1
|
Mooradian AD, Haas MJ. Role of Thyroid Hormone in Neurodegenerative Disorders of Older People. Cells 2025; 14:140. [PMID: 39851568 PMCID: PMC11763745 DOI: 10.3390/cells14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson's disease (PD). The pathophysiology of TH-related neurodegeneration include changes in the blood-brain barrier, increased cellular stress, altered processing of β-amyloid precursor protein and the effect of TH on neuronal cell viability. The neurotoxicity of TH is partially mediated by the thyroid hormone responsive protein (THRP). This protein is 83% homologous to mouse c-Abl-interacting protein-2 (Abi2), a c-Abl-modulating protein with tumor suppressor activity. In cell cultures, increasing THRP expression either with TH treatment or exogenously through transfecting neuronal or PC 12 cells causes cell necrosis. The expression of exogenous THRP in other cells such as the colonic epithelial cell line Caco-2 and the glial cell line U251 has no effect on cell viability. The effect of THRP on cell viability is not modulated by c-Abl tyrosine kinase. The causal relationship between specific biochemical perturbations in cerebral tissue and thyroid dysfunction remains to be elucidated.
Collapse
Affiliation(s)
- Arshag D. Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
2
|
Martinez ME, Karaczyn A, Wu Z, Bennett CA, Matoin KL, Daigle HM, Hernandez A. Transgenerational epigenetic self-memory of Dio3 dosage is associated with Meg3 methylation and altered growth trajectories and neonatal hormones. Epigenetics 2024; 19:2376948. [PMID: 38991122 PMCID: PMC11244338 DOI: 10.1080/15592294.2024.2376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (Dio3) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated Dio3 total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic Dio3 expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the Dlk1-Dio3 imprinted domain, including increased methylation in Meg3 and altered foetal brain expression of other genes of the Dlk1-Dio3 imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone in utero. Our results provide a novel paradigm of epigenetic self-memory by which Dio3 gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of Dio3 expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Aldona Karaczyn
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Christian A. Bennett
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Kassey L. Matoin
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Heather M. Daigle
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Wu Z, Hernandez A. Thyroid Hormone Clearance in the Paraventricular Nucleus of Male Mice Regulates Lean Mass and Physical Activity. Neuroendocrinology 2024; 114:1066-1076. [PMID: 39293416 PMCID: PMC11560500 DOI: 10.1159/000541525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION The actions of thyroid hormones (THs) in the central nervous system are relevant to food intake and energy expenditure. TH receptors exhibit high expression in brain areas modulating energy balance, including the arcuate, paraventricular (PVN), supraoptic, and ventromedial (VMH) hypothalamic nuclei. METHODS To examine the role of THs in the regulation of energy balance via action in specific hypothalamic nuclei of the adult mouse, we performed experiments of conditional inactivation of DIO3, the enzyme responsible for the clearance of THs, in the lateral hypothalamus (LH), and VMH and PVN hypothalamic nuclei. We accomplished DIO3 genetic inactivation via stereotaxic injection of the AAV-cre vector into adult mice homozygous for a "floxed" Dio3 allele. RESULTS Dio3 inactivation in the LH and VMH of males or females did not result in significant changes in body weight 8 weeks after injection. However, inactivation of Dio3 in the PVN resulted in increased body weight (both fat mass and lean mass) and locomotor activity, and decreased hypothalamic Mc4r expression in male, but not female mice. However, PNV-specific Dio3 KO did not cause hyperphagia. CONCLUSION These results suggest local TH action influences MC4R signaling and possibly other PVN-associated circuitries, with consequences for body composition and energy balance endpoints, but not for orexigenic pathways. They also support a regulatory role for PVN Dio3 in the central regulation of energy homeostasis in adult life.
Collapse
Affiliation(s)
- Zhaofei Wu
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074
| | - Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074
| |
Collapse
|
4
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
5
|
Wu Z, Martinez ME, Hernandez A. Mice lacking DIO3 exhibit sex-specific alterations in circadian patterns of corticosterone and gene expression in metabolic tissues. BMC Mol Cell Biol 2024; 25:11. [PMID: 38553695 PMCID: PMC10979634 DOI: 10.1186/s12860-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of circadian rhythms is associated with neurological, endocrine and metabolic pathologies. We have recently shown that mice lacking functional type 3 deiodinase (DIO3), the enzyme that clears thyroid hormones, exhibit a phase shift in locomotor activity, suggesting altered circadian rhythm. To better understand the physiological and molecular basis of this phenotype, we used Dio3+/+ and Dio3-/- mice of both sexes at different zeitgeber times (ZTs) and analyzed corticosterone and thyroxine (T4) levels, hypothalamic, hepatic, and adipose tissue expression of clock genes, as well as genes involved in the thyroid hormone action or physiology of liver and adipose tissues. Wild type mice exhibited sexually dimorphic circadian patterns of genes controlling thyroid hormone action, including Dio3. Dio3-/- mice exhibited altered hypothalamic expression of several clock genes at ZT12, but did not disrupt the overall circadian profile. Expression of clock genes in peripheral tissues was not disrupted by Dio3 deficiency. However, Dio3 loss in liver and adipose tissues disrupted circadian profiles of genes that determine tissue thyroid hormone action and physiology. We also observed circadian-specific changes in serum T4 and corticosterone as a result of DIO3 deficiency. The circadian alterations manifested sexual dimorphism. Most notable, the time curve of serum corticosterone was flattened in Dio3-/- females. We conclude that Dio3 exhibits circadian variations, influencing the circadian rhythmicity of thyroid hormone action and physiology in liver and adipose tissues in a sex-specific manner. Circadian disruptions in tissue physiology may then contribute to the metabolic phenotypes of DIO3-deficient mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA.
| | - M Elena Martinez
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA
| | - Arturo Hernandez
- MaineHealth Institute for Research, MaineHealth, 04074, Scarborough, ME,, USA
- Department of Medicine, Tufts University School of Medicine, 02111, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 04469, Orono, Maine, USA
| |
Collapse
|
6
|
Martinez ME, Wu Z, Hernandez A. Paternal developmental thyrotoxicosis disrupts neonatal leptin leading to increased adiposity and altered physiology of the melanocortin system. Front Endocrinol (Lausanne) 2023; 14:1210414. [PMID: 37560296 PMCID: PMC10407661 DOI: 10.3389/fendo.2023.1210414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The genetic code does not fully explain individual variability and inheritance of susceptibility to endocrine conditions, suggesting the contribution of epigenetic factors acting across generations. Methods We used a mouse model of developmental thyrotoxicosis (Dio3-/- mouse) to analyze endocrine outcomes in the adult offspring of Dio3-/- males using standard methods for body composition, and baseline and fasting hormonal and gene expression determinations in serum and tissues of relevance to the control of energy balance. Results Compared to controls, adult females with an exposed father (EF females) exhibited higher body weight and fat mass, but not lean mass, a phenotype that was much milder in EF males. After fasting, both EF females and males exhibited a more pronounced decrease in body weight than controls. EF females also showed markedly elevated serum leptin, increased white adipose tissue mRNA expression of leptin and mesoderm-specific transcript but decreased expression of type 2 deiodinase. EF females exhibited decreased serum ghrelin, which showed more pronounced post-fasting changes in EF females than in control females. EF female hypothalami also revealed significant decreases in the expression of pro-opiomelanocortin, agouti-related peptide, neuropeptide Y and melanocortin receptor 4. These markers also showed larger changes in response to fasting in EF females than in control females. Adult EF females showed no abnormalities in serum thyroid hormones, but pituitary expression of thyrotropin-releasing hormone receptor 1 and thyroid gland expression of thyroid-stimulating hormone receptor, thyroid peroxidase and iodotyrosine deiodinase were increased at baseline and showed differential regulation after fasting, with no increase in Trhr1 expression and more pronounced reductions in Tshr, Tpo and Iyd. In EF males, these abnormalities were generally milder. In addition, postnatal day 14 (P14) serum leptin was markedly reduced in EF pups. Discussion A paternal excess of thyroid hormone during development modifies the endocrine programming and energy balance in the offspring in a sexually dimorphic manner, with baseline and dynamic range alterations in the leptin-melanocortin system and thyroid gland, and consequences for adiposity phenotypes. We conclude that thyroid hormone overexposure may have important implications for the non-genetic, inherited etiology of endocrine and metabolic pathologies.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Zhaofei Wu
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
- Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Hernandez A, Martinez ME, Chaves C, Anselmo J. Epigenetic developmental programming and intergenerational effects of thyroid hormones. VITAMINS AND HORMONES 2023; 122:23-49. [PMID: 36863795 PMCID: PMC10938172 DOI: 10.1016/bs.vh.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mounting evidence is showing that altered signaling through the nuclear hormone receptor superfamily can cause abnormal, long-term epigenetic changes which translate into pathological modifications and susceptibility to disease. These effects seem to be more prominent if the exposure occurs early in life, when transcriptomic profiles are rapidly changing. At this time, the coordination of the complex coordinated processes of cell proliferation and differentiation that characterize mammalian development. Such exposures may also alter the epigenetic information of the germ line, potentially leading to developmental changes and abnormal outcomes in subsequent generations. Thyroid hormone (TH) signaling is mediated by specific nuclear receptors, which have the ability to markedly change chromatin structure and gene transcription, and can also regulate other determinants of epigenetic marks. TH exhibits pleiotropic effects in mammals, and during development, its action is regulated in a highly dynamic manner to suit the rapidly evolving needs of multiple tissues. Their molecular mechanisms of action, timely developmental regulation and broad biological effects place THs in a central position to play a role in the developmental epigenetic programming of adult pathophysiology and, through effects on the germ line, in inter- and trans-generational epigenetic phenomena. These areas of epigenetic research are in their infancy, and studies regarding THs are limited. In the context of their characteristics as epigenetic modifiers and their finely tuned developmental action, here we review some of the observations underscoring the role that altered TH action may play in the developmental programming of adult traits and in the phenotypes of subsequent generations via germ line transmission of altered epigenetic information. Considering the relatively high prevalence of thyroid disease and the ability of some environmental chemicals to disrupt TH action, the epigenetic effects of abnormal levels of TH action may be important contributors to the non-genetic etiology of human disease.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States; Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States; Department of Medicine, Tufts University School of Medicine, Boston, MA, United States.
| | - M Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, United States
| | - Carolina Chaves
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| | - Joao Anselmo
- Serviço de Endocrinologia e Nutrição, Hospital Divino Espírito Santo, Ponta Delgada, Açores, Portugal
| |
Collapse
|
8
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Jamshidi AA, Rokni Lamouki GR. An algorithmic treatment strategy for the inhibition of type-II deiodinase enzyme on thyroid secretion hormones. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kuś A, Chaker L, Teumer A, Peeters RP, Medici M. The Genetic Basis of Thyroid Function: Novel Findings and New Approaches. J Clin Endocrinol Metab 2020; 105:5818501. [PMID: 32271924 DOI: 10.1210/clinem/dgz225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Genetic factors are major determinants of thyroid function. Over the last two decades, multiple genetic variants have been associated with variations in normal range thyroid function tests. Most recently, a large-scale genome-wide association study (GWAS) doubled the number of known variants associated with normal range thyrotropin (TSH) and free thyroxine (FT4) levels. EVIDENCE ACQUISITION This review summarizes the results of genetic association studies on normal range thyroid function and explores how these genetic variants can be used in future studies to improve our understanding of thyroid hormone regulation and disease. EVIDENCE SYNTHESIS Serum TSH and FT4 levels are determined by multiple genetic variants on virtually all levels of the hypothalamus-pituitary-thyroid (HPT) axis. Functional follow-up studies on top of GWAS hits has the potential to discover new key players in thyroid hormone regulation, as exemplified by the identification of the thyroid hormone transporter SLC17A4 and the metabolizing enzyme AADAT. Translational studies may use these genetic variants to investigate causal associations between thyroid function and various outcomes in Mendelian Randomization (MR) studies, to identify individuals with an increased risk of thyroid dysfunction, and to predict the individual HPT axis setpoint. CONCLUSIONS Recent genetic studies have greatly improved our understanding of the genetic basis of thyroid function, and have revealed novel pathways involved in its regulation. In addition, these findings have paved the way for various lines of research that can improve our understanding of thyroid hormone regulation and thyroid diseases, as well as the potential use of these markers in future clinical practice.
Collapse
Affiliation(s)
- Aleksander Kuś
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Layal Chaker
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
12
|
Anselmo J, Chaves CM. Physiologic Significance of Epigenetic Regulation of Thyroid Hormone Target Gene Expression. Eur Thyroid J 2020; 9:114-123. [PMID: 32523888 PMCID: PMC7265707 DOI: 10.1159/000506423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In previous publications, we have reported our findings demonstrating that exposure to high maternal levels of thyroid hormones (TH) has life-long effects on the wild-type (WT, without THRB mutation) progeny of mothers with resistance to thyroid hormone beta (RTHβ). The mechanism of this epigenetic effect remains unclear. OBJECTIVES We reviewed the mechanisms involved in the epigenetic regulation of TH target genes and understand how they may explain the reduced sensitivity to TH in the WT progeny of RTHβ mothers. METHODS The availability of a large, formerly genotyped Azorean population with many individuals harboring the THRB mutation, R243Q, provided us a model to study the influence of fetal exposure to high maternal TH levels. RESULTS The thyroid-stimulating hormone (TSH) response in WT adults was less suppressible following the administration of L-triiodothyronine (L-T3). This finding suggests reduced sensitivity to TH that is induced by an epigenetic mechanism resulting from exposure to high maternal levels of TH during pregnancy. The persistence of this effect across 3 generations of WT subjects favors transgenerational epigenetic inheritance. Based on preliminary studies in mice, we identified the naturally imprinted gene encoding deiodinase type 3, i.e., DIO3, as a possible mediator of this epigenetic effect through increased inactivation of TH. CONCLUSION Increased D3 expression and consequently increased T3 degradation appear to be responsible for the reduced sensitivity of the anterior pituitary to administered L-T3. The imprinted DIO3 gene may be a candidate gene that mediates the epigenetic effect induced by exposure to high maternal levels of TH. However, we cannot exclude the role of other TH-responsive genes.
Collapse
Affiliation(s)
- João Anselmo
- *João Anselmo, MD, Department of Endocrinology and Nutrition, Hospital Divino Espirito Santo, Ave D. Manuel I, PT–9500-317 Ponta Delgada, Azores (Portugal),
| | | |
Collapse
|
13
|
Hernandez A, Martinez ME. Thyroid hormone action in the developing testis: intergenerational epigenetics. J Endocrinol 2020; 244:R33-R46. [PMID: 31977317 PMCID: PMC7220832 DOI: 10.1530/joe-19-0550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Male fertility involves the successful transmission of the genetic code to the next generation. It requires appropriately timed cellular processes during testis development, adequate support of spermatogenesis by hormonal cues from the reproductive axis and cellular cross-talk between germ and somatic cells. In addition to being the vessel of the father’s genome, increasing evidence shows that the mature sperm carries valuable epigenetic information – the epigenome – that, after fecundation, influences the development of the next generation, affecting biological traits and disease susceptibility. The epigenome of the germ line is susceptible to environmental factors, including exogenous chemicals and diet, but it is also affected by endogenous molecules and pathophysiological conditions. Factors affecting testis development and the epigenetic information of the germ line are critical for fertility and of relevance to the non-genetic but heritable component in the etiology of complex conditions. Thyroid hormones are one of those factors and their action, when untimely, produces profound effects on the developing testis, affecting spermatogenesis, steroidogenesis, testis size, reproductive hormones and fertility. Altered thyroid hormone states can also change the epigenetic information of the male germ line, with phenotypic consequences for future generations. In the context of past literature concerning the consequences of altered thyroid hormone action for testis development, here we review recent findings about the pathophysiological roles of the principal determinants of testicular thyroid hormone action. We also discuss limited work on the effects of thyroid hormone on the male germ line epigenome and the implications for the intergenerational transmission of phenotypes via epigenetic mechanisms.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - M. Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| |
Collapse
|
14
|
Stohn JP, Martinez ME, St Germain DL, Hernandez A. Adult onset of type 3 deiodinase deficiency in mice alters brain gene expression and increases locomotor activity. Psychoneuroendocrinology 2019; 110:104439. [PMID: 31561084 PMCID: PMC7259167 DOI: 10.1016/j.psyneuen.2019.104439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Constitutive loss of the type 3 deiodinase (DIO3) causes abnormally increased levels of thyroid hormone action in the developing and adult brain, leading to an array of behavioral abnormalities. To determine to what extent those phenotypes derive from a lack of DIO3 in the adult brain, versus developmental consequences, we created a mouse model of conditional DIO3 inactivation. Mice carrying "floxed" Dio3 alleles and a tamoxifen-inducible cre transgene were injected with tamoxifen at two months of age. Compared to oil-injected controls, the brain tissue of these mice showed a 75-80% decrease in DIO3 activity and 85-95% Dio3 mRNA was expressed from recombinant alleles. Mice with adult DIO3 deficiency did not show significant differences in growth, serum thyroid hormone parameters or behaviors related to anxiety and depression. However, female mice exhibited elevated locomotor activity and increased marble-burying behavior. They also manifested relatively modest alterations in the expression of T3-dependent genes and genes related to hyperactivity in a sex- and region-specific manner. Upon thyroid hormone treatment, the expression response of T3-regulated genes was generally more pronounced in DIO3-deficient female mice than in female controls, while the opposite effect of altered genotype was noticed in males. The extent of the molecular and behavioral phenotypes of adult-onset DIO3 deficiency suggests that a substantial proportion of the neurological abnormalities caused by constitutive DIO3 deficiency has a developmental origin. However, our results show that DIO3 in the adult brain also influences behavior and sensitivity to thyroid hormone action in a sexually dimorphic fashion.
Collapse
Affiliation(s)
- J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - M Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Donald L St Germain
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA; Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Morris JC, Galton VA. The isolation of thyroxine (T4), the discovery of 3,5,3'-triiodothyronine (T3), and the identification of the deiodinases that generate T3 from T4: An historical review. Endocrine 2019; 66:3-9. [PMID: 31256344 DOI: 10.1007/s12020-019-01990-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Affiliation(s)
- John C Morris
- Divisions of Endocrinology and Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
16
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
17
|
Anselmo J, Scherberg NH, Dumitrescu AM, Refetoff S. Reduced Sensitivity to Thyroid Hormone as a Transgenerational Epigenetic Marker Transmitted Along the Human Male Line. Thyroid 2019; 29:778-782. [PMID: 30938226 PMCID: PMC6588120 DOI: 10.1089/thy.2019.0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Evidence for transgenerational epigenetic inheritance in humans is still controversial, given the requirement to demonstrate persistence of the phenotype across three generations. A previous study showed that exposure of human and mouse embryos to high maternal thyroid hormone (TH) concentrations not only affects the newborns but also subsequently reduces thyrotroph sensitivity to TH during adult life. The current investigation set out to determine if this epigenetic effect is transmitted by humans not exposed in utero to high TH levels to their offspring. Methods: The study took advantage of the high frequency of intrauterine exposure to high TH in the Azorean wild-type population born to healthy mothers with high TH levels because of a heterozygous TH receptor beta gene mutation. Wild-type individuals from F2 (second) and F3 (third) generations were studied, whose parents and grandparents, respectively, were not exposed to high maternal TH levels. Twenty-six individuals belonging to 17 nuclear families were tested for their sensitivity to TH using their thyrotropin (TSH) response to thyrotropin-releasing hormone (TRH) after administration of liothyronine (LT3). Results: Preservation of reduced sensitivity to TH (RSTH) was found in descendants of males but not of females with likewise RSTH. In F2, offspring of fathers but not of mothers exposed to high TH levels had RSTH (TRH-stimulated TSH of 6.39 ± 0.63 vs 1.58 ± 0.41 mIU/L [p < 0.001], respectively, after treatment with LT3). In F3, whose parents nor themselves were exposed to TH excess during their fetal life, descendants of fathers and not mothers had RSTH (TRH-stimulated TSH of 4.60 ± 0.61 vs 1.37 ± 0.23 mIU/L [p < 0.01], respectively, after pretreatment with LT3). Conclusions: Since intrauterine total body and gonadal exposure to elevated TH can potentially affect only the F1 and F2, respectively, the results obtained from F3 confirm a true inheritance of an epigenetic effect, scarcely observed in humans. While the exact mechanism underlying the inheritance of this epigenetic effect remains unknown, it correlates with type 3 deiodinase overexpression demonstrated in pituitary glands of mice born to dams with high TH. This enzyme inactivates TH, and is encoded by an imprinted gene with specific parent of origin expression.
Collapse
Affiliation(s)
- João Anselmo
- Department of Endocrinology and Nutrition, Hospital Divino Espírito Santo, Ponta Delgada, Azores, Portugal
| | - Neal H. Scherberg
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Alexandra M. Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Department of Molecular Medicine Metabolism and Nutrition, The University of Chicago, Chicago, Illinois
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
- Department of Committees on Genetics, The University of Chicago, Chicago, Illinois
- Address correspondence to: Samuel Refetoff, MD, The University of Chicago MC3090, 5841 South Maryland Avenue, Chicago, IL 60637
| |
Collapse
|
18
|
Houbrechts AM, Van Houcke J, Darras VM. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J Endocrinol 2019; 241:JOE-18-0549.R3. [PMID: 30817317 DOI: 10.1530/joe-18-0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.
Collapse
Affiliation(s)
- Anne M Houbrechts
- A Houbrechts, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Van Houcke
- J Van houcke, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- V Darras, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
20
|
A data driven diagnosis tool for thyroid hormones. Comput Biol Med 2018; 103:301-311. [PMID: 30481671 DOI: 10.1016/j.compbiomed.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022]
Abstract
Thyroid hormones play a significant role in human health. Understanding their dynamics is crucial to diagnoses and maintaining the well-being of the thyroid. In this work we propose a data driven algorithm to detect a fixed point and a limit cycle in real data for thyroid hormones. This algorithm finds the maximum frequency point (fixed point) and extracts a smooth ellipse (limit cycle) from the data. These features characterize various data sets and provide interesting insights to differentiate healthy from malfunctioning thyroid data. This scheme which is backed by a solid dynamical analysis determines the size, orientation and location of a detected limit cycle and provides information about the behavior of the thyroid in its various normal and abnormal conditions. This algorithm does not require tuning any ad-hoc parameters. This approach could lead to an effective way of implementing a personal treatment strategy, and a control system to improve the performance of the thyroid.
Collapse
|
21
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
22
|
Salvaggio A, Antoci F, Messina A, Ferrante M, Copat C, Ruberto C, Scalisi EM, Pecoraro R, Brundo MV. Teratogenic effects of the neonicotinoid thiacloprid on chick embryos (Gallus gallus domesticus). Food Chem Toxicol 2018; 118:812-820. [PMID: 29932992 DOI: 10.1016/j.fct.2018.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 01/15/2023]
Abstract
Thiacloprid is an insecticide belonging to the family of neonicotinoids, substances initially underestimated for their potential adverse effects, that they may manifest in the long term leading to an extensive use. The objective of this study was to evaluate the effect at increasing concentrations of thiacloprid on chick embryos development. The research was carried out on 75 fertile eggs of Gallus gallus domesticus. The eggs were opened after 10, 15 and 20 days of incubation and in treated embryos were observed developmental alterations, growth retardation, limbs defects and ectopia viscerale. The histological analysis showed hepatic steatosis and haemorrhages both in the liver and in the lungs. Moreover, the immunohistochemical analysis performed on the liver sections showed a strong positivity only for the erythrocytes to the anti-CYP1A antibody. Thiacloprid exposure increases the risks of teratogenic effects especially at the higher doses tested, therefore its use should be more controlled and limited. Since the literature on the topic is lacking, then the human health impacts resulting from neonicotinoids exposure is not yet fully understood, and, our data will be helpful to allow the assessment of an oral reference dose and health risk characterization.
Collapse
Affiliation(s)
| | | | | | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Claudia Ruberto
- Department of Biological, Geological and Environmental Science, University of Catania, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Science, University of Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Science, University of Catania, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Italy.
| |
Collapse
|
23
|
|
24
|
Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 2018; 186:176-185. [PMID: 29378220 DOI: 10.1016/j.pharmthera.2018.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Gregory A Brent
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| |
Collapse
|
25
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Thyroid Hormone Signaling in the Development of the Endochondral Skeleton. VITAMINS AND HORMONES 2018; 106:351-381. [PMID: 29407442 PMCID: PMC9830754 DOI: 10.1016/bs.vh.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone (TH) is an established regulator of skeletal growth and maintenance both in clinical studies and in laboratory models. The clinical consequences of altered thyroid status on the skeleton during development and in adulthood are well known, and genetic mouse models in which elements of the TH signaling axis have been manipulated illuminate the mechanisms which underlie TH regulation of the skeleton. TH is involved in the regulation of the balance between proliferation and differentiation in several skeletal cell types including chondrocytes, osteoblasts, and osteoclasts. The effects of TH are mediated primarily via the thyroid hormone receptors (TRs) α and β, ligand-inducible nuclear receptors which act as transcription factors to regulate target gene expression. Both TRα and TRβ signaling are important for different stages of skeletal development. The molecular mechanisms of TH action in bone are complex and include interaction with a number of growth factor signaling pathways. This review provides an overview of the regulation and mechanisms of TH action in bone, focusing particularly on the role of TH in endochondral bone formation during postnatal growth.
Collapse
|
27
|
van der Spek AH, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol 2017; 458:29-38. [PMID: 28109953 DOI: 10.1016/j.mce.2017.01.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (TH) are crucial for growth and development and play an important role in energy homeostasis. Although serum TH levels are relatively constant in the physiological state, TH bioavailability at the tissue and cellular level is dependent on local TH metabolism. Circulating TH produced by the thyroid can be metabolized by a number of different pathways resulting in 1) activation of TH 2) deactivation of TH or 3) excretion of TH and subsequent metabolites. These pathways play an essential role in determining local TH levels and action. The major classical pathways of TH metabolism are deiodination, sulfation, glucuronidation, and ether-link cleavage. This review provides an overview of these pathways, their relative contributions to TH levels in the serum and in various organs and the changes in these pathways elicited by fasting and illness.
Collapse
Affiliation(s)
- Anne H van der Spek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Srichomkwun P, Anselmo J, Liao XH, Hönes GS, Moeller LC, Alonso-Sampedro M, Weiss RE, Dumitrescu AM, Refetoff S. Fetal Exposure to High Maternal Thyroid Hormone Levels Causes Central Resistance to Thyroid Hormone in Adult Humans and Mice. J Clin Endocrinol Metab 2017; 102:3234-3240. [PMID: 28586435 PMCID: PMC5587072 DOI: 10.1210/jc.2017-00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
Context Fetuses exposed to the high thyroid hormone (TH) levels of mothers with resistance to thyroid hormone beta (RTH-β), due to mutations in the THRB gene, have low birth weight and suppressed TSH. Objective Determine if such exposure to high TH levels in embryonic life has a long-term effect into adulthood. Design Observations in humans with a parallel design on animals to obtain a preliminary information regarding mechanism. Setting University research centers. Patients or other participants Humans and mice with no RTH-β exposed during intrauterine life to high TH levels from mothers who were euthyroid due to RTH-β. Controls were humans and mice of the same genotype but born to fathers with RTH-β and mothers without RTH-β and thus, with normal serum TH levels. Interventions TSH responses to stimulation with thyrotropin-releasing hormone (TRH) during adult life in humans and male mice before and after treatment with triiodothyronine (T3). We also measured gene expression in anterior pituitaries, hypothalami, and cerebral cortices of mice. Results Adult humans and mice without RTH-β, exposed to high maternal TH in utero, showed persistent central resistance to TH, as evidenced by reduced responses of serum TSH to TRH when treated with T3. In mice, anterior pituitary TSH-β and deiodinase 3 (D3) mRNAs, but not hypothalamic and cerebral cortex D3, were increased. Conclusions Adult humans and mice without RTH-β exposed in utero to high maternal TH levels have persistent central resistance to TH. This is likely mediated by the increased expression of D3 in the anterior pituitary, enhancing local T3 degradation.
Collapse
Affiliation(s)
| | - João Anselmo
- Department of Endocrinology and Nutrition, Hospital Divino Espírito Santo, 9500-370 Ponta Delgada, Azores-Portugal
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - G. Sebastian Hönes
- Department of Endocrinology and Metabolism, University Hospital Essen, University of Duisburg, Essen 45122, Germany
| | - Lars C. Moeller
- Department of Endocrinology and Metabolism, University Hospital Essen, University of Duisburg, Essen 45122, Germany
| | | | - Roy E. Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
29
|
Cao Y, Matsubara T, Zhao C, Gao W, Peng L, Shan J, Liu Z, Yuan F, Tang L, Li P, Guan Z, Fang Z, Lu X, Huang H, Yang Q. Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment. Sci Rep 2017; 7:9307. [PMID: 28839185 PMCID: PMC5571112 DOI: 10.1038/s41598-017-09598-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
Using the principle of antibody-drug conjugates that deliver highly potent cytotoxic agents to cancer cells for cancer therapy, we here report the synthesis of antisense-oligonucleotides (ASO) and thyroid hormone T3 conjugates for obesity treatment. ASOs primarily target fat and liver with poor penetrance to other organs. Pharmacological T3 treatment increases energy expenditure and causes weight loss, but is contraindicated for obesity treatment due to systemic effects on multiple organs. We hypothesize that ASO-T3 conjugates may knock down target genes and enrich T3 action in fat and liver. Two established ASOs are tested. Nicotinamide N-methyltransferase (NNMT)-ASO prevents diet-induced obesity in mice. Apolipoprotein B (ApoB)-ASO is an FDA approved drug for treating familial hypercholesterolemia. NNMT-ASO and ApoB-ASO are chemically conjugated with T3 using a non-cleavable sulfo-SMCC linker. Both NNMT-ASO-T3 (NAT3) and ApoB-ASO-T3 (AAT3) enhance thyroid hormone receptor activity. Treating obese mice with NAT3 or AAT3 decreases adiposity and increases lean mass. ASO-T3 enhances white fat browning, decreases genes for fatty acid synthesis in liver, and shows limited effects on T3 target genes in heart and muscle. Furthermore, AAT3 augments LDL cholesterol-lowering effects of ApoB-ASO. Therefore, ASO and hormone/drug conjugation may provide a novel strategy for obesity and hyperlipidemia treatment.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA
| | - Tomoko Matsubara
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Japan Society for the Promotion of Science, Tokyo, 1020083, Japan
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Linxiu Peng
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Peixin Li
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, 92697, California, USA
| | - Zhuyuan Fang
- Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Hu Huang
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.
| |
Collapse
|
30
|
Ng L, Liu H, St. Germain DL, Hernandez A, Forrest D. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase. Endocrinology 2017; 158:1999-2010. [PMID: 28324012 PMCID: PMC5460942 DOI: 10.1210/en.2017-00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
Abstract
Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Arturo Hernandez
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Wu Z, Martinez ME, St. Germain DL, Hernandez A. Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology 2017; 158:419-430. [PMID: 27911598 PMCID: PMC5413080 DOI: 10.1210/en.2016-1680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023]
Abstract
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice.
Collapse
Affiliation(s)
- Zhaofei Wu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - M. Elena Martinez
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Donald L. St. Germain
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| | - Arturo Hernandez
- Center for Molecular Medicine, and
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074
| |
Collapse
|
32
|
Stohn JP, Martinez ME, Matoin K, Morte B, Bernal J, Galton VA, St Germain D, Hernandez A. MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase. Endocrinology 2016; 157:3266-77. [PMID: 27254003 PMCID: PMC4967121 DOI: 10.1210/en.2016-1162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice deficient in the type 3 deiodinase (D3KO mice) manifest impaired clearance of thyroid hormone (TH), leading to elevated levels of TH action during development. This alteration causes reduced neonatal viability, growth retardation, and central hypothyroidism. Here we examined how these phenotypes are affected by a deficiency in the monocarboxylate transporter 8 (MCT8), which is a major contributor to the transport of the active thyroid hormone, T3, into the cell. MCT8 deficiency eliminated the neonatal lethality of type 3 deiodinase (D3)-deficient mice and significantly ameliorated their growth retardation. Double-mutant newborn mice exhibited similar peripheral thyrotoxicosis and increased brain expression of T3-dependent genes as mice with D3 deficiency only. Later in neonatal life and adulthood, double-mutant mice manifested central and peripheral TH status similar to mice with single MCT8 deficiency, with low serum T4, elevated serum TSH and T3, and decreased T3-dependent gene expression in the hypothalamus. In double-mutant adult mice, both thyroid gland size and the hypothyroidism-induced rise in TSH were greater than those in mice with single D3 deficiency but less than those in mice with MCT8 deficiency alone. Our results demonstrate that the marked phenotypic abnormalities observed in the D3-deficient mouse, including perinatal mortality, growth retardation, and central hypothyroidism in adult animals, require expression of MCT8, confirming the interdependent relationship between the TH transport into cells and the deiodination processes.
Collapse
Affiliation(s)
- J Patrizia Stohn
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - M Elena Martinez
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Kassey Matoin
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Beatriz Morte
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Juan Bernal
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Valerie Anne Galton
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Donald St Germain
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Arturo Hernandez
- Center of Molecular Medicine (J.P.S., M.E.M., K.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Instituto de Investigaciones Biomedicas (B.M., J.B.), Consejo Superior de Investigaciones Científicas and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain; and Department of Physiology and Neurobiology (V.A.G.), Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
33
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
34
|
Astapova I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J Mol Endocrinol 2016; 56:73-97. [PMID: 26673411 DOI: 10.1530/jme-15-0246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.
Collapse
Affiliation(s)
- Inna Astapova
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
36
|
Martinez ME, Karaczyn A, Stohn JP, Donnelly WT, Croteau W, Peeters RP, Galton VA, Forrest D, St Germain D, Hernandez A. The Type 3 Deiodinase Is a Critical Determinant of Appropriate Thyroid Hormone Action in the Developing Testis. Endocrinology 2016; 157:1276-88. [PMID: 26727108 PMCID: PMC4769364 DOI: 10.1210/en.2015-1910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022]
Abstract
Timely and appropriate levels of thyroid hormone (TH) signaling are necessary to ensure normal developmental outcomes in many tissues. Studies using pharmacological models of altered TH status have revealed an influence of these hormones on testis development and size, but little is known about the role of endogenous determinants of TH action in the developing male gonads. Using a genetic approach, we demonstrate that the type 3 deiodinase (D3), which inactivates TH and protects developing tissues from undue TH action, is a key factor. D3 is highly expressed in the developing testis, and D3-deficient (D3KO) mice exhibit thyrotoxicosis and cell proliferation arrest in the neonatal testis, resulting in an approximately 75% reduction in testis size. This is accompanied by larger seminiferous tubules, impaired spermatogenesis, and a hormonal profile indicative of primary hypogonadism. A deficiency in the TH receptor-α fully normalizes testis size and adult testis gene expression in D3KO mice, indicating that the effects of D3 deficiency are mediated through this type of receptor. Similarly, genetic deficiencies in the D2 or in the monocarboxylate transporter 8 partially rescue the abnormalities in testis size and gonadal axis gene expression featured in the D3KO mice. Our study highlights the testis as an important tissue in which determinants of TH action coordinately converge to ensure normal development and identifies D3 as a critical factor in testis development and in testicular protection from thyrotoxicosis.
Collapse
Affiliation(s)
- M Elena Martinez
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Aldona Karaczyn
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - J Patrizia Stohn
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - William T Donnelly
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Walburga Croteau
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Robin P Peeters
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Valerie A Galton
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Douglas Forrest
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Donald St Germain
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Arturo Hernandez
- Department of Molecular Medicine (M.E.M., A.K., J.P.S., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Departments of Physiology and Neurobiology (W.D., V.A.G.) and Medicine (W.C.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756; Rotterdam Thyroid Center (R.P.P.), Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; and Laboratory of Endocrinology and Receptor Biology (R.P.P., D.F.), National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Miranda ML, Anthopolos R, Wolkin A, Stapleton HM. Associations of birth outcomes with maternal polybrominated diphenyl ethers and thyroid hormones during pregnancy. ENVIRONMENT INTERNATIONAL 2015; 85:244-53. [PMID: 26431883 PMCID: PMC4648648 DOI: 10.1016/j.envint.2015.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Previous research has linked polybrominated diphenyl ether (PBDE) exposure to poor birth outcomes and altered thyroid hormone levels. OBJECTIVES We examined whether maternal PBDE serum levels were associated with infant birth weight (g), head circumference (cm), birth length (cm), and birth weight percentile for gestational age. We explored the potential for a mediating role of thyroid hormone levels. METHODS During 2008-2010, we recruited 140 pregnant women in their third trimester as part of a larger clinical obstetrics study known as Healthy Pregnancy, Healthy Baby. Blood samples were collected during a routine prenatal clinic visit. Serum was analyzed for PBDEs, phenolic metabolites, and thyroid hormones. Birth outcome information was abstracted from medical records. RESULTS In unadjusted models, a two-fold increase in maternal BDE 153 was associated with an average decrease in head circumference of 0.32cm (95% CI: -0.53, -0.12); however, this association was attenuated after control for maternal risk factors. BDE 47 and 99 were similarly negatively associated but with 95% confidence intervals crossing the null. Associations were unchanged in the presence of thyroid hormones. CONCLUSIONS Our data suggest a potential deleterious association between maternal PBDE levels and infant head circumference; however, confirmatory studies are needed in larger sample sizes. A mediating role of thyroid hormones was not apparent.
Collapse
Affiliation(s)
- Marie Lynn Miranda
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rebecca Anthopolos
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Wolkin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | | |
Collapse
|
38
|
Bassett JHD, van der Spek A, Logan JG, Gogakos A, Bagchi-Chakraborty J, Williams AJ, Murphy E, van Zeijl C, Down J, Croucher PI, Boyde A, Boelen A, Williams GR. Thyrostimulin Regulates Osteoblastic Bone Formation During Early Skeletal Development. Endocrinology 2015; 156:3098-113. [PMID: 26018249 PMCID: PMC4541616 DOI: 10.1210/en.2014-1943] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ancestral glycoprotein hormone thyrostimulin is a heterodimer of unique glycoprotein hormone subunit alpha (GPA)2 and glycoprotein hormone subunit beta (GPB)5 subunits with high affinity for the TSH receptor. Transgenic overexpression of GPB5 in mice results in cranial abnormalities, but the role of thyrostimulin in bone remains unknown. We hypothesized that thyrostimulin exerts paracrine actions in bone and determined: 1) GPA2 and GPB5 expression in osteoblasts and osteoclasts, 2) the skeletal consequences of thyrostimulin deficiency in GPB5 knockout (KO) mice, and 3) osteoblast and osteoclast responses to thyrostimulin treatment. Gpa2 and Gpb5 expression was identified in the newborn skeleton but declined rapidly thereafter. GPA2 and GPB5 mRNAs were also expressed in primary osteoblasts and osteoclasts at varying concentrations. Juvenile thyrostimulin-deficient mice had increased bone volume and mineralization as a result of increased osteoblastic bone formation. However, thyrostimulin failed to induce a canonical cAMP response or activate the noncanonical Akt, ERK, or mitogen-activated protein kinase (P38) signaling pathways in primary calvarial or bone marrow stromal cell-derived osteoblasts. Furthermore, thyrostimulin did not directly inhibit osteoblast proliferation, differentiation or mineralization in vitro. These studies identify thyrostimulin as a negative but indirect regulator of osteoblastic bone formation during skeletal development.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anne van der Spek
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - John G Logan
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Apostolos Gogakos
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jayashree Bagchi-Chakraborty
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | | | - Elaine Murphy
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Clementine van Zeijl
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jenny Down
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Peter I Croucher
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Alan Boyde
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anita Boelen
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| |
Collapse
|
39
|
Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, Ibrahim NM, Mohamed Z, Ghasemi R, Ahmadiani A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015; 31:155-64. [PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
Collapse
Affiliation(s)
| | - Benyamin Karimi
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raymond Azman Ali
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Alkemade A. Thyroid hormone and the developing hypothalamus. Front Neuroanat 2015; 9:15. [PMID: 25750617 PMCID: PMC4335174 DOI: 10.3389/fnana.2015.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/02/2015] [Indexed: 01/12/2023] Open
Abstract
Thyroid hormone (TH) plays an essential role in normal brain development and function. Both TH excess and insufficiency during development lead to structural brain abnormalities. Proper TH signaling is dependent on active transport of the prohormone thyroxine (T4) across the blood-brain-barrier and into brain cells. In the brain T4 undergoes local deiodination into the more active 3,3′,5-triiodothyronine (T3), which binds to nuclear TH receptors (TRs). TRs are already expressed during the first trimester of pregnancy, even before the fetal thyroid becomes functional. Throughout pregnancy, the fetus is largely dependent on the maternal TH supply. Recent studies in mice have shown that normal hypothalamic development requires intact TH signaling. In addition, the development of the human lateral hypothalamic zone coincides with a strong increase in T3 and TR mRNA concentrations in the brain. During this time the fetal hypothalamus already shows evidence for TH signaling. Expression of components crucial for central TH signaling show a specific developmental timing in the human hypothalamus. A coordinated expression of deiodinases in combination with TH transporters suggests that TH concentrations are regulated to prevent untimely maturation of brain cells. Even though the fetus depends on the maternal TH supply, there is evidence suggesting a role for the fetal hypothalamus in the regulation of TH serum concentrations. A decrease in expression of proteins involved in TH signaling towards the end of pregnancy may indicate a lower fetal TH demand. This may be relevant for the thyrotropin (TSH) surge that is usually observed after birth, and supports a role for the hypothalamus in the regulation of TH concentrations during the fetal period anticipating birth.
Collapse
Affiliation(s)
- Anneke Alkemade
- Amsterdam Brain and Cognition Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
41
|
Castroneves LA, Jugo RH, Maynard MA, Lee JS, Wassner AJ, Dorfman D, Bronson RT, Ukomadu C, Agoston AT, Ding L, Luongo C, Guo C, Song H, Demchev V, Lee NY, Feldman HA, Vella KR, Peake RW, Hartigan C, Kellogg MD, Desai A, Salvatore D, Dentice M, Huang SA. Mice with hepatocyte-specific deficiency of type 3 deiodinase have intact liver regeneration and accelerated recovery from nonthyroidal illness after toxin-induced hepatonecrosis. Endocrinology 2014; 155:4061-8. [PMID: 25004090 PMCID: PMC4164928 DOI: 10.1210/en.2013-2028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
Collapse
Affiliation(s)
- Luciana A Castroneves
- Thyroid Program of the Division of Endocrinology (L.A.C., R.H.J., M.A.M., J.S.L., A.J.W., C.C.G., H.D.S., N.Y.L., S.A.H.), Clinical Research Center (H.A.F), and Department of Laboratory Medicine (R.W.P., C.H., M.D.K), Boston Children's Hospital; Thyroid Section of the Division of Endocrinology, Diabetes, and Hypertension (S.A.H.), Department of Pathology (D.D., A.T.A.), and Division of Gastroenterology (C.U., V.D., A.D.), Brigham and Women's Hospital; Harvard Neurodiscovery Center (L.D.); Dana Farber Cancer Institute (R.T. B., S.A.H.); Division of Endocrinology (K.R.V.), Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115; and Department of Molecular and Clinical Endocrinology and Oncology (C.L., D.S., M.D.), University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Martinez ME, Charalambous M, Saferali A, Fiering S, Naumova AK, St Germain D, Ferguson-Smith AC, Hernandez A. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol Endocrinol 2014; 28:1875-86. [PMID: 25232934 PMCID: PMC4213365 DOI: 10.1210/me.2014-1210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Dio3 gene, which encodes for the type 3 deiodinase (D3), controls thyroid hormone (TH) availability. The lack of D3 in mice results in tissue overexposure to TH and a broad neuroendocrine phenotype. Dio3 is an imprinted gene, preferentially expressed from the paternally inherited allele in the mouse fetus. However, heterozygous mice with paternal inheritance of the inactivating Dio3 mutation exhibit an attenuated phenotype when compared with that of Dio3 null mice. To investigate this milder phenotype, the allelic expression of Dio3 was evaluated in different mouse tissues. Preferential allelic expression of Dio3 from the paternal allele was observed in fetal tissues and neonatal brain regions, whereas the biallelic Dio3 expression occurred in the developing eye, testes, and cerebellum and in the postnatal brain neocortex, which expresses a larger Dio3 mRNA transcript. The newborn hypothalamus manifests the highest degree of Dio3 expression from the paternal allele, compared with other brain regions, and preferential allelic expression of Dio3 in the brain relaxed in late neonatal life. A methylation analysis of two regulatory regions of the Dio3 imprinted domain revealed modest but significant differences between tissues, but these did not consistently correlate with the observed patterns of Dio3 allelic expression. Deletion of the Dio3 gene and promoter did not result in significant changes in the tissue-specific patterns of Dio3 allelic expression. These results suggest the existence of unidentified epigenetic determinants of tissue-specific Dio3 imprinting. The resulting variation in the Dio3 allelic expression between tissues likely explains the phenotypic variation that results from paternal Dio3 haploinsufficiency.
Collapse
Affiliation(s)
- M Elena Martinez
- Department of Molecular Medicine (M.E.M., D.S.G., A.H.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Centre for Endocrinology (M.C.), William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, United Kingdom; Department of Obstetrics and Gynecology and Human Genetics (A.S., A.K.N.), McGill University, Montréal, Québec, Canada H9X 3V9; Department of Microbiology and Immunology (S.F.), Dartmouth Medical School, Lebanon, New Hampshire 03756; and Department of Genetics (A.C.F.-S.), University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Medina MC, Fonesca TL, Molina J, Fachado A, Castillo M, Dong L, Soares R, Hernández A, Caicedo A, Bianco AC. Maternal inheritance of an inactive type III deiodinase gene allele affects mouse pancreatic β-cells and disrupts glucose homeostasis. Endocrinology 2014; 155:3160-71. [PMID: 24885572 PMCID: PMC4097999 DOI: 10.1210/en.2013-1208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dio3 is the most distal gene of the imprinted Dlk1-Dio3 gene locus and is expressed according to parental origin. Dio3 encodes the type 3 deiodinase (D3), a thioredoxin-fold like containing selenoenzyme that inactivates thyroid hormone and dampens thyroid hormone signaling. Here we used heterozygous animals with disruption of the Dio3 gene to study the allelic expression pattern of Dio3 in pancreatic β-cells and the metabolic phenotype resulting from its inactivation. Adult heterozygous mice with disruption of the Dio3 gene with maternal inheritance of the inactive Dio3 allele exhibited a total loss of D3 activity in isolated pancreatic islets, approximately 30% reduction in total pancreatic islet area, a marked decrease in insulin2 mRNA and in vivo glucose intolerance. In contrast, inheritance of the inactive Dio3 allele from the father did not affect D3 activity in isolated pancreatic islets and did not result in a pancreatic phenotype. Furthermore, exposure of pancreatic explants, D3-expressing MIN6-C3 cells or isolated pancreatic islets to 100 nM T3 for 24 hours reduced insulin2 mRNA by approximately 50% and the peak of glucose-induced insulin secretion. An unbiased analysis of T3-treated pancreatic islets revealed the down-regulation of 21 gene sets (false discovery rate q value < 25%) involved in nucleolar function and transcription of rRNA, ribonucleotide binding, mRNA translation, and membrane organization. We conclude that the Dio3 gene is preferentially expressed from the maternal allele in pancreatic islets and that the inactivation of this allele is sufficient to disrupt glucose homeostasis by reducing the pancreatic islet area, insulin2 gene expression, and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Mayrin C Medina
- University of Miami Miller School of Medicine, Division of Endocrinology and Metabolism (M.C.M., J.M., M.C., L.D., R.S., A.C.), Miami, Florida 33136; Rush University Medical Center (T.L.F., A.C.B.), Chicago, Illinois 60612; and Diabetes Research Institute (A.F.), Maine Medical Center Research Institute (A.H.), Scarborough, Maine 04074
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Charalambous M, da Rocha ST, Hernandez A, Ferguson‐Smith AC. Perturbations to the IGF1 growth pathway and adult energy homeostasis following disruption of mouse chromosome 12 imprinting. Acta Physiol (Oxf) 2014; 210:174-87. [PMID: 24034272 PMCID: PMC3992899 DOI: 10.1111/apha.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 02/04/2023]
Abstract
Aim Disruption to insulin-like growth factor (IGF) signalling pathways during early life causes growth retardation and defects of developing metabolic organs that can alter set points of energy homeostasis for a lifetime. Inheritance of two maternal copies of human chromosome 14q32.2 (Temple syndrome) causes severe foetal growth retardation and post-natal failure to thrive. Disruption of imprinted gene dosage in the orthologous region on mouse chromosome 12 also affects growth. Here, we investigated whether altering chromosome 12-imprinted gene dosage can affect IGF signalling. Methods We investigated mice with a transgene insertion at the imprinted domain of chromosome 12. This lesion causes misexpression of neighbouring genes such that the expression of non-coding RNAs is elevated, and levels of delta-like homologue 1 (Dlk1), retrotransposon-like 1 (Rtl1) and deiodinase 3 (Dio3) transcripts are reduced. Results We observed three key phenotypes in these mice: (i) embryonic growth retardation associated with altered expression of IGF1 binding proteins, (ii) peri-natal failure to thrive accompanied by hypothyroidism and low serum IGF1. Unexpectedly this phenotype was growth hormone independent. (iii) Adult animals had reduced glucose tolerance as a result of endocrine pancreatic insufficiency. Conclusions We propose that all of these phenotypes are attributable to impaired IGF action and show for the first time that the chromosome 12 cluster in the mouse is an imprinted locus that modulates the IGF signalling pathway. We propose that growth retardation observed in human Temple syndrome might have a similar cause.
Collapse
Affiliation(s)
- M. Charalambous
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - S. T. da Rocha
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - A. Hernandez
- Maine Medical Center Research Institute Scarborough MEUSA
| | - A. C. Ferguson‐Smith
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| |
Collapse
|
45
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
46
|
Faustino LC, Ortiga-Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models. Front Endocrinol (Lausanne) 2014; 5:75. [PMID: 24904526 PMCID: PMC4033007 DOI: 10.3389/fendo.2014.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/02/2014] [Indexed: 01/15/2023] Open
Abstract
Cerebellum development is sensitive to thyroid hormone (TH) levels, as THs regulate neuronal migration, differentiation, and myelination. Most effects of THs are mediated by the thyroid hormone receptor (TR) isoforms TRβ1, TRβ2, and TRα1. Studies aimed at identifying TH target genes during cerebellum development have only achieved partial success, as some of these genes do not possess classical TH-responsive elements, and those that do are likely to be temporally and spatially regulated by THs. THs may also affect neurodevelopment by regulating transcription factors that control particular groups of genes. Furthermore, TH action can also be affected by TH transport, which is mediated mainly by monocarboxylate transporter family members. Studies involving transgenic animal models and genome-wide expression analyses have helped to address the unanswered questions regarding the role of TH in cerebellar development. Recently, a growing body of evidence has begun to clarify the molecular, cellular, and functional aspects of THs in the developing cerebellum. This review describes the current findings concerning the effects of THs on cerebellar development and maintenance as well as advances in the genetic animal models used in this field.
Collapse
Affiliation(s)
- Larissa C. Faustino
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania M. Ortiga-Carvalho
- Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Tania M. Ortiga-Carvalho, Laboratorio de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, s/n Cidade Universitária, Rio de Janeiro 21941-902, Brazil e-mail:
| |
Collapse
|
47
|
Cordeiro A, de Souza LL, Oliveira LS, Faustino LC, Santiago LA, Bloise FF, Ortiga-Carvalho TM, Almeida NADS, Pazos-Moura CC. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice. J Endocrinol 2013; 216:181-93. [PMID: 23151359 DOI: 10.1530/joe-12-0420] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.
Collapse
Affiliation(s)
- Aline Cordeiro
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Avenida Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco G, CEP: 21941-902, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS, Pandey M, Simonds WF, St Germain DL, Forrest D. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 2013; 154:550-61. [PMID: 23161871 PMCID: PMC3529370 DOI: 10.1210/en.2012-1738] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thyroid hormone serves many functions throughout brain development, but the mechanisms that control the timing of its actions in specific brain regions are poorly understood. In the cerebellum, thyroid hormone controls formation of the transient external germinal layer, which contains proliferative granule cell precursors, subsequent granule cell migration, and cerebellar foliation. We report that the thyroid hormone-inactivating type 3 deiodinase (encoded by Dio3) is expressed in the mouse cerebellum at embryonic and neonatal stages, suggesting a need to protect cerebellar tissues from premature stimulation by thyroid hormone. Dio3(-/-) mice displayed reduced foliation, accelerated disappearance of the external germinal layer, and premature expansion of the molecular layer at juvenile ages. Furthermore, Dio3(-/-) mice exhibited locomotor behavioral abnormalities and impaired ability in descending a vertical pole. To ascertain that these phenotypes resulted from inappropriate exposure to thyroid hormone, thyroid hormone receptor α1 (TRα1) was removed from Dio3(-/-) mice, which substantially corrected the cerebellar and behavioral phenotypes. Deletion of TRα1 did not correct the previously reported small thyroid gland or deafness in Dio3(-/-) mice, indicating that Dio3 controls the activation of specific receptor isoforms in different tissues. These findings suggest that type 3 deiodinase constrains the timing of thyroid hormone action during cerebellar development.
Collapse
Affiliation(s)
- Robin P Peeters
- Erasmus University Medical Center, Department of Internal Medicine, Dr. Molewaterplein 50, Room Ee502, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hackenmueller SA, Marchini M, Saba A, Zucchi R, Scanlan TS. Biosynthesis of 3-iodothyronamine (T1AM) is dependent on the sodium-iodide symporter and thyroperoxidase but does not involve extrathyroidal metabolism of T4. Endocrinology 2012; 153:5659-67. [PMID: 22948220 PMCID: PMC3473208 DOI: 10.1210/en.2012-1254] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
3-Iodothyronamine (T(1)AM) is an endogenous thyroid hormone derivative with unknown biosynthetic origins. Structural similarities have led to the hypothesis that T(1)AM is an extrathyroidal metabolite of T(4). This study uses an isotope-labeled T(4) [heavy-T(4) (H-T(4))] that can be distinguished from endogenous T(4) by mass spectrometry, which allows metabolites to be identified based on the presence of this unique isotope signature. Endogenous T(1)AM levels depend upon thyroid status and decrease upon induction of hypothyroidism. However, in hypothyroid mice replaced with H-T(4), the isotope-labeled H-T(3) metabolite is detected, but no isotope-labeled T(1)AM is detected. These data suggest that T(1)AM is not an extrathyroidal metabolite of T(4), yet is produced by a process that requires the same biosynthetic factors necessary for T(4) synthesis.
Collapse
Affiliation(s)
- Sarah A Hackenmueller
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, 97239, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Our understanding of thyroid hormone action has been substantially altered by recent clinical observations of thyroid signaling defects in syndromes of hormone resistance and in a broad range of conditions, including profound mental retardation, obesity, metabolic disorders, and a number of cancers. The mechanism of thyroid hormone action has been informed by these clinical observations as well as by animal models and has influenced the way we view the role of local ligand availability; tissue and cell-specific thyroid hormone transporters, corepressors, and coactivators; thyroid hormone receptor (TR) isoform-specific action; and cross-talk in metabolic regulation and neural development. In some cases, our new understanding has already been translated into therapeutic strategies, especially for treating hyperlipidemia and obesity, and other drugs are in development to treat cardiac disease and cancer and to improve cognitive function.
Collapse
Affiliation(s)
- Gregory A Brent
- Department of Medicine, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| |
Collapse
|