1
|
Zhang B, Enriquez-Sarano M, Schaff HV, Michelena HI, Roos CM, Hagler MA, Zhang H, Casaclang-Verzosa G, Huang R, Bartoo A, Ranadive S, Joyner MJ, Pislaru S, Nkomo VT, Kremers WK, Araoz PA, Singh G, Walters MA, Hawkinson J, Cunningham KY, Sung J, Dunagan B, Ye Z, Miller JD. Reactivation of Oxidized Soluble Guanylate Cyclase as a Novel Treatment Strategy to Slow Progression of Calcific Aortic Valve Stenosis: Preclinical and Randomized Clinical Trials to Assess Safety and Efficacy. Circulation 2025; 151:913-930. [PMID: 39989354 DOI: 10.1161/circulationaha.123.066523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Pharmacological treatments for fibrocalcific aortic valve stenosis (FCAVS) have been elusive for >50 years. Here, we tested the hypothesis that reactivation of oxidized sGC (soluble guanylate cyclase), the primary receptor for nitric oxide, with ataciguat is a safe and efficacious strategy to slow progression of FCAVS. METHODS We used quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry to characterize sGC signaling and the biological effects of ataciguat on signaling cascades related to nitric oxide, calcification, and fibrosis in excised human aortic valve tissue, aortic valve interstitial cells, and mouse aortic valves. We then conducted randomized, placebo-controlled phase I (14-day safety/tolerance) and phase II (6-month efficacy) trials in patients with moderate aortic valve stenosis. RESULTS In excised human tissue, we found robust losses in sGC signaling despite upregulation of sGC subunits. In vitro, ataciguat increased sGC signaling and reduced BMP2 (bone morphogenetic protein 2) signaling in aortic valve interstitial cells. In mice with established FCAVS, treatment with ataciguat attenuated BMP signaling and slowed progression of valve calcification and dysfunction. In a phase I, randomized, placebo-controlled trial, treatment with ataciguat for 2 weeks was safe and well tolerated in patients with moderate FCAVS (https://www.clinicaltrials.gov; Unique identifier: NCT02049203). In a separate phase II, randomized, placebo-controlled trial, treatment with ataciguat for 6 months slowed the progression of aortic valve calcification and tended to slow the progression of valvular and ventricular dysfunction in patients with moderate FCAVS (https://www.clinicaltrials.gov; Unique identifier: NCT02481258). CONCLUSIONS Collectively, this study highlights the therapeutic potential of the targeted restoration of the diseased/inactive form of sGC for treatment of FCAVS. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02049203. URL: https://www.clinicaltrials.gov; Unique identifier: NCT02481258.
Collapse
Affiliation(s)
- Bin Zhang
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Maurice Enriquez-Sarano
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | - Hartzell V Schaff
- Cardiovascular Surgery (H.V.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Hector I Michelena
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | - Carolyn M Roos
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Michael A Hagler
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Heyu Zhang
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Grace Casaclang-Verzosa
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Runqing Huang
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | | | | | | | - Sorin Pislaru
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | - Vuyisile T Nkomo
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | - Walter K Kremers
- Quantitative Health Sciences (W.K.K.), Mayo Clinic, Rochester, MN
| | | | - Gurpreet Singh
- Department of Medicinal Chemistry (G.S., M.A.W., J.H.), University of Minnesota, Minneapolis, MN
| | - Michael A Walters
- Department of Medicinal Chemistry (G.S., M.A.W., J.H.), University of Minnesota, Minneapolis, MN
| | - Jon Hawkinson
- Department of Medicinal Chemistry (G.S., M.A.W., J.H.), University of Minnesota, Minneapolis, MN
| | - Kevin Y Cunningham
- Bioinformatics and Computational Biology Program (K.Y.C.), University of Minnesota, Minneapolis, MN
| | - Jaeyun Sung
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Brandon Dunagan
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
- Cardiovascular Surgery (H.V.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
| | - Zi Ye
- Cardiovascular Diseases (M.E.-S., H.I.M., R.H., S.P., V.T.N., Z.Y.), Mayo Clinic, Rochester, MN
| | - Jordan D Miller
- Departments of Surgery (B.Z., C.M.R., M.A.H., H.Z., G.C.-V., J.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
- Cardiovascular Surgery (H.V.S., B.D., J.D.M.), Mayo Clinic, Rochester, MN
- Physiology and Biomedical Engineering (J.D.M.), Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN (J.D.M.)
| |
Collapse
|
2
|
Kalyanaraman H, Pal China S, Casteel DE, Pilz RB. Crosstalk between androgen receptor and protein kinase G signaling in bone: implications for osteoporosis therapy. Trends Pharmacol Sci 2025; 46:279-294. [PMID: 40011087 DOI: 10.1016/j.tips.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/28/2025]
Abstract
Testosterone, the primary androgen in males, is required for optimal bone mass and strength in men, but the benefits of testosterone therapy in elderly men with modestly reduced testosterone levels remain controversial. Androgens enhance bone formation by osteoblasts and inhibit resorption by osteoclasts. Recent data in osteoblasts indicate that rapid extranuclear androgen receptor (AR) signaling enhances nuclear AR-mediated transcription of the skeletal master regulator β-catenin, and boosts cell proliferation, differentiation, and survival. This novel signaling involves nitric oxide (NO), cGMP, and protein kinase G2 (PKG2). We discuss these recent developments and summarize bone-anabolic AR functions and AR/PKG2 interactions as revealed by the phenotypes of Ar and Pkg2 knockout and transgenic mice. We propose that tissue-selective AR modulators and PKG-activating agents may represent novel treatment options for osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Saki F, Rahimikashkooli N, Masjedi M, Dastghaib S, Koohpeyma F. Gender-Specific effects of L-arginine supplementation on bone mineral density and trabecular bone volume in Sprague-Dawley rats; stereological study. BMC Complement Med Ther 2024; 24:425. [PMID: 39725944 DOI: 10.1186/s12906-024-04736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND L-arginine (Arg) is a semi-essential amino acid that can be used as a key mediator for the release of growth hormone (GH), insulin-like growth factor-1(IGF-1), and other growth factors. In this study, we comprehensively evaluated the effect of Arg intake on bone growth and associated markers. METHODS The study involved 24 Sprague-Dawley rats (12 males, 12 females) divided into two groups (Age = 24 days). One group received a standard diet, while the other was injected with 10 mg/kg of Arg daily for 90 days. Serum bone markers like calcium (Ca), phosphorous(P), and alkaline phosphatase (ALP) were analyzed via colorimetric assays. stereological study and bone mineral density (BMD) were conducted via dissector method and Hologic Dual-energy x-ray absorptiometry (DXA) system; respectively. RESULTS Biochemical assays showed no significant differences in Ca, P, and ALP levels between groups. Male rats in the case group exhibited lower testosterone levels (p.value = 0.009). Stereological and bone mineral density (BMD) analyses revealed contrasting gender-specific outcomes. Female rats in the case group had higher BMD (p.value = 0.001), while males had lower BMD compared to controls (p.value = 0.018). Arg consumption affects trabecula volume values differently in females compared to males (p.value = 0.022). Furthermore, the study observed decreased osteocytes and osteoblasts in male case rats. The gender-based differences in BMD were attributed to Arg's paradoxical impact on testosterone levels in males. CONCLUSION Overall, Arg supplementation was found to influence BMD and trabecular bone volume, with outcomes varying depending on gender. The study highlights the intricate interplay between Arg, sex hormones, and bone health, offering insights into these complex relationships.
Collapse
Affiliation(s)
- Forough Saki
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran
| | - Nima Rahimikashkooli
- Internal Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Biochemistry in Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farhad Koohpeyma
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Medical Physiology, Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Li S, Xiong Z, Lan Y, Zheng Q, Zhang L, Xu X. Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs. Int J Mol Med 2024; 54:67. [PMID: 38940332 PMCID: PMC11232664 DOI: 10.3892/ijmm.2024.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein‑protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription‑quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co‑localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro‑computed tomography (micro‑CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)‑cyclic guanosine monophosphate (cGMP)‑protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro‑CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt‑related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO‑cGMP‑PKG signaling pathway through its binding to AKT.
Collapse
Affiliation(s)
- Shenghong Li
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenqiang Xiong
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuxin Lan
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qian Zheng
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
5
|
Pal China S, Kalyanaraman H, Zhuang S, Cabriales JA, Sah RL, Pilz RB. Protein kinase G2 activation restores Wnt signaling and bone mass in glucocorticoid-induced osteoporosis in mice. JCI Insight 2024; 9:e175089. [PMID: 38885330 PMCID: PMC11383176 DOI: 10.1172/jci.insight.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Osteoporotic fractures are a major complication of long-term glucocorticoid therapy. Glucocorticoids transiently increase bone resorption, but they predominantly inhibit bone formation and induce osteocyte apoptosis, leading to bone loss. Current treatments of glucocorticoid-induced osteoporosis aim mainly at reducing bone resorption and are, therefore, inadequate. We previously showed that signaling via the NO/cGMP/protein kinase G pathway plays a key role in skeletal homeostasis. Here, we show that pharmacological PKG activation with the guanylyl cyclase-1 activator cinaciguat or expression of a constitutively active, mutant PKG2R242Q restored proliferation, differentiation, and survival of primary mouse osteoblasts exposed to dexamethasone. Cinaciguat treatment of WT mice or osteoblast-specific expression of PKG2R242Q in transgenic mice prevented dexamethasone-induced loss of cortical bone mass and strength. These effects of cinaciguat and PKG2R242Q expression were due to preserved bone formation parameters and osteocyte survival. The basis for PKG2's effects appeared to be through recovery of Wnt/β-catenin signaling, which was suppressed by glucocorticoids but critical for proliferation, differentiation, and survival of osteoblast-lineage cells. Cinaciguat reduced dexamethasone activation of osteoclasts, but this did not occur in the PKG2R242Q transgenic mice, suggesting a minor role in osteoprotection. We propose that existing PKG-targeting drugs could represent a novel therapeutic approach to prevent glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | - Robert L Sah
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | | |
Collapse
|
6
|
Tao ZS, Shen CL. Favorable osteogenic activity of vericiguat doped in β-tricalcium phosphate: In vitro and in vivo studies. J Biomater Appl 2024; 38:1073-1086. [PMID: 38569649 DOI: 10.1177/08853282241245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, β-tricalcium phosphate (β-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of β-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Kalyanaraman H, Casteel DE, China SP, Zhuang S, Boss GR, Pilz RB. A plasma membrane-associated form of the androgen receptor enhances nuclear androgen signaling in osteoblasts and prostate cancer cells. Sci Signal 2024; 17:eadi7861. [PMID: 38289986 PMCID: PMC10916501 DOI: 10.1126/scisignal.adi7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Androgen binding to the androgen receptor (AR) in the cytoplasm induces the AR to translocate to the nucleus, where it regulates the expression of target genes. Here, we found that androgens rapidly activated a plasma membrane-associated signaling node that enhanced nuclear AR functions. In murine primary osteoblasts, dihydrotestosterone (DHT) binding to a membrane-associated form of AR stimulated plasma membrane-associated protein kinase G type 2 (PKG2), leading to the activation of multiple kinases, including ERK. Phosphorylation of AR at Ser515 by ERK increased the nuclear accumulation and binding of AR to the promoter of Ctnnb1, which encodes the transcription factor β-catenin. In male mouse osteoblasts and human prostate cancer cells, DHT induced the expression of Ctnnb1 and CTNN1B, respectively, as well as β-catenin target genes, stimulating the proliferation, survival, and differentiation of osteoblasts and the proliferation of prostate cancer cells in a PKG2-dependent fashion. Because β-catenin is a master regulator of skeletal homeostasis, these results explain the reported male-specific osteoporotic phenotype of mice lacking PKG2 in osteoblasts and imply that PKG2-dependent AR signaling is essential for maintaining bone mass in vivo. Our results suggest that widely used pharmacological PKG activators, such as sildenafil, could be beneficial for male and estrogen-deficient female patients with osteoporosis but detrimental in patients with prostate cancer.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Jia A, Jiang H, Liu W, Chen P, Xu Q, Zhang R, Sun J. Novel application potential of cinaciguat in the treatment of mixed hyperlipidemia through targeting PTL/NPC1L1 and alleviating intestinal microbiota dysbiosis and metabolic disorders. Pharmacol Res 2023; 194:106854. [PMID: 37460003 DOI: 10.1016/j.phrs.2023.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Mixed hyperlipidemia, characterized by high levels of triglycerides and cholesterol, is a key risk factor leading to atherosclerosis and other cardiovascular diseases. Existing clinical drugs usually only work on a single indicator, decreasing either triglyceride or cholesterol levels. Developing dual-acting agents that reduce both triglycerides and cholesterol remains a great challenge. Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as crucial proteins in the transport of triglycerides and cholesterol. Here, cinaciguat, a known agent used in the treatment of acute decompensated heart failure, was identified as a potent dual inhibitor targeting PTL and NPC1L1. We presented in vitro evidence from surface plasmon resonance analysis that cinaciguat interacted with PTL and NPC1L1. Furthermore, cinaciguat exhibited potent PTL-inhibition activity. Fluorescence-labeled cholesterol uptake analysis and confocal imaging showed that cinaciguat effectively inhibited cholesterol uptake. In vivo evaluation showed that cinaciguat significantly reduced the plasma levels of triglycerides and cholesterol, and effectively alleviated high-fat diet-induced intestinal microbiota dysbiosis and metabolic disorders. These results collectively suggest that cinaciguat has the potential to be further developed for the therapy of mixed hyperlipidemia.
Collapse
Affiliation(s)
- Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Jufeng Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
9
|
Kalyanaraman H, China SP, Cabriales JA, Moininazeri J, Casteel DE, Garcia JJ, Wong VW, Chen A, Sah RL, Boss GR, Pilz RB. Protein Kinase G2 Is Essential for Skeletal Homeostasis and Adaptation to Mechanical Loading in Male but Not Female Mice. J Bone Miner Res 2023; 38:171-185. [PMID: 36371651 PMCID: PMC9825661 DOI: 10.1002/jbmr.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/β-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/β-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/β-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Justin A. Cabriales
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jafar Moininazeri
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julian J. Garcia
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Van W. Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Wagner BM, Robinson JW, Prickett TCR, Espiner EA, Khosla S, Gaddy D, Suva LJ, Potter LR. Guanylyl Cyclase-B Dependent Bone Formation in Mice is Associated with Youth, Increased Osteoblasts, and Decreased Osteoclasts. Calcif Tissue Int 2022; 111:506-518. [PMID: 35947145 DOI: 10.1007/s00223-022-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
C-type natriuretic peptide (CNP) activation of guanylyl cyclase-B (GC-B) catalyzes the synthesis of cGMP in chondrocytes and osteoblasts. Elevated cGMP stimulates long bone growth, and inactivating mutations in CNP or GC-B reduce cGMP, which causes dwarfism. GC-B7E/7E mice that express a GC-B mutant that cannot be inactivated by dephosphorylation exhibit increased CNP-dependent GC-B activity, which increases bone length, as well as bone mass and strength. Importantly, how GC-B increases bone mass is not known. Here, we injected 12-week-old, wild type mice once daily for 28 days with or without BMN-111 (Vosoritide), a proteolytically resistant CNP analog. We found that BMN-111 treated mice had elevated levels of osteocalcin and collagen 1 C-terminal telopeptide (CTX) as well as increased osteoblasts and osteoclasts. In BMN-111 injected mice, tibial mRNAs for Rank ligand and osteoprotegrin were increased and decreased, respectively, whereas sclerostin mRNA was elevated 400-fold, consistent with increased osteoclast activity and decreased osteoblast activity. Mineral apposition rates and trabecular bone mass were not elevated in response to BMN-111. Because 9-week-old male GC-B7E/7E mice have increased bone mass but do not exhibit increased mineral apposition rates, we examined 4-week-old male GC-B7E/7E mice and found that these animals had increased serum osteocalcin, but not CTX. Importantly, tibias from these mice had 37% more osteoblasts, 26% fewer osteoclasts as well as 36% and 40% higher mineral apposition and bone formation rates, respectively. We conclude that GC-B-dependent bone formation is coupled to an early juvenile process that requires both increased osteoblasts and decreased osteoclasts.
Collapse
Affiliation(s)
- Brandon M Wagner
- Departments of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jerid W Robinson
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN, USA
| | | | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dana Gaddy
- Departments of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Departments of Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Lincoln R Potter
- Departments of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Kaneko K, Miyamoto Y, Ida T, Morita M, Yoshimura K, Nagasaki K, Toba K, Sugisaki R, Motohashi H, Akaike T, Chikazu D, Kamijo R. 8-Nitro-cGMP suppresses mineralization by mouse osteoblasts. J Clin Biochem Nutr 2022; 71:191-197. [PMID: 36447486 PMCID: PMC9701590 DOI: 10.3164/jcbn.21-129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/14/2022] [Indexed: 11/20/2023] Open
Abstract
Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1β (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 μmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.
Collapse
Affiliation(s)
- Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kei Nagasaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Orthopedics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Kazuki Toba
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
12
|
Sun K, Kong F, Lin F, Li F, Sun J, Ren C, Zheng B, Shi J. Vericiguat Modulates Osteoclast Differentiation and Bone Resorption via a Balance between VASP and NF- κB Pathways. Mediators Inflamm 2022; 2022:1625290. [PMID: 35757109 PMCID: PMC9225892 DOI: 10.1155/2022/1625290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Bone homeostasis has been a dynamic equilibrium between osteoclasts (OCs) and osteoblasts (OBs). However, excessive activation of OCs could disturb the bone homeostasis. As a result, effective medical interventions for patients are greatly demanding. NO/guanylate cyclase (GC)/cGMP signaling cascade has been previously reported to regulate bone metabolism, and GC plays a significantly critical role. Vericiguat, as a novel oral soluble guanylate cyclase (sGC) stimulator, has been firstly reported in 2020 to treat patients with heart failure. Nevertheless, the biological effects of Vericiguat on the function of OCs have not yet been explored. In this present study, we found that Vericiguat with the concentration between 0 and 8 μM was noncytotoxic to bone marrow-derived monocyte-macrophage lineage (BMMs). Vericiguat could enhance the differentiation of OCs at concentration of 500 nM, whereas it inhibited OC differentiation at 8 μM. In addition, Vericiguat also showed dual effects on OC fusion and bone resorption in a dose-dependent manner. Furthermore, a molecular assay suggested that the dual regulatory effects of Vericiguat on OCs were mediated by the bidirectional activation of the IκB-α/NF-κB signaling pathway. Taken together, our present study demonstrated the dual effects of Vericiguat on the formation of functional OCs. The regulatory effects of Vericiguat on OCs were achieved by the bidirectional modulation of the IκB-α/NF-κB signaling pathway, and a potential balance between the IκB-α/NF-κB signaling pathway and sGC/cGMP/VASP may exist.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Feng Lin
- Department of Orthopedic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Fudong Li
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Changzhen Ren
- Department of General Practice, The 960th Hospital of PLA, Jinan, China
| | - Bing Zheng
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
13
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
14
|
Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The Role of Nitric Oxide in Stem Cell Biology. Antioxidants (Basel) 2022; 11:497. [PMID: 35326146 PMCID: PMC8944807 DOI: 10.3390/antiox11030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous biomolecule endogenously synthesized with an essential role in embryonic development and several physiological functions, such as regulating mitochondrial respiration and modulation of the immune response. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies. In this sense, the molecular mechanisms underlying stemness regulation by NO have been studied intensively over the current years. Recently, we have reported the role of low NO as a hypoxia-like inducer in pluripotent stem cells (PSCs), which supports using this molecule to maintain pluripotency under normoxic conditions. In this review, we stress the role of NO levels on stem cells (SCs) fate as a new approach for potential cell therapy strategies. Furthermore, we highlight the recent uses of NO in regenerative medicine due to their properties regulating SCs biology.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain;
- Spanish Biomedical Research Network Centre in Oncology-CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (G.M.C.); (F.J.B.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Role of nitric oxide in type 1 diabetes-induced osteoporosis. Biochem Pharmacol 2021; 197:114888. [PMID: 34968494 DOI: 10.1016/j.bcp.2021.114888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D)-induced osteoporosis is characterized by decreased bone mineral density, bone quality, rate of bone healing, bone formation, and increased bone resorption. Patients with T1D have a 2-7-fold higher risk of osteoporotic fracture. The mechanisms leading to increased risk of osteoporotic fracture in T1D include insulin deficiency, hyperglycemia, insulin resistance, lower insulin-like growth factor-1, hyperglycemia-induced oxidative stress, and inflammation. In addition, a higher probability of falling, kidney dysfunction, weakened vision, and neuropathy indirectly increase the risk of osteoporotic fracture in T1D patients. Decreased nitric oxide (NO) bioavailability contributes to the pathophysiology of T1D-induced osteoporotic fracture. This review discusses the role of NO in osteoblast-mediated bone formation and osteoclast-mediated bone resorption in T1D. In addition, the mechanisms involved in reduced NO bioavailability and activity in type 1 diabetic bones as well as NO-based therapy for T1D-induced osteoporosis are summarized. Available data indicates that lower NO bioavailability in diabetic bones is due to disruption of phosphatidylinositol 3‑kinase/protein kinase B/endothelial NO synthases and NO/cyclic guanosine monophosphate/protein kinase G signaling pathways. Thus, NO bioavailability may be boosted directly or indirectly by NO donors. As NO donors with NO-like effects in the bone, inorganic nitrate and nitrite can potentially be used as novel therapeutic agents for T1D-induced osteoporosis. Inorganic nitrites and nitrates can decrease the risk for osteoporotic fracture probably directly by decreasing osteoclast activity, decreasing fat accumulation in the marrow cavity, increasing osteoblast activity, and increasing bone perfusion or indirectly, by improving hyperglycemia, insulin resistance, and reducing body weight.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Vescini F, Chiodini I, Falchetti A, Palermo A, Salcuni AS, Bonadonna S, De Geronimo V, Cesareo R, Giovanelli L, Brigo M, Bertoldo F, Scillitani A, Gennari L. Management of Osteoporosis in Men: A Narrative Review. Int J Mol Sci 2021; 22:ijms222413640. [PMID: 34948434 PMCID: PMC8705761 DOI: 10.3390/ijms222413640] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Male osteoporosis is a still largely underdiagnosed pathological condition. As a consequence, bone fragility in men remains undertreated mainly due to the low screening frequency and to controversies in the bone mineral density (BMD) testing standards. Up to the 40% of overall osteoporotic fractures affect men, in spite of the fact that women have a significant higher prevalence of osteoporosis. In addition, in males, hip fractures are associated with increased morbidity and mortality as compared to women. Importantly, male fractures occur about 10 years later in life than women, and, therefore, due to the advanced age, men may have more comorbidities and, consequently, their mortality is about twice the rate in women. Gender differences, which begin during puberty, lead to wider bones in males as compared with females. In men, follicle-stimulating hormones, testosterone, estrogens, and sex hormone-binding levels, together with genetic factors, interact in determining the peak of bone mass, BMD maintenance, and lifetime decrease. As compared with women, men are more frequently affected by secondary osteoporosis. Therefore, in all osteoporotic men, a complete clinical history should be collected and a careful physical examination should be done, in order to find clues of a possible underlying diseases and, ultimately, to guide laboratory testing. Currently, the pharmacological therapy of male osteoporosis includes aminobisphosphonates, denosumab, and teriparatide. Hypogonadal patients may be treated with testosterone replacement therapy. Given that the fractures related to mortality are higher in men than in women, treating male subjects with osteoporosis is of the utmost importance in clinical practice, as it may impact on mortality even more than in women.
Collapse
Affiliation(s)
- Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia, 33100 Udine, Italy; (F.V.); (A.S.S.)
| | - Iacopo Chiodini
- Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (A.F.); (S.B.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy;
- Correspondence:
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (A.F.); (S.B.)
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Antonio Stefano Salcuni
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia, 33100 Udine, Italy; (F.V.); (A.S.S.)
| | - Stefania Bonadonna
- Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (A.F.); (S.B.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy;
| | | | - Roberto Cesareo
- Center of Metabolic Disease, S.M. Goretti Hospital, 04100 Latina, Italy;
| | - Luca Giovanelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy;
| | - Martina Brigo
- Department of Medicine, University of Verona, 37129 Verona, Italy; (M.B.); (F.B.)
| | - Francesco Bertoldo
- Department of Medicine, University of Verona, 37129 Verona, Italy; (M.B.); (F.B.)
| | - Alfredo Scillitani
- Unit of Endocrinology, Ospedale “Casa Sollievo della Sofferenza”, IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
17
|
Längst N, Adler J, Schweigert O, Kleusberg F, Cruz Santos M, Knauer A, Sausbier M, Zeller T, Ruth P, Lukowski R. Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). Int J Mol Sci 2021; 22:9925. [PMID: 34576086 PMCID: PMC8466836 DOI: 10.3390/ijms22189925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.
Collapse
Affiliation(s)
- Natalie Längst
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Olga Schweigert
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Felicia Kleusberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Amelie Knauer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Matthias Sausbier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Tanja Zeller
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| |
Collapse
|
18
|
Yan T, Kong Y, Fan W, Kang J, Chen H, He H, Huang F. Expression of nitric oxide synthases in rat odontoblasts and the role of nitric oxide in odontoblastic differentiation of rat dental papilla cells. Dev Growth Differ 2021; 63:354-371. [PMID: 34411285 DOI: 10.1111/dgd.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 12/01/2022]
Abstract
As precursor cells of odontoblasts, dental papilla cells (DPCs) form the dentin-pulp complex during tooth development. Nitric oxide (NO) regulates the functions of multiple cells and organ tissues, including stem cell differentiation and bone formation. In this paper, we explored the involvement of NO in odontoblastic differentiation. We verified the expression of NO synthase (NOS) in rat odontoblasts by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining and immunohistochemistry in vivo. The expression of all three NOS isoforms in rat DPCs was confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting in vitro. The expression of neuronal NOS and endothelial NOS was upregulated during the odontoblastic differentiation of DPCs. Inhibition of NOS function by NOS inhibitor l-NG -monomethyl arginine (L-NMMA) resulted in reduced formation of mineralized nodules and expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP1) during DPC differentiation. The NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.1, 1, 10, and 100 μM) promoted the viability of DPCs. Extracellular matrix mineralization and odontogenic markers expression were elevated by SNAP at low concentrations (0.1, 1, and 10 μM) and suppressed at high concentration (100 μM). Blocking the generation of cyclic guanosine monophosphate (cGMP) with 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ) abolished the positive influence of SNAP on the odontoblastic differentiation of DPCs. These findings demonstrate that NO regulates the odontoblastic differentiation of DPCs, thereby influencing dentin formation and tooth development.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu Kong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Kang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haoling Chen
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
20
|
Pharmic Activation of PKG2 Alleviates Diabetes-Induced Osteoblast Dysfunction by Suppressing PLC β1-Ca 2+-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552530. [PMID: 34221234 PMCID: PMC8225424 DOI: 10.1155/2021/5552530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
As reported in our previous study, cinaciguat can improve implant osseointegration in type 2 diabetes mellitus (T2DM) rats by reactivating type 2 cGMP-dependent protein kinase (PKG2), but the downstream mechanisms remain unclear. In the present study, we investigated the favorable effect of cinaciguat on primary rat osteoblast, which was cultivated on titanium disc under vitro T2DM conditions (25 mM glucose and 200 μM palmitate), and clarified the therapeutic mechanism by proteomic analysis. The results demonstrated that T2DM medium caused significant downregulation of PKG2 and induced obvious osteoblast dysfunction. And overexpression of PKG2 by lentivirus and cinaciguat could promote cell proliferation, adhesion, and differentiation, leading to decreased osteoblasts injury. Besides, proteomic analysis revealed the interaction between PKG2 and phospholipase Cβ1 (PLCβ1) in the cinaciguat addition group, and we further verified that upregulated PKG2 by cinaciguat could inhibit the activation of PLCβ1, then relieve intracellular calcium overload, and suppress endoplasmic reticulum (ER) stress to ameliorate osteoblast functions under T2DM condition. Collectively, these findings provided the first detailed mechanisms responsible for cinaciguat provided a favorable effect on promoting osseointegration in T2DM and demonstrated a new insight that diabetes mellitus-induced the aberrations in PKG2-PLCβ1-Ca2+-ER stress pathway was one underlying mechanism for poor osseointegration.
Collapse
|
21
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Diabetoporosis: Role of nitric oxide. EXCLI JOURNAL 2021; 20:764-780. [PMID: 34121973 PMCID: PMC8192884 DOI: 10.17179/excli2021-3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be considered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteoporosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and increased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
- PhD Program in Biology, City University of New York Graduate Center, New York,NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Kim SM, Yuen T, Iqbal J, Rubin MR, Zaidi M. The NO-cGMP-PKG pathway in skeletal remodeling. Ann N Y Acad Sci 2021; 1487:21-30. [PMID: 32860248 PMCID: PMC7914295 DOI: 10.1111/nyas.14486] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway plays a critical role in skeletal homeostasis. Preclinical data using NO and its donors and genetically modified mice demonstrated that NO was required in bone remodeling and partly mediated the anabolic effects of mechanical stimuli and estrogen. However, the off-target effects and tachyphylaxis of NO limit its long-term use, and previous clinical trials using organic nitrates for osteoporosis have been disappointing. Among the other components in the downstream pathway, targeting cGMP-specific phosphodiesterase to promote the NO-cGMP-PKG signal is a viable option. There are growing in vitro and in vivo data that, among many other PDE families, PDE5A is highly expressed in skeletal tissue, and inhibiting PDE5A using currently available PDE5A inhibitors might increase the osteoanabolic signal and protect the skeleton. These preclinical data open the possibility of repurposing PDE5A inhibitors for treating osteoporosis. Further research is needed to address the primary target bone cell of PDE5A inhibition, the contribution of direct and indirect effects of PDE5A inhibition, and the pathophysiological changes in skeletal PDE5A expression in aging and hypogonadal animal models.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mishaela R Rubin
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Korkmaz Y, Puladi B, Galler K, Kämmerer PW, Schröder A, Gölz L, Sparwasser T, Bloch W, Friebe A, Deschner J. Inflammation in the Human Periodontium Induces Downregulation of the α 1- and β 1-Subunits of the sGC in Cementoclasts. Int J Mol Sci 2021; 22:ijms22020539. [PMID: 33430449 PMCID: PMC7827426 DOI: 10.3390/ijms22020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-7247
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93042 Regensburg, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany;
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
25
|
Kim SM, Taneja C, Perez-Pena H, Ryu V, Gumerova A, Li W, Ahmad N, Zhu LL, Liu P, Mathew M, Korkmaz F, Gera S, Sant D, Hadelia E, Ievleva K, Kuo TC, Miyashita H, Liu L, Tourkova I, Stanley S, Lizneva D, Iqbal J, Sun L, Tamler R, Blair HC, New MI, Haider S, Yuen T, Zaidi M. Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. Proc Natl Acad Sci U S A 2020; 117:14386-14394. [PMID: 32513693 PMCID: PMC7321982 DOI: 10.1073/pnas.2000950117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine β-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Charit Taneja
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Helena Perez-Pena
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Wenliang Li
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Naseer Ahmad
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ling-Ling Zhu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peng Liu
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mehr Mathew
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sakshi Gera
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Damini Sant
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elina Hadelia
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kseniia Ievleva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Reproductive Health, Scientific Center for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russian Federation
| | - Tan-Chun Kuo
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hirotaka Miyashita
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Li Liu
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Irina Tourkova
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah Stanley
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daria Lizneva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Li Sun
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ronald Tamler
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harry C Blair
- Department of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Maria I New
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom
| | - Tony Yuen
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
26
|
Robinson JW, Blixt NC, Norton A, Mansky KC, Ye Z, Aparicio C, Wagner BM, Benton AM, Warren GL, Khosla S, Gaddy D, Suva LJ, Potter LR. Male mice with elevated C-type natriuretic peptide-dependent guanylyl cyclase-B activity have increased osteoblasts, bone mass and bone strength. Bone 2020; 135:115320. [PMID: 32179168 DOI: 10.1016/j.bone.2020.115320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
C-type natriuretic peptide (CNP) activation of guanylyl cyclase (GC)-B, also known as NPR2, stimulates cGMP synthesis and bone elongation. CNP activation requires the phosphorylation of multiple GC-B residues and dephosphorylation inactivates the receptor. GC-B7E/7E knockin mice, expressing a glutamate-substituted, "pseudophosphorylated," form of GC-B, exhibit increased CNP-dependent GC activity. Since mutations that constitutively activate GC-B in the absence of CNP result in low bone mineral density in humans, we determined the skeletal phenotype of 9-week old male GC-B7E/7E mice. Unexpectedly, GC-B7E/7E mice have significantly greater tibial and L5 vertebral trabecular bone volume fraction, tibial trabecular number, and tibial bone mineral density. Cortical cross-sectional area, cortical thickness, periosteal diameter and cortical cross-sectional moment of inertia were also significantly increased in GC-B7E/7E tibiae. Three-point bending measurements demonstrated that the mutant tibias and femurs had greater ultimate load, stiffness, energy to ultimate load, and energy to failure. No differences in microhardness indicated similar bone quality at the tissue level between the mutant and wildtype bones. Procollagen 1 N-terminal propeptide and osteocalcin were elevated in serum, and osteoblast number per bone perimeter and osteoid width per bone perimeter were elevated in tibias from the mutant mice. In contrast to mutations that constitutively activate GC-B, we report that mutations that enhance GC-B activity only in the presence of its natural ligand, increase bone mass, bone strength, and the number of active osteoblasts at the bone surface.
Collapse
Affiliation(s)
- Jerid W Robinson
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas C Blixt
- Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Andrew Norton
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kim C Mansky
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhou Ye
- Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Brandon M Wagner
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew M Benton
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Lincoln R Potter
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Pal S, Rashid M, Singh SK, Porwal K, Singh P, Mohamed R, Gayen JR, Wahajuddin M, Chattopadhyay N. Skeletal restoration by phosphodiesterase 5 inhibitors in osteopenic mice: Evidence of osteoanabolic and osteoangiogenic effects of the drugs. Bone 2020; 135:115305. [PMID: 32126313 DOI: 10.1016/j.bone.2020.115305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides and thereby regulate diverse cellular functions. The reports on the skeletal effects of PDE inhibitors are conflicting. Here, we screened 17 clinically used non-xanthine PDE inhibitors (selective and non-selective) using mouse calvarial osteoblasts (MCO) where the readout was osteoblast differentiation. From this screen, we identified sildenafil and vardenafil (both PDE5 inhibitors) having the least osteogenic EC50. Both drugs significantly increased vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) expressions in MCO and the nitric oxide synthase inhibitor L-NAME completely blocked VEGF expression induced by these drugs. Sunitinib, a tyrosine receptor kinase inhibitor that also blocks VEGFR2 blocked sildenafil-/vardenafil-induced osteoblast differentiation. At half of their human equivalent doses, i.e. 6.0 mg/kg sildenafil and 2.5 mg/kg vardenafil, the maximum bone marrow level of sildenafil was 32% and vardenafil was 21% of their blood levels. At these doses, both drugs enhanced bone regeneration at the femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX mice. Furthermore, both drugs increased surface referent bone formation and serum bone formation marker (P1NP) without affecting the resorption marker (CTX-1). Both drugs increased the expression of VEGF and VEGFR2 in bones and osteoblasts and increased skeletal vascularity. Sunitinib completely blocked the bone restorative and vascular effects of sildenafil and vardenafil in OVX mice. Taken together, our study suggested that sildenafil and vardenafil at half of their adult human doses completely reversed osteopenia in OVX mice by an osteogenic mechanism that was associated with enhanced skeletal vascularity.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Mamunur Rashid
- Pharmaceutics & Pharmacokinetics Division, CDRI-CSIR, Lucknow 226031, India
| | | | - Konica Porwal
- Division of Endocrinology, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Priya Singh
- Division of Endocrinology, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Riyazuddin Mohamed
- Pharmaceutics & Pharmacokinetics Division, CDRI-CSIR, Lucknow 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CDRI-CSIR, Lucknow 226031, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India.
| |
Collapse
|
28
|
Gennari L, Merlotti D, Falchetti A, Eller Vainicher C, Cosso R, Chiodini I. Emerging therapeutic targets for osteoporosis. Expert Opin Ther Targets 2020; 24:115-130. [PMID: 32050822 DOI: 10.1080/14728222.2020.1726889] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Osteoporosis is a chronic, skeletal disorder characterized by compromised bone strength and increased fracture risk; it affects 50% of women and 20% of men. In the past two decades, there have been substantial improvements in the pharmacotherapy of osteoporosis which have yielded potent inhibitors of bone resorption or stimulators of bone formation.Areas covered: This review discusses newly identified targets and pathways and conceptual approaches to the prevention of multiple age-related disorders. Furthermore, it summarizes existing therapeutic strategies for osteoporosis.Expert opinion: Our enhanced understanding of bone biology and the reciprocal interactions between bone and other tissues have allowed the identification of new targets that may facilitate the development of novel drugs. These drugs will hopefully achieve the uncoupling of bone formation from resorption and possibly exert a dual anabolic and antiresorptive effect on bone. Alas, limitations regarding adherence, efficacy on nonvertebral fracture prevention and the long-term adverse events still exist for currently available therapeutics. Moreover, the efficacy of most agents is limited by the tight coupling of osteoblasts and osteoclasts; hence the reduction of bone resorption invariably reduces bone formation, and vice versa. This field is very much 'a work in progress.'
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alberto Falchetti
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Cristina Eller Vainicher
- Endocrinology and Diabetology Units, Department of Medical Sciences and Community, Fondazione Ca'Granda Ospedale Maggiore Policlinico IRCCS, Milan, Italy
| | - Roberta Cosso
- EndOsMet Villa Donatello Private Hospital, Florence, Italy
| | - Iacopo Chiodini
- Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
29
|
Targeting heme-oxidized soluble guanylate cyclase to promote osteoblast function. Drug Discov Today 2019; 25:422-429. [PMID: 31846712 DOI: 10.1016/j.drudis.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
The enzyme soluble guanylate cyclase (sGC) plays an essential part in the nitric oxide (NO) signaling pathway by binding to the prosthetic heme group; thereby catalyzing the synthesis of cyclic guanosine monophosphate (cGMP)-dependent protein kinases. Impaired NO-sGC-cGMP signaling could lead to osteoblast apoptosis by mechanisms involving the oxidative-stress-induced shift of the redox state of the reduced heme to oxidized sGC, leading to diminished heme binding to the enzyme and rendering the sGC unresponsive to NO. Targeting oxidized sGC to enhance cGMP production could restore proliferation and differentiation of osteoblasts into osteocytes. Here, the potential role of sGC activators of an oxidized or heme-free sGC as a target for promoting osteoblast function is reviewed and strategies for delivering drugs to bone are identified.
Collapse
|
30
|
Jia T, Wang YN, Zhang J, Hao X, Zhang D, Xu X. Cinaciguat in combination with insulin induces a favorable effect on implant osseointegration in type 2 diabetic rats. Biomed Pharmacother 2019; 118:109216. [PMID: 31319371 DOI: 10.1016/j.biopha.2019.109216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
The osseointegration process of implant is seriously impaired in type 2 diabetes mellitus (T2DM) that causes high failure rate, and insufficiency exists in current insulin therapy, creating a demand for new bone-synergistic agent. Cinaciguat, a novel type of soluble guanylate cyclase (sGC) activator, plays a vital role in glucose metabolism, inflammation control and bone regeneration. We hypothesized that the combined application of cinaciguat and insulin could reverse poor implant osseointegration in diabetes. To test this hypothesis, streptozotocin-induced diabetic rats were placed implants in the femur, and divided into five groups: control, T2DM, cinaciguat-treated T2DM (7 μg/kg), insulin-treated T2DM (12 IU/kg), cinaciguat plus insulin combination-treated T2DM (7 μg/kg and 12 IU/kg respectively), according to different treatment received. The weight and glucose levels of rats were evaluated at fixed times, and plasma level of cyclic guanosine monophosphate (cGMP) was determined before euthanasia. Three months after therapy, the femurs were isolated for pull-out test, environmental scanning electron microscope observation, microscopic computerized tomography evaluation and various histology analysis. Results revealed that diabetic rats showed the highest blood glucose level and lowest cGMP content, which led to the worst structural damage and least osseointegration. Combined treatment could attenuate the diabetes induced hyperglycemia to be normal, restore the cGMP content, protein kinase G II (PKG II) expression, phosphodiesterase-5 (PDE5) activity and ameliorate the mechanical strength, the impaired bone microarchitecture and osseointegration to the highest level. Meanwhile, monotreatment (insulin or cinaciguat) also showed restorative effect, but less. Our findings demonstrated that the cGMP/PKG II signaling pathway activated by cinaciguat mediated the favorable effects of the combined application on improving implant fixation under T2DM condition.
Collapse
Affiliation(s)
- Tingting Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Ya-Nan Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jiajia Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Xinyu Hao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China; Department of Implantology, School of Stomatology, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
31
|
Pan BL, Tong ZW, Li SD, Wu L, Liao JL, Yang YX, Li HH, Dai YJ, Li JE, Pan L. Decreased microRNA-182-5p helps alendronate promote osteoblast proliferation and differentiation in osteoporosis via the Rap1/MAPK pathway. Biosci Rep 2018; 38:BSR20180696. [PMID: 30413613 PMCID: PMC6435538 DOI: 10.1042/bsr20180696] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis (OP) is a serious health problem that contributes to osteoporotic structural damage and bone fragility. MicroRNAs (miRNAs) can exert important functions over bone endocrinology. Therefore, it is of substantial significance to clarify the expression and function of miRNAs in bone endocrine physiology and pathology to improve the potential therapeutic value for metabolism-related bone diseases. We explored the effect of microRNA-182-5p (miR-182-5p) on osteoblast proliferation and differentiation in OP rats after alendronate (ALN) treatment by targeting adenylyl cyclase isoform 6 (ADCY6) through the Rap1/mitogen-activated protein kinase (MAPK) signaling pathway. Rat models of OP were established to observe the effect of ALN on OP, and the expression of miR-182-5p, ADCY6 and the Rap1/MAPK signaling pathway-related genes was determined. To determine the roles of miR-182-5p and ADCY6 in OP after ALN treatment, the relationship between miR-182 and ADCY6 was initially verified. Osteoblasts were subsequently extracted and transfected with a miR-182-5p inhibitor, miR-182-5p mimic, si-ADCY6 and the MAPK signaling pathway inhibitor U0126. Cell proliferation, apoptosis and differentiation were also determined. ALN treatment was able to ease the symptoms of OP. miR-182-5p negatively targeted ADCY6 to inhibit the Rap1/MAPK signaling pathway. Cells transfected with miR-182 inhibitor decreased the expression of ALP, BGP and COL I, which indicated that the down-regulation of miR-182-5p promoted cell differentiation and cell proliferation and inhibited cell apoptosis. In conclusion, the present study shows that down-regulated miR-182-5p promotes the proliferation and differentiation of osteoblasts in OP rats through Rap1/MAPK signaling pathway activation by up-regulating ADCY6, which may represent a novel target for OP treatment.
Collapse
Affiliation(s)
- Bao-Long Pan
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Zong-Wu Tong
- Department of Nephrology, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Shu-De Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Kunming Medical University, Kunming 650500, P.R. China
| | - Ling Wu
- Department of Quality Management, Central Blood Station of Yuxi City, Yuxi 653100, P.R. China
| | - Jun-Long Liao
- Department of Rehabilitation Medicine, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Yu-Xi Yang
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Hu-Huan Li
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Yan-Juan Dai
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Jun-E Li
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Li Pan
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| |
Collapse
|
32
|
Nagayama K, Miyamoto Y, Kaneko K, Yoshimura K, Sasa K, Akaike T, Fujii S, Izumida E, Uyama R, Chikazu D, Maki K, Kamijo R. Production of 8-nitro-cGMP in osteocytic cells and its upregulation by parathyroid hormone and prostaglandin E 2. In Vitro Cell Dev Biol Anim 2018; 55:45-51. [PMID: 30397855 DOI: 10.1007/s11626-018-0304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Osteocytes regulate bone remodeling, especially in response to mechanical loading and unloading of bone, with nitric oxide reported to play an important role in that process. In the present study, we found that 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a second messenger of nitric oxide in various types of cells, was produced by osteocytes in bone tissue as well as cultured osteocytic Ocy454 cells. The amount of 8-nitro-cGMP in Ocy454 cells increased during incubation with parathyroid hormone or prostaglandin E2, both of which are known to upregulate receptor activator of nuclear factor-κB ligand (RANKL) mRNA expression in osteocytes. On the other hand, exogenous 8-nitro-cGMP did not have effects on either the presence or absence of these bioactive substances. Furthermore, neither an inhibitor of nitric oxide synthase nor 8-bromo-cGMP, a cell-permeable analog of cGMP, showed remarkable effects on mRNA expression of sclerostin or RANKL. These results indicate that neither nitric oxide nor its downstream compounds, including 8-nitro-cGMP, alone are sufficient for induction of functional changes in osteocytes.
Collapse
Affiliation(s)
- Kazuhiro Nagayama
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Shinjuku, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eri Izumida
- Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Risa Uyama
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Shinjuku, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Shinagawa, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
33
|
Wang L, Jia H, Tower RJ, Levine MA, Qin L. Analysis of short-term treatment with the phosphodiesterase type 5 inhibitor tadalafil on long bone development in young rats. Am J Physiol Endocrinol Metab 2018; 315:E446-E453. [PMID: 29920215 PMCID: PMC6230700 DOI: 10.1152/ajpendo.00130.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic GMP (cGMP) is an important intracellular regulator of endochondral bone growth and skeletal remodeling. Tadalafil, an inhibitor of the phosphodiesterase (PDE) type 5 (PDE5) that specifically hydrolyzes cGMP, is increasingly used to treat children with pulmonary arterial hypertension (PAH), but the effect of tadalafil on bone growth and strength has not been previously investigated. In this study, we first analyzed the expression of transcripts encoding PDEs in primary cultures of chondrocytes from newborn rat epiphyses. We detected robust expression of PDE5 as the major phosphodiesterase hydrolyzing cGMP. Time-course experiments showed that C-type natriuretic peptide increased intracellular levels of cGMP in primary chondrocytes with a peak at 2 min, and in the presence of tadalafil the peak level of intracellular cGMP was 37% greater ( P < 0.01) and the decline was significantly attenuated. Next, we treated 1-mo-old Sprague Dawley rats with vehicle or tadalafil for 3 wk. Although 10 mg·kg-1·day-1 tadalafil led to a significant 52% ( P < 0.01) increase in tissue levels of cGMP and a 9% reduction ( P < 0.01) in bodyweight gain, it did not alter long bone length, cortical or trabecular bone properties, and histological features. In conclusion, our results indicate that PDE5 is highly expressed in growth plate chondrocytes, and short-term tadalafil treatment of growing rats at doses comparable to those used in children with PAH has neither obvious beneficial effect on long bone growth nor any observable adverse effect on growth plate structure and trabecular and cortical bone structure.
Collapse
Affiliation(s)
- Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University , Jinan , China
| | - Haoruo Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Ramdani G, Schall N, Kalyanaraman H, Wahwah N, Moheize S, Lee JJ, Sah RL, Pfeifer A, Casteel DE, Pilz RB. cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. J Endocrinol 2018; 238:203-219. [PMID: 29914933 PMCID: PMC6086127 DOI: 10.1530/joe-18-0286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
NO/cGMP signaling is important for bone remodeling in response to mechanical and hormonal stimuli, but the downstream mediator(s) regulating skeletal homeostasis are incompletely defined. We generated transgenic mice expressing a partly-activated, mutant cGMP-dependent protein kinase type 2 (PKG2R242Q) under control of the osteoblast-specific Col1a1 promoter to characterize the role of PKG2 in post-natal bone formation. Primary osteoblasts from these mice showed a two- to three-fold increase in basal and total PKG2 activity; they proliferated faster and were resistant to apoptosis compared to cells from WT mice. Male Col1a1-Prkg2R242Q transgenic mice had increased osteoblast numbers, bone formation rates and Wnt/β-catenin-related gene expression in bone and a higher trabecular bone mass compared to their WT littermates. Streptozotocin-induced type 1 diabetes suppressed bone formation and caused rapid bone loss in WT mice, but male transgenic mice were protected from these effects. Surprisingly, we found no significant difference in bone micro-architecture or Wnt/β-catenin-related gene expression between female WT and transgenic mice; female mice of both genotypes showed higher systemic and osteoblastic NO/cGMP generation compared to their male counterparts, and a higher level of endogenous PKG2 activity may be responsible for masking effects of the PKG2R242Q transgene in females. Our data support sexual dimorphism in Wnt/β-catenin signaling and PKG2 regulation of this crucial pathway in bone homeostasis. This work establishes PKG2 as a key regulator of osteoblast proliferation and post-natal bone formation.
Collapse
Affiliation(s)
- Ghania Ramdani
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nadine Schall
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Hema Kalyanaraman
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Nisreen Wahwah
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Sahar Moheize
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Jenna J Lee
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Robert L Sah
- Department of BioengineeringUniversity of California, San Diego, La Jolla, California, USA
| | - Alexander Pfeifer
- The Institute for Pharmacology and ToxicologyUniversity of Bonn, Bonn, Germany
| | - Darren E Casteel
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Renate B Pilz
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Wang JW, Yeh CB, Chou SJ, Lu KC, Chu TH, Chen WY, Chien JL, Yen MH, Chen TH, Shyu JF. YC-1 alleviates bone loss in ovariectomized rats by inhibiting bone resorption and inducing extrinsic apoptosis in osteoclasts. J Bone Miner Metab 2018; 36:508-518. [PMID: 28983668 DOI: 10.1007/s00774-017-0866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a major health problem in postmenopausal women and the elderly that leads to fractures associated with substantial morbidity and mortality. Current osteoporosis therapies have significant drawbacks, and the risk of fragility fractures has not yet been eliminated. There remains an unmet need for a broader range of therapeutics. Previous studies have shown that YC-1 has important regulatory functions in the cardiovascular and nervous systems. Many of the YC-1 effector molecules in platelets, smooth muscle cells and neurons, such as cGMP and μ-calpain, also have important functions in osteoclasts. In this study, we explored the effects of YC-1 on bone remodeling and determined the potential of YC-1 as a treatment for postmenopausal osteoporosis. Micro-computed tomography of lumbar vertebrae showed that YC-1 significantly improved trabecular bone microarchitecture in ovariectomized rats compared with sham-operated rats. YC-1 also significantly reversed the increases in serum bone resorption and formation in these rats, as measured by enzyme immunoassays for serum CTX-1 and P1NP, respectively. Actin ring and pit formation assays and TRAP staining analysis showed that YC-1 inhibited osteoclast activity and survival. YC-1 induced extrinsic apoptosis in osteoclasts by activating caspase-3 and caspase-8. In osteoclasts, YC-1 stimulated μ-calpain activity and inhibited Src activity. Our findings provide proof-of-concept for YC-1 as a novel antiresorptive treatment strategy for postmenopausal osteoporosis, confirming an important role of nitric oxide/cGMP/protein kinase G signaling in bone.
Collapse
Affiliation(s)
- Jin-Wen Wang
- Department of Orthopedics, Chiali Hospital, Chi Mei Medical Center, Chiali, Taiwan, ROC
| | - Chin-Bin Yeh
- Department of Psychiatry, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jiun Chou
- Department of General Surgery, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Kuo-Cheng Lu
- Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Tzu-Hui Chu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Wei-Yu Chen
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Jui-Lin Chien
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tien-Hua Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei, Taiwan, ROC
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC.
| |
Collapse
|
36
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
37
|
Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB. Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes. Diabetes 2018; 67:607-623. [PMID: 29301852 PMCID: PMC5860855 DOI: 10.2337/db17-0965] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022]
Abstract
Bone loss and fractures are underrecognized complications of type 1 diabetes and are primarily due to impaired bone formation by osteoblasts. The mechanisms leading to osteoblast dysfunction in diabetes are incompletely understood, but insulin deficiency, poor glycemic control, and hyperglycemia-induced oxidative stress likely contribute. Here we show that insulin promotes osteoblast proliferation and survival via the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signal transduction pathway and that PKG stimulation of Akt provides a positive feedback loop. In osteoblasts exposed to high glucose, NO/cGMP/PKG signaling was reduced due in part to the addition of O-linked N-acetylglucosamine to NO synthase-3, oxidative inhibition of guanylate cyclase activity, and suppression of PKG transcription. Cinaciguat-an NO-independent activator of oxidized guanylate cyclase-increased cGMP synthesis under diabetic conditions and restored proliferation, differentiation, and survival of osteoblasts. Cinaciguat increased trabecular and cortical bone in mice with type 1 diabetes by improving bone formation and osteocyte survival. In bones from diabetic mice and in osteoblasts exposed to high glucose, cinaciguat reduced oxidative stress via PKG-dependent induction of antioxidant genes and downregulation of excess NADPH oxidase-4-dependent H2O2 production. These results suggest that cGMP-elevating agents could be used as an adjunct treatment for diabetes-associated osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gerburg Schwaerzer
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ghania Ramdani
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Francine Castillo
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wolfgang Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
38
|
Neuroprotective potential of high-dose biotin. Med Hypotheses 2017; 109:145-149. [PMID: 29150274 DOI: 10.1016/j.mehy.2017.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 01/28/2023]
Abstract
A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain-permeable phosphodiesterase-5 inhibitors.
Collapse
|
39
|
Kalyanaraman H, Ramdani G, Joshua J, Schall N, Boss GR, Cory E, Sah RL, Casteel DE, Pilz RB. A Novel, Direct NO Donor Regulates Osteoblast and Osteoclast Functions and Increases Bone Mass in Ovariectomized Mice. J Bone Miner Res 2017; 32:46-59. [PMID: 27391172 PMCID: PMC5199609 DOI: 10.1002/jbmr.2909] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
Most US Food and Drug Administration (FDA)-approved treatments for osteoporosis target osteoclastic bone resorption. Only PTH derivatives improve bone formation, but they have drawbacks, and novel bone-anabolic agents are needed. Nitrates, which generate NO, improved BMD in estrogen-deficient rats and may improve bone formation markers and BMD in postmenopausal women. However, nitrates are limited by induction of oxidative stress and development of tolerance, and may increase cardiovascular mortality after long-term use. Here we studied nitrosyl-cobinamide (NO-Cbi), a novel, direct NO-releasing agent, in a mouse model of estrogen deficiency-induced osteoporosis. In murine primary osteoblasts, NO-Cbi increased intracellular cGMP, Wnt/β-catenin signaling, proliferation, and osteoblastic gene expression, and protected cells from apoptosis. Correspondingly, in intact and ovariectomized (OVX) female C57Bl/6 mice, NO-Cbi increased serum cGMP concentrations, bone formation, and osteoblastic gene expression, and in OVX mice, it prevented osteocyte apoptosis. NO-Cbi reduced osteoclasts in intact mice and prevented the known increase in osteoclasts in OVX mice, partially through a reduction in the RANKL/osteoprotegerin gene expression ratio, which regulates osteoclast differentiation, and partially through direct inhibition of osteoclast differentiation, observed in vitro in the presence of excess RANKL. The positive NO effects in osteoblasts were mediated by cGMP/protein kinase G (PKG), but some of the osteoclast-inhibitory effects appeared to be cGMP-independent. NO-Cbi increased trabecular bone mass in both intact and OVX mice, consistent with its in vitro effects on osteoblasts and osteoclasts. NO-Cbi is a novel direct NO-releasing agent that, in contrast to nitrates, does not generate oxygen radicals, and combines anabolic and antiresorptive effects in bone, making it an excellent candidate for treating osteoporosis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Ghania Ramdani
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Jisha Joshua
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Nadine Schall
- Institute of Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Esther Cory
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0652
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0652
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| |
Collapse
|
40
|
|
41
|
NO/GMP as mediators of estrogen effects in bone. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565081 DOI: 10.1186/2050-6511-16-s1-a10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
From bedside to bench--meeting report of the 7th International Conference on cGMP "cGMP: generators, effectors and therapeutic implications" in Trier, Germany, from June 19th to 21st 2015. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1237-46. [PMID: 26486926 DOI: 10.1007/s00210-015-1176-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/24/2015] [Indexed: 12/27/2022]
Abstract
During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.
Collapse
|
43
|
Cairoli E, Zhukouskaya VV, Eller-Vainicher C, Chiodini I. Perspectives on osteoporosis therapies. J Endocrinol Invest 2015; 38:303-11. [PMID: 25577263 DOI: 10.1007/s40618-014-0236-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022]
Abstract
Osteoporosis is a skeletal disease which predisposes to fragility fractures with high morbidity and economic impact, and, therefore, the goal of any osteoporosis treatment is to reduce the fracture risk. In the various forms of osteoporosis an imbalance between bone resorption and apposition is present, that generally leads to a reduction of bone mineral density and bone quality, and finally to the increased fracture risk. Nowadays, several drugs are available with a demonstrated anti-fracturative effect obtained by inhibiting bone resorption or stimulating bone formation. However, their use is not free from limitations and side effects. Importantly, to date, the available antiresorptive drugs have also an inhibiting, though to a lesser extent, effect on bone apposition and, similarly, the anabolic drugs lead to an increase also of bone resorption. Advances in our knowledge about bone biology, with molecular insights into mechanisms underlying osteoblast, osteoclast, and osteocyte activity, have led to the recognition of new potential targets and consequently to the formulation of new therapeutic agents to treat osteoporosis. New potential developments among the antiresorptive drugs include cathepsin K inhibitors and among the osteoanabolic drugs those activating the Wnt signaling pathway, such as the monoclonal antibodies against sclerostin. The novelty of these compounds is that their mechanism of action gives the exciting possibility to uncouple bone resorption and bone formation, and data available so far appear to be promising. Finally, several new therapeutic targets are under investigation in preclinical studies which could open further approaches to treat osteoporosis in the future.
Collapse
Affiliation(s)
- E Cairoli
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Padiglione Granelli, Via F. Sforza 35, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - V V Zhukouskaya
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Padiglione Granelli, Via F. Sforza 35, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - C Eller-Vainicher
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Padiglione Granelli, Via F. Sforza 35, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - I Chiodini
- Unit of Endocrinology and Metabolic Diseases, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Padiglione Granelli, Via F. Sforza 35, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Song L, Xie XB, Peng LK, Yu SJ, Peng YT. Mechanism and Treatment Strategy of Osteoporosis after Transplantation. Int J Endocrinol 2015; 2015:280164. [PMID: 26273295 PMCID: PMC4530234 DOI: 10.1155/2015/280164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis (OP) has emerged as a frequent and devastating complication of organ solid transplantation process. Bone loss after organ transplant is related to adverse effects of immunosuppressants on bone remodeling and bone quality. Many factors contribute to the pathogenesis of OP in transplanted patients. Many mechanisms of OP have been deeply approached. Drugs for OP can be generally divided into "bone resorption inhibitors" and "bone formation accelerators," the former hindering bone resorption by osteoclasts and the latter increasing bone formation by osteoblasts. Currently, bisphosphonates, which are bone resorption inhibitors drugs, are more commonly used clinically than others. Using the signaling pathway or implantation bone marrow stem cell provides a novel direction for the treatment of OP, especially OP after transplantation. This review addresses the mechanism of OP and its correlation with organ transplantation, lists prevention and management of bone loss in the transplant recipient, and discusses the recipients of different age and gender.
Collapse
Affiliation(s)
- Lei Song
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xu-Biao Xie
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
- *Xu-Biao Xie:
| | - Long-Kai Peng
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shao-Jie Yu
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ya-Ting Peng
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|