1
|
Zeng G, Liu X, Zheng Z, Zhao J, Zhuo W, Bai Z, Lin E, Cai S, Cai C, Li P, Zou B, Li J. Knockdown of RASD1 improves MASLD progression by inhibiting the PI3K/AKT/mTOR pathway. Lipids Health Dis 2024; 23:424. [PMID: 39731125 DOI: 10.1186/s12944-024-02419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD. Therefore, we designed a study to elucidate how RASD1 could impact on MASLD as well as the mechanisms involved. METHODS The expression level of RASD1 was validated in MASLD. Lipid metabolism and its underlying mechanism were investigated in hepatocytes and mice with either overexpression or knockdown of RASD1. RESULTS Hepatic RASD1 expression was upregulated in MASLD. Lipid deposition was significantly reduced in RASD1-knockdown hepatocytes and mice, accompanied by a marked downregulation of key genes in the signaling pathway of de novo lipogenesis. Conversely, RASD1 overexpression in hepatocytes had the opposite effect. Mechanistically, RASD1 regulated lipid metabolism in MASLD through the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS We discovered a novel role of RASD1 in MASLD by regulating lipogenesis via the PI3K/AKT/mTOR pathway, thereby identifying a potential treatment target for MASLD.
Collapse
Affiliation(s)
- Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zhouying Zheng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Jiali Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
2
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
3
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Liu SB, Meng XM, Li YM, Wang JM, Guo HH, Wang C, Zhu BM. Histone methyltransferase KMT2D contributes to the protection of myocardial ischemic injury. Front Cell Dev Biol 2022; 10:946484. [PMID: 35938163 PMCID: PMC9354747 DOI: 10.3389/fcell.2022.946484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.
Collapse
Affiliation(s)
- Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Meng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| |
Collapse
|
5
|
Tekath T, Dugas M. Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle. Bioinformatics 2021; 37:3781-3787. [PMID: 34469510 PMCID: PMC8570804 DOI: 10.1093/bioinformatics/btab629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Motivation Each year, the number of published bulk and single-cell RNA-seq datasets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell-type identification. Results We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq datasets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. In addition, we present novel potential DTU applications like the identification of cell-type specific transcript isoforms as biomarkers. Availability and implementation The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tobias Tekath
- Institute of Medical Informatics, University Hospital of Münster, Münster, 48149, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, 69120, Germany
| |
Collapse
|
6
|
Vicente JM, Santos-Silva JC, Teixeira CJ, de Souza DN, Vettorazzi JF, Furtuoso FS, Adabo IG, Sato FT, Vinolo MAR, Carneiro EM, Bordin S, Anhê GF. Long-term increase of insulin secretion in mice subjected to pregnancy and lactation. Endocr Connect 2020; 9:299-308. [PMID: 32182583 PMCID: PMC7159261 DOI: 10.1530/ec-20-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Observational studies show that longer breastfeeding periods reduce maternal risk of type 2 diabetes mellitus. However, it is currently unknown if the long-term benefits of breastfeeding for maternal glucose homeostasis are linked to changes in the endocrine pancreas. METHODS We presently evaluated functional, morphological and molecular aspects of the endocrine pancreas of mice subjected to two sequential cycles of pregnancy and lactation (L21). Age-matched mice not allowed to breastfeed (L0) and virgin mice were used as controls. RESULTS L21 mice exhibited increased tolerance and increased glucose-stimulated insulin secretion (GSIS) by isolated islets. Pancreatic islets of L21 mice did not present evident morphological changes to justify the increased GSIS. On the other hand, islets of L21 mice exhibited a reduction in Cavb3 and Kir6.2 expression with concordant increased intracellular Ca2+ levels after challenge with glucose. CONCLUSION Altogether, the present findings show the breastfeeding exerts long-term benefits for maternal endocrine pancreas by increasing intracellular Ca2+ levels and GSIS.
Collapse
Affiliation(s)
- Julia Modesto Vicente
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fabiola Sales Furtuoso
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Isabel Gouveia Adabo
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Fabio Takeo Sato
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
- Correspondence should be addressed to G F Anhe:
| |
Collapse
|
7
|
Jiang B, Lv Q, Wan W, Le L, Xu L, Hu K, Xiao P. Transcriptome analysis reveals the mechanism of the effect of flower tea Coreopsis tinctoria on hepatic insulin resistance. Food Funct 2019; 9:5607-5620. [PMID: 30370909 DOI: 10.1039/c8fo00965a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-Camellia tea and herbal medicine help prevent the development of diabetes and other metabolic diseases. Previous studies revealed that Coreopsis tinctoria (CT) flower tea increases insulin sensitivity and, in some high-fat diet (HFD)-fed rats, even prevents hepatic metabolic disorders. However, the molecular mechanisms by which CT improves insulin resistance are not known. In this study, six-week-old rats were fed a normal diet (ND), an HFD or an HFD supplemented with CT for 8 weeks. Serum samples were collected, and the livers were extracted for RNA-seq gene expression analysis. Real-time PCR and western blotting further verified the RNA-seq results. In our results, dietary CT ameliorated HFD-induced hepatosteatosis, glucose intolerance, and insulin resistance. In the HFD group, 1667 differentially expressed genes (DEGs) were identified compared with the ND group. In the CT group, 327 DEGs were identified compared with the HFD group. Some of these DEGs were related to insulin signalling, hepatic lipogenesis and glucose homeostasis. This study suggested that insulin resistance with hyperinsulinaemia, and not insulin insufficiency, is an early problem in HFD-fed rats, and CT downregulates insulin secretion genes (e.g., Rasd1, Stxbp1 and Sfxn1). Hepatic gene and protein expression analyses indicated that the regulatory effects of CT on glucose and lipid homeostasis are likely mediated via the Akt/FoxO1 signalling pathway and are regulated by the transcription factors hairy and enhancer of split 1 (HES1) and small heterodimer partner (SHP). Our study provides transcriptomic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and proves that supplementation with CT improves insulin resistance at a global scale.
Collapse
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Xavier JLP, Scomparin DX, Pontes CC, Ribeiro PR, Cordeiro MM, Marcondes JA, Mendonça FO, Silva MTD, Oliveira FBD, Franco GCN, Grassiolli S. Litter Size Reduction Induces Metabolic and Histological Adjustments in Dams throughout Lactation with Early Effects on Offspring. AN ACAD BRAS CIENC 2019; 91:e20170971. [PMID: 30916150 DOI: 10.1590/0001-3765201920170971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study we analyzed morphological and metabolic alterations in dams nursing small litters and their consequences to offspring throughout lactation. Offspring sizes were adjusted to Small Litter (SL, 3 pups/ dam) and Normal Litter (NL, 9 pups/ dam). Body weight, food intake, white adipose tissue (WAT) content, histological analysis of the pancreas, mammary gland (MG) and brown adipose tissue (BAT) as well as, plasma parameters and milk composition were measured in dams and pups on the 7th, 14th and 21st days of lactation. In general, SL-dams presented higher body weight and retroperitoneal fat content, elevated fat infiltration in BAT, reduced islets size and hyperglycemia throughout lactation in relation to NL-dams (p<0.05). Moreover, MG from SL-dams had reduced alveoli development and high adipocytes content, resulting in milk with elevated energetic value and fat content in relation to NL-dams (p<0.05). Maternal states influenced offspring anthropometric conditions during lactation, offspring-SL displayed higher body weight and growth, hyperglycemia, augmented lipid deposition in BAT and elevated islet. Thus, maternal histological and metabolic changes are due to modifications to nursing small litters and reinforce the importance of preserving maternal health during lactation avoiding early programming effects on offspring preventing metabolic consequences later in life.
Collapse
Affiliation(s)
- João Lucas P Xavier
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Dionizia X Scomparin
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Catherine C Pontes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Paulo Roberto Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Maiara M Cordeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Jessica A Marcondes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Felipe O Mendonça
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Makcine T da Silva
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Fabio B de Oliveira
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Gilson C N Franco
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Sabrina Grassiolli
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
9
|
Song QQ, Rao Y, Tang GH, Sun ZH, Zhang JS, Huang ZS, Yin S. Tigliane Diterpenoids as a New Type of Antiadipogenic Agents Inhibit GRα-Dexras1 Axis in Adipocytes. J Med Chem 2019; 62:2060-2075. [DOI: 10.1021/acs.jmedchem.8b01693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qin-Qin Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong Rao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhang-Hua Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jun-Sheng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
10
|
Hall E, Dekker Nitert M, Volkov P, Malmgren S, Mulder H, Bacos K, Ling C. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 2018; 472:57-67. [PMID: 29183809 DOI: 10.1016/j.mce.2017.11.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/20/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a complex disease characterised by chronic hyperglycaemia. The effects of elevated glucose on global gene expression in combination with DNA methylation patterns have not yet been studied in human pancreatic islets. Our aim was to study the impact of 48 h exposure to high (19 mM) versus control (5.6 mM) glucose levels on glucose-stimulated insulin secretion, gene expression and DNA methylation in human pancreatic islets. RESULTS While islets kept at 5.6 mM glucose secreted significantly more insulin in response to short term glucose-stimulation (p = 0.0067), islets exposed to high glucose for 48 h were desensitised and unresponsive to short term glucose-stimulation with respect to insulin secretion (p = 0.32). Moreover, the exposure of human islets to 19 mM glucose resulted in significantly altered expression of eight genes (FDR<5%), with five of these (GLRA1, RASD1, VAC14, SLCO5A1, CHRNA5) also exhibiting changes in DNA methylation (p < 0.05). A gene set enrichment analysis of the expression data showed significant enrichment of e.g. TGF-beta signalling pathway, Notch signalling pathway and SNARE interactions in vesicular transport; these pathways are of relevance for islet function and possibly also diabetes. We also found increased DNA methylation of CpG sites annotated to PDX1 in human islets exposed to 19 mM glucose for 48 h. Finally, we could functionally validate a role for Glra1 in insulin secretion. CONCLUSION Our data demonstrate that high glucose levels affect human pancreatic islet gene expression and several of these genes also exhibit epigenetic changes. This might contribute to the impaired insulin secretion seen in T2D.
Collapse
Affiliation(s)
- Elin Hall
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Marloes Dekker Nitert
- School of Medicine, Royal Brisbane Clinical School, The University of Queensland, Herston Qld 4029, Australia
| | - Petr Volkov
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Siri Malmgren
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden; Molecular Metabolism, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Hindrik Mulder
- Molecular Metabolism, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden.
| |
Collapse
|
11
|
Motta K, Gomes PRL, Sulis PM, Bordin S, Rafacho A. Dexamethasone Administration During Late Gestation Has No Major Impact on Lipid Metabolism, but Reduces Newborn Survival Rate in Wistar Rats. Front Physiol 2018; 9:783. [PMID: 30018561 PMCID: PMC6038799 DOI: 10.3389/fphys.2018.00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
A rise in plasma triacylglycerol levels is a common physiological occurrence during late gestation and excess of glucocorticoids (GCs) has been shown to impair lipid metabolism. Based on those observations, we investigated whether the administration of dexamethasone during the late gestational period could exacerbate this pregnancy associated hypertriacylglycerolemia in rats. For this, female Wistar rats were treated with dexamethasone (0.2 mg/kg of body mass in the drinking water on days 14-19 of pregnancy; DP group) or equivalent days in the virgin rats (DV group). Untreated pregnant rats (control pregnant group) and age-matched virgin rats (control virgin group) were used as controls. Functional, biochemical, and molecular analyses were carried out after treatment with GC and in the control groups. Euthanasia was performed on day 20 of pregnancy. The metabolic parameters of the mothers (dams) at the time of weaning and 6 months later, as well as newborn survival, were evaluated. We observed that neither dexamethasone nor pregnancy affected blood glucose or glucose tolerance. Hypertriacylglycerolemia associated with lipid intolerance or reduced hepatic triacylglycerol clearance was observed during the late gestational period. GC treatment caused a further increase in basal plasma triacylglycerol levels, but did not have a significant effect on lipid tolerance and hepatic triacylglycerol clearance in pregnant rats. GC, but not pregnancy, caused few significant changes in mRNA expression of proteins involved in lipid metabolism. Dexamethasone during pregnancy had no impact on lipid metabolism later in the dams' life; however, it led to intra-uterine growth restriction and reduced pup survival rate. In conclusion, GC exposure during the late gestational period in rats has no major impact on maternal lipid homeostasis, soon after parturition at weaning, or later in the dams' life, but GC exposure is deleterious to the newborn when high doses are administered at late gestation. These data highlight the importance of performing an individualized and rigorous control of a GC treatment during late pregnancy considering its harmful impact on the fetuses' health.
Collapse
Affiliation(s)
- Katia Motta
- Multicenter Postgraduate Program in Physiological Sciences, Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Patricia R L Gomes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Paola M Sulis
- Multicenter Postgraduate Program in Physiological Sciences, Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Alex Rafacho
- Multicenter Postgraduate Program in Physiological Sciences, Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Dexras1 is a homeostatic regulator of exercise-dependent proliferation and cell survival in the hippocampal neurogenic niche. Sci Rep 2018; 8:5294. [PMID: 29593295 PMCID: PMC5871767 DOI: 10.1038/s41598-018-23673-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is highly responsive to exercise, which promotes the proliferation of neural progenitor cells and the integration of newborn granule neurons in the dentate gyrus. Here we show that genetic ablation of the small GTPase, Dexras1, suppresses exercise-induced proliferation of neural progenitors, alters survival of mitotic and post-mitotic cells in a stage-specific manner, and increases the number of mature newborn granule neurons. Dexras1 is required for exercise-triggered recruitment of quiescent neural progenitors into the cell cycle. Pharmacological inhibition of NMDA receptors enhances SGZ cell proliferation in wild-type but not dexras1-deficient mice, suggesting that NMDA receptor-mediated signaling is dependent on Dexras1. At the molecular level, the absence of Dexras1 abolishes exercise-dependent activation of ERK/MAPK and CREB, and inhibits the upregulation of NMDA receptor subunit NR2A, bdnf, trkB and vegf-a expression in the dentate gyrus. Our study reveals Dexras1 as an important stage-specific regulator of exercise-induced neurogenesis in the adult hippocampus by enhancing pro-mitogenic signaling to neural progenitor cells and modulating cell survival.
Collapse
|
13
|
RAS-related protein 1: an estrogen-responsive gene involved in development and molting-mediated regeneration of the female reproductive tract in chickens. Animal 2018; 12:1594-1601. [DOI: 10.1017/s1751731117003226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
14
|
Ma T, Yin X, Han R, Ding J, Zhang H, Han X, Li D. Effects of In Utero Exposure to Di-n-Butyl Phthalate on Testicular Development in Rat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101284. [PMID: 29064414 PMCID: PMC5664784 DOI: 10.3390/ijerph14101284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
Humans are inevitably exposed to ubiquitous phthalate esters (PAEs). In utero exposure to di-n-butyl phthalate (DBP) induces abnormal development of the testis and reproductive tract in male offspring, which correspond closely with the human condition of testicular dysgenesis syndrome (TDS)-like syndrome. However, the underlying mechanisms have not been elucidated in detail. In this study, pregnant rats were orally exposed to either corn oil (controls) or DBP at three different doses by gavage during Gestational Days 12.5-21.5. Pathological examinations were performed for toxicity evaluation. Proliferation and apoptosis related proteins (ras related dexamethasone induced 1 (Rasd1), mitogen-activated protein kinase kinases1/2 (MEK1/2), Bcl-2, and Bax) were measured for mechanisms exploration. The results showed that different doses of DBP caused male developmental and reproductive toxicity in rats, including the decrease of anogenital distance (AGD), the histological damage of testis, and apoptosis of seminiferous tubule cells. Our data suggested that DBP played chronic and continuous toxic roles on male reproductive system by disrupting expression of Rasd1 and MEK1/2 as well as Bcl-2/Bax ratio. Further research is warranted.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaoqin Yin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Ruitong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Kim HR, Cho KS, Kim E, Lee OH, Yoon H, Lee S, Moon S, Park M, Hong K, Na Y, Shin JE, Kwon H, Song H, Choi DH, Choi Y. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus. Mol Cell Endocrinol 2017; 446:32-39. [PMID: 28188843 DOI: 10.1016/j.mce.2017.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/30/2022]
Abstract
Dexamethasone-induced RAS-related protein 1 (RASD1) is a signaling protein that is involved in various cellular processes. In a previous study, we found that RASD1 expression was down-regulated in the uterine endometrium of repeated implantation failure patients. The study aim was to determine whether RASD1 is expressed in the endometrium of mouse uterus and how it is regulated by steroid hormones during the estrous cycle. In this study, we investigated RASD1 expression and regulation in an ovariectomized female mouse model. Rasd1 mRNA was highly expressed in mouse reproductive tissues, including the uterus. Rasd1 expression was detected exclusively in the endometrial epithelium at the proestrus stage of the estrous cycle. Rasd1 expression in uteri increased with administration of estradiol, but not progesterone. Its expression was rapidly induced within 2 h after E2 treatment. Pretreatment with ICI 182,780, an estrogen receptor antagonist, reduced RASD1 protein expression. In addition, we identified that rapid expression of Rasd1 was mediated by the estrogen intracellular signaling including both p38-mitogen-activated protein kinase and the extracellular signal-regulated kinase. These findings suggest that RASD1 acts as a novel signaling molecule and plays an important role in regulating dynamic uterine remodeling during the estrous cycle in the uterus.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kil-Sang Cho
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Eunhye Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyemin Yoon
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sangho Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sohyeon Moon
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Miseon Park
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kwonho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Younghwa Na
- Department of Pharmacology, College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Eun Shin
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Hwang Kwon
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Dong Hee Choi
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Youngsok Choi
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
16
|
Barrosa KH, Mecchi MC, Rando DG, Ferreira AJS, Sartorelli P, Valle MM, Bordin S, Caperuto LC, Lago JHG, Lellis-Santos C. Polygodial, a sesquiterpene isolated from Drimys brasiliensis (Winteraceae), triggers glucocorticoid-like effects on pancreatic β-cells. Chem Biol Interact 2016; 258:245-56. [DOI: 10.1016/j.cbi.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
|
17
|
Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JFR, Murphy D. Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Mol Brain 2016; 9:1. [PMID: 26739966 PMCID: PMC4704412 DOI: 10.1186/s13041-015-0182-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
Background Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain. Results We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress. Conclusions We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.
Collapse
Affiliation(s)
| | - Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, UK.
| | - Andre S Mecawi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia. .,Department of Physiological Sciences, Biology Institute, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, Brazil.
| | | | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK.
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, UK. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
18
|
Wie J, Kim BJ, Myeong J, Ha K, Jeong SJ, Yang D, Kim E, Jeon JH, So I. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels (Austin) 2015; 9:186-195. [PMID: 26083271 PMCID: PMC4594510 DOI: 10.1080/19336950.2015.1058454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/23/2023] Open
Abstract
TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine; Pusan National University School of Korean Medicine; Yangsan, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Seung Joo Jeong
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Dongki Yang
- Department of Physiology; College of Medicine; Gachon University; Incheon, Republic of Korea
| | - Euiyong Kim
- Department of Physiology; College of Medicine; Inje University; Busan, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| |
Collapse
|
19
|
Wie J, Kim J, Ha K, Zhang YH, Jeon JH, So I. Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Arch 2014; 467:2081-91. [PMID: 25502319 DOI: 10.1007/s00424-014-1666-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
Canonical transient receptor potential 4 (TRPC4) channels are calcium-permeable, nonselective cation channels that are widely distributed in mammalian cells. It is generally speculated that TRPC4 channels are activated by Gq/11-PLC pathway or directly activated by Gi/o proteins. Although many mechanistic studies regarding TRPC4 have dealt with heterotrimeric G proteins, here, we first report the functional relationship between TRPC4 and small GTPase, Rasd1. Rasd1 selectively activated TRPC4 channels, and it was the only Ras protein among Ras protein family that can activate TRPC4 channels. For this to occur, it was found that certain population of functional Gαi1 and Gαi3 proteins are essential. Meanwhile, dexamethasone, a synthetic glucocorticoid and anti-inflammatory drug was known to increase messenger RNA (mRNA) level of Rasd1 in pancreatic β-cells. We have found that dexamethasone triggers TRPC4-like cationic current in INS-1 cells via increasing protein expression level of Rasd1. This relationship among dexamethasone, Rasd1, and TRPC4 could suggest a new therapeutic agent for hospitalized diabetes mellitus (DM) patients with prolonged dexamethasone prescription.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Catholic University of Korea, College of Medicine, Seoul, 137-701, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
20
|
Rodrigues SC, Pantaleão LC, Nogueira TC, Gomes PR, Albuquerque GG, Nachbar RT, Torres-Leal FL, Caperuto LC, Lellis-Santos C, Anhê GF, Bordin S. Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1146-56. [PMID: 25163923 DOI: 10.1152/ajpregu.00513.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver plays an essential role in maternal metabolic adaptation during late pregnancy. With regard to lipid metabolism, increased secretion of very low-density lipoprotein (VLDL) is characteristic of late pregnancy. Despite this well-described metabolic plasticity, the molecular changes underlying the hepatic adaptation to pregnancy remain unclear. As AMPK is a key intracellular energy sensor, we investigated whether this protein assumes a causal role in the hepatic adaptation to pregnancy. Pregnant Wistar rats were treated with vehicle or AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) for 5 days starting at gestational day 14. At the end of treatment, the rats were subjected to an intraperitoneal pyruvate tolerance test and in situ liver perfusion with pyruvate. The livers were processed for Western blot analysis, quantitative PCR, thin-layer chromatography, enzymatic activity, and glycogen content measurements. Blood biochemical profiles were also assessed. We found that AMPK and ACC phosphorylation were reduced in the livers of pregnant rats in parallel with a reduced level of hepatic gluconeogenesis of pyruvate. This effect was accompanied by both a reduction in the levels of hepatic triglycerides (TG) and an increase in circulating levels of TG. Treatment with AICAR restored hepatic levels of TG to those observed in nonpregnant rats. Additionally, AMPK activation reduced the upregulation of genes related to VLDL synthesis and secretion observed in the livers of pregnant rats. We conclude that the increased secretion of hepatic TG in late pregnancy is concurrent with a transcriptional profile that favors VLDL production. This transcriptional profile results from the reduction in hepatic AMPK activity.
Collapse
Affiliation(s)
- Sandra C Rodrigues
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas C Pantaleão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiane C Nogueira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia R Gomes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela G Albuquerque
- School of Education, Sciences, Arts and Humanities, University of Grande Rio, Grande Rio, Brazil
| | - Renato T Nachbar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco L Torres-Leal
- Department of Biophysics and Physiology, Health Science Center, Federal University of Piauí, Piauí, Brazil
| | | | - Camilo Lellis-Santos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil; and
| | - Gabriel F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil;
| |
Collapse
|
21
|
Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, Markovic SN. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc 2014; 89:520-35. [PMID: 24684874 PMCID: PMC4286150 DOI: 10.1016/j.mayocp.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Similarities between the pathologic progression of cancer and the physiologic process of placentation (eg, proliferation, invasion, and local/systemic tolerance) have been recognized for many years. Sex hormones such as human chorionic gonadotropin, estrogens, progesterone, and others contribute to induction of immunologic tolerance at the beginning of gestation. Sex hormones have been shown to play contributory roles in the growth of cancers such as breast cancer, prostrate cancer, endometrial cancer, and ovarian cancer, but their involvement as putative mediators of the immunologic escape of cancer is still being elucidated. Herein, we compare the emerging mechanism by which sex hormones modulate systemic immunity in pregnancy and their potentially similar role in cancer. To do this, we conducted a PubMed search using combinations of the following keywords: "immune regulation," "sex hormones," "pregnancy," "melanoma," and "cancer." We did not limit our search to specific publication dates. Mimicking the maternal immune response to pregnancy, especially in late gestation, might aid in design of better therapies to reconstitute endogenous antitumor immunity and improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN; Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
22
|
Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int J Cell Biol 2014; 2014:308535. [PMID: 24817889 PMCID: PMC3979064 DOI: 10.1155/2014/308535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes.
Collapse
|
23
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2014; 85:388-96. [PMID: 24302560 PMCID: PMC3935153 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
24
|
Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab 2014; 19:122-34. [PMID: 24361012 PMCID: PMC3945818 DOI: 10.1016/j.cmet.2013.11.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/26/2013] [Accepted: 11/10/2013] [Indexed: 12/31/2022]
Abstract
Pancreatic β cells adapt to compensate for increased metabolic demand during insulin resistance. Although the microRNA pathway has an essential role in β cell proliferation, the extent of its contribution is unclear. Here, we report that miR-184 is silenced in the pancreatic islets of insulin-resistant mouse models and type 2 diabetic human subjects. Reduction of miR-184 promotes the expression of its target Argonaute2 (Ago2), a component of the microRNA-induced silencing complex. Moreover, restoration of miR-184 in leptin-deficient ob/ob mice decreased Ago2 and prevented compensatory β cell expansion. Loss of Ago2 during insulin resistance blocked β cell growth and relieved the regulation of miR-375-targeted genes, including the growth suppressor Cadm1. Lastly, administration of a ketogenic diet to ob/ob mice rescued insulin sensitivity and miR-184 expression and restored Ago2 and β cell mass. This study identifies the targeting of Ago2 by miR-184 as an essential component of the compensatory response to regulate proliferation according to insulin sensitivity.
Collapse
|
25
|
Gomes PR, Graciano MF, Pantaleão LC, Rennó AL, Rodrigues SC, Velloso LA, Latorraca MQ, Carpinelli AR, Anhê GF, Bordin S. Long-term disruption of maternal glucose homeostasis induced by prenatal glucocorticoid treatment correlates with miR-29 upregulation. Am J Physiol Endocrinol Metab 2014; 306:E109-20. [PMID: 24253049 DOI: 10.1152/ajpendo.00364.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Excess of glucocorticoids (GCs) during pregnancy is strongly associated with the programming of glucose intolerance in the offspring. However, the impact of high GC levels on maternal metabolism is not clearly documented. This study aimed to test the hypothesis that mothers exposed to elevated levels of GCs might also display long-term disturbances in glucose homeostasis. Dexamethasone (DEX) was administered noninvasively to the mothers via drinking water between the 14th and the 19th days of pregnancy. Mothers were subjected to glucose and insulin tolerance tests at 1, 2, 3, 6, and 12 mo postweaning. Pregnant rats not treated with DEX and age-matched virgin rats were used as controls. Pancreatic islets were isolated at the 20th day of pregnancy and 12 mo postweaning in order to evaluate glucose-stimulated insulin secretion. The expression of the miR-29 family was also studied due to its responsiveness to GCs and its well-documented role in the regulation of pancreatic β-cell function. Rats treated with DEX during pregnancy presented long-term glucose intolerance and impaired insulin secretion. These changes correlated with 1) increased expression of miR-29 and its regulator p53, 2) reduced expression of syntaxin-1a, a direct target of miR-29, and 3) altered expression of genes related to cellular senescence. Our data demonstrate that the use of DEX during pregnancy results in deleterious outcomes to the maternal metabolism, hallmarked by reduced insulin secretion and glucose intolerance. This maternal metabolic programming might be a consequence of time-sustained upregulation of miR-29s in maternal pancreatic islets.
Collapse
Affiliation(s)
- Patrícia R Gomes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tattikota SG, Sury MD, Rathjen T, Wessels HH, Pandey AK, You X, Becker C, Chen W, Selbach M, Poy MN. Argonaute2 regulates the pancreatic β-cell secretome. Mol Cell Proteomics 2013; 12:1214-25. [PMID: 23358505 DOI: 10.1074/mcp.m112.024786] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Argonaute2 (Ago2) is an established component of the microRNA-induced silencing complex. Similar to miR-375 loss-of-function studies, inhibition of Ago2 in the pancreatic β-cell resulted in enhanced insulin release underlining the relationship between these two genes. Moreover, as the most abundant microRNA in pancreatic endocrine cells, miR-375 was also observed to be enriched in Ago2-associated complexes. Both Ago2 and miR-375 regulate the pancreatic β-cell secretome, and by using quantitative mass spectrometry, we identified the enhanced release of a set of proteins or secretion "signatures " in response to a glucose stimulus using the murine β-cell line MIN6. In addition, the loss of Ago2 resulted in the increased expression of miR-375 target genes, including gephyrin and ywhaz. These targets positively contribute to exocytosis indicating they may mediate the functional role of both miR-375 and Ago proteins in the pancreatic β-cell by influencing the secretory pathway. This study specifically addresses the role of Ago2 in the systemic release of proteins from β-cells and highlights the contribution of the microRNA pathway to the function of this cell type.
Collapse
Affiliation(s)
- Sudhir G Tattikota
- Max Delbrueck Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|