1
|
Hays HM, Sefidmooye Azar P, Kang M, Tinsley GM, Wijayatunga NN. Effects of time-restricted eating with exercise on body composition in adults: a systematic review and meta-analysis. Int J Obes (Lond) 2025; 49:755-765. [PMID: 39794384 PMCID: PMC12095083 DOI: 10.1038/s41366-024-01704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The effects of time-restricted eating (TRE) with exercise on body composition in adults are not clear. OBJECTIVE This meta-analysis aimed to assess the effects of TRE when followed in combination with various forms of exercise, including aerobic, resistance, and combined aerobic and resistance [concurrent] training on body composition. METHODS Studies published up to May 2023 were searched in EBSCOhost (MEDLINE, CINAHL, SPORTSDISCUS), PubMed, and SCOPUS databases. Fifteen studies, including 338 participants, that evaluated TRE vs. unrestricted eating in individuals performing exercise were analyzed. A random-effects model was used to calculate the weighted mean effect sizes (ES) with 95% confidence intervals (95% CI's). RESULTS According to the pooled results, TRE had a small but significant reduction of fat mass (FM) kg with an effect size of -0.20 (95% CI = -0.28 to -0.13, p < 0.001) and on body fat percent (BF%) with an effect size of -0.23 (95% CI = -0.35 to -0.11, p < 0.001). The prediction interval ranged from -0.48 to 0.08 for FM and from -0.64 to 0.18 for BF%, respectively. TRE did not significantly alter fat-free mass (FFM) kg compared to control (p = 0.07). Furthermore, age, body mass index (BMI), exercise type, study duration, and energy intake did not have a significant impact on the variation in effect sizes according to the subgroup analyses (p > 0.05). CONCLUSION TRE with exercise may reduce fat mass compared to an unrestricted eating window exercise-matched control while preserving FFM. However, more studies are needed.
Collapse
Affiliation(s)
- Harry M Hays
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA
| | - Minsoo Kang
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nadeeja N Wijayatunga
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
2
|
Sarmento-Cabral A, Fuentes-Fayos AC, Ordoñez FM, León-González AJ, Martínez-Fuentes AJ, Gahete MD, Luque RM. From pituitary cells to prostate gland in health and disease: direct and indirect endocrine connections. Rev Endocr Metab Disord 2025; 26:187-203. [PMID: 39910005 PMCID: PMC11920336 DOI: 10.1007/s11154-025-09948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The prostate gland is an endocrine-sensitive organ responding to multiple stimuli. Its development and function are regulated by multiple hormones (i.e. steroids such as androgens, estrogens and glucocorticoids) but also by other key hormonal systems such as those comprised by insulin-like growth factor 1 and insulin, which are sourced by different tissues [e.g. testicles/adrenal-gland/adipose-tissue/liver/pancreas, etc.). Particularly important for the endocrine control of prostatic pathophysiology and anatomy are hormones produced and/or secreted by different cell types of the pituitary gland [growth-hormone, luteinizing-hormone, follicle-stimulating hormone, and prolactin, oxytocin, arginine-vasopressin and melanocyte-stimulating hormone], which affect prostate gland function either directly or indirectly under physiological and pathophysiological conditions [e.g. metabolic dysregulation (e.g. obesity), and prostate transformations (e.g. prostate cancer)]. This review summarizes the impact of all pituitary hormone types on prostate gland under these diverse conditions including in vivo and in vitro studies.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Fernando Mata Ordoñez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Faculty of Health Sciences, Alfonso X el Sabio University, Villanueva de la Cañada, 28691, Spain
| | - Antonio J León-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain.
| |
Collapse
|
3
|
Montero-Hidalgo AJ, Del Rio-Moreno M, Pérez-Gómez JM, Luque RM, Kineman RD. Update on regulation of GHRH and its actions on GH secretion in health and disease. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09943-y. [PMID: 39838154 DOI: 10.1007/s11154-025-09943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Research and Development Division Chicago, 820 S. Damen Ave., MP151, Rm 6215, Chicago, IL, USA
| | - Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición, Cordoba, CIBERobn, Spain
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown Veterans Affairs Medical Center, Research and Development Division Chicago, 820 S. Damen Ave., MP151, Rm 6215, Chicago, IL, USA.
| |
Collapse
|
4
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
5
|
Bioletto F, Varaldo E, Gasco V, Maccario M, Arvat E, Ghigo E, Grottoli S. Central and peripheral regulation of the GH/IGF-1 axis: GHRH and beyond. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09933-6. [PMID: 39579280 DOI: 10.1007/s11154-024-09933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The regulation of growth hormone (GH) synthesis and secretion by somatotroph cells of the anterior pituitary is a highly complex process, mediated by a variety of neuroendocrine and peripheral influences. In particular, a key role is played by the hypothalamic peptides growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the somatotroph axis with opposite actions, stimulating and inhibiting GH release, respectively. Since the discovery of GHRH about 50 years ago, many pathophysiological studies have explored the underlying intricate hormonal balance that regulates GHRH secretion and its interplay with the somatotroph axis. Various molecules and pathophysiological states have been shown to modulate the release of GH, GHRH, somatostatin and GH secretagogues. Collectively, the available evidence demonstrates how a vast number of neural and peripheral signals are conveyed and integrated to orchestrate a finely tuned response of the somatotroph axis that adapts to the body's varying needs for growth, metabolism, and repair. The present review aims to summarize the available evidence regarding the key regulators involved in the modulation of the somatotroph axis in humans, presenting detailed molecular insights on the signaling cascades at play. The interplay between different mechanisms governing somatotroph secretion is highlighted, underscoring the nuanced interdependence that maintains homeostasis and facilitates the body's ability to respond to internal and external stimuli.
Collapse
Affiliation(s)
- Fabio Bioletto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuele Varaldo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Gasco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Maccario
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuela Arvat
- Division of Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
6
|
Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, Clemmons DR, Frystyk J. Growth hormone/insulin-like growth factor I axis in health and disease states: an update on the role of intra-portal insulin. Front Endocrinol (Lausanne) 2024; 15:1456195. [PMID: 39665021 PMCID: PMC11632222 DOI: 10.3389/fendo.2024.1456195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Growth hormone (GH) is the key regulator of insulin-like growth factor I (IGF-I) generation in healthy states. However, portal insulin delivery is also an essential co-player in the regulation of the GH/IGF-I axis by affecting and regulating hepatic GH receptor synthesis, and subsequently altering hepatic GH sensitivity and IGF-I generation. Disease states of GH excess (e.g., acromegaly) and GH deficiency (e.g., congenital isolated GH deficiency) are characterized by increased and decreased GH, IGF-I and insulin levels, respectively, where the GH/IGF-I relationship is reflected by a "primary association". When intra-portal insulin levels are increased (e.g., obesity, Cushing's syndrome, or due to treatment with glucocorticoids and glucagon-like peptide 1 receptor agonists) or decreased (e.g., malnutrition, anorexia nervosa and type 1 diabetes mellitus), these changes secondarily alter hepatic GH sensitivity resulting in a "secondary association" with discordant GH and IGF-I levels (e.g., high GH/low IGF-I levels or low GH/high IGF-I levels, respectively). Additionally, intra-portal insulin regulates hepatic secretion of IGFBP-1, an inhibitor of IGF-I action. Through its effects on IGFBP-1 and subsequently free IGF-I, intra-portal insulin exerts its effects to influence endogenous GH secretion via the negative feedback loop. Therefore, it is important to understand the effects of changes in intra-portal insulin when interpreting the GH/IGF-I axis in disease states. This review summarizes our current understanding of how changes in intra-portal insulin delivery to the liver in health, disease states and drug therapy use and misuse that leads to alterations in GH/IGF-I secretion that may dictate management decisions in afflicted patients.
Collapse
Affiliation(s)
- Kevin C. J. Yuen
- Department of Neuroendocrinology and Neurosurgery, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, United States
| | - Rikke Hjortebjerg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Ashok Ainkaran Ganeshalingam
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - David R. Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Nijenhuis-Noort EC, Berk KA, Neggers SJCMM, Lely AJVD. The Fascinating Interplay between Growth Hormone, Insulin-Like Growth Factor-1, and Insulin. Endocrinol Metab (Seoul) 2024; 39:83-89. [PMID: 38192102 PMCID: PMC10901670 DOI: 10.3803/enm.2024.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
This review intends to provide the reader with a practical overview of several (patho)physiological conditions in which knowledge of the interplay between growth hormone (GH), insulin-like growth factor-1 (IGF-1), and insulin is important. This might help treating physicians in making the right decisions on how to intervene and improve metabolism for the benefit of patients, and to understand why and how metabolism responds in their specific cases. We will specifically address the interplay between GH, IGF-1, and insulin in type 1 and 2 diabetes mellitus, liver cirrhosis, and acromegaly as examples in which this knowledge is truly necessary.
Collapse
Affiliation(s)
- Eline C Nijenhuis-Noort
- Division of Endocrinology, Department of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kirsten A Berk
- Division of Endocrinology, Department of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sebastian J C M M Neggers
- Division of Endocrinology, Department of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aart J van der Lely
- Division of Endocrinology, Department of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
11
|
Kern-Matschilles S, Gar C, Schilbach K, Haschka SJ, Rauch B, Then C, Seissler J, Bidlingmaier M, Lechner A. Altered Circulating Leptin, hGH, and IGF-I in Prediabetes and Screening-Diagnosed T2DM Unrelated to Metabolic Syndrome in Women Post Gestational Diabetes. Horm Metab Res 2022; 54:613-619. [PMID: 35556239 DOI: 10.1055/a-1850-5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recently, we proposed two pathophysiologic subtypes of type 2 diabetes mellitus (T2DM), one related and one unrelated to metabolic syndrome. To begin to understand the pathophysiology of the subtype unrelated to metabolic syndrome, we now measured selected hormones and signaling molecules in affected individuals. In this cross-sectional analysis, we examined 138 women out of the monocenter, post gestational diabetes study PPSDiab. Of these women, 73 had prediabetes or screening-diagnosed T2DM, 40 related to metabolic syndrome and 33 unrelated. The remaining 65 women were normoglycemic controls. Our analysis included medical history, anthropometrics, oral glucose tolerance testing, laboratory chemistry, and cardiopulmonary exercise testing. In addition, plasma proinsulin/insulin ratio, growth hormone (hGH) nadir during oral glucose tolerance testing, Insulin-like Growth Factor I (IGF-I), Leptin, Resistin, Adiponectin, Fetuin-a, FGF21, and myostatin were measured. Compared to controls, women with prediabetes or screening-diagnosed T2DM unrelated to metabolic syndrome depicted higher plasma Leptin [10.47(6.6-14.57) vs. 5.52(3.15-10.02); p<0.0001] and IGF-I [193.01(171.00-213.30) vs. 167.97(138.77-200.64); p=0.0008], as well as a lower hGH nadir [0.07(0.05-0.15) vs. 0.14(0.08-0.22; p<0.0001]. These differences were independent of body adiposity. Women with prediabetes or T2DM related to metabolic syndrome, in comparison to controls, displayed elevated Leptin, Fetuin-a, and FGF21, as well as reduced Adiponectin and hGH nadir. Based on our study, altered Leptin and hGH/IGF-I signaling could potentially contribute to the pathophysiology of prediabetes and T2DM unrelated to metabolic syndrome. Further mechanistic investigations of these signaling pathways in the context of lean T2DM are necessary to test causal relationships.
Collapse
Affiliation(s)
- Stefanie Kern-Matschilles
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Christina Gar
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Katharina Schilbach
- Endocrine Research Unit, LMU Klinikum München, Medizinische Klinik IV, München, Germany
| | - Stefanie Julia Haschka
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Rauch
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Cornelia Then
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Jochen Seissler
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, LMU Klinikum München, Medizinische Klinik IV, München, Germany
| | - Andreas Lechner
- Clinical Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik 4, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
12
|
Battezzati A, Foppiani A, Alicandro G, Bisogno A, Biffi A, Bedogni G, Bertoli S, De Carlo G, Nazzari E, Colombo C. Prepuberal insulin secretory indices are long-term predictors of short adult stature in cystic fibrosis. Endocr Connect 2022; 11:e220056. [PMID: 35358060 PMCID: PMC9175588 DOI: 10.1530/ec-22-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
Objective Diabetes is a frequent comorbidity in cystic fibrosis (CF), related to multiple unfavorable outcomes. During the progression of β-cell dysfunction to diabetes, insulin deficiency could possibly reduce the anabolic support to grow even in the absence of significant glycemic derangements. To test this hypothesis, we evaluated whether prepuberal insulin secretory indices are independent predictors of adult height. Design Observational cohort study. Research design and methods A longitudinal analysis of 66 CF patients (33 females) from an ongoing cohort received at prepuberal age (median age of 12 years) modified 3-h oral glucose tolerance tests with 30-min insulin and C-peptide sampling, modeling of insulin secretory and sensitivity parameters, anthropometric evaluation. The latter was repeated when adults after a median follow-up of 9 years. Results In alternative models, we found a positive association with either basal insulin secretion (mean 0.22, 95% CI 0.01, 0.44 z-scores) or prepuberal β-cell glucose sensitivity (mean 0.23, 95% CI 0.00, 0.46 z-scores) and adult height, while total insulin secretion was negatively related to adult height (mean -0.36, 95% CI -0.57, -0.15 z-scores or mean -0.42, 95% CI -0.69, -0.16 z-scores, respectively). The high total insulin secretion of low adult height patients was mainly due to late (>60 min) secretion and was associated with a worse glucose response during OGTT. Conclusions Abnormal insulin secretion associated with high glucose response during OGTT predicts a decrease in adult height z-score. Our results suggest that insulin secretory defects in CF affect growth prior to the development of fasting hyperglycemia.
Collapse
Affiliation(s)
- Alberto Battezzati
- International Center for the Assessment of Nutritional Status, DeFENS, University of Milan, Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status, DeFENS, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Arianna Bisogno
- Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Arianna Biffi
- Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Internal Medicine, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status, DeFENS, University of Milan, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Obesity Unit - Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, Milan, Italy
| | - Giulia De Carlo
- International Center for the Assessment of Nutritional Status, DeFENS, University of Milan, Milan, Italy
| | - Erica Nazzari
- Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Al-Samerria S, Radovick S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells 2021; 10:cells10102664. [PMID: 34685644 PMCID: PMC8534318 DOI: 10.3390/cells10102664] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
In mammals, the neuroendocrine system, which includes the communication between the hypothalamus and the pituitary, plays a major role in controlling body growth and cellular metabolism. GH produced from the pituitary somatotroph is considered the master regulator of somatic development and involved, directly and indirectly, in carbohydrate and lipid metabolism via complex, yet well-defined, signaling pathways. GH production from the pituitary gland is primarily regulated by the counter-regulatory effects of the hypothalamic GHRH and SST hormones. The role of IGF-1 feedback regulation in GH production has been demonstrated by pharmacologic interventions and in genetically modified mouse models. In the present review, we discuss the role of IGF-1 in the regulation of the GH-axis as it controls somatic growth and metabolic homeostasis. We present genetically modified mouse models that maintain the integrity of the GH/GHRH-axis with the single exception of IGF-1 receptor (IGF-1R) deficiency in the hypothalamic GHRH neurons and somatotroph that reveals a novel mechanism controlling adipose tissues physiology and energy expenditure.
Collapse
|
14
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|
15
|
Janssen JAMJL. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int J Mol Sci 2021; 22:ijms22157797. [PMID: 34360563 PMCID: PMC8345990 DOI: 10.3390/ijms22157797] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of internal Medicine, Division of Endocrinology, Erasmus Medical Center, 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
16
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
17
|
Scully T, Ettela A, LeRoith D, Gallagher EJ. Obesity, Type 2 Diabetes, and Cancer Risk. Front Oncol 2021; 10:615375. [PMID: 33604295 PMCID: PMC7884814 DOI: 10.3389/fonc.2020.615375] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and type 2 diabetes have both been associated with increased cancer risk and are becoming increasingly prevalent. Metabolic abnormalities such as insulin resistance and dyslipidemia are associated with both obesity and type 2 diabetes and have been implicated in the obesity-cancer relationship. Multiple mechanisms have been proposed to link obesity and diabetes with cancer progression, including an increase in insulin/IGF-1 signaling, lipid and glucose uptake and metabolism, alterations in the profile of cytokines, chemokines, and adipokines, as well as changes in the adipose tissue directly adjacent to the cancer sites. This review aims to summarize and provide an update on the epidemiological and mechanistic evidence linking obesity and type 2 diabetes with cancer, focusing on the roles of insulin, lipids, and adipose tissue.
Collapse
Affiliation(s)
- Tiffany Scully
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
18
|
Mirczuk SM, Scudder CJ, Read JE, Crossley VJ, Regan JT, Richardson KM, Simbi B, McArdle CA, Church DB, Fenn J, Kenny PJ, Volk HA, Wheeler-Jones CP, Korbonits M, Niessen SJ, McGonnell IM, Fowkes RC. Natriuretic Peptide Expression and Function in GH3 Somatolactotropes and Feline Somatotrope Pituitary Tumours. Int J Mol Sci 2021; 22:ijms22031076. [PMID: 33499110 PMCID: PMC7865297 DOI: 10.3390/ijms22031076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.
Collapse
Affiliation(s)
- Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Jordan E. Read
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Victoria J. Crossley
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Jacob T. Regan
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Karen M. Richardson
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Bigboy Simbi
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - David B. Church
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Joseph Fenn
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Patrick J. Kenny
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Small Animal Specialist Hospital, 1 Richardson Place, North Ryde, 2113 NSW, Australia
| | - Holger A. Volk
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Caroline P. Wheeler-Jones
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
- Correspondence: ; Tel.: +11-44-207-468-1215
| |
Collapse
|
19
|
Sarmento-Cabral A, del Rio-Moreno M, Vazquez-Borrego MC, Mahmood M, Gutierrez-Casado E, Pelke N, Guzman G, Subbaiah PV, Cordoba-Chacon J, Yakar S, Kineman RD. GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner. J Endocrinol 2021; 248:31-44. [PMID: 33112796 PMCID: PMC7785648 DOI: 10.1530/joe-20-0326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.
Collapse
Affiliation(s)
- Andre Sarmento-Cabral
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mercedes del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mari C. Vazquez-Borrego
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mariyah Mahmood
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Elena Gutierrez-Casado
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Natalie Pelke
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago,
College of Medicine, Chicago, IL
| | - Papasani V. Subbaiah
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Shoshana Yakar
- Department of Molecular Pathobiology, New York University
College of Dentistry, New York, NY
| | - Rhonda D. Kineman
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
20
|
Huang Z, Huang L, Waters MJ, Chen C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol Metab 2020; 31:642-654. [PMID: 32416957 DOI: 10.1016/j.tem.2020.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Disruption of endocrine hormonal balance (i.e., increased levels of insulin, and reduced levels of growth hormone, GH) often occurs in pre-obesity and obesity. Using distinct intracellular signaling pathways to control cell and body metabolism, GH and insulin also regulate each other's secretion to maintain overall metabolic homeostasis. Therefore, a comprehensive understanding of insulin and GH balance is essential for understanding endocrine hormonal contributions to energy storage and utilization. In this review we summarize the actions of, and interactions between, insulin and GH at the cellular level, and highlight the association between the insulin/GH ratio and energy metabolism, as well as fat accumulation. Use of the [insulin]:[GH] ratio as a biomarker for predicting the development of obesity is proposed.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
21
|
Lee J, Kim K, Cho JH, Bae JY, O'Leary TP, Johnson JD, Bae YC, Kim EK. Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates pituitary growth hormone production. JCI Insight 2020; 5:135412. [PMID: 32644973 PMCID: PMC7455129 DOI: 10.1172/jci.insight.135412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS–induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS–induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin. Insulin produced in the paraventricular nucleus regulates body length by modulating pituitary growth hormone expression and secretion under both normal and stress conditions.
Collapse
Affiliation(s)
- Jaemeun Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Kyungchan Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jae Hyun Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Timothy P O'Leary
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
22
|
Early overnutrition sensitizes the growth hormone axis to the impact of diet-induced obesity via sex-divergent mechanisms. Sci Rep 2020; 10:13898. [PMID: 32807904 PMCID: PMC7431568 DOI: 10.1038/s41598-020-70898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to its essential role in the physiological control of longitudinal growth, growth-hormone (GH) is endowed with relevant metabolic functions, including anabolic actions in muscle, lipolysis in adipose-tissue and glycemic modulation. Adult obesity is known to negatively impact GH-axis, thereby promoting a vicious circle that may contribute to the exacerbation of the metabolic complications of overweight. Yet, to what extent early-overnutrition sensitizes the somatotropic-axis to the deleterious effects of obesity remains largely unexplored. Using a rat-model of sequential exposure to obesogenic insults, namely postnatal-overfeeding during lactation and high-fat diet (HFD) after weaning, we evaluated in both sexes the individual and combined impact of these nutritional challenges upon key elements of the somatotropic-axis. While feeding HFD per se had a modest impact on the adult GH-axis, early overnutrition had durable effects on key elements of the somatotropic-system, which were sexually different, with a significant inhibition of pituitary gene expression of GH-releasing hormone-receptor (GHRH-R) and somatostatin receptor-5 (SST5) in males, but an increase in pituitary GHRH-R, SST2, SST5, GH secretagogue-receptor (GHS-R) and ghrelin expression in females. Notably, early-overnutrition sensitized the GH-axis to the deleterious impact of HFD, with a significant suppression of pituitary GH expression in both sexes and lowering of circulating GH levels in females. Yet, despite their similar metabolic perturbations, males and females displayed rather distinct alterations of key somatotropic-regulators/ mediators. Our data document a synergistic effect of postnatal-overnutrition on the detrimental impact of HFD-induced obesity on key elements of the adult GH-axis, which is conducted via mechanisms that are sexually-divergent.
Collapse
|
23
|
Huang L, Huang Z, Chen C. Rhythmic growth hormone secretion in physiological and pathological conditions: Lessons from rodent studies. Mol Cell Endocrinol 2019; 498:110575. [PMID: 31499134 DOI: 10.1016/j.mce.2019.110575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023]
Abstract
Evolutionally conserved in all mammalians, the release of GH occurs in a rhythmic pattern, characterized by several dominant surges (pulsatile GH) with tonic low inter-pulse levels (tonic GH). Such pulsatile secretion pattern is essential for many physiological actions of GH on different tissues with defined gender dimorphism. Rhythmic release of pulsatile GH is tightly controlled by hypothalamic neurons as well as peripheral metabolic factors. Changes of GH pattern occur within a range of sophisticated physiological and pathological settings and significantly contribute to growth, ageing, survival and disease predispositions. Precise analysis of GH secretion pattern is vitally important for a comprehensive understanding of the function of GH and the components that regulate GH secretion pattern.
Collapse
Affiliation(s)
- Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
24
|
Herrera-Martínez AD, Pedraza-Arevalo S, L-López F, Gahete MD, Gálvez-Moreno MA, Castaño JP, Luque RM. Type 2 Diabetes in Neuroendocrine Tumors: Are Biguanides and Statins Part of the Solution? J Clin Endocrinol Metab 2019; 104:57-73. [PMID: 30265346 DOI: 10.1210/jc.2018-01455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Biguanides and statins exert beneficial effects on various cancer types. Their precise effects and underlying molecular mechanisms are poorly understood. MATERIALS AND METHODS We analyzed the relationship between metabolic syndrome and histological, epidemiological, and prognosis variables in two cohorts of patients with neuroendocrine tumors (NETs): those with lung carcinoids (LCs; n = 81) and those with gastroenteropancreatic NET (GEP-NET; n = 100). Biguanide and statin antitumor effects were investigated by evaluating proliferation, migration, secretion, gene expression, and involved molecular pathways in BON1/QGP1 cell cultures. RESULTS Pleura invasion was higher (LCs group; P < 0.05) and tumor diameter tended to be increased (GEP-NET group) in patients with type 2 diabetes (T2DM) than in those without. Somatostatin and ghrelin systems mRNA levels differed in tumor tissue of patients with T2DM taking metformin or not. Biguanides decreased proliferation rate in BON1/QGP1 cells; the effects of statins on proliferation rate depended on the statin and cell types, and time. Specifically, only simvastatin and atorvastatin decreased proliferation in BON1 cells, whereas all statins decreased proliferation rate in QGP1 cells. Metformin and simvastatin decreased migration capacity in BON1 cells; biguanides decreased serotonin secretion in BON1 cells. Phenformin increased apoptosis in BON1/QGP1 cells; simvastatin increased apoptosis in QGP1 cells. These antitumor effects likely involved altered expression of key genes related to cancer aggressiveness. CONCLUSION A clear inhibitory effect of biguanides and statins was seen on NET-cell aggressiveness. Our results invite additional exploration of the potential therapeutic role of these drugs in treatment of patients with NETs.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| |
Collapse
|
25
|
Kineman RD, del Rio-Moreno M, Sarmento-Cabral A. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. J Mol Endocrinol 2018; 61:T187-T198. [PMID: 29743295 PMCID: PMC7721256 DOI: 10.1530/jme-18-0076] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago,1819 W Polk St. M/C 646 Chicago, IL, 60612
- Research and Development Division, Jesse Brown VA Medical Center, Suite 6215, MP 191, 820 S Damen Ave. Chicago, IL 60612
- Corresponding author: Rhonda D Kineman, . University of Illinois at Chicago, Medicine, 1819 W. Polk St., MC 640, Chicago, IL, USA 60612
| | - Mercedes del Rio-Moreno
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago,1819 W Polk St. M/C 646 Chicago, IL, 60612
| | - André Sarmento-Cabral
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago,1819 W Polk St. M/C 646 Chicago, IL, 60612
| |
Collapse
|
26
|
Cui T, Schally AV. Growth hormone-releasing hormone (GHRH) and its agonists inhibit hepatic and tumoral secretion of IGF-1. Oncotarget 2018; 9:28745-28756. [PMID: 29983893 PMCID: PMC6033336 DOI: 10.18632/oncotarget.25676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
The role of hypothalamic growth hormone-releasing hormone (GHRH) in the release of growth hormone (GH) from the pituitary is well established. However, direct effects of GHRH and its agonistic analogs on extra-pituitary cells and tissues have not been completely elucidated. In the present study, we first demonstrated that human and rat hepatocytes express receptors for GHRH. We then showed that GHRH(1-29)NH 2 and GHRH agonist, MR-409, downregulated mRNA levels for IGF-1 in human cancer cell lines and inhibited IGF-1 secretion in vitro when these cancer lines were exposed to rhGH. Another GHRH agonist, MR-356, lowered serum IGF-l and inhibited tumor growth in nude mice bearing xenografted NCI-N87 human stomach cancers. GHRH(1-29)NH 2 and MR-409 also suppressed the expression of mRNA for IGF-1 and IGF-2 in rat and human hepatocytes, decreased the secretion of IGF-1 in vitro from rat hepatocytes stimulated with rhGH, and lowered serum IGF-l levels in hypophysectomized rats injected with rhGH. Vasoactive intestinal peptide had no effect on the release of IGF-1 from the hepatocytes. Treatment of C57BL/6 mice with MR-409 reduced serum levels of IGF-l from days 1 to 5. These results show that GHRH and its agonists can, by a direct action, inhibit the secretion of IGF-1 from the liver and from tumors. The inhibitory effect of GHRH appears to be mediated by the GHRH receptor (GHRH-R) and GH receptor (GHR), with the involvement of JAK2/STAT5 pathways. Further studies are required to investigate the possible physiopathological role of GHRH in the control of secretion of IGF-1.
Collapse
Affiliation(s)
- Tengjiao Cui
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Medicine, Divisions of Hematology, Oncology and Endocrinology, University of Miami, Miami, FL, USA
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Medicine, Divisions of Hematology, Oncology and Endocrinology, University of Miami, Miami, FL, USA
- Department of Pathology, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
27
|
Di Pasquale C, Gentilin E, Falletta S, Bellio M, Buratto M, Degli Uberti E, Chiara Zatelli M. PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line. Endocrine 2018; 60:308-316. [PMID: 29080043 DOI: 10.1007/s12020-017-1432-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Insulin-like growth factor 1 (IGF1) controls growth hormone (GH) secretion via a negative feed-back loop that may disclose novel mechanisms possibly useful to control GH hyper-secretion. Our aim was to understand whether PI3K/Akt/mTOR pathway is involved in IGF1 negative feedback on GH secretion. METHODS Cell viability, GH secretion, Akt, and Erk 1/2 phosphorylation levels in the rat GH3 cell line were assessed under treatment with IGF1 and/or everolimus, an mTOR inhitior. RESULTS We found that IGF1 improves rat GH3 somatotroph cell viability via the PI3K/Akt/mTOR pathway and confirmed that IGF1 exerts a negative feedback on GH secretion by a transcriptional mechanism. We demonstrated that the negative IGF1 loop on GH secretion requires Akt activation that seems to play a pivotal role in the control of GH secretion. Furthermore, Akt activation is independent of PI3K and probably mediated by mTORC2. In addition, we found that Erk 1/2 is not involved in GH3 cell viability regulation, but may have a role in controlling GH secretion, independently of IGF1. CONCLUSION Our data confirm that mTOR inhibitors may be useful to reduce pituitary adenoma cell viability, while Erk 1/2 pathway may be considered as a useful therapeutic target to control GH secretion. Our results open the field for further studies searching for effective drugs to control GH hyper-secretion.
Collapse
Affiliation(s)
- Carmelina Di Pasquale
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Erica Gentilin
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Simona Falletta
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Mariaenrica Bellio
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Mattia Buratto
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Ettore Degli Uberti
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Department of Medical Sciences, Section of Endocrinology & Internal Medicine, University of Ferrara, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy.
| |
Collapse
|
28
|
Vázquez-Borrego MC, Gahete MD, Martínez-Fuentes AJ, Fuentes-Fayos AC, Castaño JP, Kineman RD, Luque RM. Multiple signaling pathways convey central and peripheral signals to regulate pituitary function: Lessons from human and non-human primate models. Mol Cell Endocrinol 2018; 463:4-22. [PMID: 29253530 DOI: 10.1016/j.mce.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
The anterior pituitary gland is a key organ involved in the control of multiple physiological functions including growth, reproduction, metabolism and stress. These functions are controlled by five distinct hormone-producing pituitary cell types that produce growth hormone (somatotropes), prolactin (lactotropes), adrenocorticotropin (corticotropes), thyrotropin (thyrotropes) and follicle stimulating hormone/luteinizing hormone (gonadotropes). Classically, the synthesis and release of pituitary hormones was thought to be primarily regulated by central (neuroendocrine) signals. However, it is now becoming apparent that factors produced by pituitary hormone targets (endocrine and non-endocrine organs) can feedback directly to the pituitary to adjust pituitary hormone synthesis and release. Therefore, pituitary cells serve as sensors to integrate central and peripheral signals in order to fine-tune whole-body homeostasis, although it is clear that pituitary cell regulation is species-, age- and sex-dependent. The purpose of this review is to provide a comprehensive, general overview of our current knowledge of both central and peripheral regulators of pituitary cell function and associated intracellular mechanisms, focusing on human and non-human primates.
Collapse
Affiliation(s)
- M C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - M D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A J Martínez-Fuentes
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - A C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - J P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - R D Kineman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Research and Development Division, Chicago, IL, USA
| | - R M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain.
| |
Collapse
|
29
|
Sarmento-Cabral A, L-López F, Luque RM. Adipokines and Their Receptors Are Widely Expressed and Distinctly Regulated by the Metabolic Environment in the Prostate of Male Mice: Direct Role Under Normal and Tumoral Conditions. Endocrinology 2017; 158:3540-3552. [PMID: 28938461 DOI: 10.1210/en.2017-00370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
Adipose tissue-derived adipokines (i.e., leptin/adiponectin/resistin) play important roles in the regulation of several pathophysiologic processes through the activation of specific receptors. However, although adipokines and their receptors are widely distributed in many tissues and exhibit a clear modulation according to particular metabolic conditions (e.g., obesity and/or fasting), their expression, regulation, and putative action on normal prostate glands (PGs; a hormone-dependent organ tightly regulated by the endocrine-metabolic milieu) are still to be defined. Different in vivo/in vitro models were used to comprehensively characterize the expression pattern and actions of different adipokine systems (i.e., leptin/adiponectin/resistin/receptors) in mouse PGs. Adiponectin, resistin, and adiponectin receptors (1 and 2) and leptin receptor are coexpressed at different levels in PG cells, wherein they are finely regulated under fasting and/or obesity conditions. Furthermore, treatment with different adipokines exerted both homologous and heterologous regulation of specific adipokines/receptor-synthesis and altered the expression of key proliferation and oncogenesis markers (i.e., Ki67/c-Myc/p53) in mouse PG cell cultures, wherein some of these actions might be elicited through extracellular signal-regulated kinase (ERK) activation. Moreover, treatment with leptin, adiponectin, and resistin differentially regulated key functional parameters [i.e., proliferation and migration capacity and/or prostate-specific antigen (PSA) secretion] in human normal and/or tumoral prostate cell lines. Altogether, our data show that various adipokine and receptor systems are differentially expressed in normal PG cells; that their expression is under a complex ligand- and receptor-selective regulation under extreme metabolic conditions; and that they mediate distinctive and common direct actions in normal and tumoral PG cells (i.e., homologous and heterologous regulation of ligand and receptor synthesis, ERK signaling activation, modulation of proliferation markers, proliferation and migration capacity, and PSA secretion), suggesting a relevant role of these systems in the regulation of PG pathophysiology.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain
- Reina Sofía University Hospital, 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
- Internacional Campus of Excellence on Agrifood, 14004 Cordoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain
- Reina Sofía University Hospital, 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
- Internacional Campus of Excellence on Agrifood, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain
- Reina Sofía University Hospital, 14004 Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
- Internacional Campus of Excellence on Agrifood, 14004 Cordoba, Spain
| |
Collapse
|
30
|
Nishihara K, Kobayashi R, Suzuki Y, Sato K, Katoh K, Roh S. Post-prandial decrease in plasma growth hormone levels is not related to the increase in plasma insulin levels in goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1696-1701. [PMID: 28728377 PMCID: PMC5666172 DOI: 10.5713/ajas.16.0965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/11/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022]
Abstract
Objective In the present study, we examined whether the post-prandial reduction in plasma growth hormone (GH) levels is related to the increase in plasma insulin levels in ruminants. Methods We performed two experiments: intravenous bolus injection of insulin (0.2 IU/kg body weight) or glucose (1.0 mmol/kg body weight) was administered to increase the plasma insulin levels in male Shiba goats. Results In the insulin injection experiment, significant (p<0.05) increase in GH concentrations was observed, 15 to 20 min after the injection; it was accompanied with a significant (p<0.01) increase in cortisol concentrations at 45 to 90 min, when compared to the concentrations in the saline-injected controls. The glucose injection significantly (p<0.05) increased the plasma GH concentration at 20 to 45 min; this was not accompanied by significantly higher cortisol concentrations than were observed for the saline-injected control. Hypoglycemia induced by the insulin injection, which causes the excitation of the adrenal cortex, might be involved in the increase in insulin levels. Conclusion Based on these results, we conclude that post-prandial increases in plasma insulin or glucose levels do not induce a decrease in GH concentration after feeding in the ruminants.
Collapse
Affiliation(s)
- Koki Nishihara
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan
| | - Ryoko Kobayashi
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Katsuyoshi Sato
- Department of Agribusiness, Faculty of Bioresource Scienes, Akita Prefectural University, Akita 010-0195, Japan
| | - Kazuo Katoh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan
| | - Sanggun Roh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan
| |
Collapse
|
31
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|
32
|
Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Sci Rep 2016; 6:37992. [PMID: 27901064 PMCID: PMC5128804 DOI: 10.1038/srep37992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Somatostatin (SST) and cortistatin (CORT) regulate numerous endocrine secretions and their absence [knockout (KO)-models] causes important endocrine-metabolic alterations, including pituitary dysregulations. We have demonstrated that the metabolic phenotype of single or combined SST/CORT KO-models is not drastically altered under normal conditions. However, the biological actions of SST/CORT are conditioned by the metabolic-status (e.g. obesity). Therefore, we used male/female SST- and CORT-KO mice fed low-fat (LF) or high-fat (HF) diet to explore the interplay between SST/CORT and obesity in the control of relevant pituitary-axes and whole-body metabolism. Our results showed that the SST/CORT role in the control of GH/prolactin secretions is maintained under LF- and HF-diet conditions as SST-KOs presented higher GH/prolactin-levels, while CORT-KOs displayed higher GH- and lower prolactin-levels than controls under both diets. Moreover, the impact of lack of SST/CORT on the metabolic-function was gender- and diet-dependent. Particularly, SST-KOs were more sensitive to HF-diet, exhibiting altered growth and body-composition (fat/lean percentage) and impaired glucose/insulin-metabolism, especially in males. Conversely, only males CORT-KO under LF-diet conditions exhibited significant alterations, displaying higher glucose-levels and insulin-resistance. Altogether, these data demonstrate a tight interplay between SST/CORT-axis and the metabolic status in the control of endocrine/metabolic functions and unveil a clear dissociation of SST/CORT roles.
Collapse
|
33
|
Cuny T, Zeiller C, Bidlingmaier M, Défilles C, Roche C, Blanchard MP, Theodoropoulou M, Graillon T, Pertuit M, Figarella-Branger D, Enjalbert A, Brue T, Barlier A. In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells. Endocr Relat Cancer 2016; 23:509-19. [PMID: 27267119 PMCID: PMC5064756 DOI: 10.1530/erc-16-0140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Abstract
Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, the biological effect of PEG at the pituitary level remains unknown. To assess the impact of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and cellular viability of eight human GH-secreting tumors in primary cultures and of the rat somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent inhibition of GH secretion was observed under PEG with a maximum of 38.2±17% at 1μg/mL (P<0.0001 vs control). A dose-dependent inhibition of PRL secretion occurred in three mixed GH/PRL adenomas under PEG with a maximum of 52.8±11.5% at 10μg/mL (P<0.0001 vs control). No impact on proliferation of either human primary tumors or GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell viability or cell proliferation.
Collapse
Affiliation(s)
- Thomas Cuny
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France
| | | | - Martin Bidlingmaier
- Endocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
| | - Céline Défilles
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France
| | - Catherine Roche
- APHMConception, Laboratory of Molecular Biology, Marseille, France
| | | | | | - Thomas Graillon
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France APHM TimoneDepartment of Neurosurgery, Marseille, France
| | - Morgane Pertuit
- APHMConception, Laboratory of Molecular Biology, Marseille, France
| | - Dominique Figarella-Branger
- APHM TimoneLaboratory of Neuropathology and Aix-Marseille University, INSERM, CRO2 UMR911, Marseille, France
| | - Alain Enjalbert
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France APHMConception, Laboratory of Molecular Biology, Marseille, France
| | - Thierry Brue
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France APHM ConceptionDepartment of Endocrinology, Marseille, France
| | - Anne Barlier
- Aix-Marseille UniversityCNRS, CRN2M UMR7286, Marseille, France APHMConception, Laboratory of Molecular Biology, Marseille, France
| |
Collapse
|
34
|
Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation. Neuropsychopharmacology 2016; 41:1540-50. [PMID: 26448203 PMCID: PMC4832015 DOI: 10.1038/npp.2015.312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 01/30/2023]
Abstract
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Collapse
|
35
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Chan MK, Cooper JD, Bot M, Steiner J, Penninx BWJH, Bahn S. Identification of an Immune-Neuroendocrine Biomarker Panel for Detection of Depression: A Joint Effects Statistical Approach. Neuroendocrinology 2016; 103:693-710. [PMID: 26580065 DOI: 10.1159/000442208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Less than half of depression patients are correctly diagnosed within the primary care setting. Previous proteomic studies have identified numerous immune and neuroendocrine changes in patients. However, few studies have considered the joint effects of biological molecules and their diagnostic potential. Our aim was to develop and validate a diagnostic serum biomarker panel identified through joint effects analysis of multiplex immunoassay profiling data from 1,007 clinical samples. METHODS In stage 1, we conducted a meta-analysis of two independent cohorts of 78 first-/recent-onset drug-naive/drug-free depression patients and 156 controls and applied the 10-fold cross-validation with least absolute shrinkage and selection operator regression to identify an optimal diagnostic prediction model (biomarker panel). In stage 2, we tested the discriminatory performance of this biomarker panel using the naturalistic Netherlands Study of Depression and Anxiety (NESDA) cohort of 468 depression patients and 305 controls. RESULTS An optimal panel of 33 immune-neuroendocrine biomarkers and gender was selected in the meta-analysis. Testing this biomarker-gender panel using the NESDA cohort resulted in a moderate to good performance to differentiate patients from controls (0.69 < AUC < 0.86), particularly the first-episode patients free of chronic non-psychiatric diseases or medications and following incorporation of sociodemographic covariates (0.76 < AUC < 0.92). CONCLUSION Despite the need for additional validation studies, we demonstrated that a blood-based biomarker-sociodemographic panel can detect depression in naturalistic healthcare settings with good discriminatory power. Further refinements of blood biomarker panels aiding in the diagnosis of depression may provide a cost-effective means to increase accuracy of clinical diagnosis within the primary care setting.
Collapse
Affiliation(s)
- Man K Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
37
|
Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice. Proc Natl Acad Sci U S A 2015; 112:13651-6. [PMID: 26474831 DOI: 10.1073/pnas.1518540112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agonists of growth hormone-releasing hormone (GHRH) have been previously reported to promote growth, function, and engraftment of islet cells following transplantation. Here we evaluated recently synthesized GHRH agonists on the proliferation and biological functions of rat pancreatic β-cell line (INS-1) and islets. In vitro treatment of INS-1 cells with GHRH agonists increased cell proliferation, the expression of cellular insulin, insulin-like growth factor-1 (IGF1), and GHRH receptor, and also stimulated insulin secretion in response to glucose challenge. Exposure of INS-1 cells to GHRH agonists, MR-356 and MR-409, induced activation of ERK and AKT pathways. Agonist MR-409 also significantly increased the levels of cellular cAMP and the phosphorylation of cAMP response element binding protein (CREB) in INS-1 cells. Treatment of rat islets with agonist, MR-409 significantly increased cell proliferation, islet size, and the expression of insulin. In vivo daily s.c. administration of 10 μg MR-409 for 3 wk dramatically reduced the severity of streptozotocin (STZ)-induced diabetes in nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice. The maximal therapeutic benefits with respect to the efficiency of engraftment, ability to reach normoglycemia, gain in body weight, response to high glucose challenge, and induction of higher levels of serum insulin and IGF1 were observed when diabetic mice were transplanted with rat islets preconditioned with GHRH agonist, MR-409, and received additional treatment with MR-409 posttransplantation. This study provides an improved approach to the therapeutic use of GHRH agonists in the treatment of diabetes mellitus.
Collapse
|
38
|
Cordoba-Chacon J, Majumdar N, Pokala NK, Gahete MD, Kineman RD. Islet insulin content and release are increased in male mice with elevated endogenous GH and IGF-I, without evidence of systemic insulin resistance or alterations in β-cell mass. Growth Horm IGF Res 2015; 25:189-195. [PMID: 25936582 DOI: 10.1016/j.ghir.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED It is clear that elevations in circulating GH can lead to an increase in insulin levels. This increase in insulin may be due to GH-mediated insulin resistance and enhanced lipolysis. However, there is also in vitro and in vivo evidence that GH acts directly to increase β-cell proliferation and insulin production. Our laboratory recently developed an animal model with elevated endogenous GH levels associated with a small (25%), but significant, increase in IGF-I (HiGH mice). As expected, insulin levels were elevated in HiGH mice; however, whole body insulin sensitivity was not altered and glucose tolerance was improved. This metabolic phenotype suggests that modest elevations in circulating GH and IGF-I may enhance β-cell mass and/or function, in the absence of systemic insulin resistance, thus improving glucose homeostasis. OBJECTIVE To determine if β-cell mass and/or function is altered in HiGH mice. DESIGN Male HiGH mice and their littermate controls were fed a low-fat or high-fat diet. Body composition and circulating metabolic endpoints were monitored overtime. The pancreas was recovered and processed for assessment of β-cell mass or in vitro basal and glucose-stimulated insulin secretion. RESULTS HiGH mice showed elevated circulating insulin and normal glucose levels, while non-esterified FFA levels and triglycerides were reduced or normal, depending on diet and age. β-cell mass did not differ between HiGH and control mice, within diet. However, islets from HiGH mice contained and released more insulin under basal conditions, as compared to control islets, while the relative glucose-stimulated insulin release did not differ. CONCLUSIONS Taken together, these results suggest moderate elevations in circulating GH and IGF-I can directly increase basal insulin secretion without impacting β-cell mass, independent of changes in whole body insulin sensitivity and hyperlipidemia.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA; Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Neena Majumdar
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA; Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Naveen K Pokala
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA; Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manuel D Gahete
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA; Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14014, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, 14014, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14014, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA; Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Pedraza-Arévalo S, Córdoba-Chacón J, Pozo-Salas AI, L-López F, de Lecea L, Gahete MD, Castaño JP, Luque RM. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels. Endocrinology 2015; 156:1958-64. [PMID: 25830706 DOI: 10.1210/en.2015-1132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.
Collapse
Affiliation(s)
- S Pedraza-Arévalo
- Department of Cell Biology, Physiology, and Immunology (S.P.-A., J.C.-C., A.I.P.-S., F.L.L., M.D.G., J.P.C., R.M.L.), University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), E-14014 Córdoba, Spain; Section of Endocrinology, Diabetes, and Metabolism (J.C.-C.), Department of Medicine (J.C.-C.), University of Illinois at Chicago, Chicago, Illinois 60637; Department of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612; and Department of Psychiatry and Behavioral Sciences (L.d.L.), Stanford University, Stanford, California 94305
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lewitt MS, Dent MS, Hall K. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus. J Clin Med 2014; 3:1561-74. [PMID: 26237614 PMCID: PMC4470198 DOI: 10.3390/jcm3041561] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) system, acting in concert with other hormone axes, is important in normal metabolism. In obesity, the hyperinsulinaemia that accompanies peripheral insulin resistance leads to reduced growth hormone (GH) secretion, while total IGF-I levels are relatively unchanged due to increased hepatic GH sensitivity. IGF-binding protein (IGFBP)-1 levels are suppressed in relation to the increase in insulin levels in obesity and low levels predict the development of type 2 diabetes several years later. Visceral adiposity and hepatic steatosis, along with a chronic inflammation, contribute to the IGF system phenotype in individuals with metabolic syndrome and type 2 diabetes mellitus, including changes in the normal inverse relationship between IGFBP-1 and insulin, with IGFBP-1 concentrations that are inappropriately normal or elevated. The IGF system is implicated in the vascular and other complications of these disorders and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health Nursing & Midwifery, the University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mairi S Dent
- School of Health Nursing & Midwifery, the University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Kerstin Hall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE171 76, Sweden.
| |
Collapse
|
41
|
Clarke IJ. Interface between metabolic balance and reproduction in ruminants: focus on the hypothalamus and pituitary. Horm Behav 2014; 66:15-40. [PMID: 24568750 DOI: 10.1016/j.yhbeh.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/24/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The interface between metabolic regulators and the reproductive system is reviewed with special reference to the sheep. Even though sheep are ruminants with particular metabolic characteristics, there is a broad consensus across species in the way that the reproductive system is influenced by metabolic state. An update on the neuroendocrinology of reproduction indicates the need to account for the way that kisspeptin provides major drive to gonadotropin releasing hormone (GnRH) neurons and also mediates the feedback effects of gonadal steroids. The way that kisspeptin function is influenced by appetite regulating peptides (ARP) is considered. Another newly recognised factor is gonadotropin inhibitory hormone (GnIH), which has a dual function in that it suppresses reproductive function whilst also acting as an orexigen. Our understanding of the regulation of food intake and energy expenditure has expanded exponentially in the last 3 decades and historical perspective is provided. The function of the regulatory factors and the hypothalamic cellular systems involved is reviewed with special reference to the sheep. Less is known of these systems in the cow, especially the dairy cow, in which a major fertility issue has emerged in parallel with selection for increased milk production. Other endocrine systems--the hypothalamo-pituitary-adrenal axis, the growth hormone (GH) axis and the thyroid hormones--are influenced by metabolic state and are relevant to the interface between metabolic function and reproduction. Special consideration is given to issues such as season and lactation, where the relationship between metabolic hormones and reproductive function is altered.
Collapse
Affiliation(s)
- Iain J Clarke
- Monash University, Department of Physiology, Wellington Road, Clayton 3168, Australia.
| |
Collapse
|
42
|
Luque RM, Córdoba-Chacón J, Ibáñez-Costa A, Gesmundo I, Grande C, Gracia-Navarro F, Tena-Sempere M, Ghigo E, Gahete MD, Granata R, Kineman RD, Castaño JP. Obestatin plays an opposite role in the regulation of pituitary somatotrope and corticotrope function in female primates and male/female mice. Endocrinology 2014; 155:1407-17. [PMID: 24484169 PMCID: PMC3959609 DOI: 10.1210/en.2013-1728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obestatin is a 23-amino-acid amidated peptide that is encoded by the ghrelin gene. Previous studies have shown obestatin can modulate the hypothalamic neuronal circuitry that regulates pituitary function, perhaps by modulating the actions of ghrelin. However, the direct actions of obestatin on pituitary function remain controversial. Here, primary pituitary cell cultures from a nonhuman primate (baboon) and mice were used to test the effects of obestatin on pituitary hormone expression and secretion. In pituitary cultures from both species, obestatin had no effect on prolactin, LH, FSH, or TSH expression/release. Conversely, obestatin stimulated proopiomelanocortin expression and ACTH release and inhibited GH expression/release in vitro, actions that were also observed in vivo in mice treated with obestatin. In vitro, obestatin inhibited the stimulatory actions of ghrelin on GH but not ACTH release. The inhibitory effect of obestatin on somatotrope function was associated with an overall reduction in pituitary transcription factor-1 and GHRH receptor mRNA levels in vitro and in vivo as well as a reduction in hypothalamic GHRH and ghrelin expression in vivo. The stimulatory effect of obestatin on ACTH was associated with an increase in pituitary CRF receptors. Obestatin also reduced the expression of pituitary somatostatin receptors (sst1/sst2), which could serve to modify its impact on hormone secretion. The in vitro actions of obestatin on both GH and ACTH release required the adenylyl cyclase and MAPK routes. Taken together, our results provide evidence that obestatin can act directly at the pituitary to control somatotrope and corticotrope function, and these effects are conserved across species.
Collapse
Affiliation(s)
- Raúl M Luque
- Department of Cell Biology, Physiology, and Immunology (R.M.L., J.C.-C., A.I.-C., F.G.-N., M.T.-S., M.D.G., J.P.C.), University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, and Centros de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, E-14014 Córdoba, Spain; Department of Medicine (J.C.-C., R.D.K.), University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center (J.C.-C., R.D.K.), Research and Development Division, Chicago, Illinois 60612; and Department of Medical Sciences (I.G., C.G., E.G., R.G.), University of Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|