1
|
Miles TK, Odle AK, Byrum SD, Lagasse AN, Haney AC, Ortega VG, Herdman AK, MacNicol MC, MacNicol AM, Childs GV. Ablation of Leptin Receptor Signaling Alters Somatotrope Transcriptome Maturation in Female Mice. Endocrinology 2025; 166:bqaf036. [PMID: 39964842 PMCID: PMC11919818 DOI: 10.1210/endocr/bqaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Anterior pituitary somatotropes respond to metabolic signals from the adipokine leptin to optimize functional responses to the body's nutritional state via growth hormone (GH) secretion. Molecular targets of leptin in pituitary somatotropes include GH, the GH-releasing hormone receptor (GHRHR), and, in females, the transcription factor POU1F1, all of which are dependent on leptin stimulation for expression. To identify the trophic mechanisms underlying leptin action upon somatotropes, we analyzed single-cell gene transcriptomes comparing pituitaries from a female mouse model bearing somatotropes lacking leptin receptors (LEPR-null mutants) and control pituitaries. Computational clustering of results identified all common pituitary cell types and differentially expressed genes. Mutant female somatotrope clusters showed decreased levels of Gh and Htatsf1 mRNA, which was also reduced in mutant pituitaries lacking Prop1 or POU1F1. Mutant somatotropes also showed increased expression of markers for pituitary stem and progenitor cells (eg, Sox9) and increased (1.73-6.7 fold) expression of nonsomatotrope hormones, Pomc, Lhb, Tshb, Cga, and Prl. Conversely, the mutant female Sox2-positive stem cell cluster showed decreased expression of markers for stem cells and increased expression of pituitary hormone genes. The data support a model in which the female pituitary somatotrope cell population's development and/or maintenance requires leptin trophic signals and also suggests that, in the absence of normal somatotrope maturation, pituitary stem cells are driven towards premature differentiation.
Collapse
Affiliation(s)
- Tiffany K Miles
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex N Lagasse
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa C Haney
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Victoria G Ortega
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ashley K Herdman
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melanie C MacNicol
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neuroscience and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Gusmao DO, de Sousa LMM, de Sousa ME, Rusew SJR, List EO, Kopchick JJ, Gomes AF, Campideli-Santana AC, Szawka RE, Donato J. Characterization and Regulation of the Neonatal Growth Hormone Surge. Endocrinology 2024; 165:bqae140. [PMID: 39446366 PMCID: PMC11544317 DOI: 10.1210/endocr/bqae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/09/2024]
Abstract
High neonatal growth hormone (GH) secretion has been described in several species. However, the neuroendocrine mechanisms behind this surge remain unknown. Thus, the pattern of postnatal GH secretion was investigated in mice and rats. Blood GH levels were very high on postnatal day (P)1 and progressively decreased until near zero by P17 in C57BL/6 mice without sex differences. This pattern was similar to that observed in rats, except that female rats showed higher GH levels on P1 than males. In comparison, follicle-stimulating hormone exhibited higher secretion in females during the first 3 weeks of life. Hypothalamic Sst mRNA and somatostatin neuroendocrine terminals in the median eminence were higher in P20/P21 mice than in newborns. Knockout mice for GH-releasing hormone (GHRH) receptor showed no GH surge, whereas knockdown mice for the Sst gene displayed increased neonatal GH peak. Leptin deficiency caused only minor effects on early-life GH secretion. GH receptor ablation in neurons or the entire body did not affect neonatal GH secretion, but the subsequent reduction in blood GH levels was attenuated or prevented by these genetic manipulations, respectively. This phenotype was also observed in knockout mice for the insulin-like growth factor-1 (IGF-1) receptor in GHRH neurons. Moreover, glucose-induced hyperglycemia overstimulated GH secretion in neonatal mice. In conclusion, GH surge in the first days of life is not regulated by negative feedback loops. However, neonatal GH secretion requires GHRH receptor, and is modulated by somatostatin and blood glucose levels, suggesting that this surge is controlled by hypothalamic-pituitary communication.
Collapse
MESH Headings
- Animals
- Female
- Growth Hormone/metabolism
- Growth Hormone/blood
- Animals, Newborn
- Male
- Mice, Knockout
- Mice, Inbred C57BL
- Somatostatin/metabolism
- Somatostatin/genetics
- Mice
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Rats
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Leptin/blood
- Leptin/metabolism
- Hypothalamus/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Growth Hormone-Releasing Hormone/metabolism
- Growth Hormone-Releasing Hormone/genetics
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Follicle Stimulating Hormone/blood
- Follicle Stimulating Hormone/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ligia M M de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Stephanie J R Rusew
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andre F Gomes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Miles TK, Allensworth-James ML, Odle AK, Silva Moreira AR, Haney AC, LaGasse AN, Gies AJ, Byrum SD, Riojas AM, MacNicol MC, MacNicol AM, Childs GV. Maternal undernutrition results in transcript changes in male offspring that may promote resistance to high fat diet induced weight gain. Front Endocrinol (Lausanne) 2024; 14:1332959. [PMID: 38720938 PMCID: PMC11077627 DOI: 10.3389/fendo.2023.1332959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 05/12/2024] Open
Abstract
Maternal nutrition during embryonic development and lactation influences multiple aspects of offspring health. Using mice, this study investigates the effects of maternal caloric restriction (CR) during mid-gestation and lactation on offspring neonatal development and on adult metabolic function when challenged by a high fat diet (HFD). The CR maternal model produced male and female offspring that were significantly smaller, in terms of weight and length, and females had delayed puberty. Adult offspring born to CR dams had a sexually dimorphic response to the high fat diet. Compared to offspring of maternal control dams, adult female, but not male, CR offspring gained more weight in response to high fat diet at 10 weeks. In adipose tissue of male HFD offspring, maternal undernutrition resulted in blunted expression of genes associated with weight gain and increased expression of genes that protect against weight gain. Regardless of maternal nutrition status, HFD male offspring showed increased expression of genes associated with progression toward nonalcoholic fatty liver disease (NAFLD). Furthermore, we observed significant, sexually dimorphic differences in serum TSH. These data reveal tissue- and sex-specific changes in gene and hormone regulation following mild maternal undernutrition, which may offer protection against diet induced weight gain in adult male offspring.
Collapse
Affiliation(s)
- Tiffany K. Miles
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melody L. Allensworth-James
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angela K. Odle
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ana Rita Silva Moreira
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anessa C. Haney
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alex N. LaGasse
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Allen J. Gies
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D. Byrum
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angelica M. Riojas
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Melanie C. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gwen V. Childs
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Miles TK, Odle AK, Byrum SD, Lagasse A, Haney A, Ortega VG, Bolen CR, Banik J, Reddick MM, Herdman A, MacNicol MC, MacNicol AM, Childs GV. Anterior Pituitary Transcriptomics Following a High-Fat Diet: Impact of Oxidative Stress on Cell Metabolism. Endocrinology 2023; 165:bqad191. [PMID: 38103263 PMCID: PMC10771268 DOI: 10.1210/endocr/bqad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/18/2023]
Abstract
Anterior pituitary cell function requires a high level of protein synthesis and secretion which depend heavily on mitochondrial adenosine triphosphate production and functional endoplasmic reticula. Obesity adds stress to tissues, requiring them to adapt to inflammation and oxidative stress, and adding to their allostatic load. We hypothesized that pituitary function is vulnerable to the stress of obesity. Here, we utilized a 10- to 15-week high-fat diet (HFD, 60%) in a thermoneutral environment to promote obesity, testing both male and female FVB.129P mice. We quantified serum hormones and cytokines, characterized the metabolic phenotype, and defined changes in the pituitary transcriptome using single-cell RNA-sequencing analysis. Weight gain was significant by 3 weeks in HFD mice, and by 10 weeks all HFD groups had gained 20 g. HFD females (15 weeks) had increased energy expenditure and decreased activity. All HFD groups showed increases in serum leptin and decreases in adiponectin. HFD caused increased inflammatory markers: interleukin-6, resistin, monocyte chemoattractant protein-1, and tumor necrosis factorα. HFD males and females also had increased insulin and increased TSH, and HFD females had decreased serum prolactin and growth hormone pulse amplitude. Pituitary single-cell transcriptomics revealed modest or no changes in pituitary cell gene expression from HFD males after 10 or 15 weeks or from HFD females after 10 weeks. However, HFD females (15 weeks) showed significant numbers of differentially expressed genes in lactotropes and pituitary stem cells. Collectively, these studies reveal that pituitary cells from males appear to be more resilient to the oxidative stress of obesity than females and identify the most vulnerable pituitary cell populations in females.
Collapse
Affiliation(s)
- Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Victoria G Ortega
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cole R Bolen
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Milla M Reddick
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ashley Herdman
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Rodríguez-Valentín R, Torres-Mejía G, Martínez-Matsushita L, Angeles-Llerenas A, Gómez-Flores-Ramos L, Wolff RK, Baumgartner KB, Hines LM, Ziv E, Flores-Luna L, Sánchez-Zamorano LM, Ortiz-Panozo E, Slattery ML. Energy homeostasis genes modify the association between serum concentrations of IGF-1 and IGFBP-3 and breast cancer risk. Sci Rep 2022; 12:1837. [PMID: 35115550 PMCID: PMC8813998 DOI: 10.1038/s41598-022-05496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is a multifactorial disease in which the interplay among multiple risk factors remains unclear. Energy homeostasis genes play an important role in carcinogenesis and their interactions with the serum concentrations of IGF-1 and IGFBP-3 on the risk of breast cancer have not yet been investigated. The aim of this study was to assess the modifying effect of the genetic variation in some energy homeostasis genes on the association of serum concentrations of IGF-1 and IGFBP-3 with breast cancer risk. We analyzed 78 SNPs from 10 energy homeostasis genes in premenopausal women from the 4-Corner’s Breast Cancer Study (61 cases and 155 controls) and the Mexico Breast Cancer Study (204 cases and 282 controls). After data harmonization, 71 SNPs in HWE were included for interaction analysis. Two SNPs in two genes (MBOAT rs13272159 and NPY rs16131) showed an effect modification on the association between IGF-1 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). In addition, five SNPs in three genes (ADIPOQ rs182052, rs822391 and rs7649121, CARTPT rs3846659, and LEPR rs12059300) had an effect modification on the association between IGFBP-3 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). Our findings showed that variants of energy homeostasis genes modified the association between the IGF-1 or IGFBP-3 serum concentration and breast cancer risk in premenopausal women. These findings contribute to a better understanding of this multifactorial pathology.
Collapse
Affiliation(s)
- Rocío Rodríguez-Valentín
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Gabriela Torres-Mejía
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico.
| | | | - Angélica Angeles-Llerenas
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Liliana Gómez-Flores-Ramos
- Cátedras CONACYT-Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, UT, 84108, USA
| | - Kathy B Baumgartner
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Lisa M Hines
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Elad Ziv
- Department of Medicine, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lourdes Flores-Luna
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Luisa Ma Sánchez-Zamorano
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Eduardo Ortiz-Panozo
- Center for Population Health Research, National Institute of Public Health, 62100, Cuernavaca, Morelos, Mexico
| | - Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
6
|
Allensworth-James M, Banik J, Odle A, Hardy L, Lagasse A, Moreira ARS, Bird J, Thomas CL, Avaritt N, Kharas MG, Lengner CJ, Byrum SD, MacNicol MC, Childs GV, MacNicol AM. Control of the Anterior Pituitary Cell Lineage Regulator POU1F1 by the Stem Cell Determinant Musashi. Endocrinology 2021; 162:bqaa245. [PMID: 33373440 PMCID: PMC7814296 DOI: 10.1210/endocr/bqaa245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/14/2022]
Abstract
The adipokine leptin regulates energy homeostasis through ubiquitously expressed leptin receptors. Leptin has a number of major signaling targets in the brain, including cells of the anterior pituitary (AP). We have previously reported that mice lacking leptin receptors in AP somatotropes display growth hormone (GH) deficiency, metabolic dysfunction, and adult-onset obesity. Among other targets, leptin signaling promotes increased levels of the pituitary transcription factor POU1F1, which in turn regulates the specification of somatotrope, lactotrope, and thyrotrope cell lineages within the AP. Leptin's mechanism of action on somatotropes is sex dependent, with females demonstrating posttranscriptional control of Pou1f1 messenger RNA (mRNA) translation. Here, we report that the stem cell marker and mRNA translational control protein, Musashi1, exerts repression of the Pou1f1 mRNA. In female somatotropes, Msi1 mRNA and protein levels are increased in the mouse model that lacks leptin signaling (Gh-CRE Lepr-null), coincident with lack of POU1f1 protein, despite normal levels of Pou1f1 mRNA. Single-cell RNA sequencing of pituitary cells from control female animals indicates that both Msi1 and Pou1f1 mRNAs are expressed in Gh-expressing somatotropes, and immunocytochemistry confirms that Musashi1 protein is present in the somatotrope cell population. We demonstrate that Musashi interacts directly with the Pou1f1 mRNA 3' untranslated region and exerts translational repression of a Pou1f1 mRNA translation reporter in a leptin-sensitive manner. Musashi immunoprecipitation from whole pituitary reveals coassociated Pou1f1 mRNA. These findings suggest a mechanism in which leptin stimulation is required to reverse Musashi-mediated Pou1f1 mRNA translational control to coordinate AP somatotrope function with metabolic status.
Collapse
Affiliation(s)
- Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jordan Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Mirczuk SM, Scudder CJ, Read JE, Crossley VJ, Regan JT, Richardson KM, Simbi B, McArdle CA, Church DB, Fenn J, Kenny PJ, Volk HA, Wheeler-Jones CP, Korbonits M, Niessen SJ, McGonnell IM, Fowkes RC. Natriuretic Peptide Expression and Function in GH3 Somatolactotropes and Feline Somatotrope Pituitary Tumours. Int J Mol Sci 2021; 22:ijms22031076. [PMID: 33499110 PMCID: PMC7865297 DOI: 10.3390/ijms22031076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.
Collapse
Affiliation(s)
- Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Jordan E. Read
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Victoria J. Crossley
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Jacob T. Regan
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Karen M. Richardson
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Bigboy Simbi
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - David B. Church
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Joseph Fenn
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Patrick J. Kenny
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Small Animal Specialist Hospital, 1 Richardson Place, North Ryde, 2113 NSW, Australia
| | - Holger A. Volk
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Caroline P. Wheeler-Jones
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
- Correspondence: ; Tel.: +11-44-207-468-1215
| |
Collapse
|
8
|
Miles TK, Silva Moreira AR, Allensworth-James ML, Odle AK, Haney AC, MacNicol AM, MacNicol MC, Childs GV. Sex differences in somatotrope response to fasting: biphasic responses in male mice. J Endocrinol 2020; 247:213-224. [PMID: 33112825 PMCID: PMC7673470 DOI: 10.1530/joe-20-0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022]
Abstract
Anterior pituitary somatotropes are important metabolic sensors responding to leptin by secreting growth hormone (GH). However, reduced leptin signals caused by fasting have not always correlated with reduced serum GH. Reports show that fasting may stimulate or reduce GH secretion, depending on the species. Mechanisms underlying these distinct somatotrope responses to fasting remain unknown. To define the somatotrope response to decreased leptin signaling we examined markers of somatotrope function over different time periods of fasting. Male mice were fasted for 24 and 48 h, with female mice fasted for 24 h compared to fed controls ad libitum. Body weight and serum glucose were reduced in both males and females, but, unexpectedly, serum leptin was reduced only in males. Furthermore, in males, serum GH levels showed a biphasic response with significant reductions at 24 h followed by a significant rise at 48 h, which coincided with the rise in serum ghrelin levels. In contrast, females showed an increase in serum GH at 24 h. We then explored mechanisms underlying the differential somatotrope responses seen in males and observed that pituitary levels of Gh mRNA increased, with no distinction between acute and prolonged fasting. By contrast, the Ghrhr mRNA (encoding GH releasing hormone receptor) and the Ghsr mRNA (encoding the ghrelin receptor) were both greatly increased at prolonged fasting times coincident with increased serum GH. These findings show sex differences in the somatotrope and adipocyte responses to fasting and support an adaptive role for somatotropes in males in response to multiple metabolic signals.
Collapse
Affiliation(s)
- Tiffany K Miles
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melody L Allensworth-James
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela K Odle
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anessa C Haney
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus M MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie C MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen V Childs
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Allensworth-James ML, Odle AK, Lim J, LaGasse AN, Miles TK, Hardy LL, Haney AC, MacNicol MC, MacNicol AM, Childs GV. Metabolic signalling to somatotrophs: Transcriptional and post-transcriptional mediators. J Neuroendocrinol 2020; 32:e12883. [PMID: 32657474 PMCID: PMC8086172 DOI: 10.1111/jne.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
In normal individuals, pituitary somatotrophs optimise body composition by responding to metabolic signals from leptin. To identify mechanisms behind the regulation of somatotrophs by leptin, we used Cre-LoxP technology to delete leptin receptors (LEPR) selectively in somatotrophs and developed populations purified by fluorescence-activated cell sorting (FACS) that contained 99% somatotrophs. FACS-purified, Lepr-null somatotrophs showed reduced levels of growth hormone (GH), growth hormone-releasing hormone receptor (GHRHR), and Pou1f1 proteins and Gh (females) and Ghrhr (both sexes) mRNAs. Pure somatotrophs also expressed thyroid-stimulating hormone (TSH) and prolactin (PRL), both of which were reduced in pure somatotrophs lacking LEPR. This introduced five gene products that were targets of leptin. In the present study, we tested the hypothesis that leptin is both a transcriptional and a post-transcriptional regulator of these gene products. Our tests showed that Pou1f1 and/or the Janus kinase/signal transducer and activator of transcription 3 transcriptional regulatory pathways are implicated in the leptin regulation of Gh or Ghrhr mRNAs. We then focused on potential actions by candidate microRNAs (miRNAs) with consensus binding sites on the 3' UTR of Gh or Ghrhr mRNAs. Somatotroph Lepr-null deletion mutants expressed elevated levels of miRNAs including miR1197-3p (in females), miR103-3p and miR590-3p (both sexes), which bind Gh mRNA, or miRNA-325-3p (elevated in both sexes), which binds Ghrhr mRNA. This elevation indicates repression of translation in the absence of LEPR. In addition, after detecting binding sites for Musashi on Tshb and Prl 3' UTR, we determined that Musashi1 repressed translation of both mRNAs in in vitro fluc assays and that Prl mRNA was enriched in Musashi immunoprecipitation assays. Finally, we tested ghrelin actions to determine whether its nitric oxide-mediated signalling pathways would restore somatotroph functions in deletion mutants. Ghrelin did not restore either GHRH binding or GH secretion in vitro. These studies show an unexpectedly broad role for leptin with respect to maintaining somatotroph functions, including the regulation of PRL and TSH in subsets of somatotrophs that may be progenitor cells.
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alex N LaGasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anessa C Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Early overnutrition sensitizes the growth hormone axis to the impact of diet-induced obesity via sex-divergent mechanisms. Sci Rep 2020; 10:13898. [PMID: 32807904 PMCID: PMC7431568 DOI: 10.1038/s41598-020-70898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to its essential role in the physiological control of longitudinal growth, growth-hormone (GH) is endowed with relevant metabolic functions, including anabolic actions in muscle, lipolysis in adipose-tissue and glycemic modulation. Adult obesity is known to negatively impact GH-axis, thereby promoting a vicious circle that may contribute to the exacerbation of the metabolic complications of overweight. Yet, to what extent early-overnutrition sensitizes the somatotropic-axis to the deleterious effects of obesity remains largely unexplored. Using a rat-model of sequential exposure to obesogenic insults, namely postnatal-overfeeding during lactation and high-fat diet (HFD) after weaning, we evaluated in both sexes the individual and combined impact of these nutritional challenges upon key elements of the somatotropic-axis. While feeding HFD per se had a modest impact on the adult GH-axis, early overnutrition had durable effects on key elements of the somatotropic-system, which were sexually different, with a significant inhibition of pituitary gene expression of GH-releasing hormone-receptor (GHRH-R) and somatostatin receptor-5 (SST5) in males, but an increase in pituitary GHRH-R, SST2, SST5, GH secretagogue-receptor (GHS-R) and ghrelin expression in females. Notably, early-overnutrition sensitized the GH-axis to the deleterious impact of HFD, with a significant suppression of pituitary GH expression in both sexes and lowering of circulating GH levels in females. Yet, despite their similar metabolic perturbations, males and females displayed rather distinct alterations of key somatotropic-regulators/ mediators. Our data document a synergistic effect of postnatal-overnutrition on the detrimental impact of HFD-induced obesity on key elements of the adult GH-axis, which is conducted via mechanisms that are sexually-divergent.
Collapse
|
11
|
Wójcik M, Herman AP, Zieba DA, Krawczyńska A. The Impact of Photoperiod on the Leptin Sensitivity and Course of Inflammation in the Anterior Pituitary. Int J Mol Sci 2020; 21:ijms21114153. [PMID: 32532062 PMCID: PMC7312887 DOI: 10.3390/ijms21114153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Leptin has a modulatory impact on the course of inflammation, affecting the expression of proinflammatory cytokines and their receptors. Pathophysiological leptin resistance identified in humans occurs typically in sheep during the long-day photoperiod. This study aimed to determine the effect of the photoperiod with relation to the leptin-modulating action on the expression of the proinflammatory cytokines and their receptors in the anterior pituitary under physiological or acute inflammation. Two in vivo experiments were conducted on 24 blackface sheep per experiment in different photoperiods. The real-time PCR analysis for the expression of the genes IL1B, IL1R1, IL1R2, IL6, IL6R, IL6ST, TNF, TNFR1, and TNFR2 was performed. Expression of all examined genes, except IL1β and IL1R2, was higher during short days. The leptin injection increased the expression of all examined genes during short days. In short days the synergistic effect of lipopolysaccharide and leptin increased the expression of IL1B, IL1R1, IL1R2, IL6, TNF, and TNFR2, and decreased expression of IL6ST. This mechanism was inhibited during long days for the expression of IL1R1, IL6, IL6ST, and TNFR1. The obtained results suggest the occurrence of leptin resistance during long days and suggest that leptin modulates the course of inflammation in a photoperiod-dependent manner in the anterior pituitary.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
- Correspondence:
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| | - Dorota Anna Zieba
- Laboratory of Biotechnology and Genomics, Department of Nutrition, Animal Biotechnology and Fisheries, Agricultural University of Krakow, 30-248 Krakow, Poland;
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland; (A.P.H.); (A.K.)
| |
Collapse
|
12
|
Allensworth-James ML, Odle A, Haney A, MacNicol M, MacNicol A, Childs G. Sex-specific changes in postnatal GH and PRL secretion in somatotrope LEPR-null mice. J Endocrinol 2018; 238:221-230. [PMID: 29929987 PMCID: PMC6354591 DOI: 10.1530/joe-18-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
The developing pituitary is a rapidly changing environment that is constantly meeting the physiological demands of the growing organism. During early postnatal development, the anterior pituitary is refining patterns of anterior hormone secretion in response to numerous genetic factors. Our laboratory previously developed a somatotrope leptin receptor (LEPR) deletion mouse model that had decreased lean body mass, disrupted metabolism, decreased GH stores and was GH deficient as an adult. To understand how deletion of LEPR in somatotropes altered GH, we turned our attention to postnatal development. The current study examines GH, PRL, TSH, ACTH, LH and FSH secretion during postnatal days 4, 5, 8, 10 and 15 and compares age and sex differences. The LEPR mutants have dysregulation of GH (P < 0.03) and a reduced developmental prolactin peak in males (P < 0.04) and females (P < 0.002). There were no differences in weight between groups, and the postnatal leptin surge appeared to be normal. Percentages of immunolabeled GH cells were reduced in mutants compared with controls in all age groups by 35-61% in males and 41-44% in females. In addition, we measured pituitary expression of pituitary transcription factors, POU1F1 and PROP1. POU1F1 was reduced in mutant females at PND 10 (P < 0.009) and PND 15 (P < 0.02) but increased in males at PND 10 (P < 0.01). PROP1 was unchanged in female mutants but showed developmental increases at PND 5 (P < 0.02) and PND 15 (P < 0.01). These studies show that the dysfunction caused by LEPR deletion in somatotropes begins as early as neonatal development and involves developing GH and prolactin cells (somatolactotropes).
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Odle
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen Childs
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Odle AK, Akhter N, Syed MM, Allensworth-James ML, Beneš H, Melgar Castillo AI, MacNicol MC, MacNicol AM, Childs GV. Leptin Regulation of Gonadotrope Gonadotropin-Releasing Hormone Receptors As a Metabolic Checkpoint and Gateway to Reproductive Competence. Front Endocrinol (Lausanne) 2018; 8:367. [PMID: 29354094 PMCID: PMC5760501 DOI: 10.3389/fendo.2017.00367] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The adipokine leptin signals the body's nutritional status to the brain, and particularly, the hypothalamus. However, leptin receptors (LEPRs) can be found all throughout the body and brain, including the pituitary. It is known that leptin is permissive for reproduction, and mice that cannot produce leptin (Lep/Lep) are infertile. Many studies have pinpointed leptin's regulation of reproduction to the hypothalamus. However, LEPRs exist at all levels of the hypothalamic-pituitary-gonadal axis. We have previously shown that deleting the signaling portion of the LEPR specifically in gonadotropes impairs fertility in female mice. Our recent studies have targeted this regulation to the control of gonadotropin releasing hormone receptor (GnRHR) expression. The hypotheses presented here are twofold: (1) cyclic regulation of pituitary GnRHR levels sets up a target metabolic checkpoint for control of the reproductive axis and (2) multiple checkpoints are required for the metabolic signaling that regulates the reproductive axis. Here, we emphasize and explore the relationship between the hypothalamus and the pituitary with regard to the regulation of GnRHR. The original data we present strengthen these hypotheses and build on our previous studies. We show that we can cause infertility in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. Our findings implicate activin subunit (InhBa) mRNA as a potential leptin target in gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein (but not mRNA levels) following leptin stimulation. In order to try and understand this post-transcriptional regulation, we tested candidate miRNAs (identified with in silico analysis) that may be binding the Gnrhr mRNA. We show significant upregulation of one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided here, combined with our previous work, lay the foundation for metabolically regulated post-transcriptional control of the gonadotrope. We discuss possible mechanisms, including miRNA regulation and the involvement of the RNA binding protein, Musashi. We also demonstrate how this regulation may be vital for the dynamic remodeling of gonadotropes in the cycling female. Finally, we propose that the leptin receptivity of both the hypothalamus and the pituitary are vital for the body's ability to delay or slow reproduction during periods of low nutrition.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mohsin M. Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melody L. Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrea I. Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
15
|
Tuersunjiang N, Odhiambo JF, Shasa DR, Smith AM, Nathanielsz PW, Ford SP. Maternal obesity programs reduced leptin signaling in the pituitary and altered GH/IGF1 axis function leading to increased adiposity in adult sheep offspring. PLoS One 2017; 12:e0181795. [PMID: 28771488 PMCID: PMC5542597 DOI: 10.1371/journal.pone.0181795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/09/2017] [Indexed: 11/29/2022] Open
Abstract
Studies in rodents highlight a role for leptin in stimulation of pituitary growth hormone (GH) secretion, with an impact on body composition regulation. We have reported that maternal obesity (MO) during ovine pregnancy results in hyperphagia, glucose-insulin dysregulation, increased adiposity, hypercortisolemia and hyperleptinemia in mature offspring subjected to a bout of ad libitum feeding. We hypothesized that MO reduces leptin signaling in the pituitary and down regulates the GH/IGF1 axis and increases circulating cortisol leading to increased adiposity in their adult offspring. Male lambs born to MO (n = 6) or control (CON, n = 6) ewes were fed only to requirements until placed on a 12 week ad libitum feeding trial at maturity. The pituitary, hypothalamic arcuate nucleus, and liver were collected at necropsy and mRNA and protein expression determined. Plasma cortisol concentrations were increased (P<0.05) in MO vs. CON offspring at the end of the feeding trial. Further, serum concentrations of IGF1 decreased (P<0.01) and GH tended to decrease (P<0.08) in MO vs. CON offspring. Pituitary mRNA and leptin receptor protein expression were decreased in MO vs. CON offspring in association with decreased GH mRNA expression, and decreased IGF1 mRNA and protein expression in liver. Liver 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) expression was increased (P<0.01) and its cofactor hexose-6-phosphate dehydrogenase tended to increase (P<0.06) in MO vs. CON offspring. 11βHSD2 expression remained unchanged. These data indicate that MO induced an increase in liver conversion of cortisone to cortisol in adult offspring and support a role for leptin signaling in the pituitary in mediating offspring adiposity.
Collapse
Affiliation(s)
- Nuermaimaiti Tuersunjiang
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - John F. Odhiambo
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Desiree R. Shasa
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ashley M. Smith
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Peter W. Nathanielsz
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Stephen P. Ford
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
16
|
Bello AR, Puertas‐Avendaño RA, González‐Gómez MJ, González‐Gómez M, Laborda J, Damas C, Ruiz‐Hidalgo M, Diaz C. Delta-like protein 1 in the pituitary-adipose axis in the adult male mouse. J Neuroendocrinol 2017; 29:e12507. [PMID: 28718206 PMCID: PMC6084355 DOI: 10.1111/jne.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
With the aim of studying delta-like protein 1 (DLK1) with respect to the relationship between adipocyte leptin and adenohypophyseal hormones, we carried out an immunohistochemical study analysing the presence of receptors for these hormones in the pituitary and adipose cells of male wild-type (WT) mice (Dlk1+/+ ) compared to knockout (KO) mice (Dlk1-/- ). The mRNA expression of these molecules was also determined using the reverse transcriptase-polymerase chain reaction. The results obtained showed that, in WT adipose cells, all of the adenohypophyseal hormone receptors were present, with a higher mRNA expression for growth hormone (GH) receptor and thyroid-stimulating hormone (TSH) receptor. Of the total cells in the anterior pituitary lobe, 17.09±0.9% were leptin receptor (LEPR) immunoreactive (-IR), mainly in GH-IR and prolactin (PRL)-IR cells (41.5±3.8%; 13.5±1.7%, respectively). In Dlk1-/- mice, adipocyte cells showed a significant increase in the TSH receptor mRNA expression level. Moreover, the percentage of LEPR-IR GH cells showed a statistically significant increase compared to controls, from 41.5±3.8% to 53.1±4.0%. By contrast, only 3.0±0.6% of LEP-IR anterior pituitary cells were detected in Dlk1 KO mice, as opposed to 6.8±1.1% observed in WT mice. The results suggest that relationships exist between adipocytes and pituitary GH, PRL and TSH cells, in addition to an influence with respect to the synthesis and release of pituitary leptin, particularly in PRL cells.
Collapse
Affiliation(s)
- A. R. Bello
- Cell Biology SectionSchool of Sciences/Institute for Tropical Diseases and Public HealthUniversity of La LagunaTenerifeSpain
| | - R. A. Puertas‐Avendaño
- Cell Biology SectionSchool of Sciences/Institute for Tropical Diseases and Public HealthUniversity of La LagunaTenerifeSpain
| | - M. J. González‐Gómez
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - M. González‐Gómez
- Department of Basic Medical SciencesSchool of MedicineUniversity of La LagunaTenerifeSpain
| | - J. Laborda
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - C. Damas
- Department of PsychobiologySchool of PsychologyUniversity of La LagunaTenerifeSpain
| | - M. Ruiz‐Hidalgo
- Department of Inorganic and Organic Chemistry and BiochemistrySchool of Medicine/Regional Centre for Biomedical ResearchBiomedicine Unit Spanish National Research Council/University of Castilla‐La ManchaAlbaceteSpain
| | - C. Diaz
- Department of Medical SciencesSchool of Medicine/Institute for Research in Neurological DisabilitiesUniversity of Castilla‐La ManchaAlbaceteSpain
| |
Collapse
|
17
|
Sarmento-Cabral A, Peinado JR, Halliday LC, Malagon MM, Castaño JP, Kineman RD, Luque RM. Adipokines (Leptin, Adiponectin, Resistin) Differentially Regulate All Hormonal Cell Types in Primary Anterior Pituitary Cell Cultures from Two Primate Species. Sci Rep 2017; 7:43537. [PMID: 28349931 PMCID: PMC5640086 DOI: 10.1038/srep43537] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
Adipose-tissue (AT) is an endocrine organ that dynamically secretes multiple hormones, the adipokines, which regulate key physiological processes. However, adipokines and their receptors are also expressed and regulated in other tissues, including the pituitary, suggesting that locally- and AT-produced adipokines might comprise a regulatory circuit that relevantly modulate pituitary cell-function. Here, we used primary pituitary cell-cultures from two normal nonhuman-primate species [Papio-anubis/Macaca-fascicularis] to determine the impact of different adipokines on the functioning of all anterior-pituitary cell-types. Leptin and resistin stimulated GH-release, a response that was blocked by somatostatin. Conversely, adiponectin decreased GH-release, and inhibited GHRH-, but not ghrelin-stimulated GH-secretion. Furthermore: 1) Leptin stimulated PRL/ACTH/FSH- but not LH/TSH-release; 2) adiponectin stimulated PRL-, inhibited ACTH- and did not alter LH/FSH/TSH-release; and 3) resistin increased ACTH-release and did not alter PRL/LH/FSH/TSH-secretion. These effects were mediated through the activation of common (AC/PKA) and distinct (PLC/PKC, intra-/extra-cellular calcium, PI3K/MAPK/mTOR) signaling-pathways, and by the gene-expression regulation of key receptors/transcriptional-factors involved in the functioning of these pituitary cell-types (e.g. GHRH/ghrelin/somatostatin/insulin/IGF-I-receptors/Pit-1). Finally, we found that primate pituitaries expressed leptin/adiponectin/resistin. Altogether, these and previous data suggest that local-production of adipokines/receptors, in conjunction with circulating adipokine-levels, might comprise a relevant regulatory circuit that contribute to the fine-regulation of pituitary functions.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Spain
| | - Lisa C Halliday
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA
| | - María M Malagon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía (HURS), Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| |
Collapse
|
18
|
Odle AK, Allensworth-James ML, Akhter N, Syed M, Haney AC, MacNicol M, MacNicol AM, Childs GV. A Sex-Dependent, Tropic Role for Leptin in the Somatotrope as a Regulator of POU1F1 and POU1F1-Dependent Hormones. Endocrinology 2016; 157:3958-3971. [PMID: 27571135 PMCID: PMC5045503 DOI: 10.1210/en.2016-1472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pituitary somatotropes perform the key function of coordinating organismic growth and body composition with metabolic signals. However, the mechanism by which they sense and respond to metabolic signals via the adipokine leptin is unknown. The complex interplay between the heterogeneous cell types of the pituitary confounds the identification of somatotrope-specific mechanisms. Somatotropes represent 30%-40% of the anterior pituitary population and are derived from a lineage of cells that are activated by the Pit-Oct-Unc domain family domain class 1 transcription factor 1 (POU1F1) to produce GH, prolactin (PRL). and TSH. To determine the mechanism by which leptin controls somatotrope function, we used Cre-LoxP technology and fluorescence-activated cell sorting to purify and study control or leptin receptor-deleted (Lepr null) somatotropes. We report that Lepr-null somatotropes show significant reductions in GH protein (GH) and Gh mRNA. By contrast, enzyme immunoassays detected no changes in ACTH, LH, and FSH levels in mutants, indicating that the control of these hormones is independent of leptin signaling to somatotropes. Reduced TSH and PRL levels were also observed, but interestingly, this reduction occurred only in in Lepr-null somatotropes from mutant females and not from males. Consistent with the sex-specific reduction in Gh mRNA, TSH, and PRL, enzyme immunoassays detected a sex-specific reduction in POU1F1 protein levels in adult female Lepr-null somatotropes. Collectively, this study of purified Lepr-null somatotropes has uncovered an unexpected tropic role for leptin in the control of POU1F1 and all POU1F1-dependent hormones. This supports a broader role for somatotropes as metabolic sensors including sex-specific responses to leptin.
Collapse
Affiliation(s)
- Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody L Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa C Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melanie MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
19
|
Odle AK, Allensworth-James M, Haney A, Akhter N, Syed M, Childs GV. Adipocyte Versus Somatotrope Leptin: Regulation of Metabolic Functions in the Mouse. Endocrinology 2016; 157:1443-56. [PMID: 26859333 PMCID: PMC4816722 DOI: 10.1210/en.2015-1811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin regulates food intake and energy expenditure (EE) and is produced in adipocytes, the pituitary, and several other tissues. Animals that are leptin or leptin receptor deficient have major metabolic complications, including obesity. This study tests the hypothesis that the pituitary somatotrope may contribute a source of leptin that maintains some of these metabolic functions. We created 2 different tissue-specific leptin knockout animals: a Somatotrope-Lep-null model and an Adipocyte-Lep-null model. Metabolic analysis of both models, along with a global deletion model, was performed. The Somatotrope-Lep-null animals had fewer somatotropes, and females had a 76% decrease in serum prolactin. During the dark (feeding) phase, females had a 35% increase in ambulation coupled with a 4% increase in EE. Mutants showed no change in food intake or weight gain and EE was unchanged in males. During the light (sleep) phase, Somatotrope-Lep-null mutant males had lower EE and females continued to have higher EE. The respiratory quotients (RQs) of mutants and littermate controls were decreased in males and increased in females; all were within the range that indicates predominant carbohydrate burning. The massively obese Adipocyte-Lep-null animals, however, had significant increases in food intake, sleep, and increased EE, with decreased activity. Changes in RQ were sexually dimorphic, with female mutants having higher RQ and males having decreased RQ. We conclude that both adipocyte and somatotrope leptin contribute to the metabolic homeostasis of the mouse, and that extraadipocyte sources of leptin cannot overcome the major metabolic challenges seen in these animals.
Collapse
Affiliation(s)
- Angela Katherine Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
20
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Berryman DE, Henry B, Hjortebjerg R, List EO, Kopchick JJ. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Rev Endocrinol Metab 2016; 11:197-207. [PMID: 28435436 PMCID: PMC5397118 DOI: 10.1586/17446651.2016.1147950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.
Collapse
Affiliation(s)
- Darlene E Berryman
- Executive Director, The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, (740) 593-9661 - phone, (740) 593-4795 - fax
| | - Brooke Henry
- 108 Konneker Research Labs, Ohio University, (740) 593-9665
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Noerrebrogade 44, 8000 Aarhus C, Denmark, +45 6166 8045 - phone, +45 7846 2150 - fax
| | - Edward O List
- Senior Scientist, 218 Konneker Research Labs, Edison Biotechnology Institute, Ohio University, (740) 593-4620 - phone, (740) 593-4795 - fax
| | - John J Kopchick
- Distinguished Professor, Goll Ohio Eminent Scholar, 172 Water Tower Drive, Ohio University, (740) 593-4534 - phone, (740) 593-4795 - fax
| |
Collapse
|
22
|
Murase D, Namekawa S, Ohkubo T. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro. Comp Biochem Physiol B Biochem Mol Biol 2015; 191:46-52. [PMID: 26403688 DOI: 10.1016/j.cbpb.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022]
Abstract
Leptin is an adipocyte-derived hormone that not only regulates food intake and energy homeostasis but also induces growth hormone (GH) mRNA expression and release, thereby controlling growth and metabolism in mammals. The molecular mechanism of leptin-induced regulation of GH gene transcription is unclear. The current study investigated the effects of leptin on the chicken GH (cGH) promoter and the molecular mechanism underlying leptin-induced cGH gene expression in vitro. Leptin activated the cGH promoter in the presence of chPit-1α in CHO cells stably expressing the chicken leptin receptor. Promoter activation did not require STAT-binding elements in the cGH promoter or STAT3 activity. However, JAK2 activation was required for leptin-dependent activity. JAK2-dependent pathways include p42/44 MAPK and PI3K, and inhibition of these pathways partially blocked leptin-induced cGH gene transcription. Although CK2 directly activates JAK2, a CK2 inhibitor blocked leptin-dependent activation of the cGH gene without affecting JAK2 phosphorylation. The CK2 inhibitor suppressed Erk1/2 and Akt phosphorylation. Additional data implicate Src family kinases in leptin-dependent cGH gene activation. These results suggest that leptin activates the cGH gene in the presence of chPit-1α via several leptin-activated kinases. Although further study is required, we suggest that the leptin-induced JAK2/p42/44 MAPK and JAK2/PI3K cascades are activated by Src-meditated CK2, leading to CBP phosphorylation and interaction with chPit-1α, resulting in transactivation of the cGH promoter.
Collapse
Affiliation(s)
- Daisuke Murase
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-81-1 Harumi, Fuchu, Tokyo 790-8566, Japan
| | - Shoko Namekawa
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-81-1 Harumi, Fuchu, Tokyo 790-8566, Japan.
| |
Collapse
|
23
|
Allensworth-James ML, Odle A, Haney A, Childs G. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males. Endocrinology 2015; 156:3253-64. [PMID: 26168341 PMCID: PMC4541611 DOI: 10.1210/en.2015-1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2-3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%-42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes.
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Angela Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| | - Gwen Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212
| |
Collapse
|
24
|
Odle AK, Drew PD, Childs GV. Giant mice reveal new roles for GH in regulating the adipose immune microenvironment. Endocrinology 2015; 156:1613-5. [PMID: 25886070 PMCID: PMC4398772 DOI: 10.1210/en.2015-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Angela K Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | |
Collapse
|
25
|
Larsen MC, Bushkofsky JR, Gorman T, Adhami V, Mukhtar H, Wang S, Reeder SB, Sheibani N, Jefcoate CR. Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis. Arch Biochem Biophys 2015; 571:21-39. [PMID: 25703193 DOI: 10.1016/j.abb.2015.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPARγ, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPARα, each consistent with this switch in energy storage mechanism. Ligand activation of PPARα in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Justin R Bushkofsky
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States
| | - Tyler Gorman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Vaqar Adhami
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Suqing Wang
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI 53706, United States; Department of Medical Physics, University of Wisconsin, Madison, WI 53706, United States; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, United States; Department of Medicine, University of Wisconsin, Madison, WI 53706, United States; Department of Emergency Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, United States
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
26
|
Hyde J, MacNicol M, Odle A, Garcia-Rill E. The use of three-dimensional printing to produce in vitro slice chambers. J Neurosci Methods 2014; 238:82-7. [PMID: 25251556 PMCID: PMC4253646 DOI: 10.1016/j.jneumeth.2014.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND In recent years, 3D printing technology has become inexpensive and simple enough that any lab can own and use one of these printers. NEW METHOD We explored the potential use of 3D printers for quickly and easily producing in vitro slice chambers for patch clamp electrophysiology. Slice chambers were produced using five available plastics: ABS, PLA, Nylon 618, Nylon 680, and T-glase. These "lab-made" chambers were also made using stereolithography through a professional printing service (Shapeways). This study measured intrinsic membrane properties of neurons in the brain stem pedunculopontine nucleus (PPN) and layer V pyramidal neurons in retrosplenial cortex. RESULTS Nylon 680 and T-glase significantly hyperpolarized PPN neurons. ABS increased input resistance, decreased action potential amplitude, and increased firing frequency in pyramidal cortical neurons. To test long term exposure to each plastic, human neuroblastoma SHSY5Y cell cultures were exposed to each plastic for 1 week. ABS decreased cell counts while Nylon 618 and Shapeways plastics eliminated cells. Primary mouse pituitary cultures were also tested for 24-h exposure. ABS decreased cell counts while Nylon 618 and Shapeways plastics dramatically decreased cell counts. COMPARISON TO EXISTING METHODS Chambers can be quickly and inexpensively printed in the lab. ABS, PLA, Nylon 680, and T-glase plastics would suffice for many experiments instead of commercially produced slice chambers. CONCLUSIONS While these technologies are still in their infancy, they represent a powerful addition to the lab environment. With careful selection of print material, slice chambers can be quickly and inexpensively manufactured in the lab.
Collapse
Affiliation(s)
- James Hyde
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melanie MacNicol
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela Odle
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
27
|
Odle AK, Haney A, Allensworth-James M, Akhter N, Childs GV. Adipocyte versus pituitary leptin in the regulation of pituitary hormones: somatotropes develop normally in the absence of circulating leptin. Endocrinology 2014; 155:4316-28. [PMID: 25116704 PMCID: PMC4197982 DOI: 10.1210/en.2014-1172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptin is a cytokine produced by white fat cells, skeletal muscle, the placenta, and the pituitary gland among other tissues. Best known for its role in regulating appetite and energy expenditure, leptin is produced largely by and in proportion to white fat cells. Leptin is also important to the maintenance and function of the GH cells of the pituitary. This was shown when the deletion of leptin receptors on somatotropes caused decreased numbers of GH cells, decreased circulating GH, and adult-onset obesity. To determine the source of leptin most vital to GH cells and other pituitary cell types, we compared two different leptin knockout models with Cre-lox technology. The global Lep-null model is like the ob/ob mouse, whereby only the entire exon 3 is deleted. The selective adipocyte-Lep-null model lacks adipocyte leptin but retains pituitary leptin, allowing us to investigate the pituitary as a potential source of circulating leptin. Male and female mice lacking adipocyte leptin (Adipocyte-lep-null) did not produce any detectable circulating leptin and were infertile, suggesting that the pituitary does not contribute to serum levels. In the presence of only pituitary leptin, however, these same mutants were able to maintain somatotrope numbers and GH mRNA levels. Serum GH trended low, but values were not significant. However, hypothalamic GHRH mRNA was significantly reduced in these animals. Other serum hormone and pituitary mRNA differences were observed, some of which varied from previous results reported in ob/ob animals. Whereas pituitary leptin is capable of maintaining somatotrope numbers and GH mRNA production, the decreased hypothalamic GHRH mRNA and low (but not significant) serum GH levels indicate an important role for adipocyte leptin in the regulation of GH secretion in the mouse. Thus, normal GH secretion may require the coordinated actions of both adipocyte and pituitary leptin.
Collapse
Affiliation(s)
- Angela K Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | |
Collapse
|
28
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
29
|
Akhter N, CarlLee T, Syed MM, Odle AK, Cozart MA, Haney AC, Allensworth-James ML, Beneš H, Childs GV. Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility. Endocrinology 2014; 155:4027-42. [PMID: 25057790 PMCID: PMC4164926 DOI: 10.1210/en.2014-1132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipokine, leptin (LEP), is a hormonal gateway, signaling energy stores to appetite-regulatory neurons, permitting reproduction when stores are sufficient. Dual-labeling for LEP receptors (LEPRs) and gonadotropins or GH revealed a 2-fold increase in LEPR during proestrus, some of which was seen in LH gonadotropes. We therefore investigated LEPR functions in gonadotropes with Cre-LoxP technology, deleting the signaling domain of the LEPR (Lepr-exon 17) with Cre-recombinase driven by the rat LH-β promoter (Lhβ-cre). Selectivity of the deletion was validated by organ genotyping and lack of LEPR and responses to LEP by mutant gonadotropes. The mutation had no impact on growth, body weight, the timing of puberty, or pregnancy. Mutant females took 36% longer to produce their first litter and had 50% fewer pups/litter. When the broad impact of the loss of gonadotrope LEPR on all pituitary hormones was studied, mutant diestrous females had reduced serum levels of LH (40%), FSH (70%), and GH (54%) and mRNA levels of Fshβ (59%) and inhibin/activin β A and β B (25%). Mutant males had reduced serum levels of GH (74%), TSH (31%), and prolactin (69%) and mRNA levels of Gh (31%), Ghrhr (30%), Fshβ (22%), and glycoprotein α-subunit (Cga) (22%). Serum levels of LEP and ACTH and mRNA levels of Gnrhr were unchanged. However, binding to GnRH receptors was reduced in LEPR-null LH or FSH gonadotropes by 82% or 89%, respectively, in females (P < .0001) and 27% or 53%, respectively, in males (P < .03). This correlated with reductions in GnRH receptor protein immunolabeling, suggesting that LEP's actions may be posttranscriptional. Collectively, these studies highlight the importance of LEP to gonadotropes with GnRH-binding sites and activin as potential targets. LEP may modulate population growth, adjusting the number of offspring to the availability of food supplies.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Trombley S, Mustafa A, Schmitz M. Regulation of the seasonal leptin and leptin receptor expression profile during early sexual maturation and feed restriction in male Atlantic salmon, Salmo salar L., parr. Gen Comp Endocrinol 2014; 204:60-70. [PMID: 24818969 DOI: 10.1016/j.ygcen.2014.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/28/2014] [Accepted: 04/21/2014] [Indexed: 12/22/2022]
Abstract
In mammals, leptin acts as an adiposity signal and is a crucial link between nutritional status and the reproductive axis. So far the link between leptin and energy balance during sexual maturation in teleosts has been poorly investigated. In this study, seasonal gene expression changes in two leptin genes (lepa1 and lepa2) and the leptin receptor were investigated during early sexual maturation in male Atlantic salmon parr under fully fed (control) and feed restricted conditions from April through September. Both Atlantic salmon lepa1 and lepa2 in the liver and lepr in the brain were significantly down-regulated in non-maturing control males in early spring, coinciding with the start of the growth and fat accumulation. In maturing control males, hepatic leptin expression increased during mid-spermatogenesis and lepa1 and lepa2 mRNA levels were up-regulated by 7.7 and 49 times respectively during final maturation. For the first time in a fish species, a significant up-regulation of lepr expression was observed in the testis throughout mid to late spermatogenesis. Feed restriction decreased the incidence of sexual maturation by 53% and highly up-regulated both leptin genes in the liver and the leptin receptor in the pituitary. This study shows that hepatic lepa1 and lepa2 expression and lepr expression in the testis is affected by early sexual maturation in male Atlantic salmon parr. Fast growth and high fat stores are associated with low leptin levels while feed restriction has a stimulatory effect on hepatic leptin and leptin receptor gene expression in the pituitary, suggesting a role for leptin other than that as an adiposity signal.
Collapse
Affiliation(s)
- Susanne Trombley
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Arshi Mustafa
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
31
|
Berryman DE, Glad CAM, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2013; 9:346-56. [PMID: 23568441 DOI: 10.1038/nrendo.2013.64] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity has become one of the most common medical problems in developed countries, and this disorder is associated with high incidences of hypertension, dyslipidaemia, cardiovascular disease, type 2 diabetes mellitus and specific cancers. Growth hormone (GH) stimulates the production of insulin-like growth factor 1 in most tissues, and together GH and insulin-like growth factor 1 exert powerful collective actions on fat, protein and glucose metabolism. Clinical trials assessing the effects of GH treatment in patients with obesity have shown consistent reductions in total adipose tissue mass, in particular abdominal and visceral adipose tissue depots. Moreover, studies in patients with abdominal obesity demonstrate a marked effect of GH therapy on body composition and on lipid and glucose homeostasis. Therefore, administration of recombinant human GH or activation of endogenous GH production has great potential to influence the onset and metabolic consequences of obesity. However, the clinical use of GH is not without controversy, given conflicting results regarding its effects on glucose metabolism. This Review provides an introduction to the role of GH in obesity and summarizes clinical and preclinical data that describe how GH can influence the obese state.
Collapse
Affiliation(s)
- Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
32
|
Syed M, Cozart M, Haney AC, Akhter N, Odle AK, Allensworth-James M, Crane C, Syed FM, Childs GV. Ghrelin restoration of function in vitro in somatotropes from male mice lacking the Janus kinase (JAK)-binding site of the leptin receptor. Endocrinology 2013; 154:1565-76. [PMID: 23417423 PMCID: PMC3602631 DOI: 10.1210/en.2012-2254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deletion of the signaling domain of leptin receptors selectively in somatotropes, with Cre-loxP technology, reduced the percentage of immunolabeled GH cells and serum GH. We hypothesized that the deficit occurred when leptin's postnatal surge failed to stimulate an expansion in the cell population. To learn more about the deficiency in GH cells, we tested their expression of GHRH receptors and GH mRNA and the restorative potential of secretagogue stimulation in vitro. In freshly plated dissociated pituitary cells from control male mice, GHRH alone (0.3 nM) increased the percentage of immunolabeled GH cells from 27 ± 0.05% (vehicle) to 42 ± 1.8% (P < .002) and the secretion of GH 1.8-3×. Deletion mutant pituitary cells showed a 40% reduction in percentages of immunolabeled GH cells (16.7 ± 0.4%), which correlated with a 47% reduction in basal GH levels (50 ng/mL control; 26.7 ng/mL mutants P = .01). A 50% reduction in the percentage of mutant cells expressing GHRH receptors (to 12%) correlated with no or reduced responses to GHRH. Ghrelin alone (10 nM) stimulated more GH cells in mutants (from 16.7-23%). When added with 1-3 nM GHRH, ghrelin restored GH cell percentages and GH secretion to levels similar to those of stimulated controls. Counts of somatotropes labeled for GH mRNA confirmed normal percentages of somatotropes in the population. These discoveries suggest that leptin may optimize somatotrope function by facilitating expression of membrane GHRH receptors and the production or maintenance of GH stores.
Collapse
Affiliation(s)
- Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham, Slot 510, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, Southern Illinois University in Carbondale, 1135 Lincoln Drive, Carbondale, Illinois 62901-6523, USA.
| |
Collapse
|
34
|
Szczesna M, Kirsz K, Kucharski M, Szymaszek P, Zieba DA. Obesity and leptin resistance: The role of growth hormone. Health (London) 2013. [DOI: 10.4236/health.2013.58a3005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Akhter N, Odle AK, Allensworth-James ML, Haney AC, Syed MM, Cozart MA, Chua S, Kineman R, Childs GV. Ablation of leptin signaling to somatotropes: changes in metabolic factors that cause obesity. Endocrinology 2012; 153:4705-15. [PMID: 22865370 PMCID: PMC3512011 DOI: 10.1210/en.2012-1331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 01/22/2023]
Abstract
Mice with somatotrope-specific deletion of the Janus kinase binding site in leptin receptors are GH deficient as young adults and become obese by 6 months of age. This study focused on the metabolic status of young (3-4.5 month old) preobese mutant mice. These mutants had normal body weights, lean body mass, serum leptin, glucose, and triglycerides. Mutant males and females showed significantly higher respiratory quotients (RQ) and lower energy output, resulting from a higher volume of CO(2) output and lower volume of O(2) consumption. Deletion mutant females were significantly less active than controls; they had higher levels of total serum ghrelin and ate more food. Mutant females also had lower serum insulin and higher glucagon. In contrast, deletion mutant males were not hyperphagic, but they were more active and spent less time sleeping. Adiponectin and resistin, both products of adipocytes, were increased in male and female mutant mice. In addition, mutant males showed an increase in circulating levels of the potent lipogenic hormone, glucose-dependent insulinotropic peptide. Taken together, these results indicate that mutant mice may become obese due to a reduction in lipid oxidation and energy expenditure. This may stem from GH deficiency. Reduced fat oxidation and enhanced insulin sensitivity (in females) are directly related to GH deficiency in mutant mice because GH has been shown by others to increase insulin sensitivity and fat oxidation and reduce carbohydrate oxidation. Gender-dependent alterations in metabolic signals may further exacerbate the future obese phenotype and affect the timing of its onset. Females show a delay in onset of obesity, perhaps because of their low serum insulin, which is lipogenic, whereas young males already have higher levels of the lipogenic hormone, glucose-dependent insulinotropic peptide. These findings signify that leptin signals to somatotropes are vital for the normal metabolic activity needed to optimize body composition.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 2012; 92:1-38. [PMID: 22298650 DOI: 10.1152/physrev.00003.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Collapse
Affiliation(s)
- Carolina Perez-Castro
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular,Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
38
|
Kling P, Jönsson E, Nilsen TO, Einarsdottir IE, Rønnestad I, Stefansson SO, Björnsson BT. The role of growth hormone in growth, lipid homeostasis, energy utilization and partitioning in rainbow trout: interactions with leptin, ghrelin and insulin-like growth factor I. Gen Comp Endocrinol 2012; 175:153-62. [PMID: 22094208 DOI: 10.1016/j.ygcen.2011.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/27/2011] [Accepted: 10/31/2011] [Indexed: 01/04/2023]
Abstract
The growth-promoting effects of in vivo growth hormone (GH) treatment were studied in relation to size and lipid content of energy stores including liver, mesentery, white muscle and belly flap in rainbow trout. In order to elucidate endocrine interactions and links to regulation of growth, adiposity and energy metabolism, plasma levels of GH, insulin-like growth factor I (IGF-I), leptin (Lep) and ghrelin, were assessed and correlated to growth and energy status. In addition tissue-specific expression of lepa1 mRNA was examined. Juvenile rainbow trout were implanted with sustained-release bovine GH implants and terminally sub-sampled at 1, 3 and 6 weeks. GH increased specific growth rate, reduced condition factor (CF) and increased feed conversion efficiency resulting in a redistribution of energy stores. Thus, GH decreased mesenteric (MSI) and liver somatic index (LSI). Lipid content of the belly flap increased following GH-treatment while liver and muscle lipid content decreased. Independent of GH substantial growth was accompanied by an increase in muscle lipids and a decrease in belly flap lipids. The data suggest that the belly flap may function as an energy buffering tissue during episodes of feeding and lean growth. Liver and muscle lipids were positively correlated to body weight, indicating a size-dependent change in adiposity. Hepatic lepa1 mRNA positively correlated to MSI and CF and its expression decreased following GH treatment, coinciding with decreased hepatic lipid content. Plasma Lep was positively correlated to MSI and belly flap lipid content, suggesting that Lep may communicate energy status. In summary, the observed GH tissue-specific effects on lipid metabolism in rainbow trout highlight the complex physiology of the energy reserves and their endocrine control.
Collapse
Affiliation(s)
- Peter Kling
- Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Luque RM, Gahete MD, Cordoba-Chacon J, Childs GV, Kineman RD. Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes? Ann N Y Acad Sci 2011; 1220:82-92. [PMID: 21388406 DOI: 10.1111/j.1749-6632.2010.05913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating growth hormone (GH) levels rise in response to nutrient deprivation and fall in states of nutrient excess. Because GH regulates carbohydrate, lipid, and protein metabolism, defining the mechanisms by which changes in metabolism alter GH secretion will aid in our understanding of the cause, progression, and treatment of metabolic diseases. This review will summarize what is currently known regarding the impact of systemic metabolic signals on GH-axis function. In addition, ongoing studies using the Cre/loxP system to generate mouse models with selective somatotrope resistance to metabolic signals will be discussed, where these models will serve to enhance our understanding of the specific role the somatotrope plays in sensing the metabolic environment and adjusting GH output in metabolic extremes.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | |
Collapse
|
40
|
Vijayakumar A, Yakar S, LeRoith D. The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne) 2011; 2:32. [PMID: 22654802 PMCID: PMC3356038 DOI: 10.3389/fendo.2011.00032] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1 (IGF-1). Data from human and rodent studies reveal the importance of GH in insulin synthesis and secretion, lipid metabolism and body fat remodeling. In this review, we will summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets identified to mediate these effects. Furthermore, we will discuss what role GH plays in obesity and present possible mechanisms by which this may occur.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
- *Correspondence: Derek LeRoith, Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, One Gustav Levy Place, Box 1055, New York, NY 10029-6574, USA. e-mail:
| |
Collapse
|