1
|
Tillquist NM, Govoni KE, Zinn SA, Reed SA. Poor maternal nutrition during gestation in sheep alters key hormonal systems involved in energy homeostasis and appetite in the offspring. Domest Anim Endocrinol 2025; 91:106907. [PMID: 39681045 DOI: 10.1016/j.domaniend.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Disturbances in maternal nutrient availability through increased or decreased abundance of specific or total nutrients during pre-natal development can have negative impacts on offspring growth. These changes are likely mediated, at least in part, by hormonal systems that control energy homeostasis and appetite. Regulation of insulin signaling is critical to ensuring appropriate glucose homeostasis. Poor maternal nutrition during gestation impacts circulating glucose and insulin concentration in both the dam and offspring, reducing circulating insulin and glucose in offspring of restricted-fed dams and increased circulating insulin and glucose in the offspring of over-fed dams. Leptin and ghrelin are key regulators of appetite and feed intake. Offspring of over-fed ewes often exhibit leptin resistance, which may lead to changes in adiposity. Leptin responses in offspring of restricted-fed ewes are not well defined, although restricted-fed ewes themselves exhibit decreased circulating leptin concentrations. Little is known about the effects of poor maternal nutrition on offspring ghrelin. Glucocorticoids and thyroid hormones are required for appropriate fetal development. Poor maternal nutrition during gestation alters the development of the hypothalamic-pituitary-adrenal and thyroid axes in the offspring, although the effects vary according to the type, duration, timing, and severity of the nutritional insult. The relationships between insulin, leptin, ghrelin, glucocorticoids, and thyroid hormones can result in synergistic effects, exacerbating negative outcomes for the offspring. The impacts of poor maternal nutrition are multi-faceted, and the resulting alterations in body composition can continue to impact hormone regulation beyond the initial insult caused by poor maternal nutrition during gestation.
Collapse
Affiliation(s)
- Nicole M Tillquist
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Kristen E Govoni
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Steven A Zinn
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Sarah A Reed
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Rapps K, Kisliouk T, Marco A, Weller A, Meiri N. Dieting reverses histone methylation and hypothalamic AgRP regulation in obese rats. Front Endocrinol (Lausanne) 2023; 14:1121829. [PMID: 36817590 PMCID: PMC9930686 DOI: 10.3389/fendo.2023.1121829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although dieting is a key factor in improving physiological functions associated with obesity, the role by which histone methylation modulates satiety/hunger regulation of the hypothalamus through weight loss remains largely elusive. Canonically, H3K9me2 is a transcriptional repressive post-translational epigenetic modification that is involved in obesity, however, its role in the hypothalamic arcuate nucleus (ARC) has not been thoroughly explored. Here we explore the role that KDM4D, a specific demethylase of residue H3K9, plays in energy balance by directly modulating the expression of AgRP, a key neuropeptide that regulates hunger response. METHODS We used a rodent model of diet-induced obesity (DIO) to assess whether histone methylation malprogramming impairs energy balance control and how caloric restriction may reverse this phenotype. Using ChIP-qPCR, we assessed the repressive modification of H3K9me2 at the site of AgRP. To elucidate the functional role of KDM4D in reversing obesity via dieting, a pharmacological agent, JIB-04 was used to inhibit the action of KDM4D in vivo. RESULTS In DIO, downregulation of Kdm4d mRNA results in both enrichment of H3K9me2 on the AgRP promoter and transcriptional repression of AgRP. Because epigenetic modifications are dynamic, it is possible for some of these modifications to be reversed when external cues are altered. The reversal phenomenon was observed in calorically restricted rats, in which upregulation of Kdm4d mRNA resulted in demethylation of H3K9 on the AgRP promoter and transcriptional increase of AgRP. In order to verify that KDM4D is necessary to reverse obesity by dieting, we demonstrated that in vivo inhibition of KDM4D activity by pharmacological agent JIB-04 in naïve rats resulted in transcriptional repression of AgRP, decreasing orexigenic signaling, thus inhibiting hunger. DISCUSSION We propose that the action of KDM4D through the demethylation of H3K9 is critical in maintaining a stable epigenetic landscape of the AgRP promoter, and may offer a target to develop new treatments for obesity.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| |
Collapse
|
3
|
Oliver MH, Jaquiery AL, Connor KL, Phua HH, Harding JE, Thorstensen EB, Bloomfield FH. Effect of maternal periconceptional undernutrition in sheep on cortisol regulation in offspring from mid-late gestation, through to adulthood. Front Endocrinol (Lausanne) 2023; 14:1122432. [PMID: 36817600 PMCID: PMC9932192 DOI: 10.3389/fendo.2023.1122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Maternal periconceptional undernutrition (PCUN) alters fetal hypothalamic-pituitary-adrenal axis (HPAA) function and placental glucocorticoid metabolism in sheep. The effects of PCUN on HPAA function in adult life are not known. We investigated the effects of PCUN on fetal adrenal development across gestation and on cortisol regulation in adult offspring. METHODS Ewes were undernourished from 61 days before to 30 days after conception ('PCUN') or fed ad libitum ('N'). mRNA expression in the fetal adrenal gland of ACTH receptor (ACTHR), steroidogenic acute regulatory protein (STAR), cytochrome P450 17A1 (CYP17A1), 11beta-hydroxysteroid-dehydrogenase type 2 (11βHSD2), insulin-like growth factor-2 (IGF2), and in the fetal hippocampus of 11βHSD1, 11βHSD2, mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) was determined at 50 (adrenal only), 85, 120 and 131 days of gestation (term=148 days). In adult offspring (≥ 3 years, N; 10 female, 5 male, PCUN; 10 female, 10 male) a combined arginine vasopressin (AVP, 0.1 μg/kg) and corticotropin-releasing hormone (CRH, 0.5 μg/kg) challenge and a metyrapone (40 mg/kg) challenge were undertaken. mRNA expression of ACTHR, STAR and CYP17A1 were determined in adult adrenals. RESULTS Fetal adrenal STAR, CYP17A1 and IGF2 mRNA expression were not different between groups in early gestation but were higher in PCUN than N at 131 days' gestation (all p<0.01). PCUN reduced fetal hippocampal MR and GR mRNA expression by 50% at 85 day, but not in later gestation. Adult offspring plasma cortisol responses to AVP+CRH or metyrapone were not different between groups. Plasma ACTH response to AVP+CRH was lower in PCUN males but ACTH response to metyrapone was not different between groups. Adult adrenal ACTHR, STAR, and CYP17A1 mRNA expression were not affected by PCUN. CONCLUSIONS We conclude that the effects of PCUN on fetal HPAA function that became apparent in late gestation, are not reflected in adrenal cortisol secretion in mid-adulthood.
Collapse
Affiliation(s)
- Mark H. Oliver
- Liggins Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Mark H. Oliver,
| | - Anne L. Jaquiery
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Kristin L. Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Hui Hui Phua
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
4
|
Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, Hernández A, Morselli E, Barra R. The Role of the Paraventricular-Coerulear Network on the Programming of Hypertension by Prenatal Undernutrition. Int J Mol Sci 2022; 23:ijms231911965. [PMID: 36233268 PMCID: PMC9569920 DOI: 10.3390/ijms231911965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.
Collapse
Affiliation(s)
- Bernardita Cayupe
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Blanca Troncoso
- Escuela de Enfermería, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago 7510157, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
- Correspondence: ; Tel.: +56-983831083
| |
Collapse
|
5
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Epigenetic Modifications at the Center of the Barker Hypothesis and Their Transgenerational Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312728. [PMID: 34886453 PMCID: PMC8656758 DOI: 10.3390/ijerph182312728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
Embryo/fetal nutrition and the environment in the reproductive tract influence the subsequent risk of developing adult diseases and disorders, as formulated in the Barker hypothesis. Metabolic syndrome, obesity, heart disease, and hypertension in adulthood have all been linked to unwanted epigenetic programing in embryos and fetuses. Multiple studies support the conclusion that environmental challenges, such as a maternal low-protein diet, can change one-carbon amino acid metabolism and, thus, alter histone and DNA epigenetic modifications. Since histones influence gene expression and the program of embryo development, these epigenetic changes likely contribute to the risk of adult disease onset not just in the directly affected offspring, but for multiple generations to come. In this paper, we hypothesize that the effects of parental nutritional status on fetal epigenetic programming are transgenerational and warrant further investigation. Numerous studies supporting this hypothesis are reviewed, and potential research techniques to study these transgenerational epigenetic effects are offered.
Collapse
|
7
|
Han T, Jiang W, Wu H, Wei W, Lu J, Lu H, Xu J, Gu W, Guo X, Wang Y, Ruan J, Li Y, Wang Y, Jiang X, Zhao S, Li Y, Sun C. Fetal malnutrition is associated with impairment of endogenous melatonin synthesis in pineal via hypermethylation of promoters of protein kinase C alpha and cAMP response element-binding. J Pineal Res 2021; 71:e12764. [PMID: 34486775 DOI: 10.1111/jpi.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
This study investigated whether and how fetal malnutrition would influence endogenous melatonin synthesis, and whether such effect of fetal malnutrition would transmit to the next generation. We enrolled 2466 participants and 1313 of their offspring. The urine 6-hydroxymelatonin sulfate and serum melatonin rhythm were measured. Methylation microarray detection and bioinformatics analysis were performed to identify hub methylated sites. Additionally, rat experiment was performed to elucidate mechanisms. The participants with fetal malnutrition had lower 6-hydroxymelatonin sulfate (16.59 ± 10.12 μg/24 hours vs 24.29 ± 11.99 μg/24 hours, P < .001) and arear under curve of melatonin rhythm (67.11 ± 8.16 pg/mL vs 77.11 ± 8.04 pg/mL, P < .001). We identified 961 differentially methylated sites, in which the hub methylated sites were locating on protein kinase C alpha (PRKCA) and cAMP response element-binding protein (CREB1) promoters, mediating the association of fetal malnutrition with impaired melatonin secretion. However, such effects were not observed in the offspring (all P > .05). Impaired histomorphology of pineal, decreased melatonin in serum, pineal, and pinealocyte were also found in the in vivo and in vitro experiments (P < .05 for the differences of the indicators). Hypermethylation of 10 CpG sites on the PRKCA promoter and 8 CpG sites on the CREB1 promoter were identified (all P < .05), which down-regulated PRKCA and CREB1 expressions, leading to decreased expression of AANAT, and then resulting in the impaired melatonin synthesis. Collectively, fetal malnutrition can impair melatonin synthesis through hypermethylation of PRKCA and CREB1 promoters, and such effects cannot be transmitted to the next generation.
Collapse
Affiliation(s)
- Tianshu Han
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jiang Lu
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wenbo Gu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jingqi Ruan
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Yunong Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xitao Jiang
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT, Australia
| | - Shengnan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Translation, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Toschi P, Baratta M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front Vet Sci 2021; 8:755034. [PMID: 34746288 PMCID: PMC8565373 DOI: 10.3389/fvets.2021.755034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway.
Collapse
Affiliation(s)
- Paola Toschi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, Viale delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
10
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Zheng J, Zhang L, Liu J, Li Y, Zhang J. Long-Term Effects of Maternal Low-Protein Diet and Post-weaning High-Fat Feeding on Glucose Metabolism and Hypothalamic POMC Promoter Methylation in Offspring Mice. Front Nutr 2021; 8:657848. [PMID: 34485357 PMCID: PMC8415226 DOI: 10.3389/fnut.2021.657848] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Substantial evidence indicated that maternal malnutrition could increase the susceptibility to obesity, insulin resistance, and type 2 diabetes in adulthood. It is increasingly apparent that the brain, especially the hypothalamus, plays a critical role in glucose homeostasis. However, little information is known about the mechanisms linking maternal protein restriction combined with post-weaning high-fat (HF) feeding with altered expression of brain neurotransmitters, and investigations into the epigenetic modifications of hypothalamus in offspring have not been fully elucidated. Our objective was to explore the effects of maternal protein restriction combined with post-weaning HF feeding on glucose metabolism and hypothalamic POMC methylation in male offspring mice. C57/BL6 mice were fed on either low-protein (LP) or normal chow (NC) diet throughout gestation and lactation. Then, the male offspring were randomly weaned to either NC or high-fat (HF) diet until 32 weeks of age. Gene expressions and DNA methylation of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in male offspring. The results showed that birth weights and body weights at weaning were both significantly lower in male offspring mice of the dams fed with a LP diet. Maternal protein restriction combined with post-weaning high-fat feeding, predisposes higher body weight, persistent glucose intolerance (from weaning to 32 weeks of age), hyperinsulinemia, and hyperleptinemia in male offspring mice. POMC and MC4R expressions were significantly increased in offspring mice fed with maternal LP and postnatal high-fat diet (P < 0.05). Furthermore, maternal protein restriction combined with post-weaning high-fat feeding induced hypomethylation of POMC promoter in the hypothalamus (P < 0.05) and POMC-specific methylation (%) was negatively correlated with the glucose response to a glucose load in male offspring mice (r = -0.42, P = 0.039). In conclusion, maternal LP diet combined with post-weaning high-fat feeding predisposed the male offspring to impaired glucose metabolism and hypothalamic POMC hypomethylation. These findings can advance our thinking about hypothalamic POMC gene methylation between maternal LP diet combined with post-weaning high-fat feeding and metabolic health in offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jiayi Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yanli Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Hypertension in Prenatally Undernourished Young-Adult Rats Is Maintained by Tonic Reciprocal Paraventricular-Coerulear Excitatory Interactions. Molecules 2021; 26:molecules26123568. [PMID: 34207980 PMCID: PMC8230629 DOI: 10.3390/molecules26123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.
Collapse
|
13
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Kulhanek D, Weigel R, Paulsen ME. Maternal High-Fat-High-Carbohydrate Diet-Induced Obesity Is Associated with Increased Appetite in Peripubertal Male but Not Female C57Bl/6J Mice. Nutrients 2020; 12:E2919. [PMID: 32987812 PMCID: PMC7598591 DOI: 10.3390/nu12102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-induced maternal obesity might play a critical role in altering hypothalamic development, predisposing the offspring to obesity and metabolic disease later in life. The objective of this study was to describe both phenotypic and molecular sex differences in peripubertal offspring energy homeostasis, using a mouse model of maternal obesity induced by a high-fat-high-carbohydrate (HFHC) diet. We report that males, not females, exposed to a maternal HFHC diet had increased energy intake. Males exposed to a maternal HFHC diet had a 15% increased meal size and a 46% increased frequency, compared to the control (CON) males, without a change in energy expenditure. CON and HFHC offspring did not differ in body weight, composition, or plasma metabolic profile. HFHC diet caused decreased hypothalamic glucocorticoid expression, which was further decreased in males compared to females. Maternal weight, maternal caloric intake, and male offspring meal frequency were inversely correlated with offspring hypothalamic insulin receptor (IR) expression. There was a significant interaction between maternal-diet exposure and sex in hypothalamic IR. Based on our preclinical data, we suggest that interventions focusing on normalizing maternal nutrition might be considered to attenuate nutritional influences on obesity programming and curb the continuing rise in obesity rates.
Collapse
Affiliation(s)
| | | | - Megan E. Paulsen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.K.); (R.W.)
| |
Collapse
|
15
|
Long-term effects of pro-opiomelanocortin methylation induced in food-restricted dams on metabolic phenotypes in male rat offspring. Obstet Gynecol Sci 2020; 63:239-250. [PMID: 32489968 PMCID: PMC7231940 DOI: 10.5468/ogs.2020.63.3.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Objective Maternal malnutrition affects the growth and metabolic health of the offspring. Little is known about the long-term effect on metabolic indices of epigenetic changes in the brain caused by maternal diet. Thus, we explored the effect of maternal food restriction during pregnancy on metabolic profiles of the offspring, by evaluating the DNA methylation of hypothalamic appetite regulators at 3 weeks of age. Methods Sprague-Dawley rats were divided into 2 groups: a control group and a group with a 50% food-restricted (FR) diet during pregnancy. Methylation and expression of appetite regulator genes were measured in 3-week-old offspring using pyrosequencing, real-time polymerase chain reaction, and western blotting analyses. We analyzed the relationship between DNA methylation and metabolic profiles by Pearson's correlation analysis. Results The expression of pro-opiomelanocortin (POMC) decreased, whereas DNA methylation significantly increased in male offspring of the FR dams, compared to the male offspring of control dams. Hypermethylation of POMC was positively correlated with the levels of high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol in 3-week-old male offspring. In addition, there were significant positive correlations between hypermethylation of POMC and the levels of triglycerides, HDL-C, and leptin in 6-month-old male offspring. Conclusion Our findings suggest that maternal food restriction during pregnancy influences the expression of hypothalamic appetite regulators via epigenetic changes, leading to the development of metabolic disorders in the offspring.
Collapse
|
16
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Moody L, Shao J, Chen H, Pan YX. Maternal Low-Fat Diet Programs the Hepatic Epigenome despite Exposure to an Obesogenic Postnatal Diet. Nutrients 2019; 11:nu11092075. [PMID: 31484384 PMCID: PMC6769607 DOI: 10.3390/nu11092075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity and metabolic disease present a danger to long-term health outcomes. It has been hypothesized that epigenetic marks established during early life might program individuals and have either beneficial or harmful consequences later in life. In the present study, we examined whether maternal diet alters DNA methylation and whether such modifications persist after an obesogenic postnatal dietary challenge. During gestation and lactation, male Sprague-Dawley rats were exposed to either a high-fat diet (HF; n = 10) or low-fat diet (LF; n = 10). After weaning, all animals were fed a HF diet for an additional nine weeks. There were no differences observed in food intake or body weight between groups. Hepatic DNA methylation was quantified using both methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq). Overall, 1419 differentially methylated regions (DMRs) were identified. DMRs tended to be located in CpG shores and were enriched for genes involved in metabolism and cancer. Gene expression was measured for 31 genes in these pathways. Map3k5 and Igf1r were confirmed to be differentially expressed. Finally, we attempted to quantify the functional relevance of intergenic DMRs. Using chromatin contact data, we saw that conserved DMRs were topologically associated with metabolism genes, which were associated with differential expression of Adh5, Enox1, and Pik3c3. We show that although maternal dietary fat is unable to reverse offspring weight gain in response to a postnatal obesogenic diet, early life diet does program the hepatic methylome. Epigenetic alterations occur primarily in metabolic and cancer pathways and are associated with altered gene expression, but it is unclear whether they bear consequence later in life.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin Shao
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Exeter High School, 1 Blue Hawk Drive, Exeter, NH 03833, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
|
19
|
Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54:100773. [PMID: 31344387 DOI: 10.1016/j.yfrne.2019.100773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes.
Collapse
|
20
|
Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019; 3:208-220. [PMID: 31309172 PMCID: PMC6612891 DOI: 10.15698/cst2019.07.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite enormous social and scientific efforts, obesity rates continue to increase worldwide. While genetic factors contribute to obesity development, genetics alone cannot explain the current epidemic. Obesity is essentially the consequence of complex genetic-environmental interactions. Evidence suggests that contemporary lifestyles trigger epigenetic changes, which can dysregulate energy balance and thus contribute to obesity. The hypothalamus plays a pivotal role in the regulation of body weight, through a sophisticated network of neuronal systems. Alterations in the activity of these neuronal pathways have been implicated in the pathophysiology of obesity. Here, we review the current knowledge on the central control of energy balance with a focus on recent studies linking epigenetic mechanisms in the hypothalamus to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
21
|
Miguel-Pacheco GG, Perry VE, Hernandez-Medrano JH, Wapenaar W, Keisler DH, Voigt JP. Low protein intake during the preconception period in beef heifers affects offspring and maternal behaviour. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Burgess DJ, Dorey ES, Gardebjer EM, Bielefeldt-Ohmann H, Moritz KM, Cuffe JSM. Periconceptional ethanol exposure alters the stress axis in adult female but not male rat offspring. Stress 2019; 22:347-357. [PMID: 30741061 DOI: 10.1080/10253890.2018.1563068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption during pregnancy alters offspring hypothalamus-pituitary-adrenal (HPA) axis regulation. However, little is known about the outcomes of alcohol consumption confined to the periconceptional period. This study investigated the effects of periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response to restraint stress and gene expression of adrenal, hypothalamic, and hippocampal glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone concentrations were measured, while in a separate cohort of aged rats, blood pressure, heart rate, and plasma corticosterone concentrations were measured during a 30-minute restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma corticosterone concentrations in adult and aged female but not male offspring (p < .05). The corticosterone and pressor response were significantly reduced in aged PC:EtOH female offspring following restraint (p < .05). Expression of adrenal steroidogenesis genes (Mc2r, Cyp11a1, Cyp21a1, 11bhsd2, and Nr3c1) and hypothalamic genes (Crh, Crh-r1, Nr3c1, and Hsp90a1) was not affected by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of Hsp90a1 was significantly elevated, and within the hippocampus, mRNAs for glucocorticoid receptor (Nr3c1) and Hsp90a1 were increased (p < .05). This study supports the hypothesis that prenatal alcohol exposure programs sex-specific alterations in the HPA axis and provides the first evidence that the periconceptional period is a critical window for programing of this axis. Lay summary This study investigated the impact of alcohol consumption around the time of conception on offspring stress reactivity in a rat model. Offspring exposed to alcohol displayed altered cardiovascular responses to stress and had reduced circulating concentrations of the stress hormone corticosterone both under basal conditions and following a stressful challenge. This study also identified altered expression of key genes in an important part of the brain known to be involved in stress responsiveness; the hippocampus. If similar outcomes occur in humans, these results would suggest that alcohol consumption, even before a woman knows she is pregnant, may significantly impact stress-related outcomes in children.
Collapse
Affiliation(s)
- Danielle J Burgess
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Emily S Dorey
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Emelie M Gardebjer
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | | | - Karen M Moritz
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
- c The University of Queensland, Child Health Research Centre , Brisbane , Australia
| | - James S M Cuffe
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| |
Collapse
|
23
|
Hsu CN, Tain YL. The Good, the Bad, and the Ugly of Pregnancy Nutrients and Developmental Programming of Adult Disease. Nutrients 2019; 11:nu11040894. [PMID: 31010060 PMCID: PMC6520975 DOI: 10.3390/nu11040894] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal nutrition plays a decisive role in developmental programming of many non-communicable diseases (NCDs). A variety of nutritional insults during gestation can cause programming and contribute to the development of adult-onset diseases. Nutritional interventions during pregnancy may serve as reprogramming strategies to reverse programming processes and prevent NCDs. In this review, firstly we summarize epidemiological evidence for nutritional programming of human disease. It will also discuss evidence from animal models, for the common mechanisms underlying nutritional programming, and potential nutritional interventions used as reprogramming strategies.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
24
|
Moody L, Xu GB, Chen H, Pan YX. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:141-152. [PMID: 30605728 DOI: 10.1016/j.bbagrm.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Carnitine palmitoyltransferase 1 (Cpt1a) is a rate-limiting enzyme that mediates the transport of fatty acids into the mitochondria for subsequent beta-oxidation. The objective of this study was to uncover how diet mediates the transcriptional regulation of Cpt1a. Pregnant Sprague Dawley rats were exposed to either a high-fat (HF) or low-fat control diet during gestation and lactation. At weaning, male offspring received either a HF or control diet, creating 4 groups: lifelong control diet (C/C; n = 12), perinatal HF diet (HF/C; n = 9), post-weaning HF diet (C/HF; n = 10), and lifelong HF diet (HF/HF; n = 10). Only HF/HF animals had higher hepatic Cpt1a mRNA expression than C/C. Epigenetic analysis revealed reduced DNA methylation (DNAMe) and increased histone 3 lysine 4 dimethylation (H3K4Me2) upstream and within the promoter of Cpt1a in the HF/HF group. This was accompanied by increased peroxisome proliferator activated receptor alpha (PPARα) and CCAAT/enhancer binding protein beta (C/EBPβ) binding directly downstream of the Cpt1a transcription start site within the first intron. Findings were confirmed in rat hepatoma H4IIEC3 cells treated with non-esterified fatty acid (NEFA). After 12 h of NEFA treatment, there was an enrichment of SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily D member 1 (BAF60a or SMARCD1) in the first intron of Cpt1a. We conclude that dietary fat elevates hepatic Cpt1a expression via a highly coordinated transcriptional mechanism involving increased H3K4Me2, reduced DNAMe, and recruitment of C/EBPβ, PPARα, PGC1α, and BAF60a to the gene.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.
| |
Collapse
|
25
|
Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, Mounien L. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics 2018; 13:1127-1140. [PMID: 30395773 DOI: 10.1080/15592294.2018.1543507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity. Pomc gene expression is tightly controlled by different mechanisms. Interestingly, recent studies pointed to a key role for micro ribonucleic acid (miRNAs) in the regulation of gene expression. However, the role of miRNAs in the leptin sensitivity in hypothalamic melanocortin system has never been assessed. We developed a transgenic mouse model (PDKO) with a partial deletion of the miRNA processing enzyme DICER specifically in POMC neurons. PDKO mice exhibited a normal body weight but a decrease of food intake. Interestingly, PDKO mice had decreased metabolic rate by reduction of VO2 consumption and CO2 production which could explain that PDKO mice have normal weight while eating less. Interestingly, we observed an increase of leptin sensitivity in the POMC neurons of PDKO mice which could explain the decrease of food intake in this model. We also observed an increase in the expression of genes involved in the function of brown adipose tissue that is in polysynaptic contact with the POMC neurons. In summary, these results support the hypothesis that Dicer-derived miRNAs may be involved in the effect of leptin on POMC neurons activity.
Collapse
Affiliation(s)
- Adel Derghal
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| | - Mehdi Djelloul
- b Department of Cell and Molecular Biology , Karolinska Institute , Stockholm , Sweden
| | | | | | - Franck Tourniaire
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Jean-François Landrier
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France.,c Faculté de Médecine de la Timone , CriBioM, Criblage Biologique Marseille , Marseille , France
| | - Lourdes Mounien
- a Aix Marseille Univ, INSERM, INRA, C2VN , Marseille , France
| |
Collapse
|
26
|
Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch Toxicol 2018; 93:547-558. [PMID: 30377736 DOI: 10.1007/s00204-018-2338-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Triclosan (TCS), as a broad spectrum antibacterial agent, is commonly utilized in personal care and household products. Maternal urinary TCS level has been associated with changes in birth weight of infants. We in the present study investigated whether exposure of mice to 8 mg/kg TCS from gestational day (GD) 6 to GD14 alters prenatal and postnatal growth and development, and metabolic phenotypes in male and female offspring (TCS-offspring). Compared with control offspring, body weight in postnatal day (PND) 1 male or female TCS-offspring was reduced, but body weight gain was faster within postnatal 5 days. PND30 and PND60 TCS-offspring showed overweight with increases in visceral fat and adipocyte size. PND60 TCS-offspring displayed delayed glucose clearance and insulin resistance. PND30 TCS-offspring showed an increase in food intake without the changes in the oxygen consumption and respiratory exchange ratio (RER). The expression levels of proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH) and single-minded 1 (SIM1) in hypothalamus arcuate nucleus (ARC) and paraventricular nucleus (PVN), respectively, were significantly reduced in PND30 TCS-offspring compared to controls. The hypermethylation of CpG sites at the POMC promoter was observed in PND30 TCS-offspring, while the concentration of serum leptin was elevated and the level of STAT3 phosphorylation in ARC had no significant difference from control. This study demonstrates that TCS exposure during early/mid-gestation through the hypermethylation of the POMC promoter reduces the expression of anorexigenic neuropeptides to cause the postnatal hyperphagic obesity, leading to metabolic syndrome in adulthood.
Collapse
|
27
|
Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health. J Dev Orig Health Dis 2018; 10:164-175. [PMID: 30362448 DOI: 10.1017/s2040174418000764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exposure to the endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with health abnormalities that persist in subsequent generations. However, transgenerational effects of BPA on metabolic health are not widely studied. In a maternal C57BL/6J mice (F0) exposure model using BPA doses that are relevant to human exposure levels (10 μg/kg/day, LowerB; 10 mg/kg/day, UpperB), we showed male- and dose-specific effects on pancreatic islets of the first (F1) and second generation (F2) offspring relative to controls (7% corn oil diet; control). In this study, we determined the transgenerational effects (F3) of BPA on metabolic health and pancreatic islets in our model. Adult F3 LowerB and UpperB male offspring had increased body weight relative to Controls, however glucose tolerance was similar in the three groups. F3 LowerB, but not UpperB, males had reduced β-cell mass and smaller islets which was associated with increased glucose-stimulated insulin secretion. Similar to F1 and F2 BPA male offspring, staining for markers of T-cells and macrophages (CD3 and F4/80) was increased in pancreas of F3 LowerB and UpperB male offspring, which was associated with changes in cytokine levels. In contrast to F3 BPA males, LowerB and UpperB female offspring had comparable body weight, glucose tolerance and insulin secretion as Controls. Thus, maternal BPA exposure resulted in fewer metabolic defects in F3 than F1 and F2 offspring, and these were sex- and dose-specific.
Collapse
|
28
|
Chadio S, Kotsampasi B, Taka S, Liandris E, Papadopoulos N, Plakokefalos E. Epigenetic changes of hepatic glucocorticoid receptor in sheep male offspring undernourished in utero. Reprod Fertil Dev 2018; 29:1995-2004. [PMID: 28076749 DOI: 10.1071/rd16276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to characterise the effects of maternal undernutrition during gestation on hepatic gluconeogenic enzyme gene expression and to determine whether such effects are mediated through epigenetic changes in the glucocorticoid receptor (GR). Pregnant ewes were fed a 50% nutrient-restricted diet from Day 0 to 30 (R1) or from Day 31 to 100 of gestation (R2) or a 100% diet throughout gestation (Control). After parturition lambs were fed to appetite. At 10 months of age offspring were euthanised and livers were removed. Maternal undernutrition did not affect offspring bodyweight at birth or at 10 months of age. However, liver weight of males of the R2 group was lower (P<0.05) in relation to other groups. A significant (P<0.05) hypomethylation of the hepatic GR promoter was revealed in males of the R2 group and a tendency towards the same in the R1 group, along with increased (P<0.001) GR gene expression in both restricted groups. A significant increase (P<0.05) in hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene expression was found in male lambs of both undernourished groups, accompanied by increased (P<0.01) protein levels, while no differences were detected for glucose-6-phosphatase (G6Pase) mRNA abundance and protein levels. In female lambs, no differences between groups were observed for any parameter studied. These data represent potential mechanisms by which insults in early life may lead to persistent physiological changes in the offspring.
Collapse
Affiliation(s)
- Stella Chadio
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| | - Basiliki Kotsampasi
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organisation 'DEMETER', Paralimni, PO Box 58100, Giannitsa, Greece
| | - Stylliani Taka
- Allergy Department, Second Paediatric Clinic, University of Athens, 41 Fidippidou, PO Box 11527, Athens, Greece
| | - Emmanouil Liandris
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| | - Nikolaos Papadopoulos
- Allergy Department, Second Paediatric Clinic, University of Athens, 41 Fidippidou, PO Box 11527, Athens, Greece
| | - Elias Plakokefalos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| |
Collapse
|
29
|
Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond) 2018; 42:1431-1444. [PMID: 29777232 PMCID: PMC6113193 DOI: 10.1038/s41366-018-0094-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Background and objective Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring’s hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. Methods Eight-week-old female Sprague–Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. Results With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. Conclusion Maternal overnutrition programs long-term epigenetic alterations in the offspring’s hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.
Collapse
|
30
|
Abstract
Olfaction and gustation are critical for the enjoyment of food but also have important metabolic roles, initiating the cephalic phase response that sets in train secretion of hormones important for metabolism and digestion before any food is actually ingested. Smell and taste receptors are functional in the fetus and there is evidence for antenatal learning of odours. Despite enteral nutrition and metabolism being major issues in the care of very preterm infants, often little consideration is given to the potential role of smell and taste in supporting these processes, or in the role they may have in encoding hypothalamic circuitry in a way that promotes healthy metabolism in the post‑neonatal period. This review will discuss the evidence for the role of smell and taste in the newborn infant.
Collapse
Affiliation(s)
- Frank H Bloomfield
- Liggins Institute, University of Auckland, Auckland, New Zealand; Newborn Services, National Women's Health, Auckland City Hospital, Auckland, New Zealand.
| | - Tanith Alexander
- Liggins Institute, University of Auckland, Auckland, New Zealand; Neonatal Unit, Middlemore Hospital, Counties Manukau Health, Auckland, New Zealand.
| | - Mariana Muelbert
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Friederike Beker
- Department of Newborn Services, Mater Mothers' Hospital, Brisbane, QLD, Australia; Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
31
|
Moody L, Chen H, Pan YX. Postnatal diet remodels hepatic DNA methylation in metabolic pathways established by a maternal high-fat diet. Epigenomics 2017; 9:1387-1402. [DOI: 10.2217/epi-2017-0066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: We investigate how postweaning diet may modify the epigenetic landscape to meet metabolic demands later in life. Methods: Sprague-Dawley rats were exposed to a high-fat (HF) diet during gestation and lactation. At weaning, male offspring were placed either on an HF diet (HF/HF) or a control diet (HF/C). Methylation-dependent immunoprecipitation sequencing and methylation-sensitive restriction enzyme sequencing were used to quantify hepatic DNA methylation. Results: Out of the 3966 identified differentially methylated regions, 37% were mapped to gene bodies while 6% fell within promoter or downstream regions. Differentially methylated genes were clustered in the type II diabetes mellitus and the adipocytokine signaling pathways. Conclusion: Our results indicate that compared with a lifelong HF diet, offspring exposed to a new postweaning control diet are able to remodel the hepatic epigenome, emphasizing the dynamic nature of the methylome even after early life.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Khanal P, Nielsen MO. Impacts of prenatal nutrition on animal production and performance: a focus on growth and metabolic and endocrine function in sheep. J Anim Sci Biotechnol 2017; 8:75. [PMID: 28919976 PMCID: PMC5594587 DOI: 10.1186/s40104-017-0205-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
The concept of foetal programming (FP) originated from human epidemiological studies, where foetal life nutrition was linked to health and disease status later in life. Since the proposal of this phenomenon, it has been evaluated in various animal models to gain further insights into the mechanisms underlying the foetal origins of health and disease in humans. In FP research, the sheep has been quite extensively used as a model for humans. In this paper we will review findings mainly from our Copenhagen sheep model, on the implications of late gestation malnutrition for growth, development, and metabolic and endocrine functions later in life, and discuss how these implications may depend on the diet fed to the animal in early postnatal life. Our results have indicated that negative implications of foetal malnutrition, both as a result of overnutrition and, particularly, late gestation undernutrition, can impair a wide range of endocrine functions regulating growth and presumably also reproductive traits. These implications are not readily observable early in postnatal life, but are increasingly manifested as the animal approaches adulthood. No intervention or cure is known that can reverse this programming in postnatal life. Our findings suggest that close to normal growth and slaughter results can be obtained at least until puberty in animals which have undergone adverse programming in foetal life, but manifestation of programming effects becomes increasingly evident in adult animals. Due to the risk of transfer of the adverse programming effects to future generations, it is therefore recommended that animals that are suspected to have undergone adverse FP are not used for reproduction. Unfortunately, no reliable biomarkers have as yet been identified that allow accurate identification of adversely programmed offspring at birth, except for very low or high birth weights, and, in pigs, characteristic changes in head shape (dolphin head). Future efforts should be therefore dedicated to identify reliable biomarkers and evaluate their effectiveness for alleviation/reversal of the adverse programming in postnatal life. Our sheep studies have shown that the adverse impacts of an extreme, high-fat diet in early postnatal life, but not prenatal undernutrition, can be largely reversed by dietary correction later in life. Thus, birth (at term) appears to be a critical set point for permanent programming in animals born precocial, such as sheep. Appropriate attention to the nutrition of the late pregnant dam should therefore be a priority in animal production systems.
Collapse
Affiliation(s)
- Prabhat Khanal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark.,Current address: Department of Nutrition, Faculty of Medicine, Transgenic Animal and Lipid Storage, Norwegian Transgenic Centre (NTS), University of Oslo, Oslo, Norway
| | - Mette Olaf Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
33
|
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev 2017; 38:267-296. [PMID: 28898979 PMCID: PMC5546881 DOI: 10.1210/er.2017-00111] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Collapse
Affiliation(s)
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, Washington 98195
| | - Eric Ravussin
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Leanne M Redman
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York 10032
| |
Collapse
|
34
|
Derghal A, Djelloul M, Trouslard J, Mounien L. The Role of MicroRNA in the Modulation of the Melanocortinergic System. Front Neurosci 2017; 11:181. [PMID: 28424580 PMCID: PMC5380727 DOI: 10.3389/fnins.2017.00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
The central control of energy balance involves a highly regulated neuronal network within the hypothalamus and the dorsal vagal complex. In these structures, pro-opiomelanocortin (POMC) neurons are known to reduce meal size and to increase energy expenditure. In addition, leptin, a peripheral signal that relays information regarding body fat content, modulates the activity of melanocortin pathway neurons including POMC-, Agouti-related peptide (AgRP)/Neuropeptide Y (NPY)-, melanocortin receptors (MC3R and MC4R)-expressing neurons. MicroRNAs (miRNAs) are short non-coding RNAs of 22–26 nucleotides that post-transcriptionally interfere with target gene expression by binding to their mRNAs. Evidence has demonstrated that miRNAs play important roles in the central regulation of energy balance. In this context, different studies identified miRNAs including miR-200 family, miR-103, or miR-488 that could target the genes of melanocortin pathway. More precisely, these different miRNAs can modulate energy homeostasis by affecting leptin transduction pathway in the POMC, or AgRP/NPY neurons. This article reviews the role of identified miRNAs in the modulation of melanocortin pathway in the context of energy homeostasis.
Collapse
Affiliation(s)
- Adel Derghal
- Physiologie et Physiopathologie du Système Nerveux Somatomoteur et Neurovégétatif (PPSN), Aix Marseille UniversityMarseille, France
| | - Mehdi Djelloul
- Physiologie et Physiopathologie du Système Nerveux Somatomoteur et Neurovégétatif (PPSN), Aix Marseille UniversityMarseille, France.,Department of Cell and Molecular Biology, Karolinska InstituteStockholm, Sweden
| | - Jérôme Trouslard
- Physiologie et Physiopathologie du Système Nerveux Somatomoteur et Neurovégétatif (PPSN), Aix Marseille UniversityMarseille, France
| | - Lourdes Mounien
- Physiologie et Physiopathologie du Système Nerveux Somatomoteur et Neurovégétatif (PPSN), Aix Marseille UniversityMarseille, France
| |
Collapse
|
35
|
Moody L, Chen H, Pan YX. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv Nutr 2017; 8:337-350. [PMID: 28298276 PMCID: PMC5347110 DOI: 10.3945/an.116.014209] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The perinatal period is a window of heightened plasticity that lays the groundwork for future anatomic, physiologic, and behavioral outcomes. During this time, maternal diet plays a pivotal role in the maturation of vital organs and the establishment of neuronal connections. However, when perinatal nutrition is either lacking in specific micro- and macronutrients or overloaded with excess calories, the consequences can be devastating and long lasting. The brain is particularly sensitive to perinatal insults, with several neurologic and psychiatric disorders having been linked to a poor in utero environment. Diseases characterized by learning and memory impairments, such as autism, schizophrenia, and Alzheimer disease, are hypothesized to be attributed in part to environmental factors, and evidence suggests that the etiology of these conditions may date back to very early life. In this review, we discuss the role of the early-life diet in shaping cognitive outcomes in offspring. We explore the endocrine and immune mechanisms responsible for these phenotypes and discuss how these systemic factors converge to change the brain's epigenetic landscape and regulate learning and memory across the lifespan. Through understanding the maternal programming of cognition, critical steps may be taken toward preventing and treating diseases that compromise learning and memory.
Collapse
Affiliation(s)
| | - Hong Chen
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition, and
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, .,Department of Food Science and Human Nutrition, and.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
36
|
Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 2016; 8:30-43. [DOI: 10.1017/s2040174416000507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of Developmental Origins of Health and Disease (DOHaD) seeks to understand the relationships between early-life environmental exposures and long-term health and disease. Until recently, the molecular mechanisms underlying these phenomena were poorly understood; however, epigenetics has been proposed to bridge the gap between the environment and phenotype. Epigenetics involves the study of heritable changes in gene expression, which occur without changes to the underlying DNA sequence. Different types of epigenetic modifications include DNA methylation, post-translational histone modifications and non-coding RNAs. Increasingly, changes to the epigenome have been associated with early-life exposures in both humans and animal models, offering both an explanation for how the environment may programme long-term health, as well as molecular changes that could be developed as biomarkers of exposure and/or future disease. As such, epigenetic studies in DOHaD hold much promise; however, there are a number of factors which should be considered when designing and interpreting such studies. These include the impact of the genome on the epigenome, the tissue-specificity of epigenetic marks, the stability (or lack thereof) of epigenetic changes over time and the importance of associating epigenetic changes with changes in transcription or translation to demonstrate functional consequences. In this review, we discuss each of these key concepts and provide practical strategies to mitigate some common pitfalls with the aim of providing a useful guide for future epigenetic studies in DOHaD.
Collapse
|
37
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
38
|
Muñoa I, Urizar I, Casis L, Irazusta J, Subirán N. The epigenetic regulation of the opioid system: new individualized prompt prevention and treatment strategies. J Cell Biochem 2016; 116:2419-26. [PMID: 25974312 DOI: 10.1002/jcb.25222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
The most well-known physiological effect associated with opiod system is their efficacy in pain reduction or analgesia, although their effect on a variety of other physiological and physiophological functions has become apparent in recent years. This review is an attempt to clarify in more detail the epigenetic regulation of opioid system to understand with more precision their transcriptional and posttranscriptional regulation in multiple pyisiological and pharmacological contexts. The opioid receptors show an epigenetic regulation and opioid peptide precursors by methylation, chromatin remodeling and microRNA. Although the opioid receptor promoters have similarity between them, they use different epigenetic regulation forms and they exhibit different pattern of expression during the cell differentiation. DNA methylation is also confirmed in opioid peptide precursors, being important for gene expression and tissue specificity. Understanding the epigenetic basis of those physiological and physiopathological procesess is essential for the development of individualized prompt prevention and treatment strategies.
Collapse
Affiliation(s)
- Iraia Muñoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itziar Urizar
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Luis Casis
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Irazusta
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
39
|
Vansant G. Effect of Maternal and Paternal Nutrition on DNA Methylation in the Offspring: A Systematic Review of Human and Animal Studies. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/aowmc.2016.04.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Pannia E, Cho CE, Kubant R, Sánchez-Hernández D, Huot PSP, Harvey Anderson G. Role of maternal vitamins in programming health and chronic disease. Nutr Rev 2016; 74:166-80. [PMID: 26883881 DOI: 10.1093/nutrit/nuv103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vitamin consumption prior to and during pregnancy has increased as a result of proactive recommendations by health professionals, wide availability of vitamin supplements, and liberal food-fortification policies. Folic acid, alone or in combination with other B vitamins, is the most recommended vitamin consumed during pregnancy because deficiency of this vitamin leads to birth defects in the infant. Folic acid and other B vitamins are also integral components of biochemical processes that are essential to the development of regulatory systems that control the ability of the offspring to adapt to the external environment. Although few human studies have investigated the lasting effects of high vitamin intakes during pregnancy, animal models have shown that excess vitamin supplementation during gestation is associated with negative metabolic effects in both the mothers and their offspring. This research from animal models, combined with the recognition that epigenetic regulation of gene expression is plastic, provides evidence for further examination of these relationships in the later life of pregnant women and their children.
Collapse
Affiliation(s)
- Emanuela Pannia
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Sánchez-Hernández
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pedro S P Huot
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - G Harvey Anderson
- E. Pannia, C.E. Cho, R. Kubant, D. Sánchez-Hernández, P.S.P. Huot, and G.H. Anderson are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. G.H. Anderson is with the Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Associations among child abuse, mental health, and epigenetic modifications in the proopiomelanocortin gene (POMC): A study with children in Tanzania. Dev Psychopathol 2016; 28:1401-1412. [PMID: 26753719 DOI: 10.1017/s0954579415001248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Child abuse is associated with a number of emotional and behavioral problems. Nevertheless, it has been argued that these adverse consequences may not hold for societies in which many of the specific acts of abuse are culturally normed. Epigenetic modifications in the genes of the hypothalamus-pituitary-adrenal axis may provide a potential mechanism translating abuse into altered gene expression, which subsequently results in behavioral changes. Our investigation took place in Tanzania, a society in which many forms of abuse are commonly employed as disciplinary methods. We included 35 children with high exposure and compared them to 25 children with low exposure. Extreme group comparisons revealed that children with high exposure reported more mental health problems. Child abuse was associated with differential methylation in the proopiomelanocortin gene (POMC), measured both in saliva and in blood. Hierarchical clustering based on the methylation of the POMC gene found two distinct clusters. These corresponded with children's self-reported abuse, with two-thirds of the children allocated into their respective group. Our results emphasize the consequences of child abuse based on both molecular and behavioral grounds, providing further evidence that acts of abuse affect children, even when culturally acceptable. Furthermore, on a molecular level, our findings strengthen the credibility of children's self-reports.
Collapse
|
42
|
Balsevich G, Baumann V, Uribe A, Chen A, Schmidt MV. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice. Neuroendocrinology 2016; 103:354-68. [PMID: 26279463 DOI: 10.1159/000439087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. METHODS We used a mouse model of maternal diet-induced obesity to investigate whether maternal obesity affects the response to adult chronic stress exposure in young adult (3-month-old) and aged adult (12-month-old) offspring. RESULTS Long-lasting, delayed impairments to anxiety-like behaviors and stress coping strategies resulted on account of prenatal exposure to maternal obesity. Although maternal obesity did not change the offspring's behavioral response to chronic stress per se, we demonstrate that the behavioral outcomes induced by prenatal exposure to maternal obesity parallel the deleterious effects of adult chronic stress exposure in aged male mice. We found that the glucocorticoid receptor (GR, Nr3c1) is upregulated in various hypothalamic nuclei on account of maternal obesity. In addition, gene expression of a known regulator of the GR, FKBP51, is increased specifically within the paraventricular nucleus. CONCLUSIONS These findings indicate that maternal obesity parallels the deleterious effects of adult chronic stress exposure, and furthermore identifies GR/FKBP51 signaling as a novel candidate pathway regulated by maternal obesity.
Collapse
Affiliation(s)
- Georgia Balsevich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Abstract
The hypothalamic-pituitary-adrenal axis provides physiological adaptations to various environmental stimuli in mammals. These stimuli including maternal care, diet, immune challenge, stress, and others have the potential to stably modify or program the functioning of the HPA axis when experienced early in life or at later critical stages of development. Epigenetic mechanisms mediate the biological embedding of environmental stimuli or conditions. These changes are influenced by the genotype and both, environment and genotype contribute to the development of a specific phenotype with regard to the stress response that might be more susceptible or resilient to the development of mental conditions. The effects of stress might be a result of cumulative stress or a mismatch between the environments experienced early in life versus the conditions much later. These effects including the associated epigenetic modifications are potentially reversible.
Collapse
Affiliation(s)
- Jan P Buschdorf
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Canadian Neuroepigenetics Network, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 2015; 64:425-39. [PMID: 26527258 PMCID: PMC4949630 DOI: 10.1002/glia.22938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Collapse
Affiliation(s)
- Patrick N Stoney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Diana Rodrigues
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Peter McCaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| |
Collapse
|
46
|
Adam CL, Williams PA, Milne JS, Aitken RP, Wallace JM. Orexigenic Gene Expression in Late Gestation Ovine Foetal Hypothalamus is Sensitive to Maternal Undernutrition and Realimentation. J Neuroendocrinol 2015. [PMID: 26212239 DOI: 10.1111/jne.12302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adverse nutritional effects on developing foetal hypothalamic appetitive pathways may contribute to programmed hyperphagia and obesity in intra-uterine growth-restricted, low birth weight offspring. In the present study, for the first time, hypothalamic gene expression for primary orexigenic and anorexigenic genes was examined in late gestation ovine foetuses (130 days; term=145 days) whose mothers were undernourished (UN) or well-nourished (C) throughout pregnancy, or transferred from UN to C on day 90 (UN-C). Pregnancies resulted from singleton embryo transfer into adolescent growing ewes. Body weight, carcass fat content and perirenal adipose tissue (PAT) mass were all lower for UN (n=9) than C (n=7) and intermediate for UN-C foetuses (n=6), with no effect of sex. PAT leptin gene expression (by the reverse transcriptase-polymerase chain reaction) was lower in UN than C and UN-C groups, and lower in males than females. Gene expression (by in situ hybridisation with radiolabelled riboprobes) in the arcuate nucleus was greater in UN than C foetuses for neuropeptide Y (NPY), agouti-related peptide (AGRP) and leptin receptor (OBRb) but not different for pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript. Gene expression in UN-C foetuses was intermediate for NPY and AGRP and not different from C foetuses for OBRb. Gene expression for NPY, AGRP and OBRb correlated negatively with foetal carcass fat content and with PAT leptin gene expression across all groups. Males had greater mRNA expression for AGRP than females, with NPY and OBRb showing similar trends. Therefore, maternal undernutrition throughout pregnancy increased orexigenic gene expression in the late gestation foetal hypothalamus, and expression levels were largely normalised by improved maternal nutrition in the last third of pregnancy. These findings may have implications for avoiding or correcting prenatal programming of postnatal hyperphagia and obesity.
Collapse
Affiliation(s)
- C L Adam
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - P A Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - J S Milne
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - R P Aitken
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - J M Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
47
|
Tran L, Schulkin J, Ligon CO, Greenwood-Van Meerveld B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 2015; 20:1219-31. [PMID: 25288139 DOI: 10.1038/mp.2014.122] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022]
Abstract
Prolonged exposure of the central amygdala (CeA) to elevated corticosteroids (CORT) facilitates long-term anxiety and pain through activation of glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF). However, the mechanisms maintaining these responses are unknown. Since chronic phenotypes can be sustained by epigenetic mechanisms, including histone modifications such as deacetylation, we tested the hypothesis that histone deacetylation contributes to the maintenance of chronic anxiety and pain induced by prolonged exposure of the CeA to CORT. We found that bilateral infusions of a histone deacetylase inhibitor into the CeA attenuated anxiety-like behavior as well as somatic and visceral hypersensitivity resulting from elevated CORT exposure. Moreover, we delineated a novel pathway through which histone deacetylation could contribute to CORT regulation of GR and subsequent CRF expression in the CeA. Specifically, deacetylation of histone 3 at lysine 9 (H3K9), through the coordinated action of the NAD+-dependent protein deacetylase sirtuin-6 (SIRT6) and nuclear factor kappa B (NFκB), sequesters GR expression leading to disinhibition of CRF. Our results indicate that epigenetic programming in the amygdala, specifically histone modifications, is important in the maintenance of chronic anxiety and pain.
Collapse
Affiliation(s)
- L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - J Schulkin
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - C O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,V.A. Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
48
|
Zheng J, Xiao X, Zhang Q, Yu M, Xu J, Wang Z, Qi C, Wang T. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metab Brain Dis 2015; 30:1129-37. [PMID: 25936720 DOI: 10.1007/s11011-015-9678-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dearden L, Ozanne SE. Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol 2015; 39:3-16. [PMID: 26296796 DOI: 10.1016/j.yfrne.2015.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022]
Abstract
A wealth of animal and human studies demonstrate that perinatal exposure to adverse metabolic conditions - be it maternal obesity, diabetes or under-nutrition - results in predisposition of offspring to develop obesity later in life. This mechanism is a contributing factor to the exponential rise in obesity rates. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of energy homeostasis as an underlying cause. Perinatal development of the hypothalamus (a brain region key to metabolic regulation) is plastic and sensitive to metabolic signals during this critical time window. Recent research in non-human primate and rodent models has demonstrated that exposure to adverse maternal environments impairs the development of hypothalamic structure and consequently function, potentially underpinning metabolic phenotypes in later life. This review summarizes our current knowledge of how adverse perinatal environments program hypothalamic development and explores the mechanisms that could mediate these effects.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
50
|
Ngai YF, Sulistyoningrum DC, O'Neill R, Innis SM, Weinberg J, Devlin AM. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain. Am J Physiol Regul Integr Comp Physiol 2015; 309:R613-22. [PMID: 26180184 PMCID: PMC4591382 DOI: 10.1152/ajpregu.00075.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
Abstract
Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE.
Collapse
Affiliation(s)
- Ying Fai Ngai
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Dian C Sulistyoningrum
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ryan O'Neill
- Department of Cellular and Physiological Sciences, University of British Columbia; and
| | - Sheila M Innis
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia; and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Angela M Devlin
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|