1
|
Siemers KM, Joss-Moore LA, Baack ML. Gestational Diabetes-like Fuels Impair Mitochondrial Function and Long-Chain Fatty Acid Uptake in Human Trophoblasts. Int J Mol Sci 2024; 25:11534. [PMID: 39519087 PMCID: PMC11546831 DOI: 10.3390/ijms252111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
In the parent, gestational diabetes mellitus (GDM) causes both hyperglycemia and hyperlipidemia. Despite excess lipid availability, infants exposed to GDM are at risk for essential long-chain polyunsaturated fatty acid (LCPUFA) deficiency. Isotope studies have confirmed less LCPUFA transfer from the parent to the fetus, but how diabetic fuels impact placental fatty acid (FA) uptake and lipid droplet partitioning is not well-understood. We evaluated the effects of high glucose conditions, high lipid conditions, and their combination on trophoblast growth, viability, mitochondrial bioenergetics, BODIPY-labeled fatty acid (FA) uptake, and lipid droplet dynamics. The addition of four carbons or one double bond to FA acyl chains dramatically affected the uptake in both BeWo and primary isolated cytotrophoblasts (CTBs). The uptake was further impacted by media exposure. The combination-exposed trophoblasts had more mitochondrial protein (p = 0.01), but impaired maximal and spare respiratory capacities (p < 0.001 and p < 0.0001), as well as lower viability (p = 0.004), due to apoptosis. The combination-exposed trophoblasts had unimpaired uptake of BODIPY C12 but had significantly less whole-cell and lipid droplet uptake of BODIPY C16, with an altered lipid droplet count, area, and subcellular localization, whereas these differences were not seen with individual high glucose or lipid exposure. These findings bring us closer to understanding how GDM perturbs active FA transport to increase the risk of adverse outcomes from placental and neonatal lipid accumulation alongside LCPUFA deficiency.
Collapse
Affiliation(s)
- Kyle M. Siemers
- Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA;
| | - Lisa A. Joss-Moore
- Department of Pediatrics, University of Utah, 295 Chipeta Way, 2N131, Salt Lake City, UT 84108, USA;
| | - Michelle L. Baack
- Department of Pediatrics, Division of Neonatology, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, USA
- Environmental Influences on Health and Disease Group, Sanford Research, 2301 E. 60th St., Sioux Falls, SD 57104, USA
| |
Collapse
|
2
|
Mazza E, Troiano E, Ferro Y, Lisso F, Tosi M, Turco E, Pujia R, Montalcini T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients 2024; 16:1629. [PMID: 38892561 PMCID: PMC11174431 DOI: 10.3390/nu16111629] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding the intricate relationship between nutrition, hormonal balance, and gender-specific factors is crucial for developing targeted interventions to mitigate obesity-related endocrine disruptions and improve metabolic health. This narrative review examines the impact of various dietary patterns on hormonal regulation in both men and women, focusing on their effects on hormonal balance and metabolic health in the context of obesity. Calorie restriction, the Western diet, high-fat diets, low-CHO diets, plant-based diets, and the Mediterranean diet are analyzed in relation to their influence on obesity-related endocrine disruptions and metabolic health. Future research directions include investigating the specific mechanisms underlying dietary influences on hormonal regulation, addressing the gender-specific metabolic differences and body fat distribution, and exploring the dietary needs of individuals undergoing gender transition. Personalized dietary interventions tailored to individual metabolic and hormonal profiles are essential for optimizing health outcomes across the gender spectrum. By integrating gender-specific considerations into dietary recommendations, healthcare professionals can better support individuals in achieving optimal metabolic health and hormonal balance.
Collapse
Affiliation(s)
- Elisa Mazza
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (E.M.); (T.M.)
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
| | - Ersilia Troiano
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- Social Educational Directorate of Rome III Montesacro Municipality, 00139 Rome, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy; (Y.F.); (R.P.)
| | - Fabrizia Lisso
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- “Sant’Anna” Hospital, San Fermo della Battaglia, 22042 Como, Italy
| | - Martina Tosi
- Technical Scientific Association of Food, Nutrition and Dietetics (ASAND), 95128 Catania, Italy; (E.T.); (F.L.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
| | - Ettore Turco
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Græcia, 88100 Catanzaro, Italy; (Y.F.); (R.P.)
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (E.M.); (T.M.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
4
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
5
|
Cloning and Molecular Characterization of HSL and Its Expression Pattern in HPG Axis and Testis during Different Stages in Bactrian Camel. Curr Issues Mol Biol 2022; 44:3779-3791. [PMID: 36005155 PMCID: PMC9406428 DOI: 10.3390/cimb44080259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelusdromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.
Collapse
|
6
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
7
|
Pieczyńska JM, Pruszyńska-Oszmałek E, Kołodziejski PA, Łukomska A, Bajerska J. The Role of a High-Fat, High-Fructose Diet on Letrozole-Induced Polycystic Ovarian Syndrome in Prepubertal Mice. Nutrients 2022; 14:2478. [PMID: 35745209 PMCID: PMC9229956 DOI: 10.3390/nu14122478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
This study aims to investigate the effects of a high-fat, high-fructose (HF/HFr) diet on metabolic/endocrine dysregulations associated with letrozole (LET)-induced Polycystic Ovarian Syndrome (PCOS) in prepubertal female mice. Thirty-two prepubertal C57BL/6 mice were randomly divided into four groups of eight and implanted with LET or a placebo, with simultaneous administration of an HF/HFr/standard diet for five weeks. After sacrifice, the liver and blood were collected for selected biochemical analyses. The ovaries were taken for histopathological examination. The LET+HF/HFr group gained significantly more weight than the LET-treated mice. Both the LET+HF/HFr and the placebo-treated mice on the HF/HFr diet developed polycystic ovaries. Moreover the LET+HF/HFr group had significantly elevated testosterone levels, worsened lipid profile and indices of insulin sensitivity. In turn, the HF/HFr diet alone led to similar changes in the LET-treated group, except for the indices of insulin sensitivity. Hepatic steatosis also occurred in both HF/HFr groups. The LET-treated group did not develop endocrine or metabolic abnormalities, but polycystic ovaries were seen. Since the HF/HFr diet can cause substantial metabolic and reproductive dysregulation in both LET-treated and placebo mice, food items rich in simple sugar-particularly fructose-and saturated fat, which have the potential to lead to PCOS progression, should be eliminated from the diet of young females.
Collapse
Affiliation(s)
- Joanna Maria Pieczyńska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (E.P.-O.); (P.A.K.)
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (E.P.-O.); (P.A.K.)
| | - Anna Łukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| |
Collapse
|
8
|
Guo LY, Guo QS, Shi HZ, Yang F, Miao YX. Cloning and expression analysis of the HSL gene in Whitmania pigra (Annelida: Hirudinea). INVERTEBR REPROD DEV 2022. [DOI: 10.1080/07924259.2022.2027289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Li-Yuan Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Qiao-Sheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Hong-Zhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xiu Miao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Urso CJ, Zhou H. Role of CD36 in Palmitic Acid Lipotoxicity in Neuro-2a Neuroblastoma Cells. Biomolecules 2021; 11:1567. [PMID: 34827565 PMCID: PMC8615720 DOI: 10.3390/biom11111567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Elevated level of palmitic acid (PA), a long-chain saturated fatty acid (SFA), is lipotoxic to many different types of cells including Neuro-2a (N2a) neuroblastoma cells. CD36 is a multifunctional membrane glycoprotein that acts as a fatty acid translocase (FAT) facilitating the transport of long-chain free fatty acids (FFAs) into cells, serves a fatty acid (FA) sensing function in areas including taste buds and the proximal gut, and acts as a scavenger receptor that binds to many ligands, including FAs, collagen, oxidized low-density lipoproteins, and anionic phospholipids. However, the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells remains unclear. In this study, we examined FA uptake in BSA- and PA-treated N2a cells and investigated the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells. Our data showed that PA treatment promoted FA uptake in N2a cells, and that treatment with sulfo-N-succinimidyl oleate (SSO), a CD36 inhibitor, significantly decreased FA uptake in BSA- and PA-treated N2a cells, and ameliorated PA-induced decrease of cell viability, decrease of diploid cells, and increase of tetraploid cells. We also found that CD36 knockdown significantly decreased FA uptake in both BSA- and PA-treated cells as compared to their corresponding wild-type controls, and dramatically attenuated PA-induced cell cycle defects in N2a cells. Our data suggest that CD36 may play a critical role in FA uptake and PA lipotoxicity in N2a cells. CD36 may therefore represent a regulatory target against pathologies caused by excess FAs.
Collapse
Affiliation(s)
| | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
10
|
Kothmann KH, Jacobsen V, Laffitte E, Bromfield C, Grizzaffi M, Jarboe M, Braundmeier-Fleming AG, Bahr JM, Nowak RA, Newell-Fugate AE. Virilizing doses of testosterone decrease circulating insulin levels and differentially regulate insulin signaling in liver and adipose tissue of females. Am J Physiol Endocrinol Metab 2021; 320:E1107-E1118. [PMID: 33900852 PMCID: PMC8285596 DOI: 10.1152/ajpendo.00281.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transgender men undergoing hormone therapy are at risk for insulin resistance. However, how virilizing testosterone therapy affects serum insulin and peripheral insulin sensitivity in transgender men is unknown. This study assessed the effect of acute, virilizing testosterone on serum insulin concentrations and insulin signaling in liver, skeletal muscle, and white adipose tissue (WAT) of female pigs as a translational model for transgender men. Females received three doses of intramuscular testosterone cypionate (TEST females; 50 mg/day/pig) or corn oil (control) spaced 6 days apart starting on the day of estrus (D0). Fasting blood was collected on D0, D3, D5, D11, and D13, and females were euthanized on D13. On D13, TEST females had virilizing concentrations of serum testosterone with normal concentrations of serum estradiol. Virilizing serum testosterone concentrations (D13) were associated with decreased serum insulin and C-peptide concentrations. Blood glucose and serum glycerol concentrations were not altered by testosterone. Virilizing concentrations of testosterone downregulated AR and ESR1 in subcutaneous (sc) WAT and upregulated transcript levels of insulin-signaling pathway components in WAT and liver. At the protein level, virilizing testosterone concentrations were associated with increased PI3K 110α in liver and increased insulin receptor (INSR) and phospho(Ser256)-FOXO1 in visceral (v) WAT but decreased phospho(Ser473)-AKT in vWAT and scWAT. These results suggest that acute exposure to virilizing concentrations of testosterone suppresses circulating insulin levels and results in increased abundance of proteins in the insulin-signaling pathway in liver and altered phosphorylation of key proteins in control of insulin sensitivity in WAT.NEW & NOTEWORTHY Acute virilizing doses of testosterone administered to females suppress circulating insulin levels, upregulate components of the insulin-signaling pathway in liver, and suppress insulin signaling in white adipose tissue. These results suggest that insulin resistance in transgender men may be due to suppression of the insulin-signaling pathway and decreased insulin sensitivity in white adipose tissue.
Collapse
Affiliation(s)
- Kadden H Kothmann
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Victoria Jacobsen
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Emily Laffitte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Corinne Bromfield
- Agricultural Animal Care and Use Program, Office of the Vice Chancellor for Research, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Matthew Grizzaffi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Monica Jarboe
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Andrea G Braundmeier-Fleming
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Janice M Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie E Newell-Fugate
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Yin L, Luo M, Wang R, Ye J, Wang X. Mitochondria in Sex Hormone-Induced Disorder of Energy Metabolism in Males and Females. Front Endocrinol (Lausanne) 2021; 12:749451. [PMID: 34987473 PMCID: PMC8721233 DOI: 10.3389/fendo.2021.749451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Androgens have a complex role in the regulation of insulin sensitivity in the pathogenesis of type 2 diabetes. In male subjects, a reduction in androgens increases the risk for insulin resistance, which is improved by androgen injections. However, in female subjects with polycystic ovary syndrome (PCOS), androgen excess becomes a risk factor for insulin resistance. The exact mechanism underlying the complex activities of androgens remains unknown. In this review, a hormone synergy-based view is proposed for understanding this complexity. Mitochondrial overactivation by substrate influx is a mechanism of insulin resistance in obesity. This concept may apply to the androgen-induced insulin resistance in PCOS. Androgens and estrogens both exhibit activities in the induction of mitochondrial oxidative phosphorylation. The two hormones may synergize in mitochondria to induce overproduction of ATP. ATP surplus in the pancreatic β-cells and α-cells causes excess secretion of insulin and glucagon, respectively, leading to peripheral insulin resistance in the early phase of type 2 diabetes. In the skeletal muscle and liver, the ATP surplus contributes to insulin resistance through suppression of AMPK and activation of mTOR. Consistent ATP surplus leads to mitochondrial dysfunction as a consequence of mitophagy inhibition, which provides a potential mechanism for mitochondrial dysfunction in β-cells and brown adipocytes in PCOS. The hormone synergy-based view provides a basis for the overactivation and dysfunction of mitochondria in PCOS-associated type 2 diabetes. The molecular mechanism for the synergy is discussed in this review with a focus on transcriptional regulation. This view suggests a unifying mechanism for the distinct metabolic roles of androgens in the control of insulin action in men with hypogonadism and women with PCOS.
Collapse
Affiliation(s)
- Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Man Luo
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianping Ye
- Metabolism Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jianping Ye, ; Xiaohui Wang,
| |
Collapse
|
12
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Short-Term Caloric Restriction Attenuates Obesity-Induced Pro-Inflammatory Response in Male Rhesus Macaques. Nutrients 2020; 12:nu12020511. [PMID: 32085416 PMCID: PMC7071433 DOI: 10.3390/nu12020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (WAT) hypertrophy is an essential hallmark of obesity and is associated with the activation of resident immune cells. While the benefits of caloric restriction (CR) on health span are generally accepted, its effects on WAT physiology are not well understood. We previously demonstrated that short-term CR reverses obesity in male rhesus macaques exposed to a high-fat Western-style diet (WSD). Here, we analyzed subcutaneous WAT biopsies collected from this cohort of animals before and after WSD and following CR. This analysis showed that WSD induced adipocyte hypertrophy and inhibited β-adrenergic-simulated lipolysis. CR reversed adipocyte hypertrophy, but WAT remained insensitive to β-adrenergic agonist stimulation. Whole-genome transcriptional analysis revealed that β3-adrenergic receptor and de novo lipogenesis genes were downregulated by WSD and remained downregulated after CR. In contrast, WSD-induced pro-inflammatory gene expression was effectively reversed by CR. Furthermore, peripheral blood monocytes isolated during the CR period exhibited a significant reduction in the production of pro-inflammatory cytokines compared to those obtained after WSD. Collectively, this study demonstrates that short-term CR eliminates an obesity-induced pro-inflammatory response in WAT and peripheral monocytes.
Collapse
|
14
|
Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 2020; 35:100937. [PMID: 32244180 PMCID: PMC7115104 DOI: 10.1016/j.molmet.2020.01.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women. Although its cardinal manifestations include hyperandrogenism, oligo/anovulation, and/or polycystic ovarian morphology, PCOS women often display also notable metabolic comorbidities. An array of pathogenic mechanisms have been implicated in the etiology of this heterogeneous endocrine disorder; hyperandrogenism at various developmental periods is proposed as a major driver of the metabolic and reproductive perturbations associated with PCOS. However, the current understanding of the pathophysiology of PCOS-associated metabolic disease is incomplete, and therapeutic strategies used to manage this syndrome's metabolic complications remain limited. Scope of review This study is a systematic review of the potential etiopathogenic mechanisms of metabolic dysfunction frequently associated with PCOS, with special emphasis on the metabolic impact of androgen excess on different metabolic tissues and the brain. We also briefly summarize the therapeutic approaches currently available to manage metabolic perturbations linked to PCOS, highlighting current weaknesses and future directions. Major conclusions Androgen excess plays a prominent role in the development of metabolic disturbances associated with PCOS, with a discernible impact on key peripheral metabolic tissues, including the adipose, liver, pancreas, and muscle, and very prominently the brain, contributing to the constellation of metabolic complications of PCOS, from obesity to insulin resistance. However, the current understanding of the pathogenic roles of hyperandrogenism in metabolic dysfunction of PCOS and the underlying mechanisms remain largely incomplete. In addition, the development of more efficient, even personalized therapeutic strategies for the metabolic management of PCOS patients persists as an unmet need that will certainly benefit from a better comprehension of the molecular basis of this heterogeneous syndrome.
Collapse
|
15
|
Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep 2019; 9:19232. [PMID: 31848372 PMCID: PMC6917716 DOI: 10.1038/s41598-019-55291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major reproductive disorder that is responsible for 80% of anovulatory infertility and that is associated with hyperandrogenemia, increased risk of obesity, and white adipose tissue (WAT) dysfunction. We have previously demonstrated that the combination of chronic testosterone (T) treatment and an obesogenic Western-style diet (WSD) exerts synergistic functional effects on WAT, leading to increased lipid accumulation in visceral adipocytes by an unknown mechanism. In this study, we examined the whole-genome transcriptional response in visceral WAT to T and WSD, alone and in combination. We observed a synergistic effect of T and WSD on gene expression, resulting in upregulation of lipid storage genes concomitant with adipocyte hypertrophy. Because DNA methylation is known to be associated with body fat distribution and the etiology of PCOS, we conducted whole-genome DNA methylation analysis of visceral WAT. While only a fraction of differentially expressed genes also exhibited differential DNA methylation, in silico analysis showed that differentially methylated regions were enriched in transcription factor binding motifs, suggesting a potential gene regulatory role for these regions. In summary, this study demonstrates that hyperandrogenemia alone does not induce global transcriptional and epigenetic response in young female macaques unless combined with an obesogenic diet.
Collapse
|
16
|
Fisch SC, Nikou AF, Wright EA, Phan JD, Leung KL, Grogan TR, Abbott DH, Chazenbalk GD, Dumesic DA. Precocious subcutaneous abdominal stem cell development to adipocytes in normal-weight women with polycystic ovary syndrome. Fertil Steril 2019; 110:1367-1376. [PMID: 30503136 DOI: 10.1016/j.fertnstert.2018.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine whether abnormal subcutaneous (SC) abdominal adipose stem cell (ASC) development to adipocytes in polycystic ovary syndrome (PCOS) correlates with hyperandrogenism. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Eight normal-weight women with PCOS and eight normoandrogenic ovulatory (control) women matched for age and body mass index. INTERVENTION(S) Circulating hormone and metabolic measurements, intravenous glucose tolerance testing, total body dual-energy X-ray absorptiometry, and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) In vitro ASC commitment to preadipocytes (ZFP423 protein expression, day 0.5), preadipocyte differentiation to adipocytes (PPARγ gene expression, day 3) and adipocyte lipid content (Oil-Red-O fluorescence, day 12) comparisons correlated with clinical outcomes. RESULT(S) In women with PCOS, SC abdominal ASCs compared with those of control women showed exaggerated commitment to preadipocytes and had greater lipid content in newly formed adipocytes after in vitro maturation. In all women combined, ZFP423 protein expression negatively correlated with fasting plasma glucose levels whereas the lipid content of newly formed adipocytes positively correlated with both PPARγ gene expression and serum free testosterone levels. CONCLUSION(S) In normal-weight women with PCOS compared with the control group, exaggerated SC abdominal ASC commitment to preadipocytes and enhanced adipocyte lipid content during maturation in vitro negatively and positively correlate with circulating fasting glucose and androgen levels, respectively, as a possible mechanism to maintain glucose-insulin homeostasis when fat accretion is accelerated.
Collapse
Affiliation(s)
- Samantha C Fisch
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Ariella Farzan Nikou
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Elizabeth A Wright
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Julia D Phan
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Karen L Leung
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California-Los Angeles, Los Angeles, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
17
|
Wang F, Ren X, Chen Z, Li X, Zhu H, Li S, Ou X, Zhang C, Zhang F, Zhu B. The N‐terminal His‐tag affects the triglyceride lipase activity of hormone‐sensitive lipase in testis. J Cell Biochem 2019; 120:13706-13716. [PMID: 30937958 DOI: 10.1002/jcb.28643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Feng Wang
- College of Life Sciences Capital Normal University Beijing China
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiao‐Fang Ren
- College of Life Sciences Capital Normal University Beijing China
| | - Zheng Chen
- College of Life Sciences Capital Normal University Beijing China
| | - Xiao‐Long Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Hai‐Jing Zhu
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiang‐Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Cheng Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Fei‐Xiong Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Bao‐Chang Zhu
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
18
|
Lan YL, Lou JC, Lyu W, Zhang B. Update on the synergistic effect of HSL and insulin in the treatment of metabolic disorders. Ther Adv Endocrinol Metab 2019; 10:2042018819877300. [PMID: 31565213 PMCID: PMC6755629 DOI: 10.1177/2042018819877300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is one of the three lipases in adipose tissue present during periods of energy demand. HSL is tightly controlled by insulin regulation via the central and peripheral systems. The suppressive effects of insulin on HSL are also associated with complex crosstalk with other pathways in the metabolic network. Because impaired insulin action is the driving force behind the pathogenesis of diabetes and other metabolic complications, elucidation of the intricate relationships between HSL and insulin may provide an in-depth understanding of these pandemic diseases and potentially identify strategies to inhibit disease development. Insulin not only differentially regulates HSL isoform transcription but also post-transcriptionally affects HSL phosphorylation by stimulating PKA and endothelin (ET-1), and controls its expression indirectly via regulating the activity of growth hormone (GH). In addition, a rapid elevation of HSL levels was detected after insulin injection in patients, which suggests that the inhibitory effects of insulin on HSL can be overridden by insulin-induced hypoglycemia. Conversely, individuals with hereditary HSL deficiency, and animals with experimental HSL deletion, showed major disruptions in mRNA/protein expression in insulin signaling pathways, ultimately leading to insulin resistance, diabetes, and fatty liver. Notably, HSL inactivation could cause insulin-independent fatty liver, while insulin resistance induced by HSL deficiency may further aggravate disease progression. The common beliefs that HSL is the overall rate-limiting enzyme in lipolysis and that insulin is an inhibitor of HSL have been challenged by recent discoveries; therefore, a renewed examination of their relationships is required. In this review, by analyzing current data related to the role of, and mutual regulation between, HSL and insulin and discussing unanswered questions and disparities in different lines of studies, the authors intend to shed light on our understanding of lipid metabolism and provide a rational basis for future research in drug development.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
- Department of Pharmacy, Dalian Medical
University, Dalian, China
- Department of Physiology, Dalian Medical
University, Dalian, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second
Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
| | - Wen Lyu
- Department of Neurosurgery, Shenzhen People’s
Hospital, Shenzhen, China
| | | |
Collapse
|
19
|
Tchernof A, Brochu D, Maltais‐Payette I, Mansour MF, Marchand GB, Carreau A, Kapeluto J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr Physiol 2018; 8:1253-1290. [DOI: 10.1002/cphy.c170009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Varlamov O, Bishop CV, Handu M, Takahashi D, Srinivasan S, White A, Roberts CT. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Hum Reprod 2018; 32:1892-1902. [PMID: 28854720 DOI: 10.1093/humrep/dex244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the separate and combined effects of mild hyperandrogenemia and consumption of a high-fat Western-style diet (WSD) on white adipose tissue (WAT) morphology and function in young adult female nonhuman primates? SUMMARY ANSWER Combined exposure to mild hyperandrogenemia and WSD induces visceral omental (OM-WAT) but not subcutaneous (SC-WAT) adipocyte hypertrophy that is associated with increased uptake and reduced mobilization of free fatty acids. WHAT IS KNOWN ALREADY Mild hyperandrogenemia in females, principally in the context of polycystic ovary syndrome, is often associated with adipocyte hypertrophy, but the mechanisms of associated WAT dysfunction and depot specificity remain poorly understood. STUDY DESIGN, SIZE AND DURATION Female rhesus macaques were randomly assigned at 2.5 years of age (near menarche) to receive either cholesterol (C; n = 20) or testosterone (T; n = 20)-containing silastic implants to elevate T levels 5-fold above baseline. Half of each of these groups was then fed either a low-fat monkey chow diet or WSD, resulting in four treatment groups (C, control diet; T alone; WSD alone; T + WSD; n = 10/group) that were maintained until the current analyses were performed at 5.5 years of age (3 years of treatment, young adults). PARTICIPANTS/MATERIALS, SETTING AND METHODS OM and SC-WAT biopsies were collected and analyzed longitudinally for in vivo changes in adipocyte area and blood vessel density, and ex vivo basal and insulin-stimulated fatty acid uptake and basal and isoproterenol-stimulated lipolysis. MAIN RESULTS AND THE ROLE OF CHANCE In years 2 and 3 of treatment, the T + WSD group exhibited a significantly greater increase in OM adipocyte size compared to all other groups (P < 0.05), while the size of SC adipocytes measured at the end of the study was not significantly different between groups. In year 3, both WAT depots from the WSD and T + WSD groups displayed a significant reduction in local capillary length and vessel junction density (P < 0.05). In year 3, insulin-stimulated fatty acid uptake in OM-WAT was increased in the T + WSD group compared to year 2 (P < 0.05). In year 3, basal lipolysis was blunted in the T and T + WSD groups in both WAT depots (P < 0.01), while isoproterenol-stimulated lipolysis was significantly blunted in the T and T + WSD groups only in SC-WAT (P < 0.01). LIMITATIONS, REASONS FOR CAUTION At this stage of the study, subjects were still relatively young adults, so that the effects of mild hyperandrogenemia and WSD may become more apparent with increasing age. WIDER IMPLICATIONS OF THE FINDINGS The combination of mild hyperandrogenemia and WSD accelerates the development of WAT dysfunction through T-specific (suppression of lipolytic response by T), WSD-dependent (reduced capillary density) and combined T + WSD (increased fatty acid uptake) mechanisms. These data support the idea that combined hyperandrogenemia and WSD increases the risk of developing obesity in females. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number P50 HD071836 to C.T.R. and award number OD 011092 from the Office of the Director, National Institutes of Health, for operation of the Oregon National Primate Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mithila Handu
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Sathya Srinivasan
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Ashley White
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Department of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
21
|
Messaoudi I, Handu M, Rais M, Sureshchandra S, Park BS, Fei SS, Wright H, White AE, Jain R, Cameron JL, Winters-Stone KM, Varlamov O. Long-lasting effect of obesity on skeletal muscle transcriptome. BMC Genomics 2017; 18:411. [PMID: 28545403 PMCID: PMC5445270 DOI: 10.1186/s12864-017-3799-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reduced physical activity and increased intake of calorically-dense diets are the main risk factors for obesity, glucose intolerance, and type 2 diabetes. Chronic overnutrition and hyperglycemia can alter gene expression, contributing to long-term obesity complications. While caloric restriction can reduce obesity and glucose intolerance, it is currently unknown whether it can effectively reprogram transcriptome to a pre-obesity level. The present study addressed this question by the preliminary examination of the transcriptional dynamics in skeletal muscle after exposure to overnutrition and following caloric restriction. RESULTS Six male rhesus macaques of 12-13 years of age consumed a high-fat western-style diet for 6 months and then were calorically restricted for 4 months without exercise. Skeletal muscle biopsies were subjected to longitudinal gene expression analysis using next-generation whole-genome RNA sequencing. In spite of significant weight loss and normalized insulin sensitivity, the majority of WSD-induced (n = 457) and WSD-suppressed (n = 47) genes remained significantly dysregulated after caloric restriction (FDR ≤0.05). The MetacoreTM pathway analysis reveals that western-style diet induced the sustained activation of the transforming growth factor-β gene network, associated with extracellular matrix remodeling, and the downregulation of genes involved in muscle structure development and nutritional processes. CONCLUSIONS Western-style diet, in the absence of exercise, induced skeletal muscle transcriptional programing, which persisted even after insulin resistance and glucose intolerance were completely reversed with caloric restriction.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mithila Handu
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Suhas Sureshchandra
- School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Byung S Park
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Suzanne S Fei
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Hollis Wright
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Ashley E White
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Ruhee Jain
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Judy L Cameron
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kerri M Winters-Stone
- Department of School of Nursing, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, L584 505 NW 185th Ave., Beaverton, OR, 97006, USA.
| |
Collapse
|
22
|
Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017; 153:R133-R149. [PMID: 28115579 DOI: 10.1530/rep-16-0417] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
With the increasing knowledge that gender influences normal physiology, much biomedical research has begun to focus on the differential effects of sex on tissue function. Sexual dimorphism in mammals is due to the combined effects of both genetic and hormonal factors. Hormonal factors are mutable particularly in females in whom the estrous cycle dominates the hormonal milieu. Given the severity of the obesity epidemic and the fact that there are differences in the obesity rates in men and women, the role of sex in white adipose tissue function is being recognized as increasingly important. Although sex differences in white adipose tissue distribution are well established, the mechanisms affecting differential function of adipocytes within white adipose tissue in males and females remain largely understudied and poorly understood. One of the largest differences in the endocrine environment in males and females is the concentration of circulating androgens and estrogens. This review examines the effects of androgens and estrogens on lipolysis/lipogenesis, adipocyte differentiation, insulin sensitivity and adipokine production in adipocytes from white adipose tissue with a specific emphasis on the sexual dimorphism of adipocyte function in white adipose tissue during both health and disease.
Collapse
Affiliation(s)
- A E Newell-Fugate
- Department of Veterinary Physiology and PharmacologyTexas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
True C, Abbott DH, Roberts CT, Varlamov O. Sex Differences in Androgen Regulation of Metabolism in Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:559-574. [PMID: 29224110 DOI: 10.1007/978-3-319-70178-3_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The in-depth characterization of sex differences relevant to human physiology requires the judicious use of a variety of animal models and human clinical data. Nonhuman primates (NHPs) represent an important experimental system that bridges rodent studies and clinical investigations. NHP studies have been especially useful in understanding the role of sex hormones in development and metabolism and also allow the elucidation of the effects of pertinent dietary influences on physiology pertinent to disease states such as obesity and diabetes. This chapter summarizes the current state of our understanding of androgen effects on male and female NHP metabolism relevant to hypogonadism in human males and polycystic ovary syndrome in human females. This review will also focus on the interaction between altered androgen levels and dietary restriction and excess, in particular the Western-style diet that underlies significant human pathophysiology.
Collapse
Affiliation(s)
- Cadence True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
24
|
Wang F, Chen Z, Ren X, Tian Y, Wang F, Liu C, Jin P, Li Z, Zhang F, Zhu B. Hormone-sensitive lipase deficiency alters gene expression and cholesterol content of mouse testis. Reproduction 2016; 153:175-185. [PMID: 27920259 PMCID: PMC5148802 DOI: 10.1530/rep-16-0484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022]
Abstract
Hormone-sensitive lipase-knockout (HSL−/−) mice exhibit azoospermia for unclear reasons. To explore the basis of sterility, we performed the following three experiments. First, HSL protein distribution in the testis was determined. Next, transcriptome analyses were performed on the testes of three experimental groups. Finally, the fatty acid and cholesterol levels in the testes with three different genotypes studied were determined. We found that the HSL protein was present from spermatocyte cells to mature sperm acrosomes in wild-type (HSL+/+) testes. Spermiogenesis ceased at the elongation phase of HSL−/− testes. Transcriptome analysis indicated that genes involved in lipid metabolism, cell membrane, reproduction and inflammation-related processes were disordered in HSL−/− testes. The cholesterol content was significantly higher in HSL−/− than that in HSL+/+ testis. Therefore, gene expression and cholesterol ester content differed in HSL−/− testes compared to other testes, which may explain the sterility of male HSL−/− mice.
Collapse
Affiliation(s)
- Feng Wang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Zheng Chen
- College of Life SciencesCapital Normal University, Beijing, China
| | - Xiaofang Ren
- College of Life SciencesCapital Normal University, Beijing, China
| | - Ye Tian
- College of Life SciencesCapital Normal University, Beijing, China
| | - Fucheng Wang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Chao Liu
- College of Life SciencesCapital Normal University, Beijing, China
| | - Pengcheng Jin
- College of Life SciencesCapital Normal University, Beijing, China
| | - Zongyue Li
- College of Life SciencesCapital Normal University, Beijing, China
| | - Feixiong Zhang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Baochang Zhu
- College of Life SciencesCapital Normal University, Beijing, China
| |
Collapse
|
25
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 830] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
26
|
Cameron JL, Jain R, Rais M, White AE, Beer TM, Kievit P, Winters-Stone K, Messaoudi I, Varlamov O. Perpetuating effects of androgen deficiency on insulin resistance. Int J Obes (Lond) 2016; 40:1856-1863. [PMID: 27534842 PMCID: PMC5140744 DOI: 10.1038/ijo.2016.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 12/22/2022]
Abstract
Background/Objectives Androgen deprivation therapy (ADT) is commonly used for treatment of
prostate cancer, but is associated with side effects such as sarcopenia and
insulin resistance. The role of lifestyle factors such as diet and exercise
on insulin sensitivity and body composition in testosterone-deficient males
is poorly understood. The aim of the present study was to examine the
relationships between androgen status, diet, and insulin sensitivity. Subjects/Methods Middle-aged (11–12-yo) intact and orchidectomized male rhesus
macaques were maintained for two months on a standard chow diet, and then
exposed for six months to a Western-style, high-fat/calorie-dense diet (WSD)
followed by four months of caloric restriction (CR). Body composition,
insulin sensitivity, physical activity, serum cytokine levels, and adipose
biopsies were evaluated before and after each dietary intervention. Results Both intact and orchidectomized animals gained similar proportions of
body fat, developed visceral and subcutaneous adipocyte hypertrophy, and
became insulin resistant in response to the WSD. CR reduced body fat in both
groups, but reversed insulin resistance only in intact animals.
Orchidectomized animals displayed progressive sarcopenia, which persisted
after the switch to CR. Androgen deficiency was associated with increased
levels of interleukin-6 and macrophage-derived chemokine (CCL22), both of
which were elevated during CR. Physical activity levels showed a negative
correlation with body fat and insulin sensitivity. Conclusion Androgen deficiency exacerbated the negative metabolic side effects
of the WSD, such that CR alone was not sufficient to improve altered insulin
sensitivity, suggesting that ADT patients will require additional
interventions to reverse insulin resistance and sarcopenia.
Collapse
|
27
|
Hu X, Ma X, Pan X, Luo Y, Xu Y, Xiong Q, Bao Y, Jia W. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels. Sci Rep 2016; 6:27762. [PMID: 27270834 PMCID: PMC4897720 DOI: 10.1038/srep27762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m(2); all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Xiaoping Pan
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Yuqi Luo
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Yiting Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Qin Xiong
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, 200233, China
| |
Collapse
|
28
|
Varlamov O. Western-style diet, sex steroids and metabolism. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1147-1155. [PMID: 27264336 DOI: 10.1016/j.bbadis.2016.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/14/2022]
Abstract
The evolutionary transition from hunting to farming was associated with introduction of carbohydrate-rich diets. Today, the increased consumption of simple sugars and high-fat food brought about by Western-style diet and physical inactivity are leading causes of the growing obesity epidemic in the Western society. The extension of human lifespan far beyond reproductive age increased the burden of metabolic disorders associated with overnutrition and age-related hypogonadism. Sex steroids are essential regulators of both reproductive function and energy metabolism, whereas their imbalance causes infertility, obesity, glucose intolerance, dyslipidemia, and increased appetite. Clinical and translational studies suggest that dietary restriction and weight control can improve metabolic and reproductive outcomes of sex hormone-related pathologies, including testosterone deficiency in men and natural menopause and hyperandrogenemia in women. Minimizing metabolic and reproductive decline through rationally designed diet and exercise can help extend human reproductive age and promote healthy aging. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| |
Collapse
|
29
|
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS One 2016; 11:e0153522. [PMID: 27124483 PMCID: PMC4849650 DOI: 10.1371/journal.pone.0153522] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5) and lipid metabolism (GPAT3, LPCAT3). We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.
Collapse
Affiliation(s)
- Kevin Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Samantha Louey
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kent Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, Madrigal V, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology 2016; 157:522-35. [PMID: 26650569 PMCID: PMC4733129 DOI: 10.1210/en.2015-1565] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Almudena Veiga-Lopez
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Jacob Moeller
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Evan Beckett
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Anthony Pease
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Erica Keller
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Vanessa Madrigal
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Gregorio Chazenbalk
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Daniel Dumesic
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Vasantha Padmanabhan
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
31
|
Bishop CV, Xu F, Xu J, Ting AY, Galbreath E, McGee WK, Zelinski MB, Hennebold JD, Cameron JL, Stouffer RL. Western-style diet, with and without chronic androgen treatment, alters the number, structure, and function of small antral follicles in ovaries of young adult monkeys. Fertil Steril 2015; 105:1023-34. [PMID: 26718060 DOI: 10.1016/j.fertnstert.2015.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the small antral follicle (SAF) cohort in ovaries of adult rhesus monkeys after consumption of a Western-style diet (WSD), with or without chronically elevated androgen levels since before puberty. DESIGN Cholesterol or T (n = 6 per group) implants were placed SC in female rhesus macaques beginning at 1 year of age (prepubertal), with addition of a WSD (high fat/fructose) at 5.5 years (menarche approximately 2.6 years). Ovaries were collected at 7 years of age. One ovary per female was embedded in paraffin for morphologic and immunohistochemical analyses. The SAFs (<2.5 mm) were dissected from the other ovary obtained at or near menses in a subgroup of females (n = 3 per group) and processed for microarray analyses of the SAF transcriptome. Ovaries of adult monkeys consuming a standard macaque diet (low in fats and sugars) were obtained at similar stages of the menstrual cycle and used as controls for all analyses. SETTING Primate research center. ANIMAL(S) Adult, female rhesus monkeys (Macaca mulatta). INTERVENTION(S) None. MAIN OUTCOME MEASURES Histologic analyses, SAF counts and morphology, protein localization and abundance in SAFs, transcriptome in SAFs (messenger RNAs [mRNAs]). RESULT(S) Compared with controls, consumption of a WSD, with and without T treatment, increased the numbers of SAFs per ovary, owing to the presence of more atretic follicles. Numbers of granulosa cells expressing cellular proliferation markers (pRb and pH3) was greater in healthy SAFs, whereas numbers of cells expressing the cell cycle inhibitor (p21) was higher in atretic SAFs. Intense CYP17A1 staining was observed in the theca cells of SAFs from WSD with or without T groups, compared with controls. Microarray analyses of the transcriptome in SAFs isolated from WSD and WSD plus T-treated females and controls consuming a standard diet identified 1,944 genes whose mRNA levels changed twofold or more among the three groups. Further analyses identified several gene pathways altered by WSD and/or WSD plus T associated with steroid, carbohydrate, and lipid metabolism, plus ovarian processes. Alterations in levels of several SAF mRNAs are similar to those observed in follicular cells from women with polycystic ovary syndrome. CONCLUSION(S) These data indicate that consumption of a WSD high in fats and sugars in the presence and absence of chronically elevated T alters the structure and function of SAFs within primate ovaries.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jing Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Alison Y Ting
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Etienne Galbreath
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Whitney K McGee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Mary B Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Judy L Cameron
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
32
|
Xu J, McGee WK, Bishop CV, Park BS, Cameron JL, Zelinski MB, Stouffer RL. Exposure of female macaques to Western-style diet with or without chronic T in vivo alters secondary follicle function during encapsulated 3-dimensional culture. Endocrinology 2015; 156:1133-42. [PMID: 25545382 PMCID: PMC4330314 DOI: 10.1210/en.2014-1711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased adiposity and hyperandrogenemia alter reproductive parameters in both animal models and women, but their effects on preantral follicles in the ovary remain unknown. We recently reported that Western-style diet (WSD) consumption over 1 year, with or without chronic exposure to elevated circulating T, increased the body fat percentage, elicited insulin resistance, suppressed estradiol and progesterone production, as well as altered the numbers, size, and dynamics of antral follicles in the ovary during the menstrual cycle in female macaques. Therefore, experiments were designed to compare the WSD and WSD+T effects to age-matched controls on the survival, growth, and function of isolated secondary follicles during 5 weeks of encapsulated 3-dimensional culture. Follicle survival significantly declined in the WSD and WSD+T groups compared with the control (CTRL) group. Although media progesterone levels were comparable among groups, androstenedione and estradiol levels were markedly reduced in the WSD and WSD+T groups compared with the CTRL group at week 5. Anti-Müllerian hormone levels peaked at week 3 and were lower in the WSD+T group compared with the WSD or CTRL group. Vascular endothelial growth factor levels also decreased at week 5 in the WSD+T group compared with the WSD or CTRL group. After human chorionic gonadotropin exposure, only antral follicles developed from the CTRL group yielded metaphase II oocytes. Thus, WSD with or without T exposure affects the cohort of secondary follicles in vivo, suppressing their subsequent survival, production of steroid hormones and local factors, as well as oocyte maturation in vitro.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive & Developmental Sciences (J.X., W.K.M., C.V.B., M.B.Z., R.L.S.), Oregon National Primate Research Center, Beaverton, Oregon 97006; Department of Behavioral Neuroscience (W.K.M.), Department of Public Health and Preventive Medicine (B.S.P.), Oregon Health & Science University, Portland, Oregon 97239; Department of Psychiatry (J.L.C.), University of Pittsburgh, Pittsburgh, Pennsylvania 15260; and Department of Obstetrics & Gynecology (M.B.Z., R.L.S.), Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | | | | | | | |
Collapse
|
33
|
Varlamov O, Kievit P, Phu K, Reddy AP, Roberts CT, Bethea CL. Preliminary Examination of Olanzapine and Diet Interactions On Metabolism in a Female Macaque. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2015; 1. [PMID: 25621305 DOI: 10.15226/2374-6890/1/2/00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical data suggest that atypical antipsychotics such as olanzapine (OLZ) induce significant metabolic changes that are serious side effects of their primary use. Since controlled human studies are problematic and rodent data may be poorly translatable, we have initiated development of a macaque model of OLZ-induced metabolic disease. In this preliminary feasibility study, we examined some metabolic effects of OLZ in a female macaque in the context of a standard low-calorie/fat monkey chow diet followed by a high-fat/sugar Western-style diet (WSD). A female Japanese macaque was administered OLZ (1.25 mg/day) for 6 months, with dietary changes at 2-month intervals as follows: OLZ+Restricted chow, OLZ+Unrestricted chow, OLZ+WSD, and placebo+WSD. Weight was assessed weekly. Glucose tolerance tests (GTT) and Dexascans were performed at baseline and every 2 months. Omental (OM) and subcutaneous (SQ) adipose tissue biopsies were obtained at baseline, after OLZ+Unrestricted chow and after OLZ+WSD to evaluate adipocyte size, lipolysis and insulin-stimulated free fatty acid uptake (FFA). A separate trial was conducted on 2 monkeys with 5 days of OLZ- or no-treatment followed by RT-PCR on rostral and medial basal hypothalamus. Weight increased on OLZ+Restricted chow and stabilized on OLZ+Unrestricted chow. OLZ+WSD did not significantly change the weight plateau. Weight declined upon withdrawal of OLZ with continued WSD. Body fat increased from 14% at baseline to 22%, 30%, 28% and 19% at 2, 4, 6 and 8 mo, respectively, indicating that body fat was elevated on OLZ regardless of diet and declined upon OLZ removal. Glucose tolerance and the insulin response during GTT were normal with OLZ+Restricted chow or OLZ+Unrestricted chow. Addition of WSD with OLZ impaired glucose clearance during GTT. Insulin remained in the normal range, but first phase insulin secretion was reduced. After removal of OLZ, but continued WSD, glucose clearance returned to normal, but this was associated with hyperinsulinemia. Adipocyte diameter was increased in OM and SQ fat by OLZ+chow and OLZ+WSD to a similar extent. (p<0.01, 2-way ANOVA). In OM, isoproterenol-stimulated lipolysis occurred at baseline. In both depots, isoproterenol-stimulated lipolysis occurred with OLZ+chow, but it was significantly blunted by addition of WSD (ANOVA p<0.0001; posthoc p<0.05). Insulin increased FFA uptake at baseline. OLZ +chow or OLZ+WSD increased basal FFA uptake and insulin-induced FFA uptake was blunted in both depots (posthoc p<0.05). There was a marked decrease in POMC gene expression, and increased AgRP and NPY expression in the hypothalamus. There was also a clear increase in serotonin (5HT) 2C, melanocortin (MCR4), and Leptin (LepR) receptor gene expression. These data support the hypotheses that OLZ acts on peripheral tissues as well as in the CNS; that changes in hypothalamic gene expression occur very rapidly and precede increased fat accumulation; that adipose tissue exhibits insulin resistance prior to alterations in GTT; that addition of WSD to OLZ precipitates hyperglycemia without an obvious insulin response; and that removal of OLZ and continued WSD resulted in normalized glucose clearance and elevated insulin. These data suggest complex and early responses to OLZ that may be exacerbated by WSD.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Paul Kievit
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Kenny Phu
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Arubala P Reddy
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Charles T Roberts
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Cynthia L Bethea
- Divisions of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 ; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
34
|
Varlamov O, Chu M, Cornea A, Sampath H, Roberts CT. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology 2015; 156:80-9. [PMID: 25356825 PMCID: PMC4272393 DOI: 10.1210/en.2014-1699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic diversity may play an adaptive role by providing graded biological responses to fluctuations in environmental stimuli. We used single-cell imaging of the metabolizable fluorescent fatty acid analog 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-C12 and fluorescent 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) to explore cellular heterogeneity in nutrient uptake in white adipose tissue (WAT) explants of rhesus macaques. Surprisingly, WAT displayed a striking cell size-independent mosaic pattern, in that adjacent adipocytes varied with respect to insulin-stimulated BODIPY-C12 and 2-NBDG uptake. Relative free fatty acid (FFA) transport activity correlated with the cellular levels of FFA transporter protein-1 and the scavenger receptor CD36 in individual adipocytes. In vitro incubation of WAT explants for 24 hours caused partial desynchronization of cellular responses, suggesting that adipocytes may slowly alter their differential nutrient uptake activity. In vitro-differentiated human adipocytes also exhibited a mosaic pattern of BODIPY-C12 uptake. WAT from animals containing a homogeneous population of large adipocytes was nonmosaic, in that every adipocyte exhibited a similar level of BODIPY-C12 fluorescence, suggesting that the development of obesity is associated with the loss of heterogeneity in WAT. Hence, for the first time, we demonstrate an intrinsic heterogeneity in FFA and glucose transport activity in WAT.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science (O.V., C.T.R.), and Division of Neuroscience (A.C.), Oregon National Primate Research Center, Beaverton, Oregon 97006; and Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine (M.C., C.T.R.) and Center for Research Occupational and Environmental Toxicology (H.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | |
Collapse
|
35
|
Chu M, Sampath H, Cahana DY, Kahl CA, Somwar R, Cornea A, Roberts CT, Varlamov O. Spatiotemporal dynamics of triglyceride storage in unilocular adipocytes. Mol Biol Cell 2014; 25:4096-105. [PMID: 25298400 PMCID: PMC4263452 DOI: 10.1091/mbc.e14-06-1085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence microscopy is used to investigate the trafficking of metabolizable fluorescent fatty acid in unilocular adipocytes from adipose tissue of nonhuman primates. The study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy. The spatiotemporal dynamics of triglyceride (TG) storage in unilocular adipocytes are not well understood. Here we applied ex vivo technology to study trafficking and metabolism of fluorescent fatty acids in adipose tissue explants. Live imaging revealed multiple cytoplasmic nodules surrounding the large central lipid droplet (cLD) of unilocular adipocytes. Each cytoplasmic nodule harbors a series of closely associated cellular organelles, including micro–lipid droplets (mLDs), mitochondria, and the endoplasmic reticulum. Exogenously added free fatty acids are rapidly adsorbed by mLDs and concurrently get esterified to TG. This process is greatly accelerated by insulin. mLDs transfer their content to the cLD, serving as intermediates that mediate packaging of newly synthesized TG in the large interior of a unilocular adipocyte. This study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Michael Chu
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine, Portland, OR 97239
| | - Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239
| | - David Y. Cahana
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| | | | - Romel Somwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Anda Cornea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Charles T. Roberts
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine, Portland, OR 97239
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| | - Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science, Beaverton, OR 97006
| |
Collapse
|
36
|
Abstract
Androgens are regulators of important adipocyte functions such as adipogenesis, lipid storage, and lipolysis. Through depot-specific impact on the cells of each fat compartment, androgens could modulate body fat distribution patterns in humans. Testosterone and dihydrotestosterone have been shown to inhibit the differentiation of preadipocytes to lipid-storing adipocytes in several models including primary cultures of human adipocytes from both men and women. Androgen effects have also been observed on some markers of lipid metabolism such as LPL activity, fatty acid uptake, and lipolysis. Possible depot-specific and sex-specific effects have been observed in some but not all models. Transformation of androgen precursors to active androgens or their inactivation by enzymes that are expressed and functional in adipose tissue may contribute to modulate the local availability of active hormones. These phenomena, along with putative depot-specific interactions with glucocorticoids may contribute to human body fat distribution patterns.
Collapse
Affiliation(s)
- Mouna Zerradi
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - Julie Dereumetz
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - Marie-Michèle Boulet
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2
| | - André Tchernof
- Endocrinology and Nephrology, CHU de Quebec Research Center, 2705 Laurier Blvd. R-4779, Quebec City, PQ, Canada, G1V 4G2.
- Department of Nutrition, Laval University, Québec City, Canada, G1V 4G2.
| |
Collapse
|
37
|
Varlamov O, Bethea CL, Roberts CT. Sex-specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne) 2014; 5:241. [PMID: 25646091 PMCID: PMC4298229 DOI: 10.3389/fendo.2014.00241] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022] Open
Abstract
Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- *Correspondence: Oleg Varlamov, Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA e-mail:
| | - Cynthia L. Bethea
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Charles T. Roberts
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
- Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|