1
|
Zeng WH, Wen ZY, Wei XY, He Y, Zhou L, Hu P, Shi QC, Qin CJ, Wang J, Li R, Jing XY, Hu W, Yuan HW, Fan JD, Zhang C, Jiang W, Fu P, Shi Q. Molecular characterization, spatio-temporal expression patterns of crtc2 gene and its immune roles in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109877. [PMID: 39245185 DOI: 10.1016/j.fsi.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
cAMP response element binding (CREB) protein 2 (CRTC2) is a transcriptional coactivator of CREB and plays an important role in the immune system. Thus far, the physiological roles of Crtc2 in teleost are still poorly understood. In this study, the crtc2 gene was identified and characterized from yellow catfish (Pelteobagrus fulvidraco; therefore, the gene is termed as pfcrtc2), and its evolutionary and molecular characteristics as well as potential immunity-related roles were investigated. Our results showed that the open reading frame of pfcrtc2 was 2346 bp in length, encoding a protein with 781 amino acids. Gene structure analysis revealed its existence of 14 exons and 13 introns. A phylogenetic analysis proved that the tree of crtc2 was clustered into five groups, exhibiting a similar evolutionary topology with species evolution. Multiple protein sequences alignment demonstrated high conservation of the crtc2 in various vertebrates with similar structure. Syntenic and gene structural comparisons further established that crtc2 was highly conserved, implying its similar roles in diverse vertebrates. Tissue distribution pattern detected by quantitative real-time PCR showed that the pfcrtc2 gene was almost expressed in all detected tissues except for eyes, with the highest expression levels in the gonad, indicating that Crtc2 may play important roles in various tissues. In addition, pfcrtc2 was transcribed at all developmental stages in yellow catfish, showing the highest expression levels at 12 h after fertilization. Finally, the transcriptional profiles of crtc2 were significantly increased in yellow catfishes injected with Aeromonas hydrophila or Poly I:C, which shared a consistent change pattern with four immune-related genes including IL-17A, IL-10, MAPKp38, and NF-κBp65, suggesting pfCrtc2 may play critical roles in preventing both exogenous bacteria and virus invasion. In summary, our findings lay a solid foundation for further studies on the functions of pfcrtc2, and provide novel genetic loci for developing new strategies to control disease outbreak in teleost.
Collapse
Affiliation(s)
- Wan-Hong Zeng
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China.
| | - Xiu-Ying Wei
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Yu He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Luo Zhou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qing-Chao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Xiao-Ying Jing
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Han-Wen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Jun-De Fan
- Chongqing Fisheries Science Research Institute, Chongqing, 400020, China
| | - Chuang Zhang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Wei Jiang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Peng Fu
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China.
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Zheng HY, Wang YX, Zhou K, Xie HL, Ren Z, Liu HT, Ou YS, Zhou ZX, Jiang ZS. Biological functions of CRTC2 and its role in metabolism-related diseases. J Cell Commun Signal 2023; 17:495-506. [PMID: 36856929 PMCID: PMC10409973 DOI: 10.1007/s12079-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hong-Yu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yan-Xia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hai-Lin Xie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yang-Shao Ou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Grieco GE, Brusco N, Fignani D, Nigi L, Formichi C, Licata G, Marselli L, Marchetti P, Salvini L, Tinti L, Po A, Ferretti E, Sebastiani G, Dotta F. Reduced miR-184-3p expression protects pancreatic β-cells from lipotoxic and proinflammatory apoptosis in type 2 diabetes via CRTC1 upregulation. Cell Death Dis 2022; 8:340. [PMID: 35906204 PMCID: PMC9338237 DOI: 10.1038/s41420-022-01142-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022]
Abstract
The loss of functional β-cell mass in type 2 diabetes (T2D) is associated with molecular events that include β-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several β-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects β-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in β-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human β-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the β-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects β-cells from apoptosis through a CRTC1-dependent mechanism.
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Laura Tinti
- TLS-Toscana Life Sciences Foundation, Siena, Italy
| | - Agnese Po
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
4
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
5
|
Charbord J, Ren L, Sharma RB, Johansson A, Ågren R, Chu L, Tworus D, Schulz N, Charbord P, Stewart AF, Wang P, Alonso LC, Andersson O. In vivo screen identifies a SIK inhibitor that induces β cell proliferation through a transient UPR. Nat Metab 2021; 3:682-700. [PMID: 34031592 PMCID: PMC9756392 DOI: 10.1038/s42255-021-00391-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
It is known that β cell proliferation expands the β cell mass during development and under certain hyperglycemic conditions in the adult, a process that may be used for β cell regeneration in diabetes. Here, through a new high-throughput screen using a luminescence ubiquitination-based cell cycle indicator (LUCCI) in zebrafish, we identify HG-9-91-01 as a driver of proliferation and confirm this effect in mouse and human β cells. HG-9-91-01 is an inhibitor of salt-inducible kinases (SIKs), and overexpression of Sik1 specifically in β cells blocks the effect of HG-9-91-01 on β cell proliferation. Single-cell transcriptomic analyses of mouse β cells demonstrate that HG-9-91-01 induces a wave of activating transcription factor (ATF)6-dependent unfolded protein response (UPR) before cell cycle entry. Importantly, the UPR wave is not associated with an increase in insulin expression. Additional mechanistic studies indicate that HG-9-91-01 induces multiple signalling effectors downstream of SIK inhibition, including CRTC1, CRTC2, ATF6, IRE1 and mTOR, which integrate to collectively drive β cell proliferation.
Collapse
Affiliation(s)
- Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
| | - Anna Johansson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rasmus Ågren
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dominika Tworus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nadja Schulz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Charbord
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 7622, Inserm, Paris, France
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Han HS, Kwon Y, Koo SH. Role of CRTC2 in Metabolic Homeostasis: Key Regulator of Whole-Body Energy Metabolism? Diabetes Metab J 2020; 44:498-508. [PMID: 32174060 PMCID: PMC7453979 DOI: 10.4093/dmj.2019.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) signaling is critical for regulating metabolic homeostasis in mammals. In particular, transcriptional regulation by cAMP response element-binding protein (CREB) and its coactivator, CREB-regulated transcription coactivator (CRTC), is essential for controlling the expression of critical enzymes in the metabolic process, leading to more chronic changes in metabolic flux. Among the CRTC isoforms, CRTC2 is predominantly expressed in peripheral tissues and has been shown to be associated with various metabolic pathways in tissue-specific manners. While initial reports showed the physiological role of CRTC2 in regulating gluconeogenesis in the liver, recent studies have further delineated the role of this transcriptional coactivator in the regulation of glucose and lipid metabolism in various tissues, including the liver, pancreatic islets, endocrine tissues of the small intestines, and adipose tissues. In this review, we discuss recent studies that have utilized knockout mouse models to delineate the role of CRTC2 in the regulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Hye Sook Han
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Seung Hoi Koo
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
7
|
Hu W, Wu J, Ye T, Chen Z, Tao J, Tong L, Ma K, Wen J, Wang H, Huang C. Farnesoid X Receptor-Mediated Cytoplasmic Translocation of CRTC2 Disrupts CREB-BDNF Signaling in Hippocampal CA1 and Leads to the Development of Depression-Like Behaviors in Mice. Int J Neuropsychopharmacol 2020; 23:673-686. [PMID: 32453814 PMCID: PMC7727490 DOI: 10.1093/ijnp/pyaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We recently identified neuronal expression of farnesoid X receptor (FXR), a bile acid receptor known to impair autophagy by inhibiting cyclic adenosine monophosphate response element-binding protein (CREB), a protein whose underfunctioning is linked to neuroplasticity and depression. In this study, we hypothesize that FXR may mediate depression via a CREB-dependent mechanism. METHODS Depression was induced in male C57BL6/J mice via chronic unpredictable stress (CUS). Subjects underwent behavioral testing to identify depression-like behaviors. A variety of molecular biology techniques, including viral-mediated gene transfer, Western blot, co-immunoprecipitation, and immunofluorescence, were used to correlate depression-like behaviors with underlying molecular and physiological events. RESULTS Overexpression of FXR, whose levels were upregulated by CUS in hippocampal CA1, induced or aggravated depression-like behaviors in stress-naïve and CUS-exposed mice, while FXR short hairpin RNA (shRNA) ameliorated such symptoms in CUS-exposed mice. The behavioral effects of FXR were found to be associated with changes in CREB-brain-derived neurotrophic factor (BDNF) signaling, as FXR overexpression aggravated CUS-induced reduction in BDNF levels while the use of FXR shRNA or disruption of FXR-CREB signaling reversed the CUS-induced reduction in the phosphorylated CREB and BDNF levels. Molecular analysis revealed that FXR shRNA prevented CUS-induced cytoplasmic translocation of CREB-regulated transcription coactivator 2 (CRTC2); CRTC2 overexpression and CRTC2 shRNA abrogated the regulatory effect of FXR overexpression or FXR shRNA on CUS-induced depression-like behaviors. CONCLUSIONS In stress conditions, increased FXR in the CA1 inhibits CREB by targeting CREB and driving the cytoplasmic translocation of CRTC2. Uncoupling of the FXR-CREB complex may be a novel strategy for depression treatment.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People’s Hospital, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinhua Tao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kai Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Probiotics Australia, Ormeau, Queensland, Australia
| | - Jie Wen
- Beijing Allwegene Health, Beijing, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China,Correspondence: Chao Huang, PhD, Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China ()
| |
Collapse
|
8
|
Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, Wu L, Tang R, Zheng Z, Zheng S, Li L, Wang B. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: From bench to bedside. Am J Transplant 2020; 20:701-713. [PMID: 31654553 DOI: 10.1111/ajt.15665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tacrolimus (TAC), the mainstay of maintenance immunosuppressive agents, plays a crucial role in new-onset diabetes after transplant (NODAT). Previous studies investigating the diabetogenic effects of TAC have focused on the β cells of islets. In this study, we found that TAC contributed to NODAT through directly affecting hepatic metabolic homeostasis. In mice, TAC-induced hypoglycemia rather than hyperglycemia during starvation via suppressing gluconeogenetic genes, suggesting the limitation of fasting blood glucose in the diagnosis of NODAT. In addition, TAC caused hepatic insulin resistance and triglyceride accumulation through insulin receptor substrate (IRS)2/AKT and sterol regulatory element binding protein (SREBP1) signaling, respectively. Furthermore, we found a pivotal role of CREB-regulated transcription coactivator 2 (CRTC2) in TAC-induced metabolic disorders. The restoration of hepatic CRTC2 alleviated the metabolic disorders through its downstream molecules (eg, PCK1, IRS2, and SREBP1). Consistent with the findings from bench, low CRTC2 expression in graft hepatocytes was an independent risk factor for NODAT (odds ratio = 2.692, P = .023, n = 135). Integrating grafts' CRTC2 score into the clinical model could significantly increase the predictive capacity (areas under the receiver operating characteristic curve: 0.71 vs 0.79, P = .048). Taken together, in addition to its impact on pancreatic cells, TAC induces "hematogenous diabetes" via CRTC2 signaling. Liver-targeted management may be of help to prevent or heal TAC-associated diabetes.
Collapse
Affiliation(s)
- Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yuqiu Han
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenzhi Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Kangchen Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Li Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Li P, Zhou C, Li X, Yu M, Li M, Gao X. CRTC2 Is a Key Mediator of Amino Acid-Induced Milk Fat Synthesis in Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10513-10520. [PMID: 31475823 DOI: 10.1021/acs.jafc.9b04648] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amino acids can stimulate milk fat synthesis, but the underlying molecular mechanism is still largely unknown. In this study, we studied the regulatory role and corresponding molecular mechanism of cAMP response element-binding protein-regulated transcription coactivator 2 (CRTC2) in amino acid-induced milk fat synthesis in mammary epithelial cells. We showed that leucine and methionine stimulated CRTC2 but not p-CRTC2(Ser171) expression and nuclear localization in cow mammary epithelial cells. Knockdown of CRTC2 decreased milk fat synthesis and sterol regulatory element binding protein 1c (SREBP-1c) expression and activation, whereas its overexpression had the opposite effects. Neither knockdown nor overexpression of CRTC2 affected β-casein synthesis and phosphorylation of the machanistic target of rapamycin (mTOR), suggesting that CRTC2 only regulates milk fat synthesis. CRTC2 knockdown abolished the stimulation of leucine and methionine on SREBP-1c expression and activation. Knockdown or overexpression of CRTC2 did not affect the protein level of cAMP-response element-binding protein (CREB) and its phosphorylation but decreased or increased the binding of p-CREB to the promoter of SREBP-1c gene and its mRNA expression, respectively. Mutation of Ser171 of CRTC2 did not alter the stimulation of CRTC2 on SREBP-1c expression and activation, further suggesting that CRTC2 functions in the nucleus. mTOR inhibition by rapamycin totally blocked the stimulation of leucine and methionine on CRTC2 expression. The expression of CRTC2 was dramatically higher in the mouse mammary gland of lactation period, compared with that of the dry and puberty periods, whereas p-CRTC2(Ser171) was not changed, further supporting that CRTC2 is a key transcription coactivator for milk fat synthesis. These results uncover that CRTC2 is a key transcription coactivator of amino acid-stimulated mTOR-mediated milk fat synthesis in mammary epithelial cells.
Collapse
Affiliation(s)
- Ping Li
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| | - Chengjian Zhou
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xueying Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Mengmeng Yu
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xuejun Gao
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| |
Collapse
|
10
|
Function and Transcriptional Regulation of Bovine TORC2 Gene in Adipocytes: Roles of C/EBP, XBP1, INSM1 and ZNF263. Int J Mol Sci 2019; 20:ijms20184338. [PMID: 31487963 PMCID: PMC6769628 DOI: 10.3390/ijms20184338] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
The TORC2 gene is a member of the transducer of the regulated cyclic adenosine monophosphate (cAMP) response element binding protein gene family, which plays a key role in metabolism and adipogenesis. In the present study, we confirmed the role of TORC2 in bovine preadipocyte proliferation through cell cycle staining flow cytometry, cell counting assay, 5-ethynyl-2′-deoxyuridine staining (EdU), and mRNA and protein expression analysis of proliferation-related marker genes. In addition, Oil red O staining analysis, immunofluorescence of adiponectin, mRNA and protein level expression of lipid related marker genes confirmed the role of TORC2 in the regulation of bovine adipocyte differentiation. Furthermore, the transcription start site and sub-cellular localization of the TORC2 gene was identified in bovine adipocytes. To investigate the underlying regulatory mechanism of the bovine TORC2, we cloned a 1990 bp of the 5’ untranslated region (5′UTR) promoter region into a luciferase reporter vector and seven vector fragments were constructed through serial deletion of the 5′UTR flanking region. The core promoter region of the TORC2 gene was identified at location −314 to −69 bp upstream of the transcription start site. Based on the results of the transcriptional activities of the promoter vector fragments, luciferase activities of mutated fragments and siRNAs interference, four transcription factors (CCAAT/enhancer-binding protein C/BEPγ, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc finger protein 263 ZNF263) were identified as the transcriptional regulators of TORC2 gene. These findings were further confirmed through Electrophoretic Mobility Shift Assay (EMSA) within nuclear extracts of bovine adipocytes. Furthermore, we also identified that C/EBPγ, XBP1, INSM1 and ZNF263 regulate TORC2 gene as activators in the promoter region. We can conclude that TORC2 gene is potentially a positive regulator of adipogenesis. These findings will not only provide an insight for the improvement of intramuscular fat in cattle, but will enhance our understanding regarding therapeutic intervention of metabolic syndrome and obesity in public health as well.
Collapse
|
11
|
Tasoulas J, Rodon L, Kaye FJ, Montminy M, Amelio AL. Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends Cancer 2019; 5:111-127. [PMID: 30755304 DOI: 10.1016/j.trecan.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Adaptive stress signaling networks directly influence tumor development and progression. These pathways mediate responses that allow cancer cells to cope with both tumor cell-intrinsic and cell-extrinsic insults and develop acquired resistance to therapeutic interventions. This is mediated in part by constant oncogenic rewiring at the transcriptional level by integration of extracellular cues that promote cell survival and malignant transformation. The cAMP-regulated transcriptional coactivators (CRTCs) are a newly discovered family of intracellular signaling integrators that serve as the conduit to the basic transcriptional machinery to regulate a host of adaptive response genes. Thus, somatic alterations that lead to CRTC activation are emerging as key driver events in the development and progression of many tumor subtypes.
Collapse
Affiliation(s)
- Jason Tasoulas
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; These authors contributed equally
| | - Laura Rodon
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA; These authors contributed equally
| | - Frederic J Kaye
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Antonio L Amelio
- Department of Oral and Craniofacial Health Sciences, UNC School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Sonntag T, Ostojić J, Vaughan JM, Moresco JJ, Yoon YS, Yates JR, Montminy M. Mitogenic Signals Stimulate the CREB Coactivator CRTC3 through PP2A Recruitment. iScience 2018; 11:134-145. [PMID: 30611118 PMCID: PMC6317279 DOI: 10.1016/j.isci.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) stimulates gene expression via the cAMP-regulated transcriptional coactivator (CRTC) family of cAMP response element-binding protein coactivators. In the basal state, CRTCs are phosphorylated by salt-inducible kinases (SIKs) and sequestered in the cytoplasm by 14-3-3 proteins. cAMP signaling inhibits the SIKs, leading to CRTC dephosphorylation and nuclear translocation. Here we show that although all CRTCs are regulated by SIKs, their interactions with Ser/Thr-specific protein phosphatases are distinct. CRTC1 and CRTC2 associate selectively with the calcium-dependent phosphatase calcineurin, whereas CRTC3 interacts with B55 PP2A holoenzymes via a conserved PP2A-binding region (amino acids 380-401). CRTC3-PP2A complex formation was induced by phosphorylation of CRTC3 at S391, facilitating the subsequent activation of CRTC3 by dephosphorylation at 14-3-3 binding sites. As stimulation of mitogenic pathways promoted S391 phosphorylation via the activation of ERKs and CDKs, our results demonstrate how a ubiquitous phosphatase enables cross talk between growth factor and cAMP signaling pathways at the level of a transcriptional coactivator.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Sakamoto K, Bultot L, Göransson O. The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends Endocrinol Metab 2018; 29:827-840. [PMID: 30385008 DOI: 10.1016/j.tem.2018.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023]
Abstract
The discovery of liver kinase B1 (LKB1) as an upstream kinase for AMP-activated protein kinase (AMPK) led to the identification of several related kinases that also rely on LKB1 for their catalytic activity. Among these, the salt-inducible kinases (SIKs) have emerged as key regulators of metabolism. Unlike AMPK, SIKs do not respond to nucleotides, but their function is regulated by extracellular signals, such as hormones, through complex LKB1-independent mechanisms. While AMPK acts on multiple targets, including metabolic enzymes, to maintain cellular ATP levels, SIKs primarily regulate gene expression, by acting on transcriptional regulators, such as the cAMP response element-binding protein-regulated transcription coactivators and class IIa histone deacetylases. This review describes the development of research on SIKs, from their discovery to the most recent findings on metabolic regulation.
Collapse
Affiliation(s)
- Kei Sakamoto
- Nestlé Research, EPFL Innovation Park, Bâtiment G, 1015 Lausanne, Switzerland.
| | - Laurent Bultot
- Nestlé Research, EPFL Innovation Park, Bâtiment G, 1015 Lausanne, Switzerland; Current address: Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, BMC C11, 221 84 Lund, Sweden.
| |
Collapse
|
14
|
Isx9 Regulates Calbindin D28K Expression in Pancreatic β Cells and Promotes β Cell Survival and Function. Int J Mol Sci 2018; 19:ijms19092542. [PMID: 30150605 PMCID: PMC6165483 DOI: 10.3390/ijms19092542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cell dysfunction and death contribute to the onset of diabetes, and novel strategies of β-cell function and survival under diabetogenic conditions need to be explored. We previously demonstrated that Isx9, a small molecule based on the isoxazole scaffold, drives neuroendocrine phenotypes by increasing the expression of genes required for β-cell function and improves glycemia in a model of β cell regeneration. We further investigated the role of Isx9 in β-cell survival. We find that Isx9 drives the expression of Calbindin-D28K (D28K), a key regulator of calcium homeostasis, and plays a cytoprotective role through its calcium buffering capacity in β cells. Isx9 increased the activity of the calcineurin (CN)/cytoplasmic nuclear factor of the activated T-cells (NFAT) transcription factor, a key regulator of D28K, and improved the recruitment of NFATc1, cAMP response element-binding protein (CREB), and p300 to the D28K promoter. We found that nutrient stimulation increased D28K plasma membrane enrichment and modulated calcium channel activity in order to regulate glucose-induced insulin secretion. Isx9-mediated expression of D28K protected β cells against chronic stress induced by serum withdrawal or chronic inflammation by reducing caspase 3 activity. Consequently, Isx9 improved human islet function after transplantation in NOD-SCID mice in a streptozotocin-induced diabetes model. In summary, Isx9 significantly regulates expression of genes relevant to β cell survival and function, and may be an attractive therapy to treat diabetes and improve islet function post-transplantation.
Collapse
|
15
|
Taub M. Gene Level Regulation of Na,K-ATPase in the Renal Proximal Tubule Is Controlled by Two Independent but Interacting Regulatory Mechanisms Involving Salt Inducible Kinase 1 and CREB-Regulated Transcriptional Coactivators. Int J Mol Sci 2018; 19:E2086. [PMID: 30021947 PMCID: PMC6073390 DOI: 10.3390/ijms19072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
For many years, studies concerning the regulation of Na,K-ATPase were restricted to acute regulatory mechanisms, which affected the phosphorylation of Na,K-ATPase, and thus its retention on the plasma membrane. However, in recent years, this focus has changed. Na,K-ATPase has been established as a signal transducer, which becomes part of a signaling complex as a consequence of ouabain binding. Na,K-ATPase within this signaling complex is localized in caveolae, where Na,K-ATPase has also been observed to regulate Inositol 1,4,5-Trisphosphate Receptor (IP3R)-mediated calcium release. This latter association has been implicated as playing a role in signaling by G Protein Coupled Receptors (GPCRs). Here, the consequences of signaling by renal effectors that act via such GPCRs are reviewed, including their regulatory effects on Na,K-ATPase gene expression in the renal proximal tubule (RPT). Two major types of gene regulation entail signaling by Salt Inducible Kinase 1 (SIK1). On one hand, SIK1 acts so as to block signaling via cAMP Response Element (CRE) Binding Protein (CREB) Regulated Transcriptional Coactivators (CRTCs) and on the other hand, SIK1 acts so as to stimulate signaling via the Myocyte Enhancer Factor 2 (MEF2)/nuclear factor of activated T cell (NFAT) regulated genes. Ultimate consequences of these pathways include regulatory effects which alter the rate of transcription of the Na,K-ATPase β1 subunit gene atp1b1 by CREB, as well as by MEF2/NFAT.
Collapse
Affiliation(s)
- Mary Taub
- Biochemistry Dept., Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Suite 4902, Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC, Bond M. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Sci Rep 2018; 8:4904. [PMID: 29559698 PMCID: PMC5861041 DOI: 10.1038/s41598-018-23199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.
Collapse
Affiliation(s)
- Claire Hudson
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Tomomi E Kimura
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Aparna Duggirala
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Mark Bond
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| |
Collapse
|
17
|
Lee JH, Wen X, Cho H, Koo SH. CREB/CRTC2 controls GLP-1-dependent regulation of glucose homeostasis. FASEB J 2018; 32:1566-1578. [PMID: 29118086 DOI: 10.1096/fj.201700845r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a major incretin that controls glucose homeostasis. The secretion of mature GLP-1 is regulated via GPCRs, including bile acid receptor G protein-coupled bile acid receptor 1, which uses cAMP signaling to enhance the exocytosis of GLP-1-containing vesicles. However, the role of cAMP-mediated transcription has not been clearly demonstrated to date. In this study, we explored the role of cAMP response element-binding protein/CREB-regulated transcription coactivator 2 (CREB/CRTC2)-dependent transcription on GLP-1 secretion in the L cells. We found that the reduced CREB/CRTC2 activity impaired the cAMP-dependent increase in GLP-1 secretion, whereas expression of constitutively active CRTC2 increased GLP-1 exocytosis from the L cells. Close investigation revealed that expression of not only proglucagon but also PC1/3, an endopeptidase for GLP-1 maturation, is transcriptionally regulated by CREB/CRTC2. Furthermore, expression of peroxisome proliferator-activating receptor coactivator 1 α is also reduced upon depletion of CRTC2, leading to the decreased expression of oxidative phosphorylation (OxPhos) genes, reduced ATP levels, and calcium concentrations in the L cells. Finally, we observed that intestine-specific CRTC2 knockout mice displayed reduced GLP-1 expression, leading to the lower plasma GLP-1 levels, impaired glucose tolerance, and decreased insulin-containing β cells in pancreatic islets. Our data show that the CREB/CRTC2-dependent transcriptional pathway is critical for regulating glucose homeostasis by controlling production of GLP-1 from the L cells at the level of transcription, maturation, and exocytosis.-Lee, J.-H., Wen, X., Cho, H., Koo, S.-H. CREB/CRTC2 controls GLP-1-dependent regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Xianlan Wen
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hana Cho
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
18
|
Escoubas CC, Silva-García CG, Mair WB. Deregulation of CRTCs in Aging and Age-Related Disease Risk. Trends Genet 2017; 33:303-321. [PMID: 28365140 DOI: 10.1016/j.tig.2017.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
Advances in public health in the past century have seen a sharp increase in human life expectancy. With these changes have come an increased prevalence of age-related pathologies and health burdens in the elderly. Patient age is the biggest risk factor for multiple chronic conditions that often occur simultaneously within a single individual. An alternative to disease-centric therapeutic approaches is that of 'geroscience', which aims to define molecular mechanisms that link age to overall disease risk. One such mechanism is deregulation of CREB-regulated transcriptional coactivators (CRTCs). Initially identified for their role in modulating CREB transcription, the past 5 years has seen an expansion in knowledge of new cellular regulators and roles of CRTCs beyond CREB. CRTCs have been shown to modulate organismal aging in Caenorhabditis elegans and to impact on age-related diseases in humans. We discuss CRTC deregulation as a new driver of aging that integrates the link between age and disease risk.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Carlos G Silva-García
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handb Exp Pharmacol 2016; 233:29-49. [PMID: 26721678 DOI: 10.1007/164_2015_32] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.
Collapse
|
20
|
Wu C, Rajagopalan S. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders. Obes Rev 2016; 17:429-41. [PMID: 26997580 DOI: 10.1111/obr.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Phosphodiesterase-4 (PDE4) hydrolyses cyclic adenosine monophosphate (cAMP), a crucial secondary messenger for cellular adaptation to diverse external stimuli. The activity of PDE4 is tightly controlled by post-translational regulation, structure-based auto-regulation and locus specific 'compartmentalization' of PDE4 with its interactive proteins (signalsomes). Through these mechanisms, PDE4 regulates cAMP levels and shapes the cAMP signalling, directing signals from the diverse external stimuli to distinct microenvironments exquisitely. Derangement of the PDE4-cAMP signalling represents a pathophysiologically relevant pathway in metabolic disorders as demonstrated through a critical role in the processes including inflammation, disordered glucose and lipid metabolism, hepatic steatosis, abnormal lipolysis, suppressed thermogenic function and deranged neuroendocrine functions. A limited number of PDE4 inhibitors are currently undergoing clinical evaluation for treating disorders such as type 2 diabetes and non-alcoholic steatohepatitis. The discovery of novel PDE4 allosteric inhibitors and signalsome-based strategies targeting individual PDE4 variants may allow PDE4 isoform selective inhibition, which may offer safer strategies for chronic treatment of metabolic disorders.
Collapse
Affiliation(s)
- C Wu
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Malm HA, Mollet IG, Berggreen C, Orho-Melander M, Esguerra JLS, Göransson O, Eliasson L. Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting β-cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases. Mol Cell Endocrinol 2016; 424:23-33. [PMID: 26797246 DOI: 10.1016/j.mce.2016.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/15/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs are central players in the control of insulin secretion, but their transcriptional regulation is poorly understood. Our aim was to investigate cAMP-mediated transcriptional regulation of the miR-212/miR-132 cluster and involvement of further upstream proteins in insulin secreting β-cells. cAMP induced by forskolin+IBMX or GLP-1 caused increased expression of miR-212/miR-132, and elevated phosphorylation of cAMP-response-element-binding-protein (CREB)/Activating-transcription-factor-1 (ATF1) and Salt-Inducible-Kinases (SIKs). CyclicAMP-Regulated Transcriptional Co-activator-1 (CRTC1) was concomitantly dephosphorylated and translocated to the nucleus. Silencing of miR-212/miR-132 reduced, and overexpression of miR-212 increased, glucose-stimulated insulin secretion. Silencing of CRTC1 expression resulted in decreased insulin secretion and miR-212/miR-132 expression, while silencing or inhibition of SIKs was associated with increased expression of the microRNAs and dephosphorylation of CRTC1. CRTC1 protein levels were reduced after silencing of miR-132, suggesting feed-back regulation. Our data propose cAMP-dependent co-regulation of miR-212/miR-132, in part mediated through SIK-regulated CRTC1, as an important factor for fine-tuned regulation of insulin secretion.
Collapse
Affiliation(s)
- Helena Anna Malm
- Lund University Diabetes Centre, Lund University, Unit of Islet Cell Exocytosis, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden; Lund University Diabetes Centre, Lund University, Unit of Diabetes and Cardiovascular Disease, Genetic Epidemiology, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden
| | - Inês G Mollet
- Lund University Diabetes Centre, Lund University, Unit of Islet Cell Exocytosis, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden; Lund University Diabetes Centre, Lund University, Unit of Diabetes and Cardiovascular Disease, Genetic Epidemiology, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden
| | - Christine Berggreen
- Lund University Diabetes Centre, Lund University, Protein Phosphorylation Research Unit, Dept. Experimental Medical Science, 221 84 Lund, Sweden
| | - Marju Orho-Melander
- Lund University Diabetes Centre, Lund University, Unit of Diabetes and Cardiovascular Disease, Genetic Epidemiology, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Lund University Diabetes Centre, Lund University, Unit of Islet Cell Exocytosis, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden
| | - Olga Göransson
- Lund University Diabetes Centre, Lund University, Protein Phosphorylation Research Unit, Dept. Experimental Medical Science, 221 84 Lund, Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre, Lund University, Unit of Islet Cell Exocytosis, Dept. Clinical Sciences in Malmö, 205 02 Malmö, Sweden.
| |
Collapse
|
22
|
Robitaille K, Rourke JL, McBane JE, Fu A, Baird S, Du Q, Kin T, Shapiro AMJ, Screaton RA. High-throughput Functional Genomics Identifies Regulators of Primary Human Beta Cell Proliferation. J Biol Chem 2016; 291:4614-4625. [PMID: 26740620 PMCID: PMC4813485 DOI: 10.1074/jbc.m115.683912] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
The expansion of cells for regenerative therapy will require the genetic dissection of complex regulatory mechanisms governing the proliferation of non-transformed human cells. Here, we report the development of a high-throughput RNAi screening strategy specifically for use in primary cells and demonstrate that silencing the cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21 facilitates cell cycle entry of quiescent adult human pancreatic beta cells. This work identifies p18 and p21 as novel targets for promoting proliferation of human beta cells and demonstrates the promise of functional genetic screens for dissecting therapeutically relevant state changes in primary human cells.
Collapse
Affiliation(s)
- Karine Robitaille
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | | | - Joanne E McBane
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | - Accalia Fu
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5
| | - Stephen Baird
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | - Qiujiang Du
- the Sunnybrook Research Institute, Toronto, Ontario M4N 3M5
| | - Tatsuya Kin
- the Clinical Islet Transplant Program, University of Alberta, 8215-112 Street, Edmonton, Alberta T6G 2C8, and
| | - A M James Shapiro
- the Clinical Islet Transplant Program, University of Alberta, 8215-112 Street, Edmonton, Alberta T6G 2C8, and
| | - Robert A Screaton
- the Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
23
|
Quteineh L, Bochud PY, Golshayan D, Crettol S, Venetz JP, Manuel O, Kutalik Z, Treyer A, Lehmann R, Mueller NJ, Binet I, van Delden C, Steiger J, Mohacsi P, Dufour JF, Soccal PM, Pascual M, Eap CB. CRTC2 polymorphism as a risk factor for the incidence of metabolic syndrome in patients with solid organ transplantation. THE PHARMACOGENOMICS JOURNAL 2015; 17:69-75. [PMID: 26644205 DOI: 10.1038/tpj.2015.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/11/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
Abstract
Metabolic syndrome after transplantation is a major concern following solid organ transplantation (SOT). The CREB-regulated transcription co-activator 2 (CRTC2) regulates glucose metabolism. The effect of CRTC2 polymorphisms on new-onset diabetes after transplantation (NODAT) was investigated in a discovery sample of SOT recipients (n1=197). Positive results were tested for replication in two samples from the Swiss Transplant Cohort Study (STCS, n2=1294 and n3=759). Obesity and other metabolic traits were also tested. Associations with metabolic traits in population-based samples (n4=46'186, n5=123'865, n6>100,000) were finally analyzed. In the discovery sample, CRTC2 rs8450-AA genotype was associated with NODAT, fasting blood glucose and body mass index (Pcorrected<0.05). CRTC2 rs8450-AA genotype was associated with NODAT in the second STCS replication sample (odd ratio (OR)=2.01, P=0.04). In the combined STCS replication samples, the effect of rs8450-AA genotype on NODAT was observed in patients having received SOT from a deceased donor and treated with tacrolimus (n=395, OR=2.08, P=0.02) and in non-kidney transplant recipients (OR=2.09, P=0.02). Moreover, rs8450-AA genotype was associated with overweight or obesity (n=1215, OR=1.56, P=0.02), new-onset hyperlipidemia (n=1007, OR=1.76, P=0.007), and lower high-density lipoprotein-cholesterol (n=1214, β=-0.08, P=0.001). In the population-based samples, a proxy of rs8450G>A was significantly associated with several metabolic abnormalities. CRTC2 rs8450G>A appears to have an important role in the high prevalence of metabolic traits observed in patients with SOT. A weak association with metabolic traits was also observed in the population-based samples.
Collapse
Affiliation(s)
- L Quteineh
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Lausanne University Hospital, Prilly, Switzerland
| | - P-Y Bochud
- Service of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - D Golshayan
- Transplant Center, Lausanne University Hospital, Lausanne, Switzerland
| | - S Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Lausanne University Hospital, Prilly, Switzerland
| | - J-P Venetz
- Transplant Center, Lausanne University Hospital, Lausanne, Switzerland
| | - O Manuel
- Service of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland.,Transplant Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Z Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - A Treyer
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Lausanne University Hospital, Prilly, Switzerland
| | - R Lehmann
- Service of Endocrinology and Diabetes, University Hospital, Zurich, Switzerland
| | - N J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - I Binet
- Service of Nephrology and Transplantation Medicine, Kantonsspital, St Gallen, Switzerland
| | - C van Delden
- Service of Infectious Diseases, University Hospital, Geneva, Switzerland
| | - J Steiger
- Service of Nephrology, University Hospital, Basel, Switzerland
| | - P Mohacsi
- Departments of Cardiology Swiss Cardiovascular Centre, University Hospital, Bern, Switzerland
| | - J-F Dufour
- Department of Clinical Pharmacology, University Hospital, Bern, Switzerland
| | - P M Soccal
- Service of Pulmonary Medicine, University Hospital, Geneva, Switzerland
| | - M Pascual
- Transplant Center, Lausanne University Hospital, Lausanne, Switzerland
| | - C B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Lausanne University Hospital, Prilly, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | |
Collapse
|
24
|
Kim MJ, Park SK, Lee JH, Jung CY, Sung DJ, Park JH, Yoon YS, Park J, Park KG, Song DK, Cho H, Kim ST, Koo SH. Salt-Inducible Kinase 1 Terminates cAMP Signaling by an Evolutionarily Conserved Negative-Feedback Loop in β-Cells. Diabetes 2015; 64:3189-202. [PMID: 25918234 DOI: 10.2337/db14-1240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/13/2015] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cells are critical in the regulation of glucose homeostasis by controlled secretion of insulin in mammals. Activation of protein kinase A by cAMP is shown to be responsible for enhancing this pathway, which is countered by phosphodiesterase (PDE) that converts cAMP to AMP and turns off the signal. Salt-inducible kinases (SIKs) were also known to inhibit cAMP signaling, mostly by promoting inhibitory phosphorylation on CREB-regulated transcription coactivators. Here, we showed that SIK1 regulates insulin secretion in β-cells by modulating PDE4D and cAMP concentrations. Haploinsufficiency of SIK1 led to the improved glucose tolerance due to the increased glucose-stimulated insulin secretion. Depletion of SIK1 promoted higher cAMP concentration and increased insulin secretion from primary islets, suggesting that SIK1 controls insulin secretion through the regulation of cAMP signaling. By using a consensus phosphorylation site of SIK1, we identified PDE4D as a new substrate for this kinase family. In vitro kinase assay as well as mass spectrometry analysis revealed that the predicted Ser(136) and the adjacent Ser(141) of PDE4D are critical in SIK1-mediated phosphorylation. We found that overexpression of either SIK1 or PDE4D in β-cells reduced insulin secretion, while inhibition of PDE4 activity by rolipram or knockdown of PDE4D restored it, showing indeed that SIK1-dependent phosphorylation of PDE4D is critical in reducing cAMP concentration and insulin secretion from β-cells. Taken together, we propose that SIK1 serves as a part of a self-regulatory circuit to modulate insulin secretion from pancreatic β-cells by controlling cAMP concentration through modulation of PDE4D activity.
Collapse
Affiliation(s)
- Min-Jung Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Su-Kyung Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji-Hyun Lee
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chang-Yun Jung
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dong Jun Sung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea Division of Sports Science, College of Science and Technology, Konkuk University, Chungju, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology and Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Young-Sil Yoon
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jinyoung Park
- Division of Life Sciences, Korea University, Seoul, Republic of Korea Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Keun-Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology and Obesity-Mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hana Cho
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Schumacher Y, Aparicio T, Ourabah S, Baraille F, Martin A, Wind P, Dentin R, Postic C, Guilmeau S. Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene 2015; 35:2602-14. [PMID: 26300003 DOI: 10.1038/onc.2015.283] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
First identified as a dedicated CREB (cAMP response element-binding protein) co-activator, CRTC1 (CREB-regulated transcription co-activator 1) has been widely implicated in various neuronal functions because of its predominant expression in the brain. However, recent evidences converge to indicate that CRTC1 is aberrantly activated in an expanding number of adult malignancies. In this study, we provide strong evidences of enhanced CRTC1 protein content and transcriptional activity in mouse models of sporadic (APC(min/+) mice) or colitis-associated colon cancer azoxymethane/dextran sulfate sodium (AOM/DSS-treated mice), and in human colorectal tumors specimens compared with adjacent normal mucosa. Among signals that could trigger CRTC1 activation during colonic carcinogenesis, we demonstrate that treatment with cyclooxygenase 2 (COX2) inhibitors reduced nuclear CRTC1 active form levels in colonic tumors of APC(min/+) or AOM/DSS mice. In accordance, prostaglandins E2 (PGE2) exposure to human colon cancer cell lines promoted CRTC1 dephosphorylation and parallel nuclear translocation, resulting in enhanced CRTC1 transcriptional activity, through EP1 and EP2 receptors signaling and consecutive calcineurin and protein kinase A activation. In vitro CRTC1 loss of function in colon cancer cell lines was associated with reduced viability and cell division rate as well as enhanced chemotherapy-induced apoptosis on PGE2 treatment. Conversely, CRTC1 stable overexpression significantly increased colonic xenografts tumor growth, therefore demonstrating the role of CRTC1 signaling in colon cancer progression. Identification of the transcriptional program triggered by enhanced CRTC1 expression during colonic carcinogenesis, revealed some notable pro-tumorigenic CRTC1 target genes including NR4A2, COX2, amphiregulin (AREG) and IL-6. Finally, we demonstrate that COX2, AREG and IL-6 promoter activities triggered by CRTC1 are dependent on functional AP1 and CREB transcriptional partners. Overall, our study establishes CRTC1 as new mediator of PGE2 signaling, unravels the importance of its dysregulation in colon cancer and strengthens its use as a bona fide cancer marker.
Collapse
Affiliation(s)
- Y Schumacher
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - T Aparicio
- Gastroenterology and Digestive Oncology Unit, Avicenne Hospital, HUPSSD, APHP, Université Paris 13, Bobigny, France
| | - S Ourabah
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - F Baraille
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - A Martin
- Pathology Unit, Avicenne Hospital, HUPSSD, APHP, Université Paris 13, Bobigny, France
| | - P Wind
- Digestive Surgery Unit, Avicenne Hospital, HUPSSD, APHP, Université Paris 13, Bobigny, France
| | - R Dentin
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - C Postic
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - S Guilmeau
- Inserm U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
26
|
Hexokinase 2 controls cellular stress response through localization of an RNA-binding protein. Cell Death Dis 2015; 6:e1837. [PMID: 26247723 PMCID: PMC4558502 DOI: 10.1038/cddis.2015.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
Subcellular localization of RNA-binding proteins is a key determinant of their ability to control RNA metabolism and cellular stress response. Using an RNAi-based kinome-wide screen, we identified hexokinase 2 (HK2) as a regulator of the cytoplasmic accumulation of hnRNP A1 in response to hypertonic stress and human rhinovirus infection (HRV). We show that inhibition of HK2 expression or pharmacological inhibition of HK2 activity blocks the cytoplasmic accumulation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), restores expression of B-cell lymphoma-extra large (Bcl-xL), and protects cells against hypertonic stress-induced apoptosis. Reduction of HK2 protein levels by knockdown results in decreased HRV replication, a delay in HRV-induced cell death, and a reduced number of infected cells, all of which can be rescued by forced expression of a cytoplasm-restricted hnRNP A1. Our data elucidate a novel role for HK2 in cellular stress response and viral infection that could be exploited for therapeutic intervention.
Collapse
|
27
|
Homozygous mutations inMFN2cause multiple symmetric lipomatosis associated with neuropathy. Hum Mol Genet 2015; 24:5109-14. [DOI: 10.1093/hmg/ddv229] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 11/14/2022] Open
|
28
|
Cai T, Hirai H, Xu H, Notkins AL. The minimal promoter region of the dense-core vesicle protein IA-2: transcriptional regulation by CREB. Acta Diabetol 2015; 52:573-80. [PMID: 25528004 PMCID: PMC5273861 DOI: 10.1007/s00592-014-0689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
AIMS IA-2 is a transmembrane protein found in the dense-core vesicles (DCV) of neuroendocrine cells and one of the major autoantigens in type 1 diabetes. DCV are involved in the secretion of hormones (e.g., insulin) and neurotransmitters. Stimulation of pancreatic β cells with glucose upregulates the expression of IA-2 and an increase in IA-2 results in an increase in the number of DCV. Little is known, however, about the promoter region of IA-2 or the transcriptional factors that regulate the expression of this gene. METHODS In the present study, we constructed eight deletion fragments from the upstream region of the IA-2 transcription start site and linked them to a luciferase reporter. RESULTS By this approach, we have identified a short bp region (-216 to +115) that has strong promoter activity. We also identified a transcription factor, cAMP responsive element-binding protein (CREB), which binds to two CREB-related binding sites located in this region. The binding of CREB to these sites enhanced IA-2 transcription by more than fivefold. We confirmed these findings by site-directed mutagenesis, chromatin immunoprecipitation assays and RNAi inhibition. CONCLUSION Based on these findings, we conclude that the PKA pathway is a critical, but not the exclusive signaling pathway involved in IA-2 gene expression.
Collapse
Affiliation(s)
- Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA,
| | | | | | | |
Collapse
|
29
|
Role of the SIK2-p35-PJA2 complex in pancreatic β-cell functional compensation. Nat Cell Biol 2014; 16:234-44. [PMID: 24561619 DOI: 10.1038/ncb2919] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/22/2014] [Indexed: 02/08/2023]
Abstract
Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic β-cell, AMPK is a central regulator of insulin secretion. The capacity of the β-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for β-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Ser 91, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in β-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, β-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2-p35-PJA2 complex is essential for glucose homeostasis and provides a link between p35-CDK5 and the AMPK family in excitable cells.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Therapies that increase functional β-cell mass may be the best long-term treatment for diabetes. Significant resources are devoted toward this goal, and progress is occurring at a rapid pace. Here, we summarize recent advances relevant to human β-cell regeneration. RECENT FINDINGS New β-cells arise from proliferation of pre-existing β-cells or transdifferentiation from other cell types. In addition, dedifferentiated β-cells may populate islets in diabetes, possibly representing a pool of cells that could redifferentiate into functional β-cells. Advances in finding strategies to drive β-cell proliferation include new insight into proproliferative factors, both circulating and local, and elements intrinsic to the β-cell, such as cell cycle machinery and regulation of gene expression through epigenetic modification and noncoding RNAs. Controversy continues in the arena of generation of β-cells by transdifferentiation from exocrine, ductal, and alpha cells, with studies producing both supporting and opposing data. Progress has been made in redifferentiation of β-cells that have lost expression of β-cell markers. SUMMARY Although significant progress has been made, and promising avenues exist, more work is needed to achieve the goal of β-cell regeneration as a treatment for diabetes.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Diabetes Center of Excellence, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
31
|
Li ZT, Huang HF, Zeng Z. Pathogenesis and management of FK506- and CsA-induced post-transplant diabetes mellitus: Similarities and differences. Shijie Huaren Xiaohua Zazhi 2014; 22:1093-1100. [DOI: 10.11569/wcjd.v22.i8.1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tacrolimus (FK506) and cyclosporine (CsA) are clinically commonly used immunosuppressive agents, and both of them belong to calcineurin inhibitors. FK506 is more excellent in anti-rejection therapy. They are similar in pharmacological mechanism, but FK506 is more likely to induce post-transplant diabetes mellitus than CsA. This paper analyzes and compares the similarities and differences in the pathogenesis and management between FK506- and CsA-induced post-transplant diabetes mellitus.
Collapse
|
32
|
Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 2014; 34:1427-37. [PMID: 24492964 DOI: 10.1128/mcb.01021-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumorous imaginal disc 1 (TID1) protein localizes mainly to the mitochondrial compartment, wherein its function remains largely unknown. Here we report that TID1 regulates the steady-state homogeneity of the mitochondrial membrane potential (Δψ) and maintains the integrity of mitochondrial DNA (mtDNA). Silencing of TID1 with RNA interference leads to changes in the distribution of Δψ along the mitochondrial network, characterized by an increase in Δψ in focal regions. This effect can be rescued by ectopic expression of a TID1 construct with an intact J domain. Chronic treatment with a low dose of oligomycin, an inhibitor of F1Fo ATP synthase, decreases the cellular ATP content and phenocopies TID1 loss of function, indicating a connection between the disruption of mitochondrial bioenergetics and hyperpolarization. Prolonged silencing of TID1 or low-dose oligomycin treatment leads to the loss of mtDNA and the consequent inhibition of oxygen consumption. Biochemical and colocalization data indicate that complex I aggregation underlies the focal accumulation of Δψ in TID1-silenced cells. Given that TID1 is proposed to function as a cochaperone, these data show that TID1 prevents complex I aggregation and support the existence of a TID1-mediated stress response to ATP synthase inhibition.
Collapse
|