1
|
Zaman V, Matzelle D, Banik NL, Haque A. Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats. Cells 2025; 14:124. [PMID: 39851552 PMCID: PMC11764466 DOI: 10.3390/cells14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Rotenone, a naturally occurring compound derived from the roots of tropical plants, is used as a broad-spectrum insecticide, piscicide, and pesticide. It is a classical, high-affinity mitochondrial complex I inhibitor that causes not only oxidative stress, α-synuclein phosphorylation, DJ-1 (Parkinson's disease protein 7) modifications, and inhibition of the ubiquitin-proteasome system but it is also widely considered an environmental contributor to Parkinson's disease (PD). While prodromal symptoms, such as loss of smell, constipation, sleep disorder, anxiety/depression, and the loss of dopaminergic neurons in the substantia nigra of rotenone-treated animals, have been reported, alterations of metabolic hormones and hyperinsulinemia remain largely unknown and need to be investigated. Whether rotenone and its effect on metabolic peptides could be utilized as a biomarker for its toxic metabolic effects, which can cause long-term detrimental effects and ultimately lead to obesity, hyperinsulinemia, inflammation, and possibly gut-brain axis dysfunction, remains unclear. Here, we show that rotenone disrupts metabolic homeostasis, altering hormonal peptides and promoting infiltration of inflammatory T cells. Specifically, our results indicate a significant decrease in glucagon-like peptide-1 (GLP-1), C-peptide, and amylin. Interestingly, levels of several hormonal peptides related to hyperinsulinemia, such as insulin, leptin, pancreatic peptide (PP), peptide YY (PYY), and gastric inhibitory polypeptide (GIP), were significantly upregulated. Administration of rotenone to rats also increased body weight and activated macrophages and inflammatory T cells. These data strongly suggest that rotenone disrupts metabolic homeostasis, leading to obesity and hyperinsulinemia. The potential implications of these findings are vast, given that monitoring these markers in the blood could not only provide a crucial tool for assessing the extent of exposure and its relevance to obesity and inflammation but could also open new avenues for future research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Vandana Zaman
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA; (V.Z.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Naren L. Banik
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA; (V.Z.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Azizul Haque
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA; (V.Z.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Skowronski AA, Shaulson ED, Leibel RL, LeDuc CA. The postnatal leptin surge in mice is variable in both time and intensity and reflects nutritional status. Int J Obes (Lond) 2022; 46:39-49. [PMID: 34475504 PMCID: PMC8748198 DOI: 10.1038/s41366-021-00957-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The murine postnatal leptin surge occurs within the first 4 weeks of life and is critical for neuronal projection development within hypothalamic feeding circuits. Here we describe the influence of nutritional status on the timing and magnitude of the postnatal leptin surge in mice. METHODS Plasma leptin concentrations were measured 1-3 times per week for the first 4 weeks of life in C57BL/6J pups reared in litters adjusted to 3 (small), 7-8 (normal), or 11-12 (large) pups per dam fed breeder chow or raised in litters of 7-8 by dams fed high-fat diet (HFD) ad libitum starting either prior to conception or at parturition. RESULTS Mice raised in small litters become fatter than pups raised in either normal or large litters. The leptin surge in small litter pups starts earlier, lasts longer, and is dramatically larger in magnitude compared to normal litter pups, even when leptin concentrations are normalized to fat mass. In mice reared in large litters, weight gain is diminished and the surge is both significantly delayed and lower in magnitude compared to control pups. Pups reared by HFD-fed dams (starting preconception or at parturition) are fatter and have augmented leptin surge magnitude compared to pups suckled by chow-fed dams. Surge timing varies depending upon nutritional status of the pup; the source of the surge is primarily subcutaneous adipose tissue. At peak leptin surge, within each group, fat mass and plasma leptin are uncorrelated; in comparison with adults, pups overproduce leptin relative to fat mass. Plasma leptin elevation persists longer than previously described; at postnatal day 27 mice continue overproducing leptin relative to fat mass. CONCLUSIONS In mice, small litter size and maternal HFD feeding during the perinatal period augment the plasma leptin surge whereas large litter size is associated with a delayed surge of reduced magnitude.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan D Shaulson
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Zecharia D, Rauch M, Sharabi-Nov A, Tamir S, Gutman R. Postnatal administration of leptin antagonist mitigates susceptibility to obesity under high-fat diet in male αMUPA mice. Am J Physiol Endocrinol Metab 2019; 317:E783-E793. [PMID: 31454257 DOI: 10.1152/ajpendo.00099.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perturbations in postnatal leptin signaling have been associated with altered susceptibility to diet-induced obesity (DIO) under high-fat-diet (HFD), albeit with contradicting evidence. Previous studies have shown that alpha murine urokinase-type plasminogen activator (αMUPA) mice have a higher and longer postnatal leptin surge compared with their wild types (WTs) as well as lower body weight and food intake under regular diet (RD). Here we explored αMUPA's propensity for DIO and the effect of attenuating postnatal leptin signaling with leptin antagonist (LA) on energy homeostasis under both RD and HFD. Four-day-old αMUPA pups were treated on alternate days until postnatal day 18 with either vehicle or LA (10 or 20 mg·day-1·kg-1) and weaned into RD or HFD. Compared with RD-fed αMUPA males, HFD-fed αMUPA males showed higher energy intake, even when corrected for body weight difference, and became hyperinsulinemic and obese. Additionally, HFD-fed αMUPA males gained body weight at a higher rate than their WTs mainly because of strain differences in energy expenditure. LA administration did not affect strain differences under RD but attenuated αMUPA's hyperinsulinemia and DIO under HFD, most likely by mediating energy expenditure. Together with our previous findings, these results suggest that αMUPA's leptin surge underlies its higher susceptibility to obesity under HFD, highlighting the role of leptin-related developmental processes in inducing obesity in a postweaning obesogenic environment, at least in αMUPA males. This study therefore supports the use of αMUPA mice for elucidating developmental mechanisms of obesity and the efficacy of early-life manipulations via leptin surge axis in attenuating DIO.
Collapse
Affiliation(s)
- Danielle Zecharia
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Biotechnology, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Maayan Rauch
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
| | - Adi Sharabi-Nov
- Research Wing, Ziv Medical Center, Zefat, Israel
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
5
|
Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS One 2017; 12:e0188658. [PMID: 29190757 PMCID: PMC5708666 DOI: 10.1371/journal.pone.0188658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.
Collapse
|
6
|
Chen M, Wang X, Hu Z, Zhou H, Xu Y, Qiu L, Qin X, Zhang Y, Ying Z. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles. Part Fibre Toxicol 2017; 14:20. [PMID: 28645299 PMCID: PMC5481884 DOI: 10.1186/s12989-017-0201-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/18/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM2.5) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. RESULTS To determine if maternal exposure to PM2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. CONCLUSIONS Our data indicate that maternal exposure to ambient PM2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032 China
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
| | - Xiaoke Wang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong, 226019 China
| | - Ziying Hu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
- Department of Endocrinology, the People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan 450003 China
| | - Huifen Zhou
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032 China
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong, 226019 China
| | - Xiaobo Qin
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Zhekang Ying
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032 China
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S022, Baltimore, MD 21201 USA
| |
Collapse
|
7
|
Yan Z, Wang W, Wu Y, Wang W, Li B, Liang N, Wu W. Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomedicine 2017; 12:4433-4442. [PMID: 28652743 PMCID: PMC5476650 DOI: 10.2147/ijn.s134897] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Engineered zinc oxide nanoparticles (ZnO-NPs) are currently being produced in high tonnage. Exposure to ZnO-NPs presents potential risks to cardiovascular system. Thus far, the toxicological effects of ZnO-NPs on cardiovascular system have not been well characterized. In this study, human coronary artery endothelial cells (HCAECs) were exposed to ZnO-NPs directly or indirectly using a transwell coculture system with human alveolar epithelial cell line A549 to mimic the lung/circulation interaction. It was shown that levels of proinflammatory mediators (interleukin-8 [IL-8] and tumor necrosis factor-α [TNF-α]) and biomarkers of atherosclerogenesis (heme oxygenase-1 [HO-1] and platelet endothelial cell adhesion molecules-1 [PECAM-1]) in the supernatants of culture media were significantly increased. Pretreatment of A549 cells on the apical side of the coculture system with the phagocytosis inhibitor cytochalasin B (CB) blocked ZnO-NP-induced HO-1 and PECAM-1 expression in HCAEC, indicating that endocytosis of ZnO-NPs by alveolar epithelial cells was involved in ZnO-NP-induced HO-1 or PECAM-1 expression in endothelial cells. Moreover, Wistar rats were intratracheally instilled with ZnO-NP suspension and high fat diet (positive control). ZnO-NP treatment induced lung and systemic inflammation, dyslipidemia, increased levels of serum HO-1 and PECAM-1, and aortic pathological damage. Taken together, exposure to ZnO-NPs could induce atherosclerotic alterations, which might involve phagocytosis of nanoparticles and inflammation in the lung.
Collapse
Affiliation(s)
- Zhen Yan
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Wenjun Wang
- School of Public Health, Jining Medical University, Jining
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Wei Wang
- School of Public Health, Jining Medical University, Jining
| | - Bing Li
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Ning Liang
- College of Public Health, Zhengzhou University, Zhengzhou
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
8
|
Reynolds CM, Segovia SA, Vickers MH. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring. Front Endocrinol (Lausanne) 2017; 8:245. [PMID: 28993758 PMCID: PMC5622157 DOI: 10.3389/fendo.2017.00245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut-brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.
Collapse
Affiliation(s)
| | | | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Mark H. Vickers,
| |
Collapse
|
9
|
Juan De Solis A, Baquero AF, Bennett CM, Grove KL, Zeltser LM. Postnatal undernutrition delays a key step in the maturation of hypothalamic feeding circuits. Mol Metab 2016; 5:198-209. [PMID: 26977392 PMCID: PMC4770263 DOI: 10.1016/j.molmet.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Humans and animals exposed to undernutrition (UN) during development often experience accelerated "catch-up" growth when food supplies are plentiful. Little is known about the mechanisms regulating early growth rates. We previously reported that actions of leptin and presynaptic inputs to orexigenic NPY/AgRP/GABA (NAG) neurons in the arcuate nucleus of the hypothalamus are almost exclusively excitatory during the lactation period, since neuronal and humoral inhibitory systems do not develop until after weaning. Moreover, we identified a critical step that regulates the maturation of electrophysiological responses of NAG neurons at weaning - the onset of genes encoding ATP-dependent potassium (KATP) channel subunits. We explored the possibility that UN promotes subsequent catch-up growth, in part, by delaying the maturation of negative feedback systems to neuronal circuits driving food intake. METHODS We used the large litter (LL) size model to study the impacts of postnatal UN followed by catch-up growth. We evaluated the maturation of presynaptic and postsynaptic inhibitory systems in NAG neurons using a combination of electrophysiological and molecular criteria, in conjunction with leptin's ability to suppress fasting-induced hyperphagia. RESULTS The onset of KATP channel subunit expression and function, the switch in leptin's effect on NAG neurons, the ingrowth of inhibitory inputs to NAG neurons, and the development of homeostatic feedback to feeding circuits were delayed in LL offspring relative to controls. The development of functional KATP channels and the establishment of leptin-mediated suppression of food intake in the peri-weaning period were tightly linked and were not initiated until growth and adiposity of LL offspring caught up to controls. CONCLUSIONS Our data support the idea that initiation of KATP channel subunit expression in NAG neurons serves as a molecular gatekeeper for the maturation of homeostatic feeding circuits.
Collapse
Key Words
- ARH, arcuate nucleus of the hypothalamus
- AgRP
- AgRP, agouti-related peptide
- EPSC, excitatory postsynaptic current
- Feeding circuits
- GABA, gamma-aminobutyric acid
- IPSC, inhibitory postsynaptic current
- KATP channel
- KATP, ATP-sensitive potassium channel
- Kir, potassium inward rectifiying channel subunit
- LL, large litter
- Lepr, leptin receptor
- Leptin
- NAG, NPY, AgRP, GABA, NPY, neuropeptide Y
- NPY
- P, postnatal day
- PVH, paraventricular nucleus of the hypothalamus
- Pomc, pro-opiomelanocortin
- SUR, sulfonylurea receptor
- UN, undernutrition
- Undernutrition
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
Collapse
Affiliation(s)
- Alain Juan De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA.
| | - Arian F Baquero
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Camdin M Bennett
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Kevin L Grove
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | - Lori M Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Martin-Gronert MS, Stocker CJ, Wargent ET, Cripps RL, Garfield AS, Jovanovic Z, D'Agostino G, Yeo GSH, Cawthorne MA, Arch JRS, Heisler LK, Ozanne SE. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats. Dis Model Mech 2016; 9:401-12. [PMID: 26769798 PMCID: PMC4852506 DOI: 10.1242/dmm.023903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.
Collapse
Affiliation(s)
- Malgorzata S Martin-Gronert
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Claire J Stocker
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Edward T Wargent
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Roselle L Cripps
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Zorica Jovanovic
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Giles S H Yeo
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael A Cawthorne
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Jonathan R S Arch
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Lora K Heisler
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
11
|
Abstract
Suboptimal maternal nutrition exerts lasting impacts on obesity risk in offspring, but the direction of the effect is determined by the timing of exposure. While maternal undernutrition in early pregnancy is associated with increased body mass index, in later pregnancy it can be protective. The importance of the timing of maternal undernutrition is also observed in rodents, however, many of the processes that occur in the last trimester of human gestation are delayed to the postnatal period. Neonatal leptin administration exerts lasting impacts on susceptibility to obesity in rodents. Although leptin can influence the formation of hypothalamic circuits involved in homeostatic control of feeding during the postnatal period, these effects are too late to account for its ability to reverse adverse metabolic programming due to early gestational exposure to maternal undernutrition. This review presents an alternative framework for understanding the effects of neonatal leptin through influences on developing thermoregulatory circuits.
Collapse
|
12
|
Dearden L, Ozanne SE. Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol 2015; 39:3-16. [PMID: 26296796 DOI: 10.1016/j.yfrne.2015.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022]
Abstract
A wealth of animal and human studies demonstrate that perinatal exposure to adverse metabolic conditions - be it maternal obesity, diabetes or under-nutrition - results in predisposition of offspring to develop obesity later in life. This mechanism is a contributing factor to the exponential rise in obesity rates. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of energy homeostasis as an underlying cause. Perinatal development of the hypothalamus (a brain region key to metabolic regulation) is plastic and sensitive to metabolic signals during this critical time window. Recent research in non-human primate and rodent models has demonstrated that exposure to adverse maternal environments impairs the development of hypothalamic structure and consequently function, potentially underpinning metabolic phenotypes in later life. This review summarizes our current knowledge of how adverse perinatal environments program hypothalamic development and explores the mechanisms that could mediate these effects.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
13
|
Leibel RL, Seeley RJ, Darsow T, Berg EG, Smith SR, Ratner R. Biologic Responses to Weight Loss and Weight Regain: Report From an American Diabetes Association Research Symposium. Diabetes 2015; 64:2299-309. [PMID: 26106187 DOI: 10.2337/db15-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rudolph L Leibel
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Randy J Seeley
- Department of Surgery, North Campus Research Complex, University of Michigan School of Medicine, Ann Arbor, MI
| | - Tamara Darsow
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Erika Gebel Berg
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Sanford-Burnham Institute, Florida Hospital, Winter Park, FL
| | - Robert Ratner
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| |
Collapse
|
14
|
Different short-term mild exercise modalities lead to differential effects on body composition in healthy prepubertal male rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:404201. [PMID: 25695074 PMCID: PMC4324749 DOI: 10.1155/2015/404201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022]
Abstract
Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON), bipedal stance (BPS), or wheel exercise (WEX) groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality.
Collapse
|
15
|
Li YX, Zhang Q, Shang XM, Li YQ, Liu XK, Liu CQ, Liu XM, Zhang QH. Association of Two Well-defined Polymorphisms in Leptin and Leptin Receptor Genes with Hypertension and Circulating Leptin: A Meta-analysis. Arch Med Res 2015; 46:38-46. [DOI: 10.1016/j.arcmed.2014.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
|
16
|
Ruiz-Narváez EA, Palmer JR, Gerlovin H, Wise LA, Vimalananda VG, Rosenzweig JL, Rosenberg L. Birth weight and risk of type 2 diabetes in the black women's health study: does adult BMI play a mediating role? Diabetes Care 2014; 37:2572-8. [PMID: 25147255 PMCID: PMC4140161 DOI: 10.2337/dc14-0731] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the association of birth weight with incident type 2 diabetes, and the possible mediating influence of obesity, in a large cohort of U.S. black women. RESEARCH DESIGN AND METHODS The Black Women's Health Study is an ongoing prospective study. We used Cox proportional hazards models to estimate incidence rate ratios (IRRs) and 95% CI for categories of birth weight (very low birth weight [<1,500 g], low birth weight [1,500-2,499 g], and high birth weight [≥4,000 g]) in reference to normal birth weight (2,500-3,999 g). Models were adjusted for age, questionnaire cycle, family history of diabetes, caloric intake, preterm birth, physical activity, years of education, and neighborhood socioeconomic status with and without inclusion of terms for adult BMI. RESULTS We followed 21,624 women over 16 years of follow-up. There were 2,388 cases of incident diabetes. Women with very low birth weight had a 40% higher risk of disease (IRR 1.40 [95% CI 1.08-1.82]) than women with normal birth weight; women with low birth weight had a 13% higher risk (IRR 1.13 [95% CI 1.02-1.25]). Adjustment for BMI did not appreciably change the estimates. CONCLUSIONS Very low birth weight and low birth weight appear to be associated with increased risk of type 2 diabetes in African American women, and the association does not seem to be mediated through BMI. The prevalence of low birth weight is especially high in African American populations, and this may explain in part the higher occurrence of type 2 diabetes.
Collapse
Affiliation(s)
- Edward A Ruiz-Narváez
- Slone Epidemiology Center at Boston University, Boston, MA Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Hanna Gerlovin
- Slone Epidemiology Center at Boston University, Boston, MA Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Lauren A Wise
- Slone Epidemiology Center at Boston University, Boston, MA Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Varsha G Vimalananda
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA
| | - James L Rosenzweig
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, MA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, MA Department of Epidemiology, Boston University School of Public Health, Boston, MA
| |
Collapse
|
17
|
Martin Agnoux A, Alexandre-Gouabau MC, Le Dréan G, Antignac JP, Parnet P. Relative contribution of foetal and post-natal nutritional periods on feeding regulation in adult rats. Acta Physiol (Oxf) 2014; 210:188-201. [PMID: 24010762 DOI: 10.1111/apha.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023]
Abstract
AIM The aim of this study was to assess the contribution of both foetal and/or post-natal nutritional periods on feeding regulation in adult rats. METHODS Body weight gain, adipose tissue development, food preferences and feeding pattern under regular chow or Western diets were characterized on four experimental groups of rats: pups born from protein-restricted dams (R) and weaned by control (RC) or R dams (RR) and pups born from control dams weaned by C (CC) or R dams (CR). RESULTS Rats born with intrauterine growth restriction (IUGR) and fed a Western diet at adulthood appeared predisposed to body weight gain and more fat accretion, whereas CR rats, despite their preference for high-fat diet and their hyperphagia for Western diet, did not show significant increase in fat tissue. Daytime food intakes, as well as their speed of ingestion, were found modified in RC and RR. Alterations in the hypothalamic appetite regulatory mechanisms were investigated through neuropeptide expression analysis. IUGR rats showed altered expression of key elements of leptin and NPY signalling, while CR rats exhibited lesser expression of enterostatin, MC4r and HT-1Br mRNA. CONCLUSION Altogether, these results indicate that peri-natal nutrition has different lasting effects on feeding pattern and hypothalamic appetite regulation, depending on the time window insult.
Collapse
Affiliation(s)
- A. Martin Agnoux
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - M. -C. Alexandre-Gouabau
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - G. Le Dréan
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - J. -P. Antignac
- LUNAM université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); USC INRA 1329; Nantes France
| | - P. Parnet
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| |
Collapse
|
18
|
Berends LM, Fernandez-Twinn DS, Martin-Gronert MS, Cripps RL, Ozanne SE. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue. Int J Obes (Lond) 2012; 37:1051-7. [PMID: 23229735 PMCID: PMC3734734 DOI: 10.1038/ijo.2012.196] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 12/22/2022]
Abstract
Background: It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The mechanisms underlying these observations are not fully understood. Aim: Using a well-established maternal protein-restriction rodent model, our aim was to determine if exposure to mismatched nutrition in early-life programmes adipose tissue structure and function, and expression of key components of the insulin-signalling pathway. Methods: Offspring of dams fed a low-protein (8%) diet during pregnancy were suckled by control (20%)-fed dams to drive catch-up growth. This ‘recuperated' group was compared with offspring of dams fed a 20% protein diet during pregnancy and lactation (control group). Epididymal adipose tissue from 22-day and 3-month-old control and recuperated male rats was studied using histological analysis. Expression and phosphorylation of insulin-signalling proteins and gene expression were assessed by western blotting and reverse-transcriptase PCR, respectively. Results: Recuperated offspring at both ages had larger adipocytes (P<0.001). Fasting serum glucose, insulin and leptin levels were comparable between groups but increased with age. Recuperated offspring had reduced expression of IRS-1 (P<0.01) and PI3K p110β (P<0.001) in adipose tissue. In adult recuperated rats, Akt phosphorylation (P<0.01) and protein levels of Akt-2 (P<0.01) were also reduced. Messenger RNA expression levels of these proteins were not different, indicating a post-transcriptional effect. Conclusion: Early-life nutrition programmes alterations in adipocyte cell size and impairs the protein expression of several insulin-signalling proteins through post-transcriptional mechanisms. These indices may represent early markers of insulin resistance and metabolic disease risk.
Collapse
Affiliation(s)
- L M Berends
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|
19
|
Abstract
The global prevalence of type-2 diabetes (T2D) has more than doubled in the last 30 years and is predicted to continue to rise at an alarming rate. The associated health and financial burdens are considerable. The aetiology of common forms of T2D is multifactorial and involves a complex interplay between genetic, epigenetic and environmental factors. The influential role of the environment, in particular our diet and sedentary lifestyles, in diabetes risk is well established. Of major concern is the increasing prevalence of early onset T2D or pre-diabetic characteristics in children. In recent years, the role of the early life environment in programming diabetes risk has been the focus of numerous human and animal studies. Historical studies highlighted an association between low birthweight, a proxy for suboptimal in utero growth, and diabetes risk in adulthood. Over more recent years it has become apparent that a variety of expositions, including maternal obesity and/or maternal diabetes, can have a significant effect on offspring health outcomes. Further complicating matters, paternal and transgenerational transmission of T2D can occur thus mediating a perpetuating cycle of disease risk between generations. It is imperative for the underlying mechanisms to be elucidated so that interventions can be introduced. In doing so, it may be possible to prevent, delay or reverse a pre-programmed risk for T2D induced by pre- and/or postnatal environmental factors to improve health outcomes and curb premature metabolic decline. This review presents evidence for how the early life environment may programme T2D risk and suggests some mechanisms by which this may occur.
Collapse
Affiliation(s)
- L M Berends
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Abstract
Considerable epidemiological, experimental and clinical data have amassed showing that the risk of developing disease in later life is dependent upon early life conditions. In particular, altered maternal nutrition, including undernutrition and overnutrition, can lead to metabolic disorders in offspring characterised by obesity and leptin resistance. The adipokine leptin has received significant interest as a potential programming factor; alterations in the profile of leptin in early life are associated with altered susceptibility to obesity and metabolic disorders in adulthood. Maintenance of a critical leptin level during early development facilitates the normal maturation of tissues and signalling pathways involved in metabolic homeostasis. A period of relative hypo- or hyperleptinemia during this window of development will induce some of the metabolic adaptations which underlie developmental programming. However, it remains unclear whether leptin alone is a critical factor for the programming of obesity. At least in animal experimental studies, developmental programming is potentially reversible by manipulating the concentration of circulating leptin during a critical window of developmental plasticity and offers an exciting new approach for therapeutic intervention.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute and The National Research Centre for Growth and Development, University of Auckland, Grafton, Auckland, New
| | | |
Collapse
|
21
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Maternal protein restriction before pregnancy reduces offspring early body mass and affects glucose metabolism in C57BL/6JBom mice. J Dev Orig Health Dis 2012; 3:364-74. [DOI: 10.1017/s2040174412000347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary protein restriction in pregnant females reduces offspring birth weight and increases the risk of developing obesity, type 2 diabetes and cardiovascular disease. Despite these grave consequences, few studies have addressed the effects of preconceptional maternal malnutrition. Here we investigate how a preconceptional low-protein (LP) diet affects offspring body mass and insulin-regulated glucose metabolism. Ten-week-old female mice (C57BL/6JBom) received either an LP or isocaloric control diet (8% and 22% crude protein, respectively) for 10 weeks before conception, but were thereafter fed standard laboratory chow (22.5% crude protein) during pregnancy, lactation and offspring growth. When the offspring were 10 weeks old, they were subjected to an intraperitoneal glucose tolerance test (GTT), and sacrificed after a 5-day recovery period to determine visceral organ mass. Body mass of LP male offspring was significantly lower at weaning compared with controls. A similar, nonsignificant, tendency was observed for LP female offspring. These differences in body mass disappeared within 1 week after weaning, a consequence of catch-up growth in LP offspring. GTTs of 10-week-old offspring revealed enhanced insulin sensitivity in LP offspring of both sexes. No differences were found in body mass, food intake or absolute size of visceral organs of adult offspring. Our results indicate that maternal protein restriction imposed before pregnancy produces effects similar to postconceptional malnutrition, namely, low birth weight, catch-up growth and enhanced insulin sensitivity at young adulthood. This could imply an increased risk of offspring developing lifestyle-acquired diseases during adulthood.
Collapse
|
23
|
Devlin MJ, Bouxsein ML. Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone 2012; 50:444-51. [PMID: 21723972 PMCID: PMC3210869 DOI: 10.1016/j.bone.2011.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/30/2011] [Accepted: 06/15/2011] [Indexed: 11/29/2022]
Abstract
Early life nutrition has substantial influences on postnatal health, with both under- and overnutrition linked with permanent metabolic changes that alter reproductive and immune function and significantly increase metabolic disease risk in offspring. Since perinatal nutrition depends in part on maternal metabolic condition, maternal diet during gestation and lactation is a risk factor for adult metabolic disease. Such developmental responses may be adaptive, but might also result from constraints on, or pathological changes to, normal physiology. The rising prevalence of both obesity and osteoporosis, and the identification of links among bone, fat, brain, and gut, suggest that obesity and osteoporosis may be related, and moreover that their roots may lie in early life. Here we focus on evidence for how maternal diet during gestation and lactation affects metabolism and skeletal acquisition in humans and in animal models. We consider the effects of overall caloric restriction, and macronutrient imbalances including high fat, high sucrose, and low protein, compared to normal diet. We then discuss potential mechanisms underlying the skeletal responses, including perinatal developmental programming via disruption of the perinatal leptin surge and/or epigenetic changes, to highlight unanswered questions and identify the most critical areas for future research.
Collapse
Affiliation(s)
- M J Devlin
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
24
|
Affiliation(s)
- Susan E Ozanne
- University of Cambridge-Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|