1
|
Akdemir AS, Metin Armagan D, Polat Korkmaz O, Ozkaya HM, Kadioglu P, Gazioglu N, Tanriover N, Dirican A, Ozturk M. Association between β-arrestin-2 and filamin-A gene variations with medical treatment response in acromegaly patients. Minerva Endocrinol (Torino) 2025; 50:32-41. [PMID: 34669321 DOI: 10.23736/s2724-6507.21.03611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acromegaly is a disease that occurs as a result of excessive growth hormone caused by pituitary adenomas. Some acromegaly patients show resistance to somatostatin analog (SSA) treatment. Filamin-A (FLNA) and β-arrestins are thought to play a role in the response to SSAs. We aimed to investigate the relationship between FLNA-rs782079491 and β-arrestin-2-rs34230287 single-nucleotide polymorphisms and disease risk, as well as treatment response in patients with acromegaly in the Turkish population. METHODS The genotypes of 110 acromegaly patients and 99 controls were determined by real-time PCR. The genotype distributions were compared with clinical data on the disease. RESULTS There was no association between the β-arrestin-2 gene polymorphism and the response to SSA treatment in acromegaly patients. For responder patients to SSAs, the β-arrestin-2-rs34230287 CT+TT genotype was associated with higher microadenoma as compared with the CC genotype (P=0.017). The FLNA polymorphism was not observed in the study group. CONCLUSIONS We showed that there was no association between the polymorphic genotypes of FLNA and β-arrestin-2 genes with acromegaly disease and SSAs response in the Turkish population. However, there was a relationship between β-arrestin-2 and some of the clinical characteristics. Furthermore, the CC genotype and the C allele are risk factors associated with tumor growth rate in acromegaly patients.
Collapse
Affiliation(s)
- Ayse S Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Derya Metin Armagan
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Department of Medicine, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| | - Ozge Polat Korkmaz
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Hande M Ozkaya
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolism, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Pituitary Research Center, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Nurperi Gazioglu
- Department of Neurosurgery, Medicine Faculty, Istinye University, Istanbul, Türkiye
| | - Necmettin Tanriover
- Pituitary Research Center, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Ahmet Dirican
- Department of Biostatistics, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Türkiye -
| |
Collapse
|
2
|
Marazuela M, Martínez-Hernandez R, Marques-Pamies M, Biagetti B, Araujo-Castro M, Puig-Domingo M. Predictors of biochemical response to somatostatin receptor ligands in acromegaly. Best Pract Res Clin Endocrinol Metab 2024; 38:101893. [PMID: 38575404 DOI: 10.1016/j.beem.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Although predictors of response to first-generation somatostatin receptor ligands (fg-SRLs), and to a lesser extent to pasireotide, have been studied in acromegaly for many years, their use is still not recommended in clinical guidelines. Is there insufficient evidence to use them? Numerous biomarkers including various clinical, functional, radiological and molecular markers have been identified. The first ones are applicable pre-surgery, while the molecular predictors are utilized for patients not cured after surgery. In this regard, factors predicting a good response to fg-SRLs are specifically: low basal GH, a low GH nadir in the acute octreotide test, T2 MRI hypointensity, a densely granulated pattern, high immunohistochemistry staining for somatostatin receptor 2 (SSTR2), and E-cadherin. However, there is still a lack of consensus regarding which of these biomarkers is more useful or how to integrate them into clinical practice. With classical statistical methods, it is complex to define reliable and generalizable cut-off values for a single biomarker. The potential solution to the limitations of traditional methods involves combining systems biology with artificial intelligence, which is currently providing answers to such long-standing questions that may eventually be finally included into the clinical guidelines and make personalized medicine a reality. The aim of this review is to describe the current knowledge of the main fg-SRLs and pasireotide response predictors, discuss their current usefulness, and point to future directions in the research of this field.
Collapse
Affiliation(s)
- Mónica Marazuela
- Department of Endocrinology and Nutrition Hospital Universitario La Princesa, Universidad Autónoma de Madrid,Instituto de Investigación Princesa, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain.
| | | | | | - Betina Biagetti
- Endocrinology & Nutrition Service, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute (VHIR), Department of Medicine, Autonomous University of Barcelona, Reference Networks (ERN), 08035 Barcelona, Spain
| | - Marta Araujo-Castro
- Endocrinology & Nutrition Department. Hospital Universitario Ramón y Cajal, Spain & Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Badalona, Spain
| |
Collapse
|
3
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
4
|
Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Nat Commun 2023; 14:34. [PMID: 36596803 PMCID: PMC9810740 DOI: 10.1038/s41467-022-35708-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
The γ-aminobutyric acid type B (GABAB) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABAB receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABAB receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABAB receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABAB1 subunit and modulate the kinetics of Gαi protein activation in response to GABA stimulation.
Collapse
|
5
|
Treppiedi D, Marra G, Di Muro G, Esposito E, Barbieri AM, Catalano R, Mangili F, Bravi F, Locatelli M, Lania AG, Ferrante E, Indirli R, Nozza E, Arlati F, Spada A, Arosio M, Mantovani G, Peverelli E. P720R USP8 Mutation Is Associated with a Better Responsiveness to Pasireotide in ACTH-Secreting PitNETs. Cancers (Basel) 2022; 14:cancers14102455. [PMID: 35626057 PMCID: PMC9139692 DOI: 10.3390/cancers14102455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Somatic mutations in the ubiquitin specific peptidase 8 (USP8) gene have been associated with higher levels of somatostatin (SS) receptor subtype 5 (SSTR5) in adrenocorticotroph hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs). However, a correlation between the USP8 mutational status and favourable responses to pasireotide, the somatostatin multi-receptor ligand acting especially on SSTR5, has not been investigated yet. Here, we studied the impact of USP8 mutations on pasireotide responsiveness in human and murine corticotroph tumor cells. SSTR5 upregulation was observed in USP8 wild-type primary tumor cells transfected with S718del USP8 mutant. However, cell transfection with S718del USP8 and C40-USP8 mutants in in vitro sensitive cultures from USP8 wild-type tumors abolished their ability to respond to pasireotide and did not confer pasireotide responsiveness to the in vitro resistant culture. Pasireotide failed to reduce ACTH secretion in primary cells from one S718P USP8-mutated tumor but exerted a strong antisecretory effect in primary cells from one P720R USP8-mutated tumor. In agreement, AtT-20 cells transfection with USP8 mutants led to SSTR5 expression increase but pasireotide could reduce ACTH production and cyclin E expression in P720R USP8 overexpressing cells, only. In situ Proximity Ligation Assay and immunoflurescence experiments revealed that P720R USP8 mutant is still able to bind 14-3-3 proteins in AtT-20 cells, without affecting SSTR5 localization. In conclusion, P720R USP8 mutation might be considered as a molecular predictor of favourable response to pasireotide in corticotroph tumor cells.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- PhD Program in Endocrinological Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- PhD Program in Experimental Medicine, University of Milan, 20054 Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Andrea Gerardo Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Rita Indirli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Federico Arlati
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Correspondence: ; Tel.: +39-02-55033512
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.T.); (G.M.); (G.D.M.); (E.E.); (A.M.B.); (R.C.); (F.M.); (F.B.); (R.I.); (E.N.); (F.A.); (A.S.); (M.A.); (E.P.)
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
6
|
Peverelli E, Treppiedi D, Mantovani G. Molecular mechanisms involved in somatostatin receptor regulation in corticotroph tumors: the role of cytoskeleton and USP8 mutations. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R24-R30. [PMID: 37435448 PMCID: PMC10259348 DOI: 10.1530/eo-22-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 07/13/2023]
Abstract
Adrenocorticotropic hormone (ACTH)-secreting pituitary tumors mainly express somatostatin receptor 5 (SSTR5) since SSTR2 is downregulated by the elevated levels of glucocorticoids that characterize patients with Cushing's disease (CD). SSTR5 is the molecular target of pasireotide, the only approved pituitary tumor-targeted drug for the treatment of CD. However, the molecular mechanisms that regulate SSTR5 are still poorly investigated. This review summarizes the experimental evidence supporting the role of the cytoskeleton actin-binding protein filamin A (FLNA) in the regulation of SSTR5 expression and signal transduction in corticotroph tumors. Moreover, the correlations between the presence of somatic USP8 mutations and the expression of SSTR5 will be reviewed. An involvement of glucocorticoid-mediated β-arrestins modulation in regulating SSTRs expression and function in ACTH-secreting tumors will also be discussed.
Collapse
Affiliation(s)
- Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
7
|
Treppiedi D, Catalano R, Mangili F, Mantovani G, Peverelli E. Role of filamin A in the pathogenesis of neuroendocrine tumors and adrenal cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R143-R152. [PMID: 37435454 PMCID: PMC10259351 DOI: 10.1530/eo-22-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/13/2023]
Abstract
Cell cytoskeleton proteins are involved in tumor pathogenesis, progression and pharmacological resistance. Filamin A (FLNA) is a large actin-binding protein with both structural and scaffold functions implicated in a variety of cellular processes, including migration, cell adhesion, differentiation, proliferation and transcription. The role of FLNA in cancers has been studied in multiple types of tumors. FLNA plays a dual role in tumors, depending on its subcellular localization, post-translational modification (as phosphorylation at Ser2125) and interaction with binding partners. This review summarizes the experimental evidence showing the critical involvement of FLNA in the complex biology of endocrine tumors. Particularly, the role of FLNA in regulating expression and signaling of the main pharmacological targets in pituitary neuroendocrine tumors, pancreatic neuroendocrine tumors, pulmonary neuroendocrine tumors and adrenocortical carcinomas, with implications on responsiveness to currently used drugs in the treatment of these tumors, will be discussed.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
10
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
11
|
Vitali E, Piccini S, Trivellin G, Smiroldo V, Lavezzi E, Zerbi A, Pepe G, Lania AG. The impact of SST2 trafficking and signaling in the treatment of pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2021; 527:111226. [PMID: 33675866 DOI: 10.1016/j.mce.2021.111226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic neuroendocrine tumors (Pan-NETs), are heterogeneous neoplasms, whose incidence and prevalence are increasing worldwide. Pan-NETs are characterized by the expression of somatostatin receptors (SSTs). In particular, SST2 is the most widely distributed SST in NETs, thus representing the main molecular target for somatostatin analogs (SSAs). SSAs are currently approved for the treatment of well-differentiated NETs, and radionuclide-labeled SSAs are used for diagnostic and treatment purposes. SSAs, by binding to SSTs, have been shown to inhibit hormone secretion and thus provide control of hypersecretion symptoms, when present, and inhibit tumor proliferation. After SSA binding to SST2, the fate of the receptor is determined by trafficking mechanisms, crucial for the response to endogenous or pharmacological ligands. Although SST2 acts mostly through G protein-dependent mechanism, receptor-ligand complex endocytosis and receptor trafficking further regulate its function. SST2 mediates the decrease of hormone secretion via a G protein-dependent mechanism, culminating with the inhibition of adenylyl cyclase and calcium channels; it also inhibits cell proliferation and increases apoptosis through the modulation of protein tyrosine phosphatases. Moreover, SST2 inhibits angiogenesis and cell migration. In this respect, the cross-talk between SST2 and its interacting proteins, including Filamin A (FLNA) and aryl hydrocarbon receptor-interacting protein (AIP), plays a crucial role for SST2 signaling and responsiveness to SSAs. This review will focus on recent studies from our and other groups that have investigated the trafficking and signaling of SST2 in Pan-NETs, in order to provide insights into the mechanisms underlying tumor responsiveness to pharmacological treatments.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.
| | - S Piccini
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - G Trivellin
- Laboratory of Cellular and Molecular Endocrinology, Italy; Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - V Smiroldo
- Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - E Lavezzi
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Pancreas Surgery Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - G Pepe
- Nuclear Medicine Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A G Lania
- Laboratory of Cellular and Molecular Endocrinology, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
12
|
Treppiedi D, Di Muro G, Mangili F, Catalano R, Giardino E, Barbieri AM, Locatelli M, Arosio M, Spada A, Peverelli E, Mantovani G. Filamin A is required for somatostatin receptor type 5 expression and pasireotide-mediated signaling in pituitary corticotroph tumor cells. Mol Cell Endocrinol 2021; 524:111159. [PMID: 33428965 DOI: 10.1016/j.mce.2021.111159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
Somatostatin receptor type 5 (SST5) represents the main pharmacological target in the treatment of adrenocorticotroph hormone (ACTH)-secreting tumors. However, molecular predictors of responsiveness to pasireotide require further investigation. The cytoskeleton protein filamin A (FLNA) modulates the responsiveness to somatostatin analogs (SSA) treatment in other types of pituitary tumors by regulating somatostatin receptor type 2 (SST2)/dopamine receptor type 2 (DRD2) expression and activity. Here, we aimed to test the involvement of FLNA in the modulation of SST5 response to SSA in human and murine tumor corticotrophs. Western blot analysis of human corticotropinomas showed that FLNA and SST5 correlate. Both in human primary cultures and AtT-20 cells, FLNA genetic silencing caused a decrease of receptor expression level. Moreover, pasireotide-mediated SST5 downregulation observed in AtT-20 control cells was no further detected in FLNA silenced cells. In AtT-20 cells, in situ PLA experiments revealed an increased number of SST5-FLNA complexes following pasireotide incubation. Finally, FLNA knock down abolished pasireotide-induced SST5 actions on hormone secretion, cell proliferation and apoptosis. In conclusion, FLNA is implicated in SST5 expression modulation and signaling.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
13
|
Giardino E, Catalano R, Mangili F, Barbieri AM, Treppiedi D, Elli FM, Dolci A, Contarino A, Spada A, Arosio M, Mantovani G, Peverelli E. Octreotide and pasireotide effects on medullary thyroid carcinoma (MTC) cells growth, migration and invasion. Mol Cell Endocrinol 2021; 520:111092. [PMID: 33248230 DOI: 10.1016/j.mce.2020.111092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine neoplasm of the parafollicular thyroid C cells. Although somatostatin receptors are expressed by MTCs, treatment with octreotide has shown poor efficacy, whereas recently pasireotide has demonstrated antiproliferative effects in persistent postoperative MTCs. Aim of this study was to test the effects of octreotide and pasireotide on MTC cells proliferation, cell cycle proteins expression, MAPK activation, apoptosis, calcitonin secretion, migration and invasion in TT cell line as well as in primary MTC cultured cells. Our results showed that both octreotide and pasireotide reduced TT cell proliferation (-35.2 ± 12.1%, p < 0.001, and -25.3 ± 24.8%, p < 0.05, at 10-8 M, respectively), with concomitant inhibition of ERK phosphorylation and cyclin D1 expression. This cytostatic effect was accompanied by a proapoptotic action, with an increase of caspase3/7 activity of 1.5-fold. Moreover, both octreotide and pasireotide inhibited cell migration (-50.9 ± 11.3%, p < 0.01, and -40.5 ± 17%, p < 0.05, respectively) and invasion (-61.3 ± 35.1%, p < 0.05, and -49.7 ± 18%, p < 0.01, respectively). No effect was observed on calcitonin secretion. We then tried to extend these observations to primary cultures (n = 5). Octreotide and/or pasireotide were effective in reducing cells proliferation in 3 out of 5 tumors, and to induce cell apoptosis in 1 out of 3 MTCs. Both octreotide and pasireotide were able to reduce cell migration in all MTC tested. SST2, SST3 and SST5 were expressed in all MTC, with a tendency to increased expression of SST2 in RET mutated vs wild type MTCs. In agreement, inhibition of mutated RET in TT cells reduced SST2 expression. In conclusion, we demonstrated that octreotide and pasireotide inhibited cell proliferation and invasiveness in a subset of MTC, supporting their potential use in the control of tumor growth.
Collapse
Affiliation(s)
- E Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - F Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A M Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - F M Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - A Dolci
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - A Contarino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy.
| | - E Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
The cytoskeleton actin binding protein filamin A impairs both IGF2 mitogenic effects and the efficacy of IGF1R inhibitors in adrenocortical cancer cells. Cancer Lett 2020; 497:77-88. [PMID: 33075426 DOI: 10.1016/j.canlet.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Adrenocortical carcinomas (ACCs) overexpress insulin-like growth factor 2 (IGF2), that drives a proliferative autocrine loop by binding to IGF1R and IR, but IGF1R/IR-targeted therapies failed in ACC patients. The cytoskeleton actin-binding protein filamin A (FLNA) impairs IR signalling in melanoma cells. Aims of this study were to test FLNA involvement in regulating IGF1R and IR responsiveness to both IGF2 and inhibitors in ACC. In ACC cells H295R and SW13 and primary cultures (1ACC, 4 adenomas) we found that IGF1R and IR interacted with FLNA, and FLNA silencing increased IGF1R and reduced IR expression, with a downstream effect of increased cell proliferation and ERK phosphorylation. In addition, FLNA knockdown potentiated antiproliferative effects of IGF1R/IR inhibitor Linsitinib and IGF1R inhibitor NVP-ADW742 in H295R. Finally, Western blot showed lower FLNA expression in ACCs (n = 10) than in ACAs (n = 10) and an inverse correlation of FLNA/IGF1R ratio with ERK phosphorylation in ACCs only. In conclusion, we demonstrated that low FLNA levels enhance both IGF2 proliferative effects and IGF1R/IR inhibitors efficacy in ACC cells, suggesting FLNA as a new factor influencing tumor clinical behavior and the response to the therapy with IGF1R/IR-targeted drugs.
Collapse
|
16
|
Corica G, Ceraudo M, Campana C, Nista F, Cocchiara F, Boschetti M, Zona G, Criminelli D, Ferone D, Gatto F. Octreotide-Resistant Acromegaly: Challenges and Solutions. Ther Clin Risk Manag 2020; 16:379-391. [PMID: 32440136 PMCID: PMC7211320 DOI: 10.2147/tcrm.s183360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Acromegaly is a rare and severe disease caused by an increased and autonomous secretion of growth hormone (GH), thus resulting in high circulating levels of insulin-like growth factor 1 (IGF-1). Comorbidities and mortality rate are closely related to the disease duration. However, in most cases achieving biochemical control means reducing or even normalizing mortality and restoring normal life expectancy. Current treatment for acromegaly includes neurosurgery, radiotherapy and medical therapy. Transsphenoidal surgery often represents the recommended first-line treatment. First-generation somatostatin receptor ligands (SRLs) are the drug of choice in patients with persistent disease after surgery and are suggested as first-line treatment for those ineligible for surgery. However, only about half of patients treated with octreotide (or lanreotide) achieve biochemical control. Other available drugs approved for clinical use are the second-generation SRL pasireotide, the dopamine agonist cabergoline, and the GH-receptor antagonist pegvisomant. In the present paper, we revised the current literature about the management of acromegaly, aiming to highlight the most relevant and recent therapeutic strategies proposed for patients resistant to first-line medical therapy. Furthermore, we discussed the potential molecular mechanisms involved in the variable response to first-generation SRLs. Due to the availability of different medical therapies, the choice for the most appropriate drug can be currently based also on the peculiar clinical characteristics of each patient.
Collapse
Affiliation(s)
- Giuliana Corica
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Marco Ceraudo
- Neurosurgery Unit, Department of Neurosciences (DINOGMI), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Claudia Campana
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Federica Nista
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesco Cocchiara
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Mara Boschetti
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Gianluigi Zona
- Neurosurgery Unit, Department of Neurosciences (DINOGMI), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Diego Criminelli
- Neurosurgery Unit, Department of Neurosciences (DINOGMI), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
17
|
Hernández-Ramírez LC. Potential markers of disease behavior in acromegaly and gigantism. Expert Rev Endocrinol Metab 2020; 15:171-183. [PMID: 32372673 PMCID: PMC7494049 DOI: 10.1080/17446651.2020.1749048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Acromegaly and gigantism entail increased morbidity and mortality if left untreated, due to the systemic effects of chronic GH and IGF-1 excess. Guidelines for the diagnosis and treatment of patients with GH excess are well established; however, the presentation, clinical behavior and response to treatment greatly vary among patients. Numerous markers of disease behavior are routinely used in medical practice, but additional biomarkers have been recently identified as a result of basic and clinical research studies.Areas covered: This review focuses on genetic, molecular and genomic features of patients with GH excess that have recently been linked to disease progression and response to treatment. A PubMed search was conducted to identify markers of disease behavior in acromegaly and gigantism. Markers already considered as part of routine studies in clinical care guidelines were excluded. Literature search was expanded for each marker identified. Novel markers not included or only partially covered in previously published reviews on the subject were prioritized.Expert opinion: Recognizing the most relevant markers of disease behavior may help the medical team tailoring the strategies for approaching each case of acromegaly and gigantism. This customized plan should make the evaluation, treatment and follow up process more efficient, greatly improving the patients' outcomes.
Collapse
Affiliation(s)
- Laura C. Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892-1862, USA
| |
Collapse
|
18
|
Treppiedi D, Mangili F, Giardino E, Catalano R, Locatelli M, Lania AG, Spada A, Arosio M, Calebiro D, Mantovani G, Peverelli E. Cytoskeleton Protein Filamin A Is Required for Efficient Somatostatin Receptor Type 2 Internalization and Recycling through Rab5 and Rab4 Sorting Endosomes in Tumor Somatotroph Cells. Neuroendocrinology 2020; 110:642-652. [PMID: 31574507 DOI: 10.1159/000503791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022]
Abstract
The high expression of somatostatin receptor 2 (SST2) in growth hormone (GH)-secreting tumors represents the rationale for the clinical use of somatostatin analogs (SSAs) in acromegaly. Recently, the cytoskeletal protein Filamin A (FLNA) has emerged as key modulator of the responsiveness of GH-secreting pituitary tumors to SSAs by regulating SST2 signaling and expression. The aim of this study was to explore FLNA involvement in SST2 intracellular trafficking in tumor somatotroph cells. By biotinylation assay, we found that FLNA silencing abolished octreotide-mediated SST2 internalization in rat GH3 cell line (28.0 ± 2.7 vs. 4 ± 4.3% SST2 internalization, control versus FLNA small interfering RNAs (siRNA) cells, respectively, p < 0.001) and human GH-secreting primary cultured cells (70.3 ± 21.1 vs. 24 ± 19.2% SST2 internalization, control versus FLNA siRNA cells, respectively, p < 0.05). In addition, confocal imaging revealed impaired SST2 recycling to the plasma membrane in FLNA silenced GH3 cells. Coimmunoprecipitation and immunofluorescence experiments showed that FLNA, as well as β-arrestin2, is timely dependent recruited to octreotide-stimulated SST2 receptors both in rat and human tumor somatotroph cells. Although FLNA expression knock down did not prevent the formation of β-arrestin2-SST2 complex in GH3 cells, it significantly impaired efficient SST2 loading into cytosolic vesicles positive for the early endocytic and recycling markers Rab5 and 4, respectively (33.7 ± 8.9% down to 25.9 ± 6.9%, p < 0.05, and 28.4 ± 7.4% down to 17.6 ± 5.7%, p < 0.01, for SST2-Rab5 and SST2-Rab4 colocalization, respectively, in control versus FLNA siRNA cells). Altogether these data support an important role for FLNA in the mediation of octreotide-induced SST2 trafficking in GH-secreting pituitary tumor cells through Rab5 and 4 sorting endosomes.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Humanitas University, Rozzano, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, United Kingdom
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Fuentes-Fayos AC, García-Martínez A, Herrera-Martínez AD, Jiménez-Vacas JM, Vázquez-Borrego MC, Castaño JP, Picó A, Gahete MD, Luque RM. Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. MINERVA ENDOCRINOL 2019; 44:109-128. [PMID: 30650942 DOI: 10.23736/s0391-1977.19.02970-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acromegaly is a chronic systemic disease mainly caused by a growth hormone (GH)-secreting pituitary neuroendocrine tumor (PitNETs), which is associated with many health complications and increased mortality when not adequately treated. Transsphenoidal surgery is considered the treatment of choice in GH-secreting PitNETs, but patients in whom surgery cannot be considered or with persistent disease after surgery require medical therapy. Treatment with available synthetic somatostatin analogues (SSAs) is considered the mainstay in the medical management of acromegaly which exert their beneficial effects through the binding to a family of G-protein coupled receptors encoded by 5 genes (SSTR1-5). However, although it has been demonstrated that the SST1-5 receptors are physically present in tumor cells, SSAs are in many cases ineffective (i.e. approximately 10-30% of patients with GH-secreting PitNET are unresponsive to SSAs), suggesting that other cellular/molecular determinants could be essential for the response to the pharmacological treatment in patients with GH-secreting PitNETs. Therefore, the scrutiny of these determinants might be used for the identification of subgroups of patients in whom an appropriate pharmacological treatment can be successfully employed (responders vs. non-responders). In this review, we will describe some of the existing, classical and novel, genetic and molecular determinants involved in the response of patients with GH-secreting PitNETs to the available therapeutic treatments, as well as new molecular/therapeutic approaches that could be potentially useful for the treatment of GH-secreting PitNETs.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Antonio Picó
- Department of Endocrinology and Nutrition, Hospital General Universitario de Alicante-ISABIAL, Miguel Hernández University, CIBERER, Alicante, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain - .,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
20
|
Fluegge K. A model of lipid dysregulation and altered nutrient status in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:139-145. [PMID: 31065583 PMCID: PMC6495090 DOI: 10.1016/j.trci.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Dysregulated lipid metabolism and nutrient status are thought to play a role in the pathophysiology of Alzheimer's disease (AD). However, the precise involvement is not well understood, and it remains unclear exactly how such dysregulated lipid metabolism and altered nutrient status, especially changes in phosphatidylcholine, B12, and folate, are connected to the hallmark pathology in AD (i.e., amyloidogenesis). METHODS We have postulated that genetic susceptibility (i.e., APOE ε4/ε4) to environmental exposure to emissions of nitrous oxide (N2O) could underlie the onset of AD and its early neuropsychiatric correlates. RESULTS AND DISCUSSION The current theoretical editorial describes, using clinical, preclinical, and in vitro evidences, how this model contributes not only to amyloidogenesis but also other nonopioid effects, specifically altered lipid metabolism, depletion of vitamin B12, and disruption of the folate-mediated one carbon metabolic pathway.
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Columbus OH 43220
| |
Collapse
|
21
|
Sickler T, Trarbach EB, Frassetto FP, Dettoni JB, Alves VAF, Fragoso MCBV, Machado MC, Cardoso EF, Bronstein MD, Glezer A. Filamin A and DRD2 expression in corticotrophinomas. Pituitary 2019; 22:163-169. [PMID: 30799513 DOI: 10.1007/s11102-019-00947-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Filamin A (FLNA) expression is related to dopamine receptor type 2 (DRD2) expression in prolactinomas. Nevertheless, in corticotrophinomas, there are few studies about DRD2 expression and no data on FLNA. Therefore, we evaluated FLNA and DRD2 expression in corticotrophinomas and their association with tumor characteristics. METHODS DRD2 and FLNA expression by immunohistochemistry, using H-score, based on the percentage of positive cells in a continuous scale of 0-300, were evaluated in 23 corticotrophinomas samples from patients submitted to neurosurgery. In six patients, treatment with cabergoline was indicated after non curative surgery. RESULTS Twenty-two patients were female and one male. Regarding tumor size, 10 were micro and 12 were macroadenomas. DRD2 expression was found in 89% of cases and did not correlate with FLNA expression. Moreover, the response to cabergoline, observed in 33% of the cases, did not correlate with DRD2 nor FLNA expression. FLNA expression was not associated with clinical and tumor characteristics, except for sphenoid sinus invasion. CONCLUSIONS In our cohort of corticotrophinomas, DRD2 expression was not associated with FLNA expression nor to the response to CAB. Nonetheless, FLNA expression could be related to tumor invasiveness.
Collapse
Affiliation(s)
- Thais Sickler
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Ericka Barbosa Trarbach
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Fernando Pereira Frassetto
- Pathology Unit, Hospital das Clínicas & Laboratory of Pathology, LIM-14, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | | | - Venâncio Avancini Ferreira Alves
- Pathology Unit, Hospital das Clínicas & Laboratory of Pathology, LIM-14, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Maria Candida Barisson Villares Fragoso
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Marcio Carlos Machado
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
- Endocrinology Service, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Marcello Delano Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Andrea Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clínicas & Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil.
- Medical School, University of Sao Paulo, Rua Dr. Enéas de Carvalho Aguiar, no 155, 8° andar, bloco 3 (Endocrinologia), São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
22
|
Calebiro D, Koszegi Z. The subcellular dynamics of GPCR signaling. Mol Cell Endocrinol 2019; 483:24-30. [PMID: 30610913 DOI: 10.1016/j.mce.2018.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of a multitude of extracellular cues, such as hormones, neurotransmitters, odorants and light. Because of their involvement in numerous physiological and pathological processes and their accessibility, they are extensively exploited as pharmacological targets. Biochemical and structural biology investigations have clarified the molecular basis of GPCR signaling to a high level of detail. In spite of this, how GPCRs can efficiently and precisely translate extracellular signals into specific and well-orchestrated biological responses in the complexity of a living cell or organism remains insufficiently understood. To explain the high efficiency and specificity observed in GPCR signaling, it has been suggested that GPCR might signal in discrete nanodomains on the plasma membrane or even form stable complexes with G proteins and effectors. However, directly testing these hypotheses has proven a major challenge. Recent studies taking advantage of innovative optical methods such as fluorescence resonance energy transfer (FRET) and single-molecule microscopy have begun to dig into the organization of GPCR signaling in living cells on the spatial (nm) and temporal (ms) scales on which cell signaling events are taking place. The results of these studies are revealing a complex and highly dynamic picture, whereby GPCRs undergo transient interaction with their signaling partners, membrane lipids and the cytoskeleton to form short-lived signaling nanodomains both on the plasma membrane and at intracellular sites. Continuous exchanges among such nanodomains via later diffusion as well as via membrane trafficking might provide a highly sophisticated way of controlling the timing and location of GPCR signaling. Here, we will review the most recent advances in our understanding of the organization of GPCR signaling in living cells, with a particular focus on its dynamics.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK.
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| |
Collapse
|
23
|
Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Sala E, Locatelli M, Arosio M, Spada A, Mantovani G, Peverelli E. Somatostatin analogs regulate tumor corticotrophs growth by reducing ERK1/2 activity. Mol Cell Endocrinol 2019; 483:31-38. [PMID: 30611770 DOI: 10.1016/j.mce.2018.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/11/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
Abstract
Pasireotide has been associated with tumor shrinkage in patients with Cushing's disease subjected to long term treatment. However, to date the implicated molecular mechanisms are poorly elucidated. Here, we tested pasireotide-mediated cytostatic and cytotoxic effects in ACTH-secreting primary tumor cultures and murine corticotroph tumor cell line, AtT-20 cells. We found somatostatin receptor type 5 (SST5) expressed in 17 different ACTH-secreting tumors and SST2 detectable in 15 out of the 17 tissues. Pasireotide caused a slight but significant in vitro inhibition of cell growth in 3 out of 6 ACTH-secreting primary cultures (-12.1 ± 4.3%, P < 0.01 at 10 nM), remarkably reduced phospho-ERK1/2 levels in 5 out of 8 samples (-36.4 ± 20.5%, P < 0.01 at 1 μM) and triggered an increase of caspase 3/7 activity in 2 of 4 tumors (17 ± 3.6%, P < 0.05 at 1 μM). Accordingly, in AtT-20 cells, pasireotide significantly inhibited cell proliferation (-10.5 ± 7.7% at 10 nM, P < 0.05; -13.9 ± 10.9% at 100 nM, P < 0.05; -26.8 ± 8.9% at 1 μM, P < 0.01). Similar antiproliferative actions were exerted by BIM23206 and BIM23120 (SST5&2 selective ligands, respectively), whereas octreotide was effective when used at 1 μM (-13.3 ± 9.1%, P < 0.05). Moreover, a reduction of phospho-ERK1/2 was observed upon pasireotide and BIM23206 treatment (-8.4 ± 28.6%, P < 0.01 and -51.4 ± 15.9%, P < 0.001 at 10 nM, respectively) but not after octreotide and BIM23120 incubation. Finally, pasireotide was able to induce cell apoptosis in AtT-20 cells at lower concentration than octreotide. Altogether these data indicate a downstream implication of SST5-mediated phospho-ERK1/2 inhibition by pasireotide resulting in ACTH-secreting tumor cells proliferation reduction. Moreover, we describe for the first time a pro-apoptotic effect of pasireotide in corticotrophs.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Mangili
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Pietro Vercesi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Sala
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marco Locatelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurosurgery Unit, Milan, Italy
| | - Maura Arosio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Erika Peverelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrine Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Coelho MCA, Vasquez ML, Wildemberg LE, Vázquez-Borrego MC, Bitana L, Camacho AHDS, Silva D, Ogino LL, Ventura N, Sánchez-Sánchez R, Chimelli L, Kasuki L, Luque RM, Gadelha MR. Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles. Sci Rep 2019; 9:1122. [PMID: 30718563 PMCID: PMC6361919 DOI: 10.1038/s41598-018-37692-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Filamin-A (FLNA) plays a crucial role in somatostatin receptor (sst) subtype-2 signaling in somatotropinomas. Our objective was to investigate the in vivo association between FLNA and sst2 expression, sst5 expression, dopamine receptor subtype-2 (D2) expression, somatostatin receptor ligand (SRL) responsiveness and tumor invasiveness in somatotropinomas. Quantitative real-time PCR was used to evaluate the absolute mRNA copy numbers of FLNA/sst2/sst5/D2 in 96 somatotropinomas. FLNA, sst2 and sst5 protein expression levels were also evaluated using immunohistochemistry. The Knosp-Steiner criteria were used to evaluate tumor invasiveness. Median FLNA, sst2, sst5 and D2 copy numbers were 4,244, 731, 156 and 3,989, respectively. Thirty-one of the 35 available tumors (89%) were immune positive for FLNA in the cytoplasm and membrane but not in the nucleus. FLNA and sst5 expression were positively correlated at the mRNA and protein levels (p < 0.001 and p = 0.033, respectively). FLNA was positively correlated with sst2 mRNA in patients who were responsive to SRL (p = 0.014, R = 0.659). No association was found between FLNA and tumor invasiveness. Our findings show that in somatotropinomas FLNA expression positively correlated with in vivo sst5 and D2 expression. Notably, FLNA was only correlated with sst2 in patients who were controlled with SRL. FLNA was not associated with tumor invasiveness.
Collapse
Affiliation(s)
- Maria Caroline Alves Coelho
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | - Marina Lipkin Vasquez
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luciana Bitana
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Pathology Division, Instituto Nacional do Câncer, Rio de janeiro, Brazil
| | - Débora Silva
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Liana Lumi Ogino
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nina Ventura
- Radiology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Raul M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil. .,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Gatto F, Arvigo M, Amarù J, Campana C, Cocchiara F, Graziani G, Bruzzone E, Giusti M, Boschetti M, Ferone D. Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. Pituitary 2019; 22:89-99. [PMID: 30483918 DOI: 10.1007/s11102-018-0926-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pasireotide is a second-generation somatostatin (SRIF) receptor ligand (SRL), approved for medical treatment of acromegaly and Cushing's disease (CD). The molecule is a stable cyclohexapeptide synthetized based on SRIF structure. Differently from first-generation SRLs (e.g. octreotide), preferentially binding somatostatin receptor (SST) subtype 2 (SST2), pasireotide has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Interestingly, early preclinical studies demonstrated that pasireotide shows distinct functional properties compared to SRIF and first-generation SRLs when binding SSTs. METHODS We aimed to highlight the differential receptor-targeted action of pasireotide in the treatment of somatotroph and corticotroph adenomas, throughout the critical revision of preclinical studies carried out on acromegaly and CD models. RESULTS Different authors demonstrated that the antisecretory effect of pasireotide in somatotroph adenoma cell cultures is comparable to that of the SST2-preferential agonist octreotide. Some reports even show a direct correlation between SST2 mRNA expression and GH reduction after pasireotide treatment, thus laying for a predominant role of SST2 in driving pasireotide efficacy in somatotropinomas in vitro. On the other hand, the inhibitory effect of pasireotide on ACTH secretion in corticotropinoma cells seems to be mainly mediated by SST5. Indeed, most reports show a higher potency and efficacy of pasireotide compared to SST2 preferential agonists, while functional studies confirm the pivotal role of SST5 targeting in corticotroph cells. CONCLUSIONS The analysis of preclinical studies carried out in somatotroph and corticoph adenomas points out that pasireotide shows a cell-specific activity, exerting its biological effects via different SSTs in the different adenoma histotypes.
Collapse
Affiliation(s)
- Federico Gatto
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy.
| | | | | | | | | | | | | | - Massimo Giusti
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| | - Mara Boschetti
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine, Policlinico San Martino, 16132, Genoa, Italy
- University of Genoa, Genoa, Italy
| |
Collapse
|
26
|
Mantovani G, Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Arosio M, Spada A, Peverelli E. Cytoskeleton actin-binding proteins in clinical behavior of pituitary tumors. Endocr Relat Cancer 2019; 26:R95-R108. [PMID: 30589642 DOI: 10.1530/erc-18-0442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.
Collapse
Affiliation(s)
- G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Vercesi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
28
|
cAMP/PKA-induced filamin A (FLNA) phosphorylation inhibits SST2 signal transduction in GH-secreting pituitary tumor cells. Cancer Lett 2018; 435:101-109. [PMID: 30098401 DOI: 10.1016/j.canlet.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
An efficient intracellular response to somatostatin analogs (SSA) in pituitary tumors requires filamin A (FLNA). Since cAMP pathway plays an important role in GH-secreting pituitary tumors pathogenesis and FLNA is phosphorylated by PKA on S2152, aim of this study was to investigate in tumoral somatotrophs the impact of cAMP pathway activation and SSA stimulation on FLNA phosphorylation and the consequences on SST2 function. We found a PKA-mediated increase (2-fold) and SST2 agonist-induced decrease (-50%) of FLNA phosphorylation in GH3, GH4C1 and primary somatotroph tumor cells. This modification regulates FLNA function. Indeed, phosphomimetic S2152D FLNA mutant, but not phosphodeficient S2152A, abolished the known SSA antitumoral effects, namely: 1) inhibition of cell proliferation, reduction of cyclin D3 and increase of p27; 2) increase of cell apoptosis; 3) inhibition of cell migration via RhoA activation and cofilin phosphorylation. Coimmunoprecipitation and immunofluorescence assays showed that S2152A FLNA was recruited to activated SST2, whereas S2152D FLNA constitutively bound SST2 on the plasma membrane, but prevented Gαi proteins recruitment to SST2. In conclusion, we demonstrated that FLNA phosphorylation, promoted by cAMP pathway activation and inhibited by SSA, prevented SST2 signaling in GH-secreting tumoral pituitary cells.
Collapse
|
29
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Coelho MCA, Vasquez ML, Wildemberg LE, Vázquez‐Borrego MC, Bitana L, Camacho AHDS, Silva D, Ogino LL, Ventura N, Chimelli L, Luque RM, Kasuki L, Gadelha MR. Molecular evidence and clinical importance of β-arrestins expression in patients with acromegaly. J Cell Mol Med 2018; 22:2110-2116. [PMID: 29377493 PMCID: PMC5867117 DOI: 10.1111/jcmm.13427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
β-arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between β-arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of β-arrestins with response to first-generation SRL and invasiveness in somatotropinomas. β-arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real-time RT-PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 μg/l and normal IGF-I levels, was assessed in 40 patients. The Knosp-Steiner criteria were used to define invasiveness. Median β-arrestin 1, β-arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156; and 3989, respectively. There was a positive correlation between β-arrestins 1 and 2 (R = 0.444, P < 0.001). However, no correlation between β-arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between β-arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between β-arrestins and sst2, our data clearly indicated that no association existed between β-arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether β-arrestins have a role in the response to treatment with SRL in acromegaly.
Collapse
Affiliation(s)
- Maria Caroline Alves Coelho
- Neuroendocrinology Research Center/Endocrinology DivisionMedical School and Hospital Universitário Clementino Fraga FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
- Endocrine DivisionHospital Universitário Pedro ErnestoUniversidade Estadual do Rio de JaneiroRio de JaneiroBrazil
- Endocrine DivisionInstituto Estadual de Diabetes e Endocrinologia Luiz CapriglioneRio de JaneiroBrazil
| | - Marina Lipkin Vasquez
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology DivisionMedical School and Hospital Universitário Clementino Fraga FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
- Neuroendocrinology DivisionInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Mari C. Vázquez‐Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)CórdobaSpain
- Department of Cell Biology, Physiology, and ImmunologyUniversidad de CórdobaCórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Luciana Bitana
- Neuropathology LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Aline Helen da Silva Camacho
- Neuropathology LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
- Pathology DivisionInstituto Nacional do CâncerRio de janeiroBrazil
| | - Débora Silva
- Neuropathology LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Liana Lumi Ogino
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Nina Ventura
- Radiology DivisionInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Leila Chimelli
- Neuropathology LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Raul M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)CórdobaSpain
- Department of Cell Biology, Physiology, and ImmunologyUniversidad de CórdobaCórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology DivisionMedical School and Hospital Universitário Clementino Fraga FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
- Neuroendocrinology DivisionInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
- Endocrine DivisionHospital Federal de BonsucessoRio de JaneiroBrazil
| | - Mônica R. Gadelha
- Neuroendocrinology Research Center/Endocrinology DivisionMedical School and Hospital Universitário Clementino Fraga FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
- Neuroendocrinology DivisionInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| |
Collapse
|
31
|
Hernández-Ramírez LC, Trivellin G, Stratakis CA. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease. Mol Cell Endocrinol 2018; 463:72-86. [PMID: 28822849 DOI: 10.1016/j.mce.2017.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
32
|
Signaling regulation and role of filamin A cleavage in Ca2+-stimulated migration of androgen receptor-deficient prostate cancer cells. Oncotarget 2018; 8:3840-3853. [PMID: 27206800 PMCID: PMC5354799 DOI: 10.18632/oncotarget.9472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/24/2016] [Indexed: 01/05/2023] Open
Abstract
Ca2+, a ubiquitous cellular signal, and filamin A, an actin-binding protein, play an important role in the regulation of cell adhesion, shape and motility. Using transwell filters to analyze cell migration, we found that extracellular Ca2+ (Cao2+) promotes the migration of androgen receptor (AR)-deficient and highly metastatic prostate cancer cell lines (DU145 and PC-3) compared to AR-positive and relatively less metastatic prostate cancer cells (LNCaP). Furthermore, we found that expression of filamin A is up-regulated in DU145 and PC-3 cells, and that Cao2+ significantly induces the cleavage of filamin A. Silencing expression of Ca2+-sensing receptor (CaR) and p115RhoGEF, and treating with leupeptin, a protease inhibitor, and ALLM, a calpain specific inhibitor, we further demonstrate that Cao2+-induced filamin A cleavage occurs via a CaR- p115RhoGEF-calpain dependent pathway. Our data show that Cao2+ via CaR- mediated signaling induces filamin A cleavage and promotes the migration in AR-deficient and highly metastatic prostate cancer cells.
Collapse
|
33
|
Venegas-Moreno E, Vazquez-Borrego MC, Dios E, Gros-Herguido N, Flores-Martinez A, Rivero-Cortés E, Madrazo-Atutxa A, Japón MA, Luque RM, Castaño JP, Cano DA, Soto-Moreno A. Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J Cell Mol Med 2017; 22:1640-1649. [PMID: 29266696 PMCID: PMC5824369 DOI: 10.1111/jcmm.13440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acromegaly is a hormonal disorder resulting from excessive growth hormone (GH) secretion frequently produced by pituitary adenomas and consequent increase in insulin‐like growth factor 1 (IGF‐I). Elevated GH and IGF‐I levels result in a wide range of somatic, cardiovascular, endocrine, metabolic and gastrointestinal morbidities. Somatostatin analogues (SSAs) form the basis of medical therapy for acromegaly and are currently used as first‐line treatment or as second‐line therapy in patients undergoing unsuccessful surgery. However, a considerable percentage of patients do not respond to SSAs treatment. Somatostatin receptors (SSTR1‐5) and dopamine receptors (DRD1‐5) subtypes play critical roles in the regulation of hormone secretion. These receptors are considered important pharmacological targets to inhibit hormone oversecretion. It has been proposed that decreased expression of SSTRs may be associated with poor response to SSAs. Here, we systematically examine SSTRs and DRDs expression in human somatotroph adenomas by quantitative PCR. We observed an association between the response to SSAs treatment and DRD4, DRD5, SSTR1 and SSTR2 expression. We also examined SSTR expression by immunohistochemistry and found that the immunohistochemical detection of SSTR2 in particular might be a good predictor of response to SSAs.
Collapse
Affiliation(s)
- Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Mari C Vazquez-Borrego
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Noelia Gros-Herguido
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martinez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Esther Rivero-Cortés
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Ainara Madrazo-Atutxa
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel A Japón
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital (HURS), CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Agrifood Campus of International Excellence (ceiA3), University of Cordoba, Cordoba, Spain
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
34
|
Peverelli E, Giardino E, Treppiedi D, Catalano R, Mangili F, Locatelli M, Lania AG, Arosio M, Spada A, Mantovani G. A novel pathway activated by somatostatin receptor type 2 (SST2): Inhibition of pituitary tumor cell migration and invasion through cytoskeleton protein recruitment. Int J Cancer 2017; 142:1842-1852. [PMID: 29226331 DOI: 10.1002/ijc.31205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
The pharmacological therapy of GH-secreting pituitary tumors is based on somatostatin (SS) analogs that reduce GH secretion and cell proliferation by binding mainly SS receptors type 2 (SST2). Antimigratory effects of SS have been demonstrated in different cell models, but no data on pituitary tumors are available. Aims of our study were to evaluate SST2 effects on migration and invasion of human and rat tumoral somatotrophs, and to elucidate the molecular mechanism involved focusing on the role of cofilin and filamin A (FLNA). Our data revealed that SST2 agonist BIM23120 significantly reduced GH3 cells migration (-22% ± 3.6%, p < 0.001) and invasion on collagen IV (-31.3% ± 12.2%, p < 0.01), both these effects being reproduced by octreotide and pasireotide. Similar results were obtained in primary cultured cells from human GH-secreting tumors. These inhibitory actions were accompanied by a marked increase in RhoA/ROCK-dependent cofilin phosphorylation (about 2.7-fold in GH3 and 2.1-fold in human primary cells). Accordingly, the anti-invasive effect of the SS analog was mimicked by the overexpression in GH3 cells of the S3D phosphomimetic cofilin mutant, and abolished by both phosphodeficient S3A cofilin and a specific ROCK inhibitor that prevented cofilin phosphorylation. Moreover, FLNA silencing and FLNA dominant-negative mutants FLNA19-20 and FLNA21-24 transfection demonstrated that FLNA plays a scaffold function for SST2-mediated cofilin phosphorylation. Accordingly, cofilin recruitment to agonist-activated SST2 was completely lost in FLNA silenced cells. In conclusion, we demonstrated that SST2 inhibits rat and human tumoral somatotrophs migration and invasion through a molecular mechanism that involves FLNA-dependent cofilin recruitment and phosphorylation.
Collapse
Affiliation(s)
- E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A G Lania
- Endocrinology Unit, IRCCS Humanitas Research Hospital, Humanitas University, Rozzano, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Treppiedi D, Peverelli E, Giardino E, Ferrante E, Calebiro D, Spada A, Mantovani G. Somatostatin Receptor Type 2 (SSTR2) Internalization and Intracellular Trafficking in Pituitary GH-Secreting Adenomas: Role of Scaffold Proteins and Implications for Pharmacological Resistance. Horm Metab Res 2017; 49:259-268. [PMID: 27632151 DOI: 10.1055/s-0042-116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSomatostatin receptor type 2 (SSTR2), together with SSTR5, represents the main
target of medical treatment for growth hormone (GH)-secreting pituitary tumors,
since it is expressed in most of these tumors and exerts both antiproliferative
and cytostatic effects, and reduces hormone secretion, as well. However,
clinical practice indicates a great variability in the frequency and entity of
favorable responses of acromegalic patients to long-acting somatostatin
analogues (SSAs), but the molecular mechanisms regulating this pharmacological
resistance are not completely understood. So far, several potentially implied
mechanisms have been suggested, including impaired expression of SSTRs, or
post-receptor signal transduction alterations. More recently, new studies
exploited the molecular factors involved in SSTRs intracellular trafficking
regulation, this being a critical point for the modulation of the available
active G-coupled receptors (GPCRs) amount at the cell surface. In this respect,
the role of the scaffold proteins such as β-arrestins, and the cytoskeleton
protein Filamin A (FLNA), have become of relevant importance for GH-secreting
pituitary tumors. In fact, β-arrestins are linked to SSTR2 desensitization and
internalization, and FLNA is able to regulate SSTR2 trafficking and stability at
the plasma membrane. Therefore, the present review will summarize emerging
evidence highlighting the role of β-arrestins and FLNA, as possible novel
players in the modulation of agonist activated-SSTR2 receptor trafficking and
response in GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Ferrante
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, Würzburg, Germany
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Abstract
First-generation somatostatin receptors ligands (SRL) are the mainstay in the medical treatment of acromegaly, however the percentage of patients controlled with these drugs significantly varies in the different studies. Many factors are involved in the resistance to SRL. In this review, we update the physiology of somatostatin and its receptors (sst), the use of SRL in the treatment of acromegaly and the factors involved in the response to these drugs. The SRL act through interaction with the sst, which up to now have been characterized as five subtypes. The first-generation SRL, octreotide and lanreotide, are considered sst2 specific and have biochemical response rates varying from 20 to 70%. Tumor volume reduction can be found in 36-75% of patients. Several factors may determine the response to these drugs, such as sst, AIP, E-cadherin, ZAC1, filamin A and β-arrestin expression in the somatotropinomas. In patients resistant to first-generation SRL, alternative medical treatment options include: SRL high dose regimens, SRL in combination with cabergoline or pegvisomant, or the use of pasireotide. Pasireotide is a next-generation SRL with a broader pattern of interaction with sst. In the light of the recent increase of treatment options in acromegaly and the deeper knowledge of the determinants of response to the current first-line therapy, a shift from a trial-and-error treatment to a personalized one could be possible.
Collapse
Affiliation(s)
- Monica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 9th floor, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil.
- Neuroendocrinology Section and Molecular Genetics Laboratory, Secretaria Estadual de Saúde do Rio de Janeiro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 9th floor, Ilha do Fundão, Rio de Janeiro, 21941-913, Brazil
- Neuroendocrinology Section and Molecular Genetics Laboratory, Secretaria Estadual de Saúde do Rio de Janeiro, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Federico Gatto
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST Genoa, Genoa, Italy
| |
Collapse
|
37
|
Peverelli E, Giardino E, Treppiedi D, Locatelli M, Vaira V, Ferrero S, Bosari S, Lania AG, Spada A, Mantovani G. Dopamine receptor type 2 (DRD2) inhibits migration and invasion of human tumorous pituitary cells through ROCK-mediated cofilin inactivation. Cancer Lett 2016; 381:279-86. [PMID: 27519461 DOI: 10.1016/j.canlet.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022]
Abstract
Non-functioning pituitary tumors (NFPTs) frequently present local invasiveness. Dopamine receptor 2 (DRD2) agonists are the only medical therapy that induces tumor shrinkage in some patients. Invasion requires cytoskeleton rearrangements that are tightly regulated by cofilin pathway, whose alterations correlate with invasion in different tumors. We investigated the effect of DR2D agonist on NFPT cells migration/invasion and the molecular mechanisms involved. We demonstrated that DRD2 agonist reduced migration (-44 ± 25%, p < 0.01) and invasion (-34 ± 6%, p < 0.001) and increased about 4-fold Ser3-phosphorylated inactive cofilin (P-cofilin) in NFPT cells. These effects were abolished by inhibiting ROCK, a kinase that phosphorylates cofilin. The overexpression of wild-type or phosphodeficient S3A-cofilin increased HP75 cells migration (+49 ± 6% and +57 ± 9% vs empty vector, respectively, p < 0.05), while phosphomimetic mutant had no effect. Interestingly, P-cofilin levels were lower in invasive vs non-invasive tumors by both western blot (mean P-cofilin/total cofilin ratio 0.77 and 1.93, respectively, p < 0.05) and immunohistochemistry (mean percentage of P-cofilin positive cells 17.6 and 45.7, respectively, p < 0.05). In conclusion, we showed that the invasiveness of pituitary tumors is promoted by the activation of cofilin, which can be regulated by DRD2 and might represent a novel biomarker for pituitary tumors' invasive behavior.
Collapse
Affiliation(s)
- E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - S Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan Medical School, Milan, Italy
| | - S Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A G Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Rozzano, University of Milan, Milan, Italy
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Vitali E, Cambiaghi V, Zerbi A, Carnaghi C, Colombo P, Peverelli E, Spada A, Mantovani G, Lania AG. Filamin-A is required to mediate SST2 effects in pancreatic neuroendocrine tumours. Endocr Relat Cancer 2016; 23:181-90. [PMID: 26733502 DOI: 10.1530/erc-15-0358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Somatostatin receptor type 2 (SST2) is the main pharmacological target of somatostatin (SS) analogues widely used in patients with pancreatic neuroendocrine tumours (P-NETs), this treatment being ineffective in a subset of patients. Since it has been demonstrated that Filamin A (FLNA) is involved in mediating GPCR expression, membrane anchoring and signalling, we investigated the role of this cytoskeleton protein in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in human P-NETs and in QGP1 cell line. We demonstrated that FLNA silencing was not able to affect SST2 expression in P-NET cells in basal conditions. Conversely, a significant reduction in SST2 expression (-43 ± 21%, P < 0.05 vs untreated cells) was observed in FLNA silenced QGP1 cells after long term SST2 activation with BIM23120. Moreover, the inhibitory effect of BIM23120 on cyclin D1 expression (-46 ± 18%, P < 0.05 vs untreated cells), P-ERK1/2 levels (-42 ± 14%; P < 0.05 vs untreated cells), cAMP accumulation (-24 ± 3%, P < 0.05 vs untreated cells), VEGF expression (-31 ± 5%, P < 0.01 vs untreated cells) and in vitro release (-40 ± 24%, P < 0.05 vs untreated cells) was completely lost after FLNA silencing. Interestingly, BIM23120 promoted cell adhesion (+86 ± 45%, P < 0.05 vs untreated cells) and inhibited cell migration (-24 ± 2%, P < 0.00001 vs untreated cells) in P-NETs cells and these effects were abolished in FLNA silenced cells. In conclusion, we demonstrated that FLNA plays a crucial role in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in P-NETs and in QGP1 cell line, suggesting a possible role of FLNA in determining the different responsiveness to SS analogues observed in P-NET patients.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valeria Cambiaghi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Zerbi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Carlo Carnaghi
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Erika Peverelli
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Anna Spada
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giovanna Mantovani
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Andrea G Lania
- Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy Laboratory of Cellular and Molecular EndocrinologyIRCCS Clinical and Research Institute Humanitas, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPancreas Surgery UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyMedical Oncology and Hematology UnitCancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyPathology UnitIRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, ItalyFondazione IRCCS Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via F Sforza 35, 20100 Milan, ItalyDepartment of Biomedical SciencesHumanitas University, Rozzano, Milan, ItalyEndocrinology UnitHumanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
39
|
Peverelli E, Treppiedi D, Giardino E, Vitali E, Lania AG, Mantovani G. Dopamine and Somatostatin Analogues Resistance of Pituitary Tumors: Focus on Cytoskeleton Involvement. Front Endocrinol (Lausanne) 2015; 6:187. [PMID: 26733942 PMCID: PMC4686608 DOI: 10.3389/fendo.2015.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Pituitary tumors, that origin from excessive proliferation of a specific subtype of pituitary cell, are mostly benign tumors, but may cause significant morbidity in affected patients, including visual and neurologic manifestations from mass-effect, or endocrine syndromes caused by hormone hypersecretion. Dopamine (DA) receptor DRD2 and somatostatin (SS) receptors (SSTRs) represent the main targets of pharmacological treatment of pituitary tumors since they mediate inhibitory effects on both hormone secretion and cell proliferation, and their expression is retained by most of these tumors. Although long-acting DA and SS analogs are currently used in the treatment of prolactin (PRL)- and growth hormone (GH)-secreting pituitary tumors, respectively, clinical practice indicates a great variability in the frequency and entity of favorable responses. The molecular basis of the pharmacological resistance are still poorly understood, and several potential molecular mechanisms have been proposed, including defective expression or genetic alterations of DRD2 and SSTRs, or an impaired signal transduction. Recently, a role for cytoskeleton protein filamin A (FLNA) in DRD2 and SSTRs receptors expression and signaling in PRL- and GH-secreting tumors, respectively, has been demonstrated, first revealing a link between FLNA expression and responsiveness of pituitary tumors to pharmacological therapy. This review provides an overview of the known molecular events involved in SS and DA resistance, focusing on the role played by FLNA.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy
| | - Andrea G. Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- *Correspondence: Giovanna Mantovani,
| |
Collapse
|