1
|
Zhao X, Fan C, Qie T, Fu X, Chen X, Wang Y, Wu Y, Fu X, Shi K, Yan W, Yu H. Diaph1 knockout inhibits mouse primordial germ cell proliferation and affects gonadal development. Reprod Biol Endocrinol 2024; 22:82. [PMID: 39010074 PMCID: PMC11247884 DOI: 10.1186/s12958-024-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3β-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Chunbiao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Tongtong Qie
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinrui Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xiaoshuang Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yujia Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Wenlong Yan
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong Province, China.
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
2
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
3
|
Mori Sequeiros Garcia MM, Paz C, Castillo AF, Benzo Y, Belluno MA, Balcázar Martínez A, Maloberti PM, Cornejo Maciel F, Poderoso C. New insights into signal transduction pathways in adrenal steroidogenesis: role of mitochondrial fusion, lipid mediators, and MAPK phosphatases. Front Endocrinol (Lausanne) 2023; 14:1175677. [PMID: 37223023 PMCID: PMC10200866 DOI: 10.3389/fendo.2023.1175677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Hormone-receptor signal transduction has been extensively studied in adrenal gland. Zona glomerulosa and fasciculata cells are responsible for glucocorticoid and mineralocorticoid synthesis by adrenocorticotropin (ACTH) and angiotensin II (Ang II) stimulation, respectively. Since the rate-limiting step in steroidogenesis occurs in the mitochondria, these organelles are key players in the process. The maintenance of functional mitochondria depends on mitochondrial dynamics, which involves at least two opposite events, i.e., mitochondrial fusion and fission. This review presents state-of-the-art data on the role of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), in Ang II-stimulated steroidogenesis in adrenocortical cells. Both proteins are upregulated by Ang II, and Mfn2 is strictly necessary for adrenal steroid synthesis. The signaling cascades of steroidogenic hormones involve an increase in several lipidic metabolites such as arachidonic acid (AA). In turn, AA metabolization renders several eicosanoids released to the extracellular medium able to bind membrane receptors. This report discusses OXER1, an oxoeicosanoid receptor which has recently arisen as a novel participant in adrenocortical hormone-stimulated steroidogenesis through its activation by AA-derived 5-oxo-ETE. This work also intends to broaden knowledge of phospho/dephosphorylation relevance in adrenocortical cells, particularly MAP kinase phosphatases (MKPs) role in steroidogenesis. At least three MKPs participate in steroid production and processes such as the cellular cycle, either directly or by means of MAP kinase regulation. To sum up, this review discusses the emerging role of mitochondrial fusion proteins, OXER1 and MKPs in the regulation of steroid synthesis in adrenal cortex cells.
Collapse
Affiliation(s)
- María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana Fernanda Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Matías A. Belluno
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ariana Balcázar Martínez
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula Mariana Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
4
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Li X, Liao M, Shao J, Li W, Shi L, Wang D, Ni J, Shen Q, Yang F, Peng G, Zhou L, Zhang Y, Sun Z, Zheng H, Long M. Plasma Diaphanous Related Formin 1 Levels Are Associated with Altered Glucose Metabolism and Insulin Resistance in Patients with Polycystic Ovary Syndrome: A Case Control Study. Mediators Inflamm 2022; 2022:9620423. [PMID: 35185386 PMCID: PMC8856793 DOI: 10.1155/2022/9620423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diaphanous related formin 1 (DIAPH1) is a novel component of advanced glycation end product (AGE) signal transduction that was recently found to participate in diabetes-related disorders, obesity, and androgen hormones. We investigated whether plasma DIAPH1 levels were a potential prognostic predictor for polycystic ovary syndrome (PCOS). METHODS The levels of circulating plasma DIAPH1 and indicators of glucose, insulin, lipid metabolism, liver enzymes, kidney function, sex hormones, and inflammation were measured in 75 patients with PCOS and 77 healthy participants. All of the participants were divided into normal-weight (NW) and overweight/obese (OW) subgroups. Statistical analyses were performed with R studio. RESULTS PCOS patients manifested hyperandrogenism, increased luteinizing hormone/follicle-stimulating hormone (LH/FSH), and accumulated body fat and insulin resistance. Plasma DIAPH1 levels were significantly decreased in women with PCOS compared to control participants, and DIAPH1 levels were distinctly reduced in OW PCOS compared to OW control subjects (P < 0.001). DIAPH1 levels correlated with fasting blood glucose (FBG), total cholesterol (TC), the homeostasis model assessment of β-cell function (HOMA-β), and LH/FSH in all participants (FBG: r = 0.351, P < 0.0001; TC: r = 0.178, P = 0.029; HOMA-β: r = -0.211, P = 0.009; LH/FSH: r = -0.172, P = 0.040). Multivariate logistic regression analysis revealed that plasma DIAPH1 levels were an independent risk factor for PCOS. A model containing DIAPH1, BMI, FBG, and testosterone was constructed to predict the risk of PCOS, with a sensitivity of 92.0% and a specificity of 80.9%. A nomogram was constructed to facilitate clinical diagnosis. CONCLUSIONS These findings suggest the association of plasma DIAPH1 with glucose metabolism, insulin resistance, and sex hormones and support DIAPH1 as a potential predictive factor for PCOS.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Weixin Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liu Shi
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Wang
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Ni
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiuyue Shen
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guiliang Peng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuling Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Wu Z, Zhang C. Role of the cytoskeleton in steroidogenesis. Endocr Metab Immune Disord Drug Targets 2021; 22:549-557. [PMID: 34802411 DOI: 10.2174/1871530321666211119143653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Steroidogenesis in the adrenal cortex or gonads is a complicated process, modulated by various elements either at the tissue or molecular level. The substrate-cholesterol is first delivered to the outer membrane of mitochondria, undergoing a series of enzymatic reactions along with the material exchange between the mitochondria and the ER (endoplasmic reticulum) and ultimately yield various steroids: aldosterone, cortisol, testosterone and estrone. Several valves are set to adjust the amount of production to the needs. e.g. StAR(steroidogenic acute regulator) is in charge of the rate-limiting step-traffic of cholesterol from outer membrane to inner membrane of mitochondria. And the "needs" is partly reflected by trophic signals like ACTH、LH and downstream pathways-- intracellular cAMP pathway, which represents the endocrinal regulation of steroid synthesis, too. The coordinated activities of these related factors are all associated with another crucial cellular constituent-the cytoskeleton, which plays a crucial role in the cellular architecture and substrate trafficking. Though considerable studies have been performed regarding steroid synthesis, details about the upstream signaling pathways and mechanisms of the regulation by cytoskeleton network still remain unclear. The metabolism and interplays of the pivotal cellular organelles with cytoskeleton are worth exploring as well. In this review, we summarize research of different time span, describing the roles of specific cytoskeleton elements in steroidogenesis and related signaling pathways involved in the steroid synthesis. In addition, we discussed the inner cytoskeletal network involved in steroidogenic processes such as mitochondrial movement, organelle interactions and cholesterol trafficking.
Collapse
Affiliation(s)
- Zaichao Wu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| |
Collapse
|
7
|
Mohapatra S, Gupta V, Mondal P, Chatterjee S, Bhunia D, Ghosh S. A Small Molecule with Bridged Carbonyl and Tri-fluoro-aceto-phenone Groups Impedes Microtubule Dynamics and Subsequently Triggers Cancer Cell Apoptosis. ChemMedChem 2021; 16:2703-2714. [PMID: 33983670 DOI: 10.1002/cmdc.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Indexed: 11/08/2022]
Abstract
We identified a new microtubule targeted small molecule, which showed significant anticancer activity and induced apoptotic death of cancer cells. Precisely the central bridged carbonyl group and trifluoro-acetophenone group of a bis-benzothiazole molecule (BBT) interacts with tubulin close to the curcumin site and perturbs microtubule dynamics as well as causes microtubule depolymerization. We observed a significant enhancement of fluorescence while BBT interacts with the tubulin through bridged carbonyl moiety, a similar phenomenon to colchicine. Further, BBT activates tumor-suppressing bim and p53-puma axes to inhibit cancer survival. It also shows promising results against a tumor spheroid model. BBT is also capable of tumor regression, which shows that this molecule can serve as a potential template for the design of next-generation microtubule targeted anticancer drugs.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Department of Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Varsha Gupta
- Department of Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Prasenjit Mondal
- Department of Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Shreyam Chatterjee
- The Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Debmalya Bhunia
- Department of Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India.,Department of Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
8
|
Linklater ES, Duncan ED, Han KJ, Kaupinis A, Valius M, Lyons TR, Prekeris R. Rab40-Cullin5 complex regulates EPLIN and actin cytoskeleton dynamics during cell migration. J Cell Biol 2021; 220:212111. [PMID: 33999101 PMCID: PMC8129794 DOI: 10.1083/jcb.202008060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Erik S Linklater
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily D Duncan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Cancer Center, Young Women's Breast Cancer Translational Program, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Kaustio M, Nayebzadeh N, Hinttala R, Tapiainen T, Åström P, Mamia K, Pernaa N, Lehtonen J, Glumoff V, Rahikkala E, Honkila M, Olsén P, Hassinen A, Polso M, Al Sukaiti N, Al Shekaili J, Al Kindi M, Al Hashmi N, Almusa H, Bulanova D, Haapaniemi E, Chen P, Suo-Palosaari M, Vieira P, Tuominen H, Kokkonen H, Al Macki N, Al Habsi H, Löppönen T, Rantala H, Pietiäinen V, Zhang SY, Renko M, Hautala T, Al Farsi T, Uusimaa J, Saarela J. Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. J Allergy Clin Immunol 2021; 148:599-611. [PMID: 33662367 DOI: 10.1016/j.jaci.2020.12.656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Naemeh Nayebzadeh
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Terhi Tapiainen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Katariina Mamia
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Nora Pernaa
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Johanna Lehtonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Folkhälsan Research Center, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Minna Honkila
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Päivi Olsén
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minttu Polso
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Al Shekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nadia Al Hashmi
- Department of Clinical and Biochemical Genetics, The Royal Hospital, Muscat, Oman
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Daria Bulanova
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital, Oslo, Norway; Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pu Chen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Suo-Palosaari
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Vieira
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Hannu Tuominen
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Hannaleena Kokkonen
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Northern Finland Laboratory Centre, Oulu University Hospital, Oulu, Finland
| | - Nabil Al Macki
- Department of Pediatric Neurology, The Royal Hospital, Muscat, Oman
| | - Huda Al Habsi
- Department of General Pediatrics, The Royal Hospital, Muscat, Oman
| | - Tuija Löppönen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Paris Descartes University, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| | - Marjo Renko
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
10
|
Zhang Z, Tang J, He X, Zhu M, Gan S, Guo X, Zhang X, Zhang J, Hu W, Chu M. Comparative Transcriptomics Identify Key Hypothalamic Circular RNAs that Participate in Sheep ( Ovis aries) Reproduction. Animals (Basel) 2019; 9:ani9080557. [PMID: 31416269 PMCID: PMC6721059 DOI: 10.3390/ani9080557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The hypothalamus plays crucial roles in sheep reproduction. However, the expression profiles of sheep hypothalamic circular RNA (circRNA), which has been proved to exert important functions in many physiological processes, remain largely unknown. In this study, we used RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with the FecB ++ genotype. The results suggested that several key hypothalamic circRNAs may participate in sheep reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting key gene expression indirectly or directly. This study provides a further reference for understanding the differences of sheep fecundity. Abstract Circular RNA (circRNA), as an emerging class of noncoding RNA, has been found to play key roles in many biological processes. However, its expression profile in the hypothalamus, a powerful organ initiating the reproductive process, has not yet been explored. Therefore, we used RNA sequencing to explore the expression of circRNAs in the hypothalamus of sheep with the FecB ++ genotype. We totally identified 41,863 circRNAs from sheep hypothalamus, in which 333 (162 were upregulated, while 171 were downregulated) were differentially expressed in polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF), moreover, 340 circRNAs (163 were upregulated, while 177 were downregulated) were differentially expressed in polytocous sheep in the luteal phase versus monotocous sheep in the luteal sheep (PL vs. ML). We also identified several key circRNAs including oar_circ_0018794, oar_circ_0008291, oar_circ_0015119, oar_circ_0012801, oar_circ_0010234, and oar_circ_0013788 through functional enrichment analysis and oar_circ_0012110 through a competing endogenous RNA network, most of which may participate in reproduction by influencing gonadotropin-releasing hormone (GnRH) activities or affecting key gene expression, indirectly or directly. Our study explored the overall expression profile of circRNAs in sheep hypothalamus, which potentially provides an alternative insight into the mechanism of sheep prolificacy without the effects of FecB mutation.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxia Zhu
- Agricultural College, Liaocheng University, Liaocheng 252059, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep 2019; 9:8302. [PMID: 31165762 PMCID: PMC6549159 DOI: 10.1038/s41598-019-44749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation is controlled by adhesion and growth factor-dependent signalling through common effectors that regulate muscle-specific transcriptional programs. Here we report that mDiaphanous1, an effector of adhesion-dependent RhoA-signalling, negatively regulates myogenesis at the level of Myogenin expression. In myotubes, over-expression of mDia1ΔN3, a RhoA-independent mutant, suppresses Myogenin promoter activity and expression. We investigated mDia1-interacting proteins that may counteract mDia1 to permit Myogenin expression and timely differentiation. Using yeast two-hybrid and mass-spectrometric analysis, we report that mDia1 has a stage-specific interactome, including Prohibitin2, MyoD, Akt2, and β-Catenin, along with a number of proteosomal and mitochondrial components. Of these interacting partners, Prohibitin2 colocalises with mDia1 in cytoplasmic punctae in myotubes. We mapped the interacting domains of mDia1 and Phb2, and used interacting (mDia1ΔN3/Phb2 FL or mDia1ΔN3/Phb2-Carboxy) and non-interacting pairs (mDia1H + P/Phb2 FL or mDia1ΔN3/Phb2-Amino) to dissect the functional consequences of this partnership on Myogenin promoter activity. Co-expression of full-length as well as mDia1-interacting domains of Prohibitin2 reverse the anti-myogenic effects of mDia1ΔN3, while non-interacting regions do not. Our results suggest that Prohibitin2 sequesters mDia1, dampens its anti-myogenic activity and fine-tunes RhoA-mDia1 signalling to promote differentiation. Overall, we report that mDia1 is multi-functional signalling effector whose anti-myogenic activity is modulated by a differentiation-dependent interactome. The data have been deposited to the ProteomeXchange with identifier PXD012257.
Collapse
Affiliation(s)
- Amena Saleh
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gunasekaran Subramaniam
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Swasti Raychaudhuri
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India.
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
12
|
Orlowska K, Swigonska S, Sadowska A, Ruszkowska M, Nynca A, Molcan T, Ciereszko RE. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the proteome of porcine granulosa cells. CHEMOSPHERE 2018; 212:170-181. [PMID: 30144678 DOI: 10.1016/j.chemosphere.2018.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment. The exposure of living organisms to TCDD may result in numerous disorders, including reproductive pathologies. By employing two-dimensional fluorescence difference gel electrophoresis we aimed to identify proteins potentially involved in the mechanism of TCDD action and toxicity in porcine granulosa cells. The porcine granulosa cells were treated with TCDD (100 nM) for 3, 12 or 24 h, and afterwards, cytoplasmic proteins were isolated and labeled with cyanines. Next, samples were separated by isoelectric focusing and SDS-PAGE. Proteins of interest were identified by MALDI-TOF/TOF MS analysis. A total of 75 differentially expressed protein spots (p < 0.05 and fold change ≥2.0) were found in granulosa cells treated with TCDD. After 3, 12 and 24 h of TCDD treatment, we were able to identify 29, 34 and 12 spots, respectively. Functional analysis showed that cytoskeletal proteins formed the largest class of proteins significantly affected by TCDD in all time points. We also demonstrated that most of the identified proteins were associated with the "structural constituent of cytoskeleton" and "chaperone binding" Gene Ontology categories. Based on the analysis of the porcine granulosa cell proteome, we demonstrated that TCDD may affect the ovarian follicle fate by the rearrangement of the cytoskeleton and extracellular matrix as well as the modulation of proteins important for the cellular response to stress. The results of the current study present an extended insight into the TCDD mechanism of action in porcine granulosa cells, providing new directions for future functional studies.
Collapse
Affiliation(s)
- Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
13
|
The cytoskeleton in ‘couch potato-ism’: Insights from a murine model of impaired actin dynamics. Exp Neurol 2018; 306:34-44. [DOI: 10.1016/j.expneurol.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
|
14
|
SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proc Natl Acad Sci U S A 2016; 113:E5685-93. [PMID: 27601673 DOI: 10.1073/pnas.1611424113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Luteinizing hormone (LH) stimulates steroidogenesis largely through a surge in cyclic AMP (cAMP). Steroidogenic rates are also critically dependent on the availability of cholesterol at mitochondrial sites of synthesis. This cholesterol is provided by cellular uptake of lipoproteins, mobilization of intracellular lipid, and de novo synthesis. Whether and how these pathways are coordinated by cAMP are poorly understood. Recent phosphoproteomic analyses of cAMP-dependent phosphorylation sites in MA10 Leydig cells suggested that cAMP regulates multiple steps in these processes, including activation of the SCAP/SREBP pathway. SCAP [sterol-regulatory element-binding protein (SREBP) cleavage-activating protein] acts as a cholesterol sensor responsible for regulating intracellular cholesterol balance. Its role in cAMP-mediated control of steroidogenesis has not been explored. We used two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated protein 9) knockout approaches to test the role of SCAP in steroidogenesis. Our results demonstrate that SCAP is required for progesterone production induced by concurrent inhibition of the cAMP phosphodiesterases PDE4 and PDE8. These inhibitors increased SCAP phosphorylation, SREBP2 activation, and subsequent expression of cholesterol biosynthetic genes, whereas SCAP deficiency largely prevented these effects. Reexpression of SCAP in SCAP-deficient cells restored SREBP2 protein expression and partially restored steroidogenic responses, confirming the requirement of SCAP-SREBP2 in steroidogenesis. Inhibitors of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase and isoprenylation attenuated, whereas exogenously provided cholesterol augmented, PDE inhibitor-induced steroidogenesis, suggesting that the cholesterol substrate needed for steroidogenesis is provided by both de novo synthesis and isoprenylation-dependent mechanisms. Overall, these results demonstrate a novel role for LH/cAMP in SCAP/SREBP activation and subsequent regulation of steroidogenesis.
Collapse
|
15
|
Escajadillo T, Wang H, Li L, Li D, Sewer MB. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis. Mol Cell Endocrinol 2016; 427:73-85. [PMID: 26992564 PMCID: PMC4833515 DOI: 10.1016/j.mce.2016.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/30/2022]
Abstract
Oxysterol binding protein-related protein 2 (ORP2) is a lipid binding protein that has been implicated in various cellular processes, including lipid sensing, cholesterol efflux, and endocytosis. We recently identified ORP2 as a member of a protein complex that regulates glucocorticoid biosynthesis. Herein, we examine the effect of silencing ORP2 on adrenocortical function and show that the ORP2 knockdown cells exhibit reduced amounts of multiple steroid metabolites, including progesterone, 11-deoxycortisol, and cortisol, but have increased concentrations of androgens, and estrogens. Moreover, silencing ORP2 suppresses the expression of most proteins required for cortisol production and reduces the expression of steroidogenic factor 1 (SF1). ORP2 silencing also increases cellular cholesterol, concomitant with decreased amounts of 22-hydroxycholesterol and 7-ketocholesterol, two molecules that have been shown to bind to ORP2. Further, we show that ORP2 binds to liver X receptor (LXR) and is required for nuclear LXR expression. LXR and ORP2 are recruited to the CYP11B1 promoter in response to cAMP signaling. Additionally, ORP2 is required for the expression of other LXR target genes, including ABCA1 and the LDL receptor (LDLR). In summary, we establish a novel role for ORP2 in regulating steroidogenic capacity and cholesterol homeostasis in the adrenal cortex.
Collapse
Affiliation(s)
- Tamara Escajadillo
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Hongxia Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Linda Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marion B Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
17
|
Fritzsche M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K. Actin kinetics shapes cortical network structure and mechanics. SCIENCE ADVANCES 2016; 2:e1501337. [PMID: 27152338 PMCID: PMC4846455 DOI: 10.1126/sciadv.1501337] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/30/2016] [Indexed: 05/20/2023]
Abstract
The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs.
Collapse
Affiliation(s)
- Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Corresponding author. E-mail: (M.F.); (K.K.); (G.C.)
| | - Christoph Erlenkämper
- Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany
- Institut Curie, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, Institute for the Physics of Living Systems, and Department of Cell and Developmental Biology, University College London, London WC1H 0AH, UK
- Corresponding author. E-mail: (M.F.); (K.K.); (G.C.)
| | - Karsten Kruse
- Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany
- Corresponding author. E-mail: (M.F.); (K.K.); (G.C.)
| |
Collapse
|
18
|
Lawrence EJ, Boucher E, Mandato CA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 2016; 11:3. [PMID: 27030796 PMCID: PMC4812650 DOI: 10.1186/s13008-016-0015-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Background The role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown. Methods We employed quantitative imaging techniques and structured illumination microscopy to analyse the spatial and temporal relationship of mitochondria with microtubules and actin of the contractile ring during cytokinesis in HeLa cells. Results Superresolution microscopy revealed that mitochondria were associated with astral microtubules of the mitotic spindle in cytokinetic cells. Dominant-negative mutants of KIF5B, the heavy chain of kinesin-1 motor, and of Miro-1 disrupted mitochondrial transport to the furrow. Live imaging revealed that mitochondrial enrichment at the cell equator occurred simultaneously with the appearance of the contractile ring in cytokinesis. Inhibiting RhoA activity and contractile ring assembly with C3 transferase, caused mitochondrial mislocalisation during division. Conclusions Taken together, the data suggest a model in which mitochondria are transported by a microtubule-mediated mechanism involving equatorial astral microtubules, Miro-1, and KIF5B to the nascent actomyosin contractile ring in cytokinesis. Electronic supplementary material The online version of this article (doi:10.1186/s13008-016-0015-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E J Lawrence
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| | - E Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| | - C A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| |
Collapse
|
19
|
Paz C, Cornejo Maciel F, Gorostizaga A, Castillo AF, Mori Sequeiros García MM, Maloberti PM, Orlando UD, Mele PG, Poderoso C, Podesta EJ. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function. Front Endocrinol (Lausanne) 2016; 7:60. [PMID: 27375556 PMCID: PMC4899475 DOI: 10.3389/fendo.2016.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.
Collapse
Affiliation(s)
- Cristina Paz
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Gorostizaga
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana F. Castillo
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M. Mercedes Mori Sequeiros García
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula M. Maloberti
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ulises D. Orlando
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo G. Mele
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Cecilia Poderoso
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ernesto J. Podesta
- Departamento de Bioquímica Humana, Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- *Correspondence: Ernesto J. Podesta, ,
| |
Collapse
|
20
|
Castillo AF, Orlando U, Helfenberger KE, Poderoso C, Podesta EJ. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol Cell Endocrinol 2015; 408:73-9. [PMID: 25540920 DOI: 10.1016/j.mce.2014.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.
Collapse
Affiliation(s)
- Ana F Castillo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ulises Orlando
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Katia E Helfenberger
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Cecilia Poderoso
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina.
| |
Collapse
|
21
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
22
|
van der Burgh R, Pervolaraki K, Turkenburg M, Waterham HR, Frenkel J, Boes M. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J Biol Chem 2014; 289:27757-65. [PMID: 25107911 DOI: 10.1074/jbc.m114.571810] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein prenylation is a post-translational modification whereby non-sterol isoprenoid lipid chains are added, thereby modifying the molecular partners with which proteins interact. The autoinflammatory disease mevalonate kinase deficiency (MKD) is characterized by a severe reduction in protein prenylation. A major class of proteins that are affected are small GTPases, including Rac1 and RhoA. It is not clear how protein prenylation of small GTPases relates to GTP hydrolysis activity and downstream signaling. Here, we investigated the contribution of RhoA prenylation to the biochemical pathways that underlie MKD-associated IL-1β hypersecretion using human cell cultures, Rac1 and RhoA protein variants, and pharmacological inhibitors. We found that when unprenylated, the GTP-bound levels of RhoA decrease, causing a reduction in GTPase activity and increased protein kinase B (PKB) phosphorylation. Cells expressing unprenylated RhoA produce increased levels of interleukin 1β mRNA. Of other phenotypic cellular changes seen in MKD, increased mitochondrial potential and mitochondrial elongation, only mitochondrial elongation was observed. Finally, we show that pharmacological inactivation of RhoA boosts Rac1 activity, a small GTPase whose activity was earlier implied in MKD pathogenesis. Together, our data show that RhoA plays a pivotal role in MKD pathogenesis through Rac1/PKB signaling toward interleukin 1β production and elucidate the effects of protein prenylation in monocytes.
Collapse
Affiliation(s)
- Robert van der Burgh
- From Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Wilhelmina Children's Hospital, 3584 EA, Utrecht, the Netherlands and
| | - Kalliopi Pervolaraki
- From Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Wilhelmina Children's Hospital, 3584 EA, Utrecht, the Netherlands and
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Medical Center, University of Amsterdam, 1100 DE, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Medical Center, University of Amsterdam, 1100 DE, Amsterdam, the Netherlands
| | - Joost Frenkel
- From Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Wilhelmina Children's Hospital, 3584 EA, Utrecht, the Netherlands and
| | - Marianne Boes
- From Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Wilhelmina Children's Hospital, 3584 EA, Utrecht, the Netherlands and
| |
Collapse
|
23
|
Bogdan S, Schultz J, Grosshans J. Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 2014; 6:e27634. [PMID: 24719676 PMCID: PMC3977921 DOI: 10.4161/cib.27634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.
Collapse
Affiliation(s)
- Sven Bogdan
- Institut für Neurobiologie; Universität Münster; Münster, Germany
| | - Jörg Schultz
- Bioinformatik, Biozentrum; Universität Würzburg; Würzburg, Germany
| | - Jörg Grosshans
- Institut für Biochemie; Universitätsmedizin; Universität Göttingen; Göttingen, Germany
| |
Collapse
|
24
|
Sewer MB, Li D. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol Cell Endocrinol 2013; 371. [PMID: 23186810 PMCID: PMC3926866 DOI: 10.1016/j.mce.2012.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.
Collapse
Affiliation(s)
- Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA.
| | | |
Collapse
|
25
|
Hough D, Swart P, Cloete S. Exploration of the Hypothalamic-Pituitary-Adrenal Axis to Improve Animal Welfare by Means of Genetic Selection: Lessons from the South African Merino. Animals (Basel) 2013; 3:442-74. [PMID: 26487412 PMCID: PMC4494397 DOI: 10.3390/ani3020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal's genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA), since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found.
Collapse
Affiliation(s)
- Denise Hough
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Schalk Cloete
- Department of Animal Sciences, Stellenbosch University, Stellenbosch 7602, South Africa.
- Institute for Animal Production, Elsenburg, Private Bag X1, Elsenburg 7607, South Africa.
| |
Collapse
|
26
|
Li D, Dammer EB, Lucki NC, Sewer MB. cAMP-stimulated phosphorylation of diaphanous 1 regulates protein stability and interaction with binding partners in adrenocortical cells. Mol Biol Cell 2013; 24:848-57. [PMID: 23325789 PMCID: PMC3596254 DOI: 10.1091/mbc.e12-08-0597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DIAPH1, the RhoA effector protein, forms a complex in adrenocortical cells and is phosphorylated by a cAMP/PKA-dependent pathway. Phosphorylation differentially modulates protein–protein interactions, regulates the stability of the protein, and facilitates sumoylation. Diaphanous homologue 1 (DIAPH1) is a Rho effector protein that coordinates cellular dynamics by regulating microfilament and microtubule function. We previously showed that DIAPH1 plays an integral role in regulating the production of cortisol by controlling the rate of mitochondrial movement, by which activation of the adrenocorticotropin (ACTH)/cAMP signaling pathway stimulates mitochondrial trafficking and promotes the interaction between RhoA and DIAPH1. In the present study we use mass spectrometry to identify DIAPH1 binding partners and find that DIAPH1 interacts with several proteins, including RhoA, dynamin-1, kinesin, β-tubulin, β-actin, oxysterol-binding protein (OSBP)–related protein 2 (ORP2), and ORP10. Moreover, DIAPH1 is phosphorylated in response to dibutyryl cAMP (Bt2cAMP) at Thr-759 via a pathway that requires extracellular signal-related kinase (ERK). Alanine substitution of Thr-759 renders DIAPH1 more stable and attenuates the interaction between DIAPH1 and kinesin, ORP2, and actin but has no effect on the ability of the protein to interact with RhoA or β-tubulin. Finally, overexpression of a DIAPH1 T759A mutant significantly decreases the rate of Bt2cAMP-stimulated mitochondrial movement. Taken together, our findings establish a key role for phosphorylation in regulating the stability and function of DIAPH1.
Collapse
Affiliation(s)
- Donghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA
| | | | | | | |
Collapse
|
27
|
Badding MA, Dean DA. Highly acetylated tubulin permits enhanced interactions with and trafficking of plasmids along microtubules. Gene Ther 2012; 20:616-24. [PMID: 23013836 PMCID: PMC3587030 DOI: 10.1038/gt.2012.77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microtubule-based transport is required for plasmid translocation to the nucleus during transfections, and having stable structures could enhance this movement. In previous studies in which the cytoskeleton was disrupted, we found that populations of microtubules remain that are stable and highly acetylated. By increasing the levels of acetylated tubulin through inhibition of the tubulin deacetylase HDAC6, we observe more rapid plasmid nuclear localization of transfected plasmids and greater levels of gene transfer. In this study, we sought to understand plasmid movement in cells with enhanced tubulin acetylation. Using variations of a microtubule spin down assay, we found that plasmids bound to hyper-acetylated microtubules to a greater degree than they did to unmodified microtubules. To determine if microtubule acetylation also affects cytoplasmic trafficking, plasmid movement was evaluated in real time by particle tracking in cells with varying levels of acetylated microtubules. We found that plasmids display greater net rates of movement, spend more time in productive motion and display longer runs of continuous motion in cells with highly acetylated microtubules compared to those with fewer modifications. These results all suggest that plasmid movement is enhanced along highly acetylated microtubules, reducing the time spent in the cytoplasm prior to nuclear import. Taken together, these findings provide a foundation for determining how modulation of microtubule acetylation can be used as a means to increase intracellular trafficking of plasmids and enhance gene therapy.
Collapse
Affiliation(s)
- M A Badding
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|