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5; ,
| | | |
Collapse
|
36
|
Glucagon-like peptide 2 in colon carcinogenesis: Possible target for anti-cancer therapy? Pharmacol Ther 2013; 139:87-94. [DOI: 10.1016/j.pharmthera.2013.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 12/18/2022]
|
37
|
Rowland KJ, Choi PM, Warner BW. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin Pediatr Surg 2013; 22:101-11. [PMID: 23611614 PMCID: PMC3635039 DOI: 10.1053/j.sempedsurg.2013.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease resulting in major neonatal morbidity and mortality. The pathology is poorly understood, and the means of preventing and treating NEC are limited. Several endogenous growth factors have been identified as having important roles in intestinal growth as well as aiding intestinal repair from injury or inflammation. In this review, we will discuss several growth factors as mediators of intestinal regeneration and repair as well as potential therapeutic agents for NEC.
Collapse
Affiliation(s)
| | | | - Brad W. Warner
- Correspondence: Brad W. Warner, M.D. St. Louis Children's Hospital One Children's Place; Suite 5S40 St. Louis MO 63110 (314) 454-6022 - Phone (314) 454-2442 – Fax
| |
Collapse
|
38
|
|
39
|
Janssen P, Rotondo A, Mulé F, Tack J. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment Pharmacol Ther 2013; 37:18-36. [PMID: 23121085 DOI: 10.1111/apt.12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/09/2012] [Accepted: 09/29/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent advancements in understanding the roles and functions of glucagon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for targeting these peptides in therapeutic strategies. AIM To summarise the preclinical and clinical research supporting the discovery of new therapeutic molecules targeting GLP-1 and GLP-2. METHODS This review is based on a comprehensive PubMed search, representing literature published during the past 30 years related to GLP-1 and GLP-2. RESULTS Although produced and secreted together primarily from L cells of the intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit distinctive biological functions that are governed by the expression of their respective receptors, GLP-1R and GLP-2R. Through widespread expression in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an incretin effect along with effects on appetite and satiety. GLP-1 analogues resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipeptidyl peptidase-IV have been developed to aid treatment of diabetes and obesity. The GLP-2R is expressed almost exclusively in the stomach and bowel. The most apparent role for GLP-2 is its promotion of growth and function of intestinal mucosa, which has been targeted for therapies that promote repair and adaptive growth. These are used as treatments for intestinal failure and related conditions. CONCLUSIONS Our growing understanding of the biology and function of GLP-1, GLP-2 and corresponding receptors has fostered further discovery of fundamental biological function as well as new categories of potent therapeutic medicines.
Collapse
Affiliation(s)
- P Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | | | | | | |
Collapse
|
40
|
Buchman AL. Teduglutide and short bowel syndrome: every night without parenteral fluids is a good night. Gastroenterology 2012; 143:1416-20. [PMID: 23089542 DOI: 10.1053/j.gastro.2012.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
de Heuvel E, Wallace L, Sharkey KA, Sigalet DL. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-γ signaling. Am J Physiol Endocrinol Metab 2012; 303:E994-1005. [PMID: 22895780 PMCID: PMC3469609 DOI: 10.1152/ajpendo.00291.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide 2 (GLP-2) is an enteroendocrine hormone trophic for intestinal mucosa; it has been shown to increase enteric neuronal expression of vasoactive intestinal polypeptide (VIP) in vivo. We hypothesized that GLP-2 would regulate VIP expression in enteric neurons via a phosphatidylinositol-3 kinase-γ (PI3Kγ) pathway. The mechanism of action of GLP-2 was investigated using primary cultures derived from the submucosal plexus (SMP) of the rat and mouse colon. GLP-2 (10(-8) M) stimulation for 24 h increased the proportion of enteric neurons expressing VIP (GLP-2: 40 ± 6% vs. control: 22 ± 5%). GLP-2 receptor expression was identified by immunohistochemistry on neurons (HuC/D+) and glial cells (GFAP+) but not on smooth muscle or fibroblasts in culture. Over 1-4 h, GLP-2 stimulation of SMP increased phosphorylated Akt/Akt ratios 6.1-fold, phosphorylated ERK/ERK 2.5-fold, and p70S6K 2.2-fold but did not affect intracellular cAMP. PI3Kγ gene deletion or pharmacological blockade of PI3Kγ, mammalian target of rapamycin (mTOR), and MEK/ERK pathways blocked the increase in VIP expression by GLP-2. GLP-2 increased the expression of growth factors and their receptors in SMP cells in culture [IGF-1r (3.2-fold increase), EGFr (5-fold), and ErbB-2-4r (6- to 7-fold)] and ligands [IGF-I (1.5-fold), amphiregulin (2.5-fold), epiregulin (3.2-fold), EGF (7.5-fold), heparin-bound EGF (2.0-fold), β-cellulin (50-fold increase), and neuregulins 2-4 (300-fold increase) (by qRT-PCR)]. We conclude that GLP-2 acts on enteric neurons and glial cells in culture via a PI3Kγ/Akt pathway, stimulating neuronal differentiation via mTOR and ERK pathways, and expression of receptors and ligands for the IGF-I and ErbB pathways.
Collapse
Affiliation(s)
- Elaine de Heuvel
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases
| | | | | | | |
Collapse
|
42
|
Grigoryan M, Kedees MH, Charron MJ, Guz Y, Teitelman G. Regulation of mouse intestinal L cell progenitors proliferation by the glucagon family of peptides. Endocrinology 2012; 153:3076-88. [PMID: 22569789 PMCID: PMC3380309 DOI: 10.1210/en.2012-1120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glucagon like peptide-1 (GLP-1) and GLP-2 are hormones secreted by intestinal L cells that stimulate glucose-dependent insulin secretion and regulate intestinal growth, respectively. Mice with deletion of the glucagon receptor (Gcgr) have high levels of circulating GLP-1 and GLP-2. We sought to determine whether the increased level of the glucagon-like peptides is due to L cell hyperplasia. We found, first, that high levels of the glucagon-like peptides increase L cell number but does not affect the number of other intestinal epithelial cell types. Second, a large proportion of ileal L cells of Gcgr(-/-) mice coexpressed glucose-dependent insulinotropic peptide (GIP). Cells coexpressing GIP and GLP-1 are termed LK cells. Third, the augmentation in L cell number was due to a higher rate of proliferation of L cell progenitors rather than to the entrance of mature L cells into the cell cycle. Fourth, a high concentration of the glucagon-like peptides in the circulation augmented the mRNA levels of transcription factors expressed by late but not early enteroendocrine progenitors. Fifth, the administration of exendin 9-39, a GLP-1 receptor antagonist, resulted in a decrease in the rate of L cell precursor proliferation. Finally, we determined that L cells do not express the GLP-1 receptor, suggesting that the effect of GLP-1 is mediated by paracrine and/or neuronal signals. Our results suggest that GLP-1 plays an important role in the regulation of L cell number.
Collapse
Affiliation(s)
- Marine Grigoryan
- Department of Cell Biology, State University of New York-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
43
|
Trivedi S, Wiber SC, El-Zimaity HM, Brubaker PL. Glucagon-like peptide-2 increases dysplasia in rodent models of colon cancer. Am J Physiol Gastrointest Liver Physiol 2012; 302:G840-9. [PMID: 22323126 DOI: 10.1152/ajpgi.00505.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), enhances intestinal growth and reduces inflammation in rodent models. Hence, a degradation-resistant GLP-2 analog is under investigation for treatment of Crohn's disease. However, GLP-2 increases colonic dysplasia in murine azoxymethane (AOM)-induced colon cancer. Considering the increased colon cancer risk associated with chronic colitis, we have therefore examined the effects of long-acting hGly(2)GLP-2, as well as of endogenous GLP-2 using the antagonist hGLP-2(3-33) in two novel models of inflammation-associated colon cancer: rats fed the carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and a high-fat diet (HFD) for one or three cycles, and mice with chronic dextran sodium-sulfate (DSS)-induced colitis administered AOM. hGly(2)GLP-2 treatment of one-cycle PhIP/HFD rats increased the number of colonic aberrant crypt foci by 72 ± 11% (P < 0.01). Fifty-one weeks after three PhIP/HFD cycles, hGly(2)GLP-2-treated rats had a 22% incidence of colon cancer, compared with 0% in vehicle-treated rats. AOM-DSS mice treated with vehicle or hGly(2)GLP-2 had high-grade dysplasia/colon cancer incidences of 56 and 64%, respectively, compared with 46% in hGLP-2(3-33)-treated AOM-DSS animals (P < 0.05). Unexpectedly, hGLP-2(3-33) also reduced the colitis damage score by 32.0 ± 8.4% (P < 0.05). All high-grade dysplastic/cancerous tumors had nuclear localization of β-catenin although β-catenin mRNA transcript and protein levels did not differ between treatment groups. GLP-2 receptor mRNA expression also was not different. However, hGLP-2(3-33)-treated mice had markedly reduced numbers of doublecortin-and-calmodulin-kinase-like-1-positive stem cells, by 73.7 ± 8.6% (P < 0.05). In conclusion, the results of this study indicate a role for hGly(2)GLP-2 and endogenous GLP-2 as potential cancer promoters in rodents.
Collapse
Affiliation(s)
- Shivangi Trivedi
- Department of 1Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Rowland KJ, Trivedi S, Lee D, Wan K, Kulkarni RN, Holzenberger M, Brubaker PL. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1-receptor deletion. Gastroenterology 2011; 141:2166-2175.e7. [PMID: 21925122 DOI: 10.1053/j.gastro.2011.09.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/18/2011] [Accepted: 09/01/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes growth of the gastrointestinal tract. Although insulin-like growth factor (IGF)-1 and the IGF-1 receptor (IGF-1R) are required for GLP-2-induced proliferation of crypt cells, little is known about localization of the IGF-1R which mediates the intestinotropic actions of GLP-2. METHODS We examined intestinal growth and proliferative responses in mice with conditional deletion of IGF-1R from intestinal epithelial cells (IE-igf1rKO) after acute administration (30-90 min) of GLP-2, in response to 24-hour fasting and re-feeding (to induce GLP-2-dependent adaptation), and after chronic exposure (10 days) to GLP-2. RESULTS IE-igf1rKO mice had normal small intestinal weight, morphometric parameters, proliferative indices, and distribution of differentiated epithelial cell lineages. Acute administration of GLP-2 increased nuclear translocation of β-catenin in non-Paneth crypt cells and stimulated the crypt-cell proliferative marker c-Myc in control but not IE-igf1rKO mice. Small intestinal weight, crypt depth, villus height, and crypt-cell proliferation were decreased in control and IE-igf1rKO mice after 24-hour fasting. Although re-feeding control mice restored all of these parameters, re-fed IE-igf1rKO mice had reductions in adaptive regrowth of the villi and crypt-cell proliferation. Control mice that were given chronic GLP-2 had increases in small intestinal weight, mucosal cross-sectional area, crypt depth, villus height, and crypt-cell proliferation. However, the GLP-2-induced increase in crypt-cell proliferation was not observed in IE-igf1rKO mice, and growth of the crypt-villus axis was reduced. CONCLUSIONS The proliferative responses of the intestinal epithelium to exogenous GLP-2 administration and conditions of GLP-2-dependent adaptive re-growth require the intestinal epithelial IGF-1R.
Collapse
Affiliation(s)
- Katherine J Rowland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Wong VSC, Oh AH, Chassot AA, Chaboissier MC, Brubaker PL. R-spondin1 deficiency in mice improves glycaemic control in association with increased beta cell mass. Diabetologia 2011; 54:1726-34. [PMID: 21484214 DOI: 10.1007/s00125-011-2136-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/10/2011] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Roof plate-specific spondin (R-spondin1; RSPO1) is a modulator of canonical Wg (wingless) plus Int1 (chromosomal integration site of mouse mammary tumour virus on mouse chromosome 15) (cWNT) signalling that induces cWNT target genes. We have demonstrated that Rspo1 is expressed in murine beta cells, and that it stimulates proliferation and insulin secretion, and inhibits cytokine-induced apoptosis, in mouse insulinoma (MIN6) and beta cells. We thus investigated the role of RSPO1 in beta cells in vivo using Rspo1 ( -/- ) mice. METHODS The effects of Rspo1 deficiency were assessed by determination of cWNT signalling, glucose tolerance and beta cell mass. RESULTS Rspo1 ( -/- ) mice demonstrated an 82% reduction in RSPO1 transcripts and a 61% reduction in the signal detected by an RSPO1 antibody, as well as a 47% decrease in islet cWNT signalling. Despite no differences in body and pancreatic weights or in fasting glycaemia and insulinaemia compared with Rspo1 (+/+) mice, Rspo1 ( -/- ) animals had improved glycaemic control after oral glucose challenge (p < 0.05), with no difference in insulin sensitivity, but an enhanced insulin response over 30 min (p < 0.05); glucagon responses were normal. Rspo1 deficiency also resulted in a twofold increase in beta cell mass (p < 0.05) in association with 2- and 12-fold increases in the number of beta cells positive for antigen identified by monoclonal antibody Ki67 (Ki67) (p < 0.01) and insulin-positive ductal cells (p < 0.05), respectively. No change in the number of TUNEL-positive beta cells was detected. Islets isolated from Rspo1 ( -/- ) animals displayed no differences in glucose-induced insulin secretion or in glucose suppression of glucagon. CONCLUSIONS/INTERPRETATION The present study reveals an unexpected role for RSPO1 as a regulator of both beta cell proliferation and neogenesis in vivo, and reinforces the importance of cWNT signalling for the maintenance of normal pancreatic beta cell behaviour.
Collapse
Affiliation(s)
- V S C Wong
- Department of Physiology, Room 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
46
|
Rowland KJ, Brubaker PL. The "cryptic" mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1-8. [PMID: 21527727 DOI: 10.1152/ajpgi.00039.2011] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) is a peptide hormone with multiple beneficial effects on the intestine, including expansion of the mucosal surface area through stimulation of crypt cell proliferation, as well as enhancement of nutrient digestion and absorption. Recent advances in clinical trials involving GLP-2 necessitate elucidation of the exact signaling pathways by which GLP-2 acts. In particular, the GLP-2 receptor has been localized to several intestinal cell types that do not include the proliferating crypt cells, and the actions of GLP-2 have thus been linked to a complex network of indirect mediators that induce diverse signaling pathways. The intestinotropic actions of GLP-2 on the colon have been shown to be mediated through the actions of keratinocyte growth factor and insulin-like growth factor (IGF)-2, whereas small intestinal growth has been linked to IGF-1, IGF-2, and ErbB ligands, as well as the IGF-1 receptor and ErbB. The cellular source of these mediators remains unclear, but it likely includes the intestinal subepithelial myofibroblasts. Conversely, the anti-inflammatory and blood flow effects of GLP-2 are dependent on vasoactive intestinal polypeptide released from submucosal enteric neurons and nitric oxide, respectively. Finally, recent studies have suggested that GLP-2 not only modulates intestinal stem cell behavior but may also promote carcinogenesis in models of sporadic colon cancer. Further consideration of the molecular cross-talk and downstream signaling pathways mediating the intestinotropic effects of GLP-2 is clearly warranted.
Collapse
|
47
|
Okawada M, Holst JJ, Teitelbaum DH. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome. Surgery 2011; 150:217-23. [PMID: 21719060 DOI: 10.1016/j.surg.2011.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/13/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Glucagon-like peptide-2 induces small intestine mucosal epithelial cell proliferation and may have benefit for patients who suffer from short bowel syndrome. However, glucagon-like peptide-2 is inactivated rapidly in vivo by dipeptidyl peptidase IV. Therefore, we hypothesized that selectively inhibiting dipeptidyl peptidase IV would prolong the circulating life of glucagon-like peptide-2 and lead to increased intestinal adaptation after development of short bowel syndrome. METHODS Eight-week old C57BL/6J mice underwent a 50% proximal small bowel resection and were treated with either sitagliptin, a dipeptidyl peptidase IV-inhibitor, starting 1 day before surgery versus placebo. The efficacy of dipeptidyl peptidase IV-inhibitor was assessed 3 days after resection, including intestinal morphology, epithelial cell apoptosis, and epithelial cell proliferation. Adaptive mechanisms were assessed with quantitative real-time polymerase chain reaction, and plasma bioactive glucagon-like peptide-2 was measured by radioimmunoassay. RESULTS Body weight loss and peripheral blood glucose levels did not change compared with short bowel syndrome controls. Dipeptidyl peptidase IV-inhibitor treatment led to significant increases in villus height and crypt depth. Dipeptidyl peptidase IV-inhibitor treatment did not change EC apoptosis rates significantly, but it did increase crypt epithelial cell proliferation significantly versus placebo-short bowel syndrome controls. Dipeptidyl peptidase IV-inhibitor treatment markedly increased messenger RNA expression of β-catenin and c-myc in ileal mucosa. Plasma glucagon-like peptide-2 levels increased significantly (∼ 40.9%) in dipeptidyl peptidase IV-inhibitor short bowel syndrome mice. CONCLUSION Dipeptidyl peptidase IV-inhibitor treatment increased short bowel syndrome adaptation and might potentially be useful for short bowel syndrome patients.
Collapse
Affiliation(s)
- Manabu Okawada
- Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI 48109-0245, USA
| | | | | |
Collapse
|
48
|
Leen JLS, Izzo A, Upadhyay C, Rowland KJ, Dubé PE, Gu S, Heximer SP, Rhodes CJ, Storm DR, Lund PK, Brubaker PL. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology 2011; 152:436-46. [PMID: 21159855 PMCID: PMC3384785 DOI: 10.1210/en.2010-0822] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IGF-I, a known secretory product of intestinal subepithelial myofibroblasts (ISEMFs), is essential for the intestinotropic effects of glucagon-like peptide-2 (GLP-2). Furthermore, GLP-2 increases IGF-I mRNA transcript levels in vitro in heterogeneous fetal rat intestinal cultures, as well as in vivo in the rodent small intestine. To determine the mechanism underlying the stimulatory effect of GLP-2 on intestinal IGF-I mRNA, murine ISEMF cells were placed into primary culture. Immunocytochemistry showed that the ISEMF cells appropriately expressed α-smooth muscle actin and vimentin but not desmin. The cells also expressed GLP-2 receptor and IGF-I mRNA transcripts. Treatment of ISEMF cells with (Gly2)GLP-2 induced IGF-I mRNA transcripts by up to 5-fold of basal levels after treatment with 10(-8) m GLP-2 for 2 h (P < 0.05) but did not increase transcript levels for other intestinal growth factors, such as ErbB family members. Immunoblot revealed a 1.6-fold increase in phospho (p)-Akt/total-(t)Akt with 10(-8) m GLP-2 treatment (P < 0.05) but no changes in cAMP, cAMP-dependent β-galactosidase expression, pcAMP response element-binding protein/tcAMP response element-binding protein, pErk1/2/tErk1/2, or intracellular calcium. Furthermore, pretreatment of ISEMF cells with the phosphatidylinositol 3 kinase (PI3K) inhibitors, LY294002 and wortmannin, abrogated the IGF-I mRNA response to GLP-2, as did overexpression of kinase-dead Akt. The role of PI3K/Akt in GLP-2-induced IGF-I mRNA levels in the murine jejunum was also confirmed in vivo. These findings implicate the PI3K/Akt pathway in the stimulatory effects of GLP-2 to enhance intestinal IGF-I mRNA transcript levels and provide further evidence in support of a role for IGF-I produced by the ISEMF cells in the intestinotropic effects of GLP-2.
Collapse
Affiliation(s)
- Jason L S Leen
- Department of Physiology,University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Porzionato A, Macchi V, Parenti A, De Caro R. Extracellular signal-regulated kinase and phosphatidylinositol-3-kinase/AKT signalling pathways in the human carotid body and peripheral ganglia. Acta Histochem 2010; 112:305-16. [PMID: 19232686 DOI: 10.1016/j.acthis.2008.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 12/20/2022]
Abstract
Extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/AKT signalling pathways are involved in various cell functions, but their developmental regulation in the carotid body and peripheral ganglia has not yet been fully investigated. ERK and AKT immunolocalisation and activation were studied by anti-ERK, -pERK, -AKT and -pAKT immunohistochemistry in carotid bodies and peripheral (sympathetic and sensory) ganglia, sampled at autopsy from 4 foetuses (mean gestational age 177 days), 8 infants (mean age 10 months), 8 young adults (mean age 38 years) and 6 aged adults (mean age 72.4 years). ERK and AKT immunopositivity and activation were demonstrated in both glomic type I cells and peripheral ganglionic cells and are ascribed to local action by neuromodulators or neurotrophic factors. Mean percentages of ERK- and pERK-immunopositive glomic type I cells were lower in foetuses than in infants and young adults, and those of AKT-immunopositive glomic type I cells were lower in foetuses than in young and old adults, suggesting incomplete maturation of these two signalling pathways in foetal life. Both pERK and pAKT immunoreactions were detected only in post-natal sympathetic and sensory ganglia, demonstrating that, also in peripheral ganglia, these pathways are not yet fully operative during the foetal stage.
Collapse
|
50
|
Bahrami J, Yusta B, Drucker DJ. ErbB activity links the glucagon-like peptide-2 receptor to refeeding-induced adaptation in the murine small bowel. Gastroenterology 2010; 138:2447-56. [PMID: 20226187 DOI: 10.1053/j.gastro.2010.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/09/2010] [Accepted: 03/04/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The small bowel mucosa is sensitive to nutrients and undergoes rapid adaptation to nutrient deprivation and refeeding through changes in apoptosis and cell proliferation, respectively. Although glucagon-like peptide-2 (GLP-2) exerts trophic effects on the gut and levels increase with refeeding, mechanisms linking GLP-2 to mucosal adaptation to refeeding remain unclear. METHODS Fasting and refeeding were studied in wild-type (WT) and Glp2r(-/-) mice and in WT mice treated with the pan ErbB inhibitor CI-1033. Experimental end points included intestinal weights, histomorphometry, gene and protein expression, and crypt cell proliferation. RESULTS Fasting was associated with significant reductions in small bowel mass, decreased crypt plus villus height, and reduced crypt cell proliferation. Refeeding increased plasma levels of GLP-2, reversed small bowel atrophy, increased villus height and cell number, and stimulated jejunal crypt cell proliferation. In contrast, refeeding failed to increase small bowel weight, crypt cell proliferation, or villus cell number in Glp2r(-/-) mice. Levels of mRNA transcripts for egf, kgf, and igfr were lower in fasted Glp2r(-/-) mice. Epidermal growth factor but not insulin-like growth factor-1 restored the intestinal adaptive response to refeeding in Glp2r(-/-) mice. Furthermore, CI-1033 prevented adaptive crypt cell proliferation, Akt activation, and induction of ErbB ligand gene expression after refeeding. Up-regulation of ErbB ligand expression and intestinal Akt phosphorylation were significantly diminished in refed Glp2r(-/-) mice. CONCLUSIONS These findings identify Glp2r and ErbB pathways as essential components of the signaling network regulating the adaptive mucosal response to refeeding in the mouse intestine.
Collapse
Affiliation(s)
- Jasmine Bahrami
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|