1
|
McMullan A, Zwierzynski JB, Jain N, Haneline LS, Shou W, Kua KL, Hota SK, Durbin MD. Role of Maternal Obesity in Offspring Cardiovascular Development and Congenital Heart Defects. J Am Heart Assoc 2025; 14:e039684. [PMID: 40314345 DOI: 10.1161/jaha.124.039684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Congenital heart disease is a leading cause of death in newborns, yet many of its molecular mechanisms remain unknown. Both maternal obesity and diabetes increase the risk of congenital heart disease in offspring, with recent studies suggesting these conditions may have distinct teratogenic mechanisms. The global prevalence of obesity is rising, and while maternal obesity is a known risk factor for fetal congenital heart disease, the specific mechanisms are largely unexplored. METHODS AND RESULTS We used a murine model of diet-induced maternal obesity, without diabetes, to produce dams that were overweight but had normal blood glucose levels. Embryos were generated and their developing hearts analyzed. Transcriptome analysis was performed using single-nucleus and bulk RNA sequencing. Global and phospho-enriched proteome analysis was performed using tandem mass tag-mass spectroscopy. Immunobloting and histologic evaluation were also performed. Analysis revealed disrupted oxidative phosphorylation and reactive oxygen species formation, with reduced antioxidant capacity, evidenced by downregulation of genes Sod1 and Gp4x, and disrupted Hif1a signaling. Evidence of oxidative stress, cell death signaling, and alteration in Rho GTPase and actin cytoskeleton signaling was also observed. Genes involved in cardiac morphogenesis, including Hand2, were downregulated, and fewer mature cardiomyocytes were present. Histologic analysis confirmed increased cardiac defects in embryos exposed to maternal obesity. CONCLUSIONS These findings demonstrate that maternal obesity alone can result in cardiac defects through mechanisms similar to those associated with maternal hyperglycemia. This study provides valuable insight into the role of maternal obesity, a growing and modifiable risk factor, in the development of the most common birth defect, congenital heart disease.
Collapse
Affiliation(s)
- Ashleigh McMullan
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | | | - Nina Jain
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Laura S Haneline
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Weinian Shou
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Kok Lim Kua
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
- Center for Diabetes and Metabolic Disease Research Indiana University School of Medicine Indianapolis IN USA
| | - Swetansu K Hota
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Matthew D Durbin
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
2
|
Alsiraj Y, Huang H, Shoemaker R, Schanbacher B, Murphy M, Giannone P, Bauer JA. Maternal Nutritional Programming: Sex-Specific Cardiovascular and Immune Outcomes Following Perinatal High-Fat Diet Exposure. Nutrients 2025; 17:1464. [PMID: 40362773 PMCID: PMC12073119 DOI: 10.3390/nu17091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The long-term effects of a perinatal high-fat diet on the cardiovascular function of offspring are not well elucidated. We hypothesize that perinatal exposure to a high-fat diet alters adult cardiovascular and immune responses in a sex-specific manner. Methods: Male and female offspring were born to perinatal high-fat (pHFD) or control diet (pCD)-fed C57BL/6 mothers and weaned to a control diet. Cardiovascular function (baseline and response to an acute isoproterenol stress test) was quantified at 8 weeks of age, and acute blood inflammatory response to a single low dose of lipopolysaccharide at 9 weeks of age. Results: Male pHFD offspring had identical baseline cardiovascular function compared to pCD mice but a blunted response to isoproterenol (20-45% reductions in cardiac output, stroke volume, and left ventricular fractional shortening). In contrast, baseline cardiovascular parameters were reduced in female pHFD compared to pCD offspring, but there was no effect of perinatal diet on response to isoproterenol. Concentrations of TNF-α and IL-6 in plasma two hours after a low-dose LPS administration were highest in female pCD mice. Conclusions: Perinatal high-fat diet exposure resulted in sex-specific adaptations in cardiovascular function and immune response. Female offspring displayed baseline impairments, whereas male offspring showed latent vulnerability under stress. These differences may reflect underlying hormonal or epigenetic mechanisms that diverge by sex. Future studies should examine the roles of sex hormones and gene regulation pathways to better understand these dimorphic outcomes. These findings emphasize the importance of maternal diet in shaping offspring cardiometabolic risks and highlight potential avenues for nutritional interventions during pregnancy.
Collapse
Affiliation(s)
- Yasir Alsiraj
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Hong Huang
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| | - Robin Shoemaker
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| | - Brandon Schanbacher
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| | - Margaret Murphy
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| | - Peter Giannone
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| | - John A. Bauer
- Department of Pediatrics, College of Medicine, University of Kentucky, 138 Leader Ave, Lexington, KY 40536-0200, USA
| |
Collapse
|
3
|
Chindamo M, Chehade H, Sordet A, Humbert-Droz G, Cachat F, Mauduit C, Benahmed M, Simeoni U, Siddeek B. Maternal exposure to high-fat diet induces long-term mitochondrial alterations in the offspring heart. Nutrition 2025; 137:112796. [PMID: 40408919 DOI: 10.1016/j.nut.2025.112796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 05/25/2025]
Abstract
OBJECTIVES Heart disease is a leading cause of death worldwide, with its prevalence exacerbated by inadequate nutritional intake. Particularly concerning is the elevated risk induced by imbalanced nutrition during development, which can impact lifelong heart health. Recent research has underscored mitochondrial dysregulation as a pivotal mechanism driving the enduring consequences of nutritional excess. Building upon previous findings wherein a maternal high-fat diet (HFD) led to cardiac hypertrophy and fibrosis, our current study aimed to evaluate the impact of such a challenge on myocardial mitochondrial function. METHODS Female rats were fed a chow diet or HFD during gestation and lactation. The hearts of male offspring were analyzed at adulthood. Mitochondrial DNA abundance was evaluated by quantitative polymerase chain reaction. Proteins involved in mitochondrial biogenesis, fusion, fission, damage to the electron transport chain, metabolism, cell death, proliferation, and inflammation were measured by western blot. Mitochondrial clearance was evaluated by the measurement of mitophagy markers on isolated mitochondria. Lipids were visualized by histologic approaches. RESULTS We detected decreased cardiac mitochondrial fission factor and mitochondrial adenosine triphosphate synthase beta subunit and increased Parkin, pro-tumor necrosis factor alpha, and pro-interleukin 1 beta protein levels associated with decreased microtubule-associated protein 1A/1B light chain 3B levels in cardiac mitochondrial fraction, with a tendency for increased Oil Red O staining in the adult hearts of male offspring exposed to HFD. CONCLUSIONS Maternal exposure to HFD enhanced mitochondrial damage and impaired fission and clearance in offspring hearts at adulthood. These alterations were associated with altered expression of proteins involved in the mitochondrial electron transport chain coupled with a propensity for increased fatty acid accumulation and elevated proinflammatory markers.
Collapse
Affiliation(s)
- Mariapia Chindamo
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Hassib Chehade
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Anthony Sordet
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Gaël Humbert-Droz
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - François Cachat
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Claire Mauduit
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Umberto Simeoni
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Benazir Siddeek
- Division of Pediatrics, Woman-Mother-Child Department, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Ibáñez CA, Zambrano E. Response to: Comment on "Impaired Ischemia-Reperfusion Responses in the Hearts of Aged Male and Female Offspring of Obese Rats". Arch Med Res 2025; 56:103111. [PMID: 39549435 DOI: 10.1016/j.arcmed.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Carlos A Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Cochrane ALK, Murphy MP, Ozanne SE, Giussani DA. Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring. Eur Heart J 2024; 45:5127-5145. [PMID: 39508438 DOI: 10.1093/eurheartj/ehae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current interventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are highlighted.
Collapse
Affiliation(s)
- Anna L K Cochrane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
7
|
Burden SJ, Alshehri R, Lamata P, Poston L, Taylor PD. Maternal obesity and offspring cardiovascular remodelling - the effect of preconception and antenatal lifestyle interventions: a systematic review. Int J Obes (Lond) 2024; 48:1045-1064. [PMID: 38898228 PMCID: PMC11281905 DOI: 10.1038/s41366-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Preconception or antenatal lifestyle interventions in women with obesity may prevent adverse cardiovascular outcomes in the child, including cardiac remodelling. We undertook a systematic review of the existing data to examine the impact of randomised controlled trials of lifestyle interventions in pregnant women with obesity on offspring cardiac remodelling and related parameters of cardiovascular health. METHODS This review was registered with PROSPERO (CRD42023454762) and aligns with PRISMA guidelines. PubMed, Embase, and previous reviews were systematically searched. Follow-up studies from randomised trials of lifestyle interventions in pregnant women with obesity, which included offspring cardiac remodelling or related cardiovascular parameters as outcome measures, were included based on pre-defined inclusion criteria. RESULTS Eight studies from five randomised controlled trials were included after screening 3252 articles. Interventions included antenatal exercise (n = 2), diet and physical activity (n = 2), and preconception diet and physical activity (n = 1). Children were <2-months to 3-7-years-old, with sample sizes ranging between n = 18-404. Reduced cardiac remodelling, with reduced interventricular septal wall thickness, was consistently reported. Some studies identified improved systolic and diastolic function and a reduced resting heart rate. Risk of bias analyses rated all studies as 'fair' (some risk of bias). A high loss-to-follow-up was a common limitation. CONCLUSION Although there is some evidence to suggest that lifestyle interventions in women with obesity may limit offspring cardiac remodelling, further high-quality longitudinal studies with larger sample sizes are required to confirm these observations and to determine whether these changes persist to adulthood. Child offspring cardiovascular health benefits of preconception and antenatal lifestyle interventions in women with obesity.
Collapse
Affiliation(s)
- Samuel J Burden
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK.
| | - Rahaf Alshehri
- Cardiovascular Medicine and Science Research, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Pablo Lamata
- Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
9
|
Oulerich Z, Sferruzzi-Perri AN. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease. Am J Physiol Renal Physiol 2024; 327:F21-F36. [PMID: 38695077 PMCID: PMC11687964 DOI: 10.1152/ajprenal.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/21/2024] Open
Abstract
According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.
Collapse
Affiliation(s)
- Zoé Oulerich
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Agro Paris Tech, Université Paris-Saclay, Paris, France
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Pinckard KM, Félix-Soriano E, Hamilton S, Terentyeva R, Baer LA, Wright KR, Nassal D, Esteves JV, Abay E, Shettigar VK, Ziolo MT, Hund TJ, Wold LE, Terentyev D, Stanford KI. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol Metab 2024; 82:101914. [PMID: 38479548 PMCID: PMC10965826 DOI: 10.1016/j.molmet.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.
Collapse
Affiliation(s)
- Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Radmila Terentyeva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Drew Nassal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
11
|
Ibáñez CA, Correa F, Lira-León G, Reyes-Castro LA, Roldán FJ, Silva-Palacios A, Buelna-Chontal M, Rodríguez-González GL, Nathanielsz PW, Zazueta C, Zambrano E. Impaired Ischemia-Reperfusion Responses in the Hearts of Aged Male and Female Offspring of Obese Rats. Arch Med Res 2024; 55:102983. [PMID: 38492326 DOI: 10.1016/j.arcmed.2024.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.
Collapse
Affiliation(s)
- Carlos A Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gabriela Lira-León
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Francisco Javier Roldán
- Departamento de Ecocardiografía, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Peter W Nathanielsz
- Animal Science, University of Wyoming, Laramie, Wyoming, USA; Texas Pregnancy and Life Course Health Research Center, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
12
|
Dasgin H, Hay SM, Rees WD. Diet and deprivation in pregnancy: a rat model to investigate the effects of the maternal diet on the growth of the dam and its offspring. Br J Nutr 2024; 131:630-641. [PMID: 37795821 PMCID: PMC10803821 DOI: 10.1017/s0007114523002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
The offspring of women in the poorest socio-economic groups in Western societies have an increased risk of developing non-communicable disease in adult life. Deprivation is closely related to the consumption of a diet with an excess of energy (sugar and fat), salt and a shortage of key vitamins. To test the hypothesis that this diet adversely affects the development and long-term health of the offspring, we have formulated two rodent diets, one with a nutrient profile corresponding to the diet of pregnant women in the poorest socio-economic group (DEP) and a second that incorporated current UK recommendations for the diet in pregnancy (REC). Female rats were fed the experimental diets for the duration of gestation and lactation and the offspring compared with those from a reference group fed the AIN-93G diet. The growth trajectory of DEP and REC offspring was reduced compared with the AIN-93G. The REC offspring diet had a transient increase in adipose reserves at weaning, but by 30 weeks of age the body composition of all three groups was similar. The maternal diet had no effect on the homoeostatic model assessment index or the insulin tolerance of the offspring. Changes in hepatic gene expression in the adult REC offspring were consistent with an increased hepatic utilisation of fatty acids and a reduction in de novo lipogenesis. These results show that despite changes in growth and adiposity maternal metabolic adaptation minimises the adverse consequences of the imbalanced maternal diet on the metabolism of the offspring.
Collapse
Affiliation(s)
- Halil Dasgin
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Susan M. Hay
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - William D. Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
13
|
Pantaleão LC, Loche E, Fernandez-Twinn DS, Dearden L, Córdova-Casanova A, Osmond C, Salonen MK, Kajantie E, Niu Y, de Almeida-Faria J, Thackray BD, Mikkola TM, Giussani DA, Murray AJ, Bushell M, Eriksson JG, Ozanne SE. Programming of cardiac metabolism by miR-15b-5p, a miRNA released in cardiac extracellular vesicles following ischemia-reperfusion injury. Mol Metab 2024; 80:101875. [PMID: 38218535 PMCID: PMC10832484 DOI: 10.1016/j.molmet.2024.101875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
Collapse
Affiliation(s)
- Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Adriana Córdova-Casanova
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Public Health Unit, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliana de Almeida-Faria
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Benjamin D Thackray
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tuija M Mikkola
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Folkhalsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Johan G Eriksson
- Folkhalsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Psefteli PM, Morris JK, Ehler E, Smith L, Bowe J, Mann GE, Taylor PD, Chapple SJ. Sulforaphane induced NRF2 activation in obese pregnancy attenuates developmental redox imbalance and improves early-life cardiovascular function in offspring. Redox Biol 2023; 67:102883. [PMID: 37774548 PMCID: PMC10534264 DOI: 10.1016/j.redox.2023.102883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
In adverse pregnancy a perturbed redox environment is associated with abnormal early-life cardiovascular development and function. Previous studies have noted alterations in the expression and/or activity of Nuclear Factor E2 Related Factor 2 (NRF2) and its antioxidant targets during human gestational diabetic (GDM) pregnancy, however to our knowledge the functional role of NRF2 in fetal 'priming' of cardiovascular dysfunction in obese and GDM pregnancy has not been investigated. Using a murine model of obesity-induced glucose dysregulated pregnancy, we demonstrate that NRF2 activation by maternal sulforaphane (SFN) supplementation normalizes NRF2-linked NQO1, GCL and CuZnSOD expression in maternal and fetal liver placental and fetal heart tissue by gestational day 17.5. Activation of NRF2 in utero in wild type but not NRF2 deficient mice improved markers of placental efficiency and partially restored fetal growth. SFN supplementation was associated with reduced markers of fetal cardiac oxidative stress, including Nox2 and 3-nitrotyrosine, as well as attenuation of cardiac mass and cardiomyocyte area in male offspring by postnatal day 52 and improved vascular function in male and female offspring by postnatal day 98. Our findings are the first to highlight the functional consequences of NRF2 modulation in utero on early-life cardiovascular function in offspring, demonstrating that activation of NRF2 affords cardiovascular protection in offspring of pregnancies affected by redox dysregulation.
Collapse
Affiliation(s)
- Paraskevi-Maria Psefteli
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jessica K Morris
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Elisabeth Ehler
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Lorna Smith
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - James Bowe
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Paul D Taylor
- School of Life Course Sciences and Population Health, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
15
|
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
16
|
Pavela G, Yi N, Mestre L, Xun P, Allison DB. Birth weight moderates the association between obesity and mortality rate. Ann Epidemiol 2023; 82:26-32. [PMID: 37015307 PMCID: PMC10463462 DOI: 10.1016/j.annepidem.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE The strength of the association between obesity and mortality rate (MR) varies by body mass index (BMI) and sociodemographic groups. We test the hypothesis that the association between obesity and MR varies, in part, due to the moderating effect of parental BMI and birth weight. METHODS Data come from the 1958 National Child Development Study, an ongoing longitudinal dataset initiated in 1958 with baseline measures of birth weight from 18,059 infants born in Great Britain over 1 week. We tested whether the association between BMI and MR was moderated by parental BMI and birth weight using generalized additive proportional hazards models. RESULTS The association between adult BMI and MR was moderated by birth weight and maternal BMI, such that the association between BMI and MR was weaker among individuals with a higher birth weight (P = .0148) and stronger among individuals born to mothers with a higher BMI (P = .032). At any given level of BMI approximately greater than 25, individuals with low birth weight or born to mothers with a higher BMI, had a higher MR. Paternal BMI did not significantly modify the relationship between BMI and MR (P = .5168). CONCLUSIONS Results suggest that the relationship between obesity and MR is modified by birth weight and maternal BMI.
Collapse
Affiliation(s)
- Gregory Pavela
- School of Public Health, University of Alabama at Birmingham, Birmingham.
| | - Nengjun Yi
- School of Public Health, University of Alabama at Birmingham, Birmingham
| | - Luis Mestre
- School of Public Health, Indiana University Bloomington, Bloomington
| | | | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington
| |
Collapse
|
17
|
Dorey ES, Headrick JP, Paravicini TM, Wlodek ME, Moritz KM, Reichelt ME. Periconceptional alcohol alters in vivo heart function in ageing female rat offspring: Possible involvement of oestrogen receptor signalling. Exp Physiol 2023; 108:772-784. [PMID: 36951040 PMCID: PMC10988452 DOI: 10.1113/ep090587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the cardiovascular consequences of periconceptual ethanol on offspring throughout the lifespan? What is the main finding and its importance? It is shown for the first time that periconceptional alcohol has sex-specific effects on heart growth, with ageing female offspring exhibiting decreased cardiac output. Altered in vivo cardiac function in ageing female offspring may be linked to changes in cardiac oestrogen receptor expression. ABSTRACT Alcohol exposure throughout gestation is detrimental to cardiac development and function. Although many women decrease alcohol consumption once aware of a pregnancy, exposure prior to recognition is common. We, therefore, examined the effects of periconceptional alcohol exposure (PC:EtOH) on heart function, and explored mechanisms that may contribute. Female Sprague-Dawley rats received a liquid diet ±12.5% v/v ethanol from 4 days prior to mating until 4 days after mating (PC:EtOH). Cardiac function was assessed via echocardiography, and offspring were culled at multiple time points for assessment of morphometry, isolated heart and aortic ring function, protein and transcriptional changes. PC:EtOH-exposed embryonic day 20 fetuses (but not postnatal offspring) had larger hearts relative to body weight. Ex vivo analysis of hearts at 5-7 months old (mo) indicated no changes in coronary function or cardiac ischaemic tolerance, and apparently improved ventricular compliance in PC:EtOH females (compared to controls). At 12 mo, vascular responses in isolated aortic rings were unaltered by PC:EtOH, whilst echocardiography revealed reduced cardiac output in female but not male PC:EtOH offspring. At 19 mo, left ventricular transcript and protein for type 1 oestrogen receptor (ESR1), HSP90 transcript and plasma oestradiol levels were all elevated in female PC:EtOH exposed offspring. Summarising, PC:EtOH adversely impacts in vivo heart function in mature female offspring, associated with increased ventricular oestrogen-related genes. PC:EtOH may thus influence age-related heart dysfunction in females through modulation of oestrogen signalling.
Collapse
Affiliation(s)
- Emily S. Dorey
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - John P. Headrick
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Tamara M. Paravicini
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Mary E. Wlodek
- The Department of Obstetrics and GynaecologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Child Health Research CentreUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Melissa E. Reichelt
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
18
|
Gao Y, Cheng X, Tian Y, Yuan Z, Fan X, Yang D, Yang M. Nutritional Programming of the Lifespan of Male Drosophila by Activating FOXO on Larval Low-Nutrient Diet. Nutrients 2023; 15:nu15081840. [PMID: 37111059 PMCID: PMC10142539 DOI: 10.3390/nu15081840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Nutrition during the developmental stages has long-term effects on adult physiology, disease and lifespan, and is termed nutritional programming. However, the underlying molecular mechanisms of nutritional programming are not yet well understood. In this study, we showed that developmental diets could regulate the lifespan of adult Drosophila in a way that interacts with various adult diets during development and adulthood. Importantly, we demonstrated that a developmental low-yeast diet (0.2SY) extended both the health span and lifespan of male flies under nutrient-replete conditions in adulthood through nutritional programming. Males with a low-yeast diets during developmental stages had a better resistance to starvation and lessened decline of climbing ability with age in adulthood. Critically, we revealed that the activity of the Drosophila transcription factor FOXO (dFOXO) was upregulated in adult males under developmental low-nutrient conditions. The knockdown of dFOXO, with both ubiquitous and fat-body-specific patterns, can completely abolish the lifespan-extending effect from the larval low-yeast diet. Ultimately, we identify that the developmental diet achieved the nutritional programming of the lifespan of adult males by modulating the activity of dFOXO in Drosophila. Together, these results provide molecular evidence that the nutrition in the early life of animals could program the health of their later life and their longevity.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyi Cheng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
A preconception lifestyle intervention in women with obesity and cardiovascular health in their children. Pediatr Res 2023:10.1038/s41390-022-02443-8. [PMID: 36624285 DOI: 10.1038/s41390-022-02443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Maternal obesity during pregnancy is associated with poorer cardiovascular health (CVH) in children. A strategy to improve CVH in children could be to address preconception maternal obesity by means of a lifestyle intervention. We determined if a preconception lifestyle intervention in women with obesity improved offspring's CVH, assessed by magnetic resonance imaging (MRI). METHODS We invited children born to women who participated in a randomised controlled trial assessing the effect of a preconception lifestyle intervention in women with obesity. We assessed cardiac structure, function and geometric shape, pulse wave velocity and abdominal fat tissue by MRI. RESULTS We included 49 of 243 (20.2%) eligible children, 24 girls (49%) girls, mean age 7.1 (0.8) years. Left ventricular ejection fraction was higher in children in the intervention group as compared to children in the control group (63.0% SD 6.18 vs. 58.8% SD 5.77, p = 0.02). Shape analysis showed that intervention was associated with less regional thickening of the interventricular septum and less sphericity. There were no differences in the other outcomes of interest. CONCLUSION A preconception lifestyle intervention in women with obesity led to a higher ejection fraction and an altered cardiac shape in their offspring, which might suggest a better CVH. IMPACT A preconception lifestyle intervention in women with obesity results in a higher ejection fraction and an altered cardiac shape that may signify better cardiovascular health (CVH) in their children. This is the first experimental human evidence suggesting an effect of a preconception lifestyle intervention in women with obesity on MRI-derived indicators of CVH in their children. Improving maternal preconception health might prevent some of the detrimental consequences of maternal obesity on CVH in their children.
Collapse
|
20
|
den Harink T, Roelofs MJM, Limpens J, Painter RC, Roseboom TJ, van Deutekom AW. Maternal obesity in pregnancy and children's cardiac function and structure: A systematic review and meta-analysis of evidence from human studies. PLoS One 2022; 17:e0275236. [PMID: 36346818 PMCID: PMC9642886 DOI: 10.1371/journal.pone.0275236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
The prevalence of obesity is increasing worldwide. Experimental animal studies demonstrate that maternal obesity during pregnancy directly affects cardiac structure and function in their offspring, which could contribute to their increased cardiovascular disease (CVD) risk. Currently, a systematic overview of the available evidence regarding maternal obesity and alterations in cardiac structure and function in human offspring is lacking. We systematically searched the electronic databases Embase, MEDLINE and NARCIS from inception to June 29, 2022 including human studies comparing cardiac structure and function from fetal life onwards in offspring of women with and without obesity. The review protocol was registered with PROSPERO International Prospective Register of Systematic Reviews (identifier: CRD42019125071). Risk of bias was assessed using a modified Newcastle-Ottawa scale. Results were expressed using standardized mean differences (SMD). The search yielded 1589 unique publications, of which thirteen articles were included. Compared to offspring of women without obesity, fetuses of women with obesity had lower left ventricular strain, indicative of reduced systolic function, that persisted in infancy (SMD -2.4, 95% confidence interval (CI) -4.4 standard deviation (SD) to -0.4 SD during fetal life and SMD -1.0, 95% CI -1.6 SD to -0.3 SD in infancy). Furthermore, infants born to women with obesity had a thicker interventricular septum (SMD 0.6 SD, 95% CI 0.0 to 1.2 SD) than children born to women without obesity. In conclusion, cardiac structure and function differs between fetuses and children of women with and without obesity. Some of these differences were present in fetal life, persisted in childhood and are consistent with increased CVD risk. Long-term follow-up research is warranted, as studies in offspring of older age are lacking.
Collapse
Affiliation(s)
- Tamara den Harink
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Manouck J. M. Roelofs
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jacqueline Limpens
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rebecca C. Painter
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, Amsterdam Reproduction and Development, University of Amsterdam, Amsterdam, Netherlands
| | - Tessa J. Roseboom
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, Amsterdam Reproduction and Development, University of Amsterdam, Amsterdam, Netherlands
| | - Arend W. van Deutekom
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Paediatric Cardiology, Department of Paediatrics, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Pankey CL, Wang Q, King J, Ford SP. Cardiovascular consequences of maternal obesity throughout the lifespan in first generation sheep. PLoS One 2022; 17:e0274214. [PMID: 36054207 PMCID: PMC9439230 DOI: 10.1371/journal.pone.0274214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity continues to be a significant global health issue and contributes to a variety of comorbidities and disease states. Importantly, obesity contributes to adverse cardiovascular health outcomes, which is the leading cause of death worldwide. Further, maternal obesity during gestation has been shown to predispose offspring to adverse phenotypic outcomes, specifically cardiovascular outcomes. Therefore, we hypothesized that diet-induced obesity during gestation would result in adverse cardiovascular phenotypes in first-generation offspring that would have functional consequences in juvenile and advanced ages. Multiparous Rambouillet/Columbia cross ewes (F0) were fed a highly palatable, pelleted diet at either 100% (CON), or 150% (OB) of National Research Council recommendations from 60 days prior to conception, until necropsy at d 135 (90%) of gestation (CON: n = 5, OB: n = 6), or through term for lambs (F1: 2.5 mo. old; CON: n = 9, OB: n = 6) and ewes (F1:9 years old; CON: n = 5, OB: n = 8). Paraffin-embedded fetal aorta section staining revealed increased collagen:elastin ratio and greater aortic wall thickness in OBF1 fetuses. Invasive auricular blood pressure recordings revealed elevated systolic blood pressure in OBF1 lambs, but no differences in diastolic pressure. In aged F1 ewes, systolic and diastolic blood pressures were reduced in OBF1 relative to CONF1. Echocardiography revealed no treatment differences in F1 lambs, but F1 ewes show tendencies for increased end systolic volume and decreased stroke volume, and markedly reduced ejection fraction. Therefore, we conclude that maternal obesity programs altered cardiovascular development that results in a hypertensive state in OBF1 lambs. Increased cardiac workload resulting from early life hypertension precedes the failure of the heart to maintain function later in life.
Collapse
Affiliation(s)
- Christopher L. Pankey
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, United States of America
- * E-mail:
| | - Qiurong Wang
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jessica King
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, United States of America
| | - Stephen P. Ford
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
23
|
Groves AM, Price AN, Russell-Webster T, Jhaveri S, Yang Y, Battersby EE, Shahid S, Costa Vieira M, Hughes E, Miller F, Briley AL, Singh C, Seed PT, Chowienczyk PJ, Stern KWD, Cohen J, Pasupathy D, Edwards AD, Poston L, Taylor PD. Impact of maternal obesity on neonatal heart rate and cardiac size. Arch Dis Child Fetal Neonatal Ed 2022; 107:481-487. [PMID: 34789488 DOI: 10.1136/archdischild-2021-322860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Maternal obesity may increase offspring risk of cardiovascular disease. We assessed the impact of maternal obesity on cardiac structure and function in newborns as a marker of fetal cardiac growth. METHODS Neonates born to mothers of healthy weight (body mass index (BMI) 20-25 kg/m2, n=56) and to mothers who were obese (BMI ≥30 kg/m2, n=31) underwent 25-minute continuous ECG recording and non-sedated, free-breathing cardiac MRI within 72 hours of birth. RESULTS Mean (SD) heart rate during sleep was higher in infants born to mothers who were versus were not obese (123 (12.6) vs 114 (9.8) beats/min, p=0.002). Heart rate variability during sleep was lower in infants born to mothers who were versus were not obese (SD of normal-to-normal R-R interval 34.6 (16.8) vs 43.9 (16.5) ms, p=0.05). Similar heart rate changes were seen during wakefulness. Left ventricular end-diastolic volume (2.35 (0.14) vs 2.54 (0.29) mL/kg, p=0.03) and stroke volume (1.50 (0.09) vs 1.60 (0.14), p=0.04) were decreased in infants born to mothers who were versus were not obese. There were no differences in left ventricular end-systolic volume, ejection fraction, output or myocardial mass between the groups. CONCLUSION Maternal obesity was associated with increased heart rate, decreased heart rate variability and decreased left ventricular volumes in newborns. If persistent, these changes may provide a causal mechanism for the increased cardiovascular risk in adult offspring of mothers with obesity. In turn, modifying antenatal and perinatal maternal health may have the potential to optimise long-term cardiovascular health in offspring.
Collapse
Affiliation(s)
- Alan M Groves
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Anthony N Price
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Tamarind Russell-Webster
- Women's and Children's Health, King's College London, London, UK
- Academic Women's Health, University of Bristol, Bristol, UK
| | - Simone Jhaveri
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yang Yang
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ellie E Battersby
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Shiffa Shahid
- Women's and Children's Health, King's College London, London, UK
| | | | - Emer Hughes
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Faith Miller
- Women's and Children's Health, King's College London, London, UK
| | - Annette L Briley
- Women's and Children's Health, King's College London, London, UK
| | - Claire Singh
- Women's and Children's Health, King's College London, London, UK
| | - Paul T Seed
- Women's and Children's Health, King's College London, London, UK
| | | | - Kenan W D Stern
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jennifer Cohen
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dharmintra Pasupathy
- Women's and Children's Health, King's College London, London, UK
- Department of Maternal and Fetal Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Lucilla Poston
- Women's and Children's Health, King's College London, London, UK
| | - Paul D Taylor
- Women's and Children's Health, King's College London, London, UK
| |
Collapse
|
24
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
25
|
Switching to a Standard Chow Diet at Weaning Improves the Effects of Maternal and Postnatal High-Fat and High-Sucrose Diet on Cardiometabolic Health in Adult Male Mouse Offspring. Metabolites 2022; 12:metabo12060563. [PMID: 35736495 PMCID: PMC9230726 DOI: 10.3390/metabo12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiac mitochondrial dysfunction contributes to obesity-associated heart disease. Maternal and postnatal diet plays an important role in cardiac function, yet the impacts of a mismatch between prenatal and postweaning diet on cardiometabolic function are not well understood. We tested the hypothesis that switching to a standard chow diet after weaning would attenuate systemic metabolic disorders and cardiac and mitochondrial dysfunction associated with maternal and postnatal high-fat/high-sucrose (HFHS) diet in mice. Six-month-old male CD1 offspring from dams fed a HFHS diet and weaned to the same HFHS diet (HH) or switched to a standard chow diet (HC) were compared to offspring from dams fed a low-fat/low-sucrose diet and maintained on the same diet (LL). HC did not decrease body weight (BW) but normalized glucose tolerance, plasma cholesterol, LDL, and insulin levels compared to the HH. Systolic function indicated by the percent fractional shortening was not altered by diet. In freshly isolated cardiac mitochondria, maximal oxidative phosphorylation-linked respiratory capacity and coupling efficiency were significantly higher in the HC in the presence of fatty acid substrate compared to LL and HH, with modification of genes associated with metabolism and mitochondrial function. Switching to a standard chow diet at weaning can attenuate the deleterious effects of long-term HFHS in adult male mouse offspring.
Collapse
|
26
|
Recent Experimental Studies of Maternal Obesity, Diabetes during Pregnancy and the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23084467. [PMID: 35457285 PMCID: PMC9027277 DOI: 10.3390/ijms23084467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.
Collapse
|
27
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
28
|
Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children. Int J Obes (Lond) 2022; 46:1262-1270. [PMID: 35296791 DOI: 10.1038/s41366-022-01107-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Improving maternal lifestyle before conception may prevent the adverse effects of maternal obesity on their children's future cardiovascular disease (CVD) risk. In the current study, we examined whether a preconception lifestyle intervention in women with obesity could alter echocardiographic indices of cardiovascular health in their children. METHODS Six years after a randomized controlled trial comparing the effects of a 6-month preconception lifestyle intervention in women with obesity and infertility prior to fertility care to prompt fertility care, 315 of the 341 children conceived within 24 months after randomization were eligible for this study. The intervention was aimed at weight loss (≥5% or until BMI < 29 kg/m2). Children underwent echocardiographic assessment of cardiac structure and function, conducted by a single pediatric cardiologist, blinded to group allocation. Results were adjusted for multiple variables including body surface area, age, and sex in linear regression analyses. RESULTS Sixty children (32 girls, 53%) were included, mean age 6.5 years (SD 1.09). Twenty-four children (40%) were born to mothers in the intervention group. Children of mothers from the intervention group had a lower end-diastolic interventricular septum thickness (-0.88 Z-score, 95%CI -1.18 to -0.58), a lower left ventricle mass index (-8.56 g/m2, 95%CI -13.09 to -4.03), and higher peak systolic and early diastolic annular velocity of the left ventricle (1.43 cm/s 95%CI 0.65 to 2.20 and 2.39 cm/s 95%CI 0.68 to 4.11, respectively) compared to children of mothers from the control group. CONCLUSIONS Children of women with obesity, who underwent a preconception lifestyle intervention, had improved cardiac structure and function; a thinner interventricular septum, lower left ventricle mass, and improved systolic and diastolic tissue Doppler velocities. Despite its high attrition rates, our study provides the first experimental human evidence suggesting that preconception lifestyle interventions may present a method of reducing CVD risk in the next generation. CLINICAL TRIAL REGISTRATION LIFEstyle study: Netherlands Trial Register: NTR1530 ( https://www.trialregister.nl/trial/1461 ). This follow-up study was approved by the medical ethics committee of the University Medical Centre Groningen (METC code: 2008/284).
Collapse
|
29
|
Protective effect of antioxidants on cardiac function in adult offspring exposed to prenatal overnutrition. J Dev Orig Health Dis 2022; 13:741-749. [PMID: 35272740 DOI: 10.1017/s2040174422000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal overnutrition-induced fetal programming predisposes offspring to cardiovascular health issues throughout life. Understanding how these adverse cardiovascular effects are regulated at the maternal-fetal crosstalk will provide insight into the mechanisms of these cardiovascular diseases, which will help in further identifying potential targets for intervention. Here, we uncover a role of oxidative stress caused by prenatal overnutrition in governing cardiac damage. Mice exposed to maternal obesity showed remarkable pathological cardiomyocyte hypertrophy (pmale < 0.001, Cohen's dmale = 1.77; pfemale < 0.001, Cohen's dfemale = 1.94), increased collagen content (pmale < 0.001, Cohen's dmale = 2.13; pfemale < 0.001, Cohen's dfemale = 2.71), and increased levels of transforming growth factor β (TGF-β) (pmale < 0.001, Cohen's dmale = 3.02; pfemale < 0.001, Cohen's dfemale = 4.52), as well as left ventricular dysfunction in adulthood. To cope with increased oxidative stress in the myocardial tissue of offspring from obese mothers, we sought to decrease the effect of oxidative stress and prevent the development of these cardiovascular conditions with use of the antioxidant N-acetylcysteine during pregnancy. As predicted, after treatment with the antioxidant, there was greatly mitigated cardiomyocyte hypertrophy (pmale < 0.001, Cohen's dmale = 1.31; pfemale < 0.001, Cohen's dfemale = 0.82) and cardiac fibrosis, including decreased composition of collagen fibers (pmale < 0.01, Cohen's dmale = 1.45; pfemale < 0.05, Cohen's dfemale = 1.23) and reduced levels of TGF-β (pmale < 0.05, Cohen's dmale = 1.83; pfemale < 0.01, Cohen's dfemale = 3.81). We also observed improved left ventricle contractile function together with the alleviation of enhanced oxidative stress in the myocardial tissue of offspring. Collectively, these results established a crucial role of oxidative stress in prenatal overnutrition-associated ventricular remodeling and cardiac dysfunction. Our findings provided an important target for intervention of cardiovascular disease in overnutrition-related fetal programming.
Collapse
|
30
|
Hufnagel A, Fernandez-Twinn DS, Blackmore HL, Ashmore TJ, Heaton RA, Jenkins B, Koulman A, Hargreaves IP, Aiken CE, Ozanne SE. Maternal but not fetoplacental health can be improved by metformin in a murine diet-induced model of maternal obesity and glucose intolerance. J Physiol 2022; 600:903-919. [PMID: 34505282 PMCID: PMC7612651 DOI: 10.1113/jp281902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is a global problem that increases the risk of short- and long-term adverse outcomes for mother and child, many of which are linked to gestational diabetes mellitus. Effective treatments are essential to prevent the transmission of poor metabolic health from mother to child. Metformin is an effective glucose lowering drug commonly used to treat gestational diabetes mellitus; however, its wider effects on maternal and fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin on maternal and feto-placental health. Metformin (300 mg kg-1 day-1 ) was given to obese females via the diet and was shown to achieve clinically relevant concentrations in maternal serum (1669 ± 568 nM in late pregnancy). Obese dams developed glucose intolerance during pregnancy and had reduced uterine artery compliance. Metformin treatment of obese dams improved maternal glucose tolerance, reduced maternal fat mass and restored uterine artery function. Placental efficiency was reduced in obese dams, with increased calcification and reduced labyrinthine area. Consequently, fetuses from obese dams weighed less (P < 0.001) at the end of gestation. Despite normalisation of maternal parameters, metformin did not correct placental structure or fetal growth restriction. Metformin levels were substantial in the placenta and fetal circulation (109.7 ± 125.4 nmol g-1 in the placenta and 2063 ± 2327 nM in fetal plasma). These findings reveal the distinct effects of metformin administration during pregnancy on mother and fetus and highlight the complex balance of risk vs. benefits that are weighed in obstetric medical treatments. KEY POINTS: Maternal obesity and gestational diabetes mellitus have detrimental short- and long-term effects for mother and child. Metformin is commonly used to treat gestational diabetes mellitus in many populations worldwide but the effects on fetus and placenta are unknown. In a mouse model of diet-induced obesity and glucose intolerance in pregnancy we show reduced uterine artery compliance, placental structural changes and reduced fetal growth. Metformin treatment improved maternal metabolic health and uterine artery compliance but did not rescue obesity-induced changes in the fetus or placenta. Metformin crossed the placenta into the fetal circulation and entered fetal tissue. Metformin has beneficial effects on maternal health beyond glycaemic control. However, despite improvements in maternal physiology, metformin did not prevent fetal growth restriction or placental ageing. The high uptake of metformin into the placental and fetal circulation highlights the potential for direct immediate effects of metformin on the fetus with possible long-term consequences postnatally.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Heather L Blackmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Benjamin Jenkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Albert Koulman
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, University of Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, United Kingdom, CB22 0QQ
| |
Collapse
|
31
|
Mennitti LV, Carpenter AAM, Loche E, Pantaleão LC, Fernandez-Twinn DS, Schoonejans JM, Blackmore HL, Ashmore TJ, Pisani LP, Tadross JA, Hargreaves I, Ozanne SE. Effects of maternal diet-induced obesity on metabolic disorders and age-associated miRNA expression in the liver of male mouse offspring. Int J Obes (Lond) 2022; 46:269-278. [PMID: 34663892 PMCID: PMC8794789 DOI: 10.1038/s41366-021-00985-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.
Collapse
Affiliation(s)
- Laís Vales Mennitti
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Asha A M Carpenter
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Lucas C Pantaleão
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Josca M Schoonejans
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Heather L Blackmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Thomas J Ashmore
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - Luciana Pellegrini Pisani
- Department of Bioscience, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, 11015-020, Brazil
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
| | - John A Tadross
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Iain Hargreaves
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 5UA, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 OQQ, United Kingdom.
| |
Collapse
|
32
|
Yang H, Chen N, Fan L, Lin X, Liu J, You Y, Zhong Y, Chen Y, Li J, Xiao X. Pre-Weaning Exposure to Maternal High-Fat Diet Is a Critical Developmental Window for Programming the Metabolic System of Offspring in Mice. Front Endocrinol (Lausanne) 2022; 13:816107. [PMID: 35222275 PMCID: PMC8867064 DOI: 10.3389/fendo.2022.816107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Maternal high-fat diet (HFD) during pregnancy and lactation exerts long-term effects on the health of offspring. However, the critical developmental window for metabolic programming of maternal exposure to HFD on pathogenesis of obesity in offspring needs further clarification. MATERIALS & METHODS Female ICR mice were fed low-fat diet (LFD) or HFD for 8 weeks until delivery. During lactation, half of LFD dams received HFD while the other half of LFD dams and HFD dams maintained the previous diet. Male offspring were weaned at postnatal day 21 (P21) and fed LFD or HFD for 7 weeks. Metabolic parameters, biochemical, and histological indicators of thermogenesis, rectal temperature, and sympathetic nerve tone were detected at P21 and 10 weeks old. RESULTS At P21, LH (maternal LFD before delivery but HFD during lactation) and HH (maternal HFD before delivery and during lactation) offspring gained more body weight and showed higher serum glucose and triglyceride levels as compared with LL (maternal LFD before delivery and during lactation), and the metabolic characters were maintained until 10 weeks age when fed with LFD after weaning. However, LH offspring exhibited a greater degree of metabolic abnormalities compared to HH offspring, with increased body weight, as well as lower norepinephrine (NE)-stimulated rectal temperature rise when fed with HFD after weaning. The lower UCP1 levels and HSL phosphorylation in LH offspring further suggested that brown adipose tissue (BAT) thermogenic function was impaired. CONCLUSION Exposure to maternal HFD feeding during pre-weaning period alone showed similar detrimental effects on programming metabolic system of offspring as those of both prenatal and early postnatal HFD feeding. Early postnatal stage is a critical time window for metabolic programming and has profound and long-lasting effects on BAT development and function through sympathetic nerve-mediated thermogenesis.
Collapse
Affiliation(s)
- Hong Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Chen
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Fan
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncheng Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehua You
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhong
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yan Chen
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology and Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Jibin Li
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoqiu Xiao,
| |
Collapse
|
33
|
Khan S, Whatmore A, Perchard R, Khan A, Vyas A, Dua J, Cruickshank JK, Clayton P. Maternal Factors in Pregnancy and Ethnicity Influence Childhood Adiposity, Cardiac Structure, and Function. Front Pediatr 2022; 10:900404. [PMID: 35928679 PMCID: PMC9343669 DOI: 10.3389/fped.2022.900404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
IMPORTANCE The links between maternal and offspring adiposity and metabolic status are well established. There is much less evidence for the impact of these relationships combined with ethnic background on cardiac structure and function in childhood. OBJECTIVE To test the hypothesis that ethnicity, maternal adiposity and glycemic status, and child adiposity affect cardiac structure and function. DESIGN A prospective cohort study. SETTING A single-center mother-child cohort study. The cohort is a subset of the international multi-center Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study. PARTICIPANTS This study included 101 healthy pre-pubertal British-born children [56 White Europeans (WEs) and 45 South Asians (SAs)] with a median age of 9.1 years, range 6.0-12.2 years, at the time of the investigation. MAIN OUTCOMES AND MEASURES Anthropometric and echocardiographic measurements were made on the cohort. Maternal pregnancy and birth data were available. Relationships between maternal parameters (BMI and glucose status), child adiposity, and echo measures were assessed. RESULTS Despite no ethnic difference in BMI SDS at a median age of 9.1 years, SA children exhibited higher levels of body fat than WE children (whole body, right arm, and truncal fat all p < 0.001). SA children also exhibited greater changes in weight and height SDS but not BMI SDS from birth than WE children. As expected, maternal BMI correlated with child BMI (r = 0.28; p = 0.006), and body fat measures (e.g., whole body fat r = 0.25; p = 0.03). Maternal fasting glucose levels were associated with child body fat measures (r = 0.22-0.28; p = 0.02-0.05). Left ventricular (LV) indices were not different between SA and WE children, but E/A and E'/A' (measures of diastolic function) were lower in SA when compared with WE children. LV indices correlated positively to BMI SDS and body fat markers only in SA children. Maternal fasting and 2-h glucose were negatively correlated with E'/A' in SA children (r = -0.53, p = 0.015, and r = -0.49, p = 0.023, respectively) but not in WE children. CONCLUSION AND RELEVANCE SA and WE children exhibit differences in adiposity and diastolic function at a median age of 9.1 years. Novel relationships between maternal glycemia, child adiposity, and cardiac structure and function, present only in SA children, were identified.
Collapse
Affiliation(s)
- Sophia Khan
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew Whatmore
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Reena Perchard
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Aysha Khan
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Avni Vyas
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jaspal Dua
- North West, North Wales and Isle of Man Adult Congenital Heart Disease Network, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - J Kennedy Cruickshank
- School of Life-Course and Nutritional Sciences, King's College, St Thomas' and Guy's Hospitals, King's Health Partners, London, United Kingdom
| | - Peter Clayton
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
34
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Kabasakal Çetin A, Alkan Tuğ T, Güleç A, Akyol A. Effects of maternal taurine supplementation on maternal dietary intake, plasma metabolites and fetal growth and development in cafeteria diet fed rats. PeerJ 2021; 9:e11547. [PMID: 34141487 PMCID: PMC8180190 DOI: 10.7717/peerj.11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. METHODS Female Wistar rats were fed a control diet (CON), CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. RESULTS Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. DISCUSSION This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality in CONT neonates indicates possible detrimental effects of taurine supplementation in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.
Collapse
Affiliation(s)
- Arzu Kabasakal Çetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Tuǧba Alkan Tuğ
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Atila Güleç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
36
|
Impact of the exposome on the development and function of pancreatic β-cells. Mol Aspects Med 2021; 87:100965. [PMID: 33965231 DOI: 10.1016/j.mam.2021.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The development and plasticity of the endocrine pancreas responds to both the intrauterine and postnatal exposome in a constant attempt to predict and respond to alterations in nutritional availability and metabolic requirements. Both under- and over-nutrition in utero, or exposure to adverse environmental pollutants or maternal behaviors, can each lead to altered β-cell or function at birth, and a subsequent mismatch in pancreatic hormonal demands and secretory capacity postnatally. This can be further exacerbated by metabolic stress postnatally such as from obesity or pregnancy, resulting in an increased risk of gestational diabetes, type 2 diabetes, and even type 1 diabetes. This review will discuss evidence identifying the cellular pathways in early life whereby the plasticity of the endocrine pancreatic can become pathologically limited. By necessity, much of this evidence has been gained from animal models, although extrapolation to human fetal development is possible from the fetal growth trajectory and study of the newborn. Cellular limitations to plasticity include the balance between β-cell proliferation and apoptosis, the appearance of β-cell oxidative stress, impaired glucose-stimulated insulin secretion, and sensitivity to circulating cytokines and responsiveness to programmed death receptor-1. Evidence suggests that many of the cellular pathways responsible for limiting β-cell plasticity are related to paracrine interactions within the islets of Langerhans.
Collapse
|
37
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:1450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
38
|
Maternal diet high in linoleic acid alters offspring fatty acids and cardiovascular function in a rat model. Br J Nutr 2021; 127:540-553. [PMID: 33858529 DOI: 10.1017/s0007114521001276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Linoleic acid (LA), an essential n-6 fatty acid (FA), is critical for fetal development. We investigated the effects of maternal high LA (HLA) diet on offspring cardiac development and its relationship to circulating FA and cardiovascular function in adolescent offspring, and the ability of the postnatal diet to reverse any adverse effects. Female Wistar Kyoto rats were fed low LA (LLA; 1·44 % energy from LA) or high LA (HLA; 6·21 % energy from LA) diets for 10 weeks before pregnancy and during gestation/lactation. Offspring, weaned at postnatal day 25, were fed LLA or HLA diets and euthanised at postnatal day 40 (n 6-8). Maternal HLA diet decreased circulating total cholesterol and HDL-cholesterol in females and decreased total plasma n-3 FA in males, while maternal and postnatal HLA diets decreased total plasma n-3 FA in females. α-Linolenic acid (ALA) and EPA were decreased by postnatal but not maternal HLA diets in both sexes. Maternal and postnatal HLA diets increased total plasma n-6 and LA, and a maternal HLA diet increased circulating leptin, in both male and female offspring. Maternal HLA decreased slopes of systolic and diastolic pressure-volume relationship (PVR), and increased cardiac Col1a1, Col3a1, Atp2a1 and Notch1 in males. Maternal and postnatal HLA diets left-shifted the diastolic PVR in female offspring. Coronary reactivity was altered in females, with differential effects on flow repayment after occlusion. Thus, maternal HLA diets impact lipids, FA and cardiac function in offspring, with postnatal diet modifying FA and cardiac function in the female offspring.
Collapse
|
39
|
Marques EB, Souza KPD, Alvim-Silva T, Martins ILF, Pedro S, Scaramello CBV. Nutrition and Cardiovascular Diseases: Programming and Reprogramming. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Peleg-Raibstein D. Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging. Front Neurosci 2021; 15:645569. [PMID: 33716660 PMCID: PMC7953988 DOI: 10.3389/fnins.2021.645569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity has long been identified as a global epidemic with major health implications such as diabetes and cardiovascular disease. Maternal overnutrition leads to significant health issues in industrial countries and is one of the risk factors for the development of obesity and related disorders in the progeny. The wide accessibility of junk food in recent years is one of the major causes of obesity, as it is low in nutrient content and usually high in salt, sugar, fat, and calories. An excess of nutrients during fetal life not only has immediate effects on the fetus, including increased growth and fat deposition in utero, but also has long-term health consequences. Based on human studies, it is difficult to discern between genetic and environmental contributions to the risk of disease in future generations. Consequently, animal models are essential for studying the impact of maternal overnutrition on the developing offspring. Recently, animal models provided some insight into the physiological mechanisms that underlie developmental programming. Most of the studies employed thus far have focused only on obesity and metabolic dysfunctions in the offspring. These studies have advanced our understanding of how maternal overnutrition in the form of high-fat diet exposure can lead to an increased risk of obesity in the offspring, but many questions remain open. How maternal overnutrition may increase the risk of developing brain pathology such as cognitive disabilities in the offspring and increase the risk to develop metabolic disorders later in life? Further, does maternal overnutrition exacerbate cognitive- and cardio-metabolic aging in the offspring?
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
41
|
Maternal and offspring high-fat diet leads to platelet hyperactivation in male mice offspring. Sci Rep 2021; 11:1473. [PMID: 33446734 PMCID: PMC7809045 DOI: 10.1038/s41598-020-80373-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Maternal over-nutrition increases the risk of diabetes and cardiovascular events in offspring. While prominent effects on cardiovascular health are observed, the impact on platelet physiology has not been studied. Here, we examined whether maternal high-fat diet (HF) ingestion affects the platelet function in lean and obese offspring. C57BL6/N mice dams were given a HF or control (C) diet for 8 weeks before and during pregnancy. Male and female offspring received C or HF diets for 26 weeks. Experimental groups were: C/C, dam and offspring fed standard laboratory diet; C/HF dam fed standard laboratory diet and offspring fed HF diet; HF/C and HF/HF. Phenotypic and metabolic tests were performed and blood collected for platelet studies. Compared to C/C, offspring HF groups were obese, with fat accumulation, hyperglycaemia and insulin resistance. Female offspring did not present platelet hyperactivity, hence we focused on male offspring. Platelets from HF/HF mice were larger, hyperactive and presented oxidative stress when compared to C/C. Maternal and offspring HF diet results in platelet hyperactivation in male mouse offspring, suggesting a novel ‘double-hit’ effect.
Collapse
|
42
|
Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Mol Metab 2020; 43:101116. [PMID: 33212270 PMCID: PMC7720025 DOI: 10.1016/j.molmet.2020.101116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Heart disease risk can be programmed by intrauterine exposure to obesity. Dysregulating key transcription factors in cardiac progenitors can cause subsequent adult-onset heart disease. In this study, we investigated the transcriptional pathways that are altered in the embryonic heart and linked to heart disease risk in offspring exposed to obesity during pregnancy. Methods Female mice were fed an obesogenic diet and mated with males fed a control diet. Heart function and genome-wide gene expression were analyzed in adult offspring born to obese and lean mice at baseline and in response to stress. Cross-referencing with genes dysregulated genome-wide in cardiac progenitors from embryos of obese mice and human fetal hearts revealed the transcriptional events associated with adult-onset heart disease susceptibility. Results We found that adult mice born to obese mothers develop mild heart dysfunction consistent with early stages of disease. Accordingly, hearts of these mice dysregulated genes controlling extracellular matrix remodeling, metabolism, and TGF-β signaling, known to control heart disease progression. These pathways were already dysregulated in cardiac progenitors in embryos of obese mice. Moreover, in response to cardiovascular stress, the heart of adults born to obese dams developed exacerbated myocardial remodeling and excessively activated regulators of cell-extracellular matrix interactions but failed to activate metabolic regulators. Expression of developmentally regulated genes was altered in cardiac progenitors of embryos of obese mice and human hearts of fetuses of obese donors. Accordingly, the levels of Nkx2-5, a key regulator of heart development, inversely correlated with maternal body weight in mice. Furthermore, Nkx2-5 target genes were dysregulated in cardiac progenitors and persistently in adult hearts born to obese mice and human hearts from pregnancies affected by obesity. Conclusions Obesity during pregnancy alters Nkx2-5-controlled transcription in differentiating cardiac progenitors and persistently in the adult heart, making the adult heart vulnerable to dysregulated stress responses. Maternal obesity programs progressive heart dysfunction in adult offspring. Offspring of obese dams are prone to dysregulated stress responses in the heart. Nkx2-5-controlled transcription is dysregulated in hearts exposed to obesity in utero. Obesity during pregnancy broadly affects gene expression in the embryonic heart.
Collapse
|
43
|
Itani N, Skeffington KL, Beck C, Niu Y, Katzilieris‐Petras G, Smith N, Giussani DA. Protective effects of pravastatin on the embryonic cardiovascular system during hypoxic development. FASEB J 2020; 34:16504-16515. [DOI: 10.1096/fj.202001743r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| | - Katie L. Skeffington
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| | - Christian Beck
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| | | | - Nicola Smith
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience University of Cambridge Cambridge UK
| |
Collapse
|
44
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ, Luo J. Maternal high-fat diet alters angiotensin II receptors and causes changes in fetal and neonatal rats†. Biol Reprod 2020; 100:1193-1203. [PMID: 30596890 DOI: 10.1093/biolre/ioy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is linked to cardiovascular diseases in postnatal life. The current study tested the hypothesis that maternal HFD causes myocardial changes through angiotensin II receptor (AGTR) expression modulation in fetal and neonatal rat hearts. The control group of pregnant rats was fed a normal diet and the treatment group of pregnant rats was on a HFD (60% kcal fat). Hearts were isolated from embryonic day 21 fetuses (E21) and postnatal day 7 pups (PD7). Maternal HFD decreased the body weight of the offspring in both E21 and PD7. The ratio of heart weight to body weight was increased in E21, but not PD7, when compared to the control group. Transmission electron microscopy revealed disorganized myofibrils and effacement of mitochondria cristae in the treatment group. Maternal HFD decreased S-phase and increased G1-phase of the cellular cycle for fetal and neonatal cardiac cells. Molecular markers of cardiac hypertrophy, such as Nppa and Myh7, were found to be increased in the treatment group. There was an associated increase in Agtr2 mRNA and protein, whereas Agtr1a mRNA and AGTR1 protein were decreased in HFD fetal and neonatal hearts. Furthermore, maternal HFD decreased glucocorticoid receptors (GRs) binding to glucocorticoid response elements at the Agtr1a and Agtr2 promoter, which correlated with downregulation of GR in fetal and neonatal hearts. These findings suggest that maternal HFD may promote premature termination of fetal and neonatal cardiomyocyte proliferation and compensatory hypertrophy through intrauterine modulation of AGTR1 and AGTR2 expression via GR dependent mechanism.
Collapse
Affiliation(s)
- Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fangyuan Chen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haichuan Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Pinxian Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Andrew J Patterson
- University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Jiandong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| |
Collapse
|
46
|
Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J 2020; 34:4619-4634. [PMID: 32020679 DOI: 10.1096/fj.201901867rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Promoting brown adipose tissue (BAT) function or browning of white adipose tissue (WAT) provides a defense against obesity. The aim of the study was to investigate whether maternal polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to high-fat diet (HFD) rats during pregnancy and lactation could promote brown/beige adipogenesis and protect against HFD-induced adiposity in offspring. Female SD rats were fed a HFD for 8 weeks to induce obesity and, then, fed a HFD during pregnancy and lactation with or without MFGM-PL. Male offspring were weaned at postnatal Day 21 and then fed a HFD for 9 weeks. MFGM-PL treatment to HFD dams decreased the body weight gain and WAT mass as well as lowered the serum levels of insulin and triglycerides in male offspring at weaning. MFGM-PL+HFD offspring showed promoted thermogenic function in BAT and inguinal WAT through the upregulation of UCP1 and other thermogenic genes. In adulthood, maternal MFGM-PL supplementation reduced adiposity and increased oxygen consumption, respiratory exchange ratio, and heat production in male offspring. The enhancement of energy expenditure was correlated with elevated BAT activity and inguinal WAT thermogenic program. In conclusion, maternal MFGM-PL treatment activated thermogenesis in offspring, which exerted long-term beneficial effects against HFD-induced obesity in later life.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Han Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qichen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Blin G, Liand M, Mauduit C, Chehade H, Benahmed M, Simeoni U, Siddeek B. Maternal Exposure to High-Fat Diet Induces Long-Term Derepressive Chromatin Marks in the Heart. Nutrients 2020; 12:E181. [PMID: 31936461 PMCID: PMC7019950 DOI: 10.3390/nu12010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart diseases are a leading cause of death. While the link between early exposure to nutritional excess and heart disease risk is clear, the molecular mechanisms involved are poorly understood. In the developmental programming field, increasing evidence is pointing out the critical role of epigenetic mechanisms. Among them, polycomb repressive complex 2 (PRC2) and DNA methylation play a critical role in heart development and pathogenesis. In this context, we aimed at evaluating the role of these epigenetic marks in the long-term cardiac alterations induced by early dietary challenge. Using a model of rats exposed to maternal high-fat diet during gestation and lactation, we evaluated cardiac alterations at adulthood. Expression levels of PRC2 components, its histone marks di- and trimethylated histone H3 (H3K27me2/3), associated histone mark (ubiquitinated histone H2A, H2AK119ub1) and target genes were measured by Western blot. Global DNA methylation level and DNA methyl transferase 3B (DNMT3B) protein levels were measured. Maternal high-fat diet decreased H3K27me3, H2Ak119ub1 and DNA methylation levels, down-regulated the enhancer of zeste homolog 2 (EZH2), and DNMT3B expression. The levels of the target genes, isl lim homeobox 1 (Isl1), six homeobox 1 (Six1) and mads box transcription enhancer factor 2, polypeptide C (Mef2c), involved in cardiac pathogenesis were up regulated. Overall, our data suggest that the programming of cardiac alterations by maternal exposure to high-fat diet involves the derepression of pro-fibrotic and pro-hypertrophic genes through the induction of EZH2 and DNMT3B deficiency.
Collapse
Affiliation(s)
- Guillaume Blin
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Marjorie Liand
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Claire Mauduit
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, 06204 Nice, France; (C.M.); (M.B.)
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Mohamed Benahmed
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, 06204 Nice, France; (C.M.); (M.B.)
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| |
Collapse
|
48
|
Furse S, Snowden SG, Olga L, Prentice P, Ong KK, Hughes IA, Acerini CL, Dunger DB, Koulman A. Evidence from 3-month-old infants shows that a combination of postnatal feeding and exposures in utero shape lipid metabolism. Sci Rep 2019; 9:14321. [PMID: 31586083 PMCID: PMC6778076 DOI: 10.1038/s41598-019-50693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
We tested the hypothesis that both postnatal feeding and conditions in utero affect lipid metabolism in infants. Infants who experienced restrictive growth conditions in utero and others exposed to maternal hyperglycaemia were compared to a control group with respect to feeding mode. Dried blood spots were collected from a pilot subset of infant participants of the Cambridge Baby Growth Study at 3mo. Groups: (a) a normal gestation (control, n = 40), (b) small for gestational age (SGA, n = 34) and (c) whose mothers developed hyperglycaemia (n = 59). These groups were further stratified by feeding mode; breastfed, formula-fed or received a mixed intake. Their phospholipid, glyceride and sterol fractions were profiled using direct infusion mass spectrometry. Statistical tests were used to identify molecular species that indicated differences in lipid metabolism. The abundance of several phospholipids identified by multivariate analysis, PC(34:1), PC(34:2) and PC-O(34:1), was 30-100% higher across all experimental groups. SM(39:1) was around half as abundant in in utero groups among breastfed infants only. The evidence from this pilot study shows that phospholipid metabolism is modulated by both conditions in utero and postnatal feeding in a cohort of 133 Caucasian infants, three months post partum.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Laurentya Olga
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Philippa Prentice
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
49
|
Furse S, Billing G, Snowden SG, Smith J, Goldberg G, Koulman A. Relationship between the lipid composition of maternal plasma and infant plasma through breast milk. Metabolomics 2019; 15:129. [PMID: 31555909 PMCID: PMC6761246 DOI: 10.1007/s11306-019-1589-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION This study was motivated by the report that infant development correlates with particular lipids in infant plasma. OBJECTIVE The hypothesis was that the abundance of these candidate biomarkers is influenced by the dietary intake of the infant. METHODS A cohort of 30 exclusively-breastfeeding mother-infant pairs from a small region of West Africa was used for this observational study. Plasma and milk from the mother and plasma from her infant were collected within 24 h, 3 months post partum. The lipid, sterol and glyceride composition was surveyed using direct infusion MS in positive and negative ion modes. Analysis employed a combination of univariate and multivariate tests. RESULTS The lipid profiles of mother and infant plasma samples are similar but distinguishable, and both are distinct from milk. Phosphatidylcholines (PC), cholesteryl esters (CEs) and cholesterol were more abundant in mothers with respect to their infants, e.g. PC(34:1) was 5.66% in mothers but 3.61% in infants (p = 3.60 × 10-10), CE(18:2) was 8.05% in mothers but 5.18% in infants (p = 1.37 × 10-11) whilst TGs were lower in mothers with respect to their infants, e.g. TG(52:2) was 2.74% in mothers and 4.23% in infants (p = 1.63 × 10-05). A latent structure model showed that four lipids in infant plasma previously shown to be biomarkers clustered with cholesteryl esters in the maternal circulation. CONCLUSION This study found evidence that the abundance of individual lipid isoforms associated with infant development are associated with the abundance of individual molecular species in the mother's circulation.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC, Institute of Metabolic Science, University of Cambridge, c/o Level 4 Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Georgia Billing
- Nutrition and Bone Health Group, MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC, Institute of Metabolic Science, University of Cambridge, c/o Level 4 Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - James Smith
- Faculty of Mathematics & Physical Sciences, School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Gail Goldberg
- Nutrition and Bone Health Group, MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC, Institute of Metabolic Science, University of Cambridge, c/o Level 4 Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
50
|
Loche E, Blackmore HL, Carpenter AA, Beeson JH, Pinnock A, Ashmore TJ, Aiken CE, de Almeida-Faria J, Schoonejans JM, Giussani DA, Fernandez-Twinn DS, Ozanne SE. Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiovasc Res 2019; 114:1372-1384. [PMID: 29635288 PMCID: PMC6054211 DOI: 10.1093/cvr/cvy082] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 04/03/2018] [Indexed: 11/14/2022] Open
Abstract
Aims Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. Methods and results The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure, and function was assessed in 8-week-old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P < 0.0001) and leptin levels (P < 0.0001); maternal obesity (P = 0.001) and a post-weaning obesogenic diet (P = 0.002) increased absolute heart weight; maternal obesity (P = 0.01) and offspring obesity (P = 0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7: Myh6 ratio; P = 0.0004), however, these genes were not affected by offspring diet; maternal obesity (P = 0.02); and offspring obesity (P = 0.05) caused hypertension and effects were additive. Conclusions Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes, and remodelling of cardiac structure. These data highlight that the perinatal period is just as important as adult-onset obesity in predicting CVD risk. Therefore, early developmental periods are key intervention windows to reduce the prevalence of CVD.
Collapse
Affiliation(s)
- Elena Loche
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Heather L Blackmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Asha A Carpenter
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Jessica H Beeson
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Adele Pinnock
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK.,Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Box 223, Cambridge, CB2 0SW, UK
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK.,University of Campinas, Faculty of Medical Sciences, Obesity and Comorbidities Research Center, Campinas, 13083-864, Brazil
| | - Josca M Schoonejans
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| |
Collapse
|