1
|
Prat J, D'Angelo E, Espinosa I. Ovarian Carcinomas: Clinicopathologic and Molecular Features With Comments on 2014 FIGO Staging. Am J Surg Pathol 2025; 49:e1-e14. [PMID: 39807827 DOI: 10.1097/pas.0000000000002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
According to histopathology and molecular genetics, there are 5 major subtypes of ovarian carcinomas: high-grade serous (70%), endometrioid (10%), clear cell (10%), mucinous (3% to 4%), and low-grade serous (<5%) carcinomas. These tumors, which constitute over 95% of cases, represent distinct diseases with different prognoses and therapy. This review outlines contemporary advances in molecular pathology, which have expanded our knowledge of the biology of epithelial ovarian cancer and are also important to patient management. We also comment on some controversial points of the FIGO staging classification that we proposed in 2014.
Collapse
Affiliation(s)
- Jaime Prat
- Autonomous University of Barcelona, Sant Quintin, Barcelona, Spain
| | - Emanuela D'Angelo
- Hospital de la Santa Creu i Sant Pau, Sant Quintin, Barcelona, Spain
| | - Iñigo Espinosa
- Department of Medical and Biotechnological Sciences, University "G. D'Annunzio", Via dei Vestini, Chieti-Pescara Italy
| |
Collapse
|
2
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. Front Oncol 2024; 14:1432333. [PMID: 39104719 PMCID: PMC11299042 DOI: 10.3389/fonc.2024.1432333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Ovarian and other peritoneal cancers have a strong tendency to metastasize into the surrounding adipose tissue. This study describes an effect of the adipose microenvironment on upregulation of sialic acid-containing glycans in ovarian cancer (OC). Heterogeneous populations of glycosylated OC tumors converged to a highly sialylated cell state that regulates tumorigenesis in an immune-dependent manner. Methods We modeled the adipose microenvironment by conditioning growth media with human patient-derived adipose tissue. OC cell lines grown in the presence vs. absence of adipose conditioned media (ACM) were characterized by transcriptomics, western blotting, and chemical biology glycan labeling methods. Fluorescence-activated cell sorting was used to separate adipose-driven upregulation of hypersialylated ("SNA-high") vs. hyposialylated ("SNA-low") OC subpopulations. The two subpopulations were characterized by further transcriptomic and quantitative polymerase chain reaction analyses, then injected into a syngeneic mouse model. Immune system involvement was implicated using wild type and athymic nude mice with a primary endpoint of overall survival. Results Adipose conditioning resulted in upregulation of sialyltransferases ST3GAL1, ST6GAL1, ST6GALNAC3, and ST8Sia1. In culture, OC cells displayed two distinct sialylated subpopulations that were stable for up to 9 passages, suggesting inherent heterogeneity in sialylation that is maintained throughout cell division and media changes. OC tumors that implanted in the omental adipose tissue exclusively reprogrammed to the highly sialylated subpopulation. In wild type C57BL/6 mice, only the hypersialylated SNA-high subpopulation implanted in the adipose, whereas the hyposialylated SNA-low subpopulation failed to be tumorigenic (p=0.023, n=5). In the single case where SNA-low established a tumor, post-mortem analysis revealed reprogramming of the tumor to the SNA-high state in vivo. In athymic nude mice, both subpopulations rapidly formed tumors, implicating a role of the adaptive immune system. Conclusions These findings suggest a model of glycan-dependent tumor evolution wherein the adipose microenvironment reprograms OC to a tumorigenic state that resists the adaptive immune system. Mechanistically, adipose factors upregulate sialyltransferases. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Alexandra Fox
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Garry D. Leonard
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Terrence Wong
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Roslyn Tedja
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Sapna Sharma
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
3
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593990. [PMID: 38798490 PMCID: PMC11118282 DOI: 10.1101/2024.05.13.593990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sialylation, the addition of negatively charged sialic acid sugars to terminal ends of glycans, is upregulated in most cancers. Hypersialylation supports multiple pro-tumor mechanisms such as enhanced migration and invasion, resistance to apoptosis and immune evasion. A current gap in knowledge is the lack of understanding on how the tumor microenvironment regulates cancer cell sialylation. The adipose niche is a main component of most peritoneal cancers' microenvironment. This includes ovarian cancer (OC), which causes most deaths from all gynecologic cancers. In this report, we demonstrate that the adipose microenvironment is a critical regulator of OC cell sialylation. In vitro adipose conditioning led to an increase in both ⍺2,3- and ⍺2,6-linked cell surface sialic acids in both human and mouse models of OC. Adipose-induced sialylation reprogramming was also observed in vivo from intra-peritoneal OC tumors seeded in the adipose-rich omentum. Mechanistically, we observed upregulation of at least three sialyltransferases, ST3GAL1, ST6GAL1 and ST3GALNAC3. Hypersialylated OC cells consistently formed intra-peritoneal tumors in both immune-competent mice and immune-compromised athymic nude mice. In contrast, hyposiaylated OC cells persistently formed tumors only in athymic nude mice demonstrating that sialylation impacts OC tumor formation in an immune dependent manner. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancers.
Collapse
|
4
|
Sah S, Bifarin OO, Moore SG, Gaul DA, Chung H, Kwon SY, Cho H, Cho CH, Kim JH, Kim J, Fernández FM. Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women. Cancer Epidemiol Biomarkers Prev 2024; 33:681-693. [PMID: 38412029 PMCID: PMC11061607 DOI: 10.1158/1055-9965.epi-23-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Distinguishing ovarian cancer from other gynecological malignancies is crucial for patient survival yet hindered by non-specific symptoms and limited understanding of ovarian cancer pathogenesis. Accumulating evidence suggests a link between ovarian cancer and deregulated lipid metabolism. Most studies have small sample sizes, especially for early-stage cases, and lack racial/ethnic diversity, necessitating more inclusive research for improved ovarian cancer diagnosis and prevention. METHODS Here, we profiled the serum lipidome of 208 ovarian cancer, including 93 early-stage patients with ovarian cancer and 117 nonovarian cancer (other gynecological malignancies) patients of Korean descent. Serum samples were analyzed with a high-coverage liquid chromatography high-resolution mass spectrometry platform, and lipidome alterations were investigated via statistical and machine learning (ML) approaches. RESULTS We found that lipidome alterations unique to ovarian cancer were present in Korean women as early as when the cancer is localized, and those changes increase in magnitude as the diseases progresses. Analysis of relative lipid abundances revealed specific patterns for various lipid classes, with most classes showing decreased abundance in ovarian cancer in comparison with other gynecological diseases. ML methods selected a panel of 17 lipids that discriminated ovarian cancer from nonovarian cancer cases with an AUC value of 0.85 for an independent test set. CONCLUSIONS This study provides a systemic analysis of lipidome alterations in human ovarian cancer, specifically in Korean women. IMPACT Here, we show the potential of circulating lipids in distinguishing ovarian cancer from nonovarian cancer conditions.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Olatomiwa O. Bifarin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Hyewon Chung
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Alvero AB, Fox A, Madina BR, Krady MM, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky TO, Rutherford T, Mor G. Immune Modulation of Innate and Adaptive Responses Restores Immune Surveillance and Establishes Antitumor Immunologic Memory. Cancer Immunol Res 2024; 12:261-274. [PMID: 38078853 PMCID: PMC11027955 DOI: 10.1158/2326-6066.cir-23-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Current immunotherapies have proven effective in strengthening antitumor immune responses, but constant opposing signals from tumor cells and the surrounding microenvironment eventually lead to immune escape. We hypothesized that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system would provide a robust and long-term antitumor effect by creating immunologic memory against tumors. To achieve this, we developed CARG-2020, a genetically modified virus-like vesicle (VLV) that is a self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three immune modulators: (i) the pleiotropic antitumor cytokine IL12, in which the subunits (p35 and p40) are tethered together; (ii) the extracellular domain (ECD) of the protumor IL17RA, which serves as a dominant-negative antagonist; and (iii) a shRNA targeting PD-L1. Using a mouse model of ovarian cancer, we demonstrated the oncolytic effect and immune-modulatory capacities of CARG-2020. By enhancing IL12 and blocking IL17 and PD-L1, CARG-2020 successfully reactivated immune surveillance by promoting M1, instead of M2, macrophage differentiation, inhibiting MDSC expansion and establishing a potent CD8+ T cell-mediated antitumoral response. Furthermore, we demonstrated that this therapeutic approach provided tumor-specific and long-term protection against the establishment of new tumors. Our results provide a rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance antitumor responses and prevent a recurrence.
Collapse
Affiliation(s)
- Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | | | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
6
|
Ma X, Botros A, Yun SR, Park EY, Kim O, Park S, Pham TH, Chen R, Palaniappan M, Matzuk MM, Kim J, Fernández FM. Ultrahigh resolution lipid mass spectrometry imaging of high-grade serous ovarian cancer mouse models. Front Chem 2024; 11:1332816. [PMID: 38260043 PMCID: PMC10800477 DOI: 10.3389/fchem.2023.1332816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering that little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights into how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout (n = 4) and triple mutant mouse models (n = 4) of high-grade serous ovarian cancer (HGSOC). Lipids belonging to a total of 15 different classes were annotated and their abundance changes were compared to those in healthy mouse reproductive tissue (n = 4), mapping onto major lipid pathways involved in OC progression. From intermediate-stage OC to advanced HGSC, we provide direct visualization of lipid distributions and their biological links to inflammatory response, cellular stress, cell proliferation, and other processes. We also show the ability to distinguish tumors at different stages from healthy tissues via a number of highly specific lipid biomarkers, providing targets for future panels that could be useful in diagnosis.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andro Botros
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Sylvia R. Yun
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Eun Young Park
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Olga Kim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Soojin Park
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Thu-Huyen Pham
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Ruihong Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jaeyeon Kim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
7
|
Chang YH, Wu KC, Wang KH, Ding DC. Assessment of Fallopian Tube Epithelium Features Derived from Induced Pluripotent Stem Cells of Both Fallopian Tube and Skin Origins. Cells 2023; 12:2635. [PMID: 37998370 PMCID: PMC10670511 DOI: 10.3390/cells12222635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Fallopian tube epithelial cells (FTECs) play a significant role in the development of high-grade serous ovarian cancer (HGSOC), but their utilization in in vitro experiments presents challenges. To address these limitations, induced pluripotent stem cells (iPSCs) have been employed as a potential solution, driven by the hypothesis that orthologous iPSCs may offer superior differentiation capabilities compared with their non-orthologous counterparts. Our objective was to generate iPSCs from FTECs, referred to as FTEC-iPSCs, and compare their differentiation potential with iPSCs derived from skin keratinocytes (NHEK). By introducing a four-factor Sendai virus transduction system, we successfully derived iPSCs from FTECs. To assess the differentiation capacity of iPSCs, we utilized embryoid body formation, revealing positive immunohistochemical staining for markers representing the three germ layers. In vivo tumorigenesis evaluation further validated the pluripotency of iPSCs, as evidenced by the formation of tumors in immunodeficient mice, with histological analysis confirming the presence of tissues from all three germ layers. Quantitative polymerase chain reaction (qPCR) analysis illuminated a sequential shift in gene expression, encompassing pluripotent, mesodermal, and intermediate mesoderm-related genes, during the iPSC differentiation process into FTECs. Notably, the introduction of WNT3A following intermediate mesoderm differentiation steered the cells toward a FTEC phenotype, supported by the expression of FTEC-related markers and the formation of tubule-like structures. In specific culture conditions, the expression of FTEC-related genes was comparable in FTECs derived from FTEC-iPSCs compared with those derived from NHEK-iPSCs. To conclude, our study successfully generated iPSCs from FTECs, demonstrating their capacity for FTEC differentiation. Furthermore, iPSCs originating from orthologous cell sources exhibited comparable differentiation capabilities. These findings hold promise for using iPSCs in modeling and investigating diseases associated with these specific cell types.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan;
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan;
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
8
|
Ma X, Botros A, Yun SR, Park EY, Kim O, Chen R, Palaniappan M, Matzuk MM, Kim J, Fernández FM. Ultrahigh Resolution Lipid Mass Spectrometry Imaging of High-Grade Serous Ovarian Cancer Mouse Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564760. [PMID: 37961688 PMCID: PMC10634942 DOI: 10.1101/2023.10.30.564760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights on how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout (n = 4) and a triple mutant mouse models (n = 4) of high-grade serous ovarian cancer (HGSC). Lipids belonging to a total of 15 different classes were annotated and their abundance changes compared to those in healthy mouse reproductive tissue (n = 4), mapping onto major lipid pathways involved in OC progression. From intermediate-stage OC to advanced HGSC, we provide a direct visualization of lipid distributions and their biological links to inflammatory response, cellular stress, cell proliferation, and other processes. We also show the ability to distinguish tumors at different stages from healthy tissues via a number of highly specific lipid biomarkers, providing targets for future panels that could be useful in diagnosis.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andro Botros
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Sylvia R. Yun
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Eun Young Park
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Olga Kim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Ruihong Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jaeyeon Kim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Jia W, Li M. Unveiling Insights into Ovarian Cancer Metabolism through Space- and Time-Resolved Analysis. Cancers (Basel) 2023; 15:4881. [PMID: 37835575 PMCID: PMC10572059 DOI: 10.3390/cancers15194881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
High-grade serous carcinoma (HGSC) represents a formidable challenge in the realm of ovarian cancer, notorious for its elusive early detection, poor prognosis and limited understanding of the intricacies of its pathogenesis [...].
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China;
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China;
| |
Collapse
|
10
|
Qian L, Sun R, Xue Z, Guo T. Mass Spectrometry-based Proteomics of Epithelial Ovarian Cancers: a Clinical Perspective. Mol Cell Proteomics 2023:100578. [PMID: 37209814 PMCID: PMC10388592 DOI: 10.1016/j.mcpro.2023.100578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Increasing proteomic studies focused on epithelial ovarian cancer (EOC) have attempted to identify early disease biomarkers, establish molecular stratification, and discover novel druggable targets. Here we review these recent studies from a clinical perspective. Multiple blood proteins have been used clinically as diagnostic markers. The ROMA test integrates CA125 and HE4, while the OVA1 and OVA2 tests analyze multiple proteins identified by proteomics. Targeted proteomics has been widely used to identify and validate potential diagnostic biomarkers in EOCs, but none has yet been approved for clinical adoption. Discovery proteomic characterization of bulk EOC tissue specimens has uncovered a large number of dysregulated proteins, proposed new stratification schemes, and revealed novel targets of therapeutic potential. A major hurdle facing clinical translation of these stratification schemes based on bulk proteomic profiling is intra-tumor heterogeneity, namely that single tumor specimens may harbor molecular features of multiple subtypes. We reviewed over 2500 interventional clinical trials of ovarian cancers since 1990, and cataloged 22 types of interventions adopted in these trials. Among 1418 clinical trials which have been completed or are not recruiting new patients, about 50% investigated chemotherapies. Thirty-seven clinical trials are at phase 3 or 4, of which 12 focus on PARP, 10 on VEGFR, 9 on conventional anti-cancer agents, and the remaining on sex hormones, MEK1/2, PD-L1, ERBB, and FRα. Although none of the foregoing therapeutic targets were discovered by proteomics, newer targets discovered by proteomics, including HSP90 and cancer/testis antigens, are being tested also in clinical trials. To accelerate the translation of proteomic findings to clinical practice, future studies need to be designed and executed to the stringent standards of practice-changing clinical trials. We anticipate that the rapidly evolving technology of spatial and single-cell proteomics will deconvolute the intra-tumor heterogeneity of EOCs, further facilitating their precise stratification and superior treatment outcomes.
Collapse
Affiliation(s)
- Liujia Qian
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhangzhi Xue
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
11
|
Johnson J, Kim SY, Sam PK, Asokan R, Cari EL, Bales ES, Luu TH, Perez L, Kallen AN, Nel-Themaat L, Polotsky AJ, Post MD, Orlicky DJ, Jordan KR, Bitler BG. Expression and T cell regulatory action of the PD-1 immune checkpoint in the ovary and fallopian tube. Am J Reprod Immunol 2023; 89:e13649. [PMID: 36394352 PMCID: PMC10559227 DOI: 10.1111/aji.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM Immune cell trafficking and surveillance within the ovary and fallopian tube are thought to impact fertility and also tumorigenesis in those organs. However, little is known of how native cells of the ovary and fallopian tube interact with resident immune cells. Interaction of the Programmed Cell Death Protein-1 (PD-1/PDCD-1/CD279) checkpoint with PD-L1 is associated with downregulated immune response. We have begun to address the question of whether PD-1 ligand or its receptors (PD-L1/-L2) can regulate immune cell function in these tissues of the female reproductive tract. METHOD OF STUDY PD-1 and ligand protein expression was evaluated in human ovary and fallopian tube specimens, the latter of which included stages of tubal cell transformation and early tumorigenesis. Ovarian expression analysis included the determination of the proteins in human follicular fluid (HFF) specimens collected during in vitro fertilization procedures. Finally, checkpoint bioactivity of HFF was determined by treatment of separately-isolated human T cells and the measurement of interferon gamma (IFNγ). RESULTS We show that membrane bound and soluble variants of PD-1 and ligands are expressed by permanent constituent cell types of the human ovary and fallopian tube, including granulosa cells and oocytes. PD-1 and soluble ligands were present in HFF at bioactive levels that control T cell PD-1 activation and IFNγ production; full-length checkpoint proteins were found to be highly enriched in HFF exosome fractions. CONCLUSION The detection of PD-1 checkpoint proteins in the human ovary and fallopian tube suggests that the pathway is involved in immunomodulation during folliculogenesis, the window of ovulation, and subsequent egg and embryo immune-privilege. Immunomodulatory action of receptor and ligands in HFF exosomes is suggestive of an acute checkpoint role during ovulation. This is the first study in the role of PD-1 checkpoint proteins in human tubo-ovarian specimens and the first examination of its potential regulatory action in the contexts of normal and assisted reproduction.
Collapse
Affiliation(s)
- Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Rengasamy Asokan
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Evelyn Llerena Cari
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - Elise S. Bales
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Thanh-Ha Luu
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | | | | | - Liesl Nel-Themaat
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Alex J. Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Miriam D. Post
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - David J. Orlicky
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Human Immunology and Immunotherapy Initiative, Human Immune Monitoring Shared Resource, RC1-North, 8113, Aurora, Colorado 80045
| | - Benjamin G. Bitler
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| |
Collapse
|
12
|
Chehade H, Purandare N, Fox A, Adzibolosu N, Jayee S, Singh A, Tedja R, Gogoi R, Aras S, Grossman LI, Mor G, Alvero AB. MNRR1 is a driver of ovarian cancer progression. Transl Oncol 2023; 29:101623. [PMID: 36641875 PMCID: PMC9860385 DOI: 10.1016/j.tranon.2023.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer progression requires the acquisition of mechanisms that support proliferative potential and metastatic capacity. MNRR1 (also CHCHD2, PARK22, AAG10) is a bi-organellar protein that in the mitochondria can bind to Bcl-xL to enhance its anti-apoptotic function, or to respiratory chain complex IV (COX IV) to increase mitochondrial respiration. In the nucleus, it can act as a transcription factor and promote the expression of genes involved in mitochondrial biogenesis, migration, and cellular stress response. Given that MNRR1 can regulate both apoptosis and mitochondrial respiration, as well as migration, we hypothesize that it can modulate metastatic spread. Using ovarian cancer models, we show heterogeneous protein expression levels of MNRR1 across samples tested and cell-dependent control of its stability and binding partners. In addition to its anti-apoptotic and bioenergetic functions, MNRR1 is both necessary and sufficient for a focal adhesion and ECM repertoire that can support spheroid formation. Its ectopic expression is sufficient to induce the adhesive glycoprotein THBS4 and the type 1 collagen, COL1A1. Conversely, its deletion leads to significant downregulation of these genes. Furthermore, loss of MNRR1 leads to delay in tumor growth, curtailed carcinomatosis, and improved survival in a syngeneic ovarian cancer mouse model. These results suggest targeting MNRR1 may improve survival in ovarian cancer patients.
Collapse
Affiliation(s)
- Hussein Chehade
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Shawn Jayee
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Aryan Singh
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Corresponding author at: 275 E. Hancock St., Detroit, MI, 48201, United States.
| |
Collapse
|
13
|
Circulating and non-circulating proteins and nucleic acids as biomarkers and therapeutic molecules in ovarian cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Sah S, Yun SR, Gaul DA, Botros A, Park EY, Kim O, Kim J, Fernández FM. Targeted Microchip Capillary Electrophoresis-Orbitrap Mass Spectrometry Metabolomics to Monitor Ovarian Cancer Progression. Metabolites 2022; 12:metabo12060532. [PMID: 35736465 PMCID: PMC9230880 DOI: 10.3390/metabo12060532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
The lack of effective screening strategies for high-grade serous carcinoma (HGSC), a subtype of ovarian cancer (OC) responsible for 70–80% of OC related deaths, emphasizes the need for new diagnostic markers and a better understanding of disease pathogenesis. Capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) offers high selectivity and sensitivity for ionic compounds, thereby enhancing biomarker discovery. Recent advances in CE-MS include small, chip-based CE systems coupled with nanoelectrospray ionization (nanoESI) to provide rapid, high-resolution analysis of biological specimens. Here, we describe the development of a targeted microchip (µ) CE-HRMS method, with an acquisition time of only 3 min and sample injection volume of 4nL, to analyze 40 target metabolites in serum samples from a triple-mutant (TKO) mouse model of HGSC. Extracted ion electropherograms showed sharp, baseline resolved peak shapes, even for structural isomers such as leucine and isoleucine. All calibration curves of the analytes maintained good linearity with an average R2 of 0.994, while detection limits were in the nM range. Thirty metabolites were detected in mouse serum with recoveries ranging from 78 to 120%, indicating minimal ionization suppression and good accuracy. We applied the µCE-HRMS method to biweekly-collected serum samples from TKO and TKO control mice. A time-resolved analysis revealed characteristic temporal trends for amino acids, nucleosides, and amino acid derivatives. These metabolic alterations are indicative of altered nucleotide biosynthesis and amino acid metabolism in HGSC development and progression. A comparison of the µCE-HRMS dataset with non-targeted ultra-high performance liquid chromatography (UHPLC)–MS results showed identical temporal trends for the five metabolites detected with both platforms, indicating the µCE-HRMS method performed satisfactorily in terms of capturing metabolic reprogramming due to HGSC progression while reducing the total data collection time three-fold.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
| | - Sylvia R. Yun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
| | - Andro Botros
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Correspondence: (J.K.); (F.M.F.); Tel.: +1-317-278-9740 (ext. 274-4648) (J.K.); +1-404-385-4432 (ext. 894-7452) (F.M.F.)
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: (J.K.); (F.M.F.); Tel.: +1-317-278-9740 (ext. 274-4648) (J.K.); +1-404-385-4432 (ext. 894-7452) (F.M.F.)
| |
Collapse
|
15
|
Space- and Time-Resolved Metabolomics of a High-Grade Serous Ovarian Cancer Mouse Model. Cancers (Basel) 2022; 14:cancers14092262. [PMID: 35565391 PMCID: PMC9104348 DOI: 10.3390/cancers14092262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The dismally low survival rate of ovarian cancer patients diagnosed with high-grade serous carcinoma (HGSC) emphasizes the lack of effective screening strategies. One major obstacle is the limited knowledge of the underlying mechanisms of HGSC pathogenesis at very early stages. Here, we present the first 10-month time-resolved serum metabolic profile of a triple mutant (TKO) HGSC mouse model, along with the spatial lipidome profile of its entire reproductive system. A high-coverage liquid chromatography mass spectrometry-based metabolomics approach was applied to longitudinally collected serum samples from both TKO (n = 15) and TKO control mice (n = 15), tracking metabolome and lipidome changes from premalignant stages to tumor initiation, early stages, and advanced stages until mouse death. Time-resolved analysis showed specific temporal trends for 17 lipid classes, amino acids, and TCA cycle metabolites, associated with HGSC progression. Spatial lipid distributions within the reproductive system were also mapped via ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and compared with serum lipid profiles for various lipid classes. Altogether, our results show that the remodeling of lipid and fatty acid metabolism, amino acid biosynthesis, TCA cycle and ovarian steroidogenesis are critical components of HGSC onset and development. These metabolic alterations are accompanied by changes in energy metabolism, mitochondrial and peroxisomal function, redox homeostasis, and inflammatory response, collectively supporting tumorigenesis.
Collapse
|
16
|
Sherill-Rofe D, Raban O, Findlay S, Rahat D, Unterman I, Samiei A, Yasmeen A, Kaiser Z, Kuasne H, Park M, Foulkes WD, Bloch I, Zick A, Gotlieb WH, Tabach Y, Orthwein A. Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair. NAR Cancer 2022; 4:zcac013. [PMID: 35399185 PMCID: PMC8991968 DOI: 10.1093/narcan/zcac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).
Collapse
Affiliation(s)
- Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Oded Raban
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Amber Yasmeen
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Zafir Kaiser
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hellen Kuasne
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - William D Foulkes
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem, Jerusalem 91120, Israel
| | - Walter H Gotlieb
- Division of Gynecology Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
17
|
Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z, Chong KY, Yang K, Morrison MJ, Kim D, Kim J, Zhang W, Kril LM, Watt DS, Liu C, Yang-Hartwich Y. A Benzenesulfonamide-Based Mitochondrial Uncoupler Induces Endoplasmic Reticulum Stress and Immunogenic Cell Death in Epithelial Ovarian Cancer. Mol Cancer Ther 2021; 20:2398-2409. [PMID: 34625503 PMCID: PMC8643344 DOI: 10.1158/1535-7163.mct-21-0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and requires new therapeutic strategies to improve clinical outcomes. EOC metastasizes in the abdominal cavity through dissemination in the peritoneal fluid and ascites, efficiently adapt to the nutrient-deprived microenvironment, and resist current chemotherapeutic agents. Accumulating evidence suggests that mitochondrial oxidative phosphorylation is critical for the adaptation of EOC cells to this otherwise hostile microenvironment. Although chemical mitochondrial uncouplers can impair mitochondrial functions and thereby target multiple, essential pathways for cancer cell proliferation, traditional mitochondria uncouplers often cause toxicity that precludes their clinical application. In this study, we demonstrated that a mitochondrial uncoupler, specifically 2,5-dichloro-N-(4-nitronaphthalen-1-yl)benzenesulfonamide, hereinafter named Y3, was an antineoplastic agent in ovarian cancer models. Y3 treatment activated AMP-activated protein kinase and resulted in the activation of endoplasmic reticulum stress sensors as well as growth inhibition and apoptosis in ovarian cancer cells in vitro Y3 was well tolerated in vivo and effectively suppressed tumor progression in three mouse models of EOC, and Y3 also induced immunogenic cell death of cancer cells that involved the release of damage-associated molecular patterns and the activation of antitumor adaptive immune responses. These findings suggest that mitochondrial uncouplers hold promise in developing new anticancer therapies that delay tumor progression and protect patients with ovarian cancer against relapse.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wonmin Park
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Tobias M P Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Zhiping Ge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kay Y Chong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Madeline J Morrison
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Liliia M Kril
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky.
- Lucille Parker Markey Cancer Center, University of Kentucky Health Care, Lexington, Kentucky
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
Yucer N, Ahdoot R, Workman MJ, Laperle AH, Recouvreux MS, Kurowski K, Naboulsi DJ, Liang V, Qu Y, Plummer JT, Gayther SA, Orsulic S, Karlan BY, Svendsen CN. Human iPSC-derived fallopian tube organoids with BRCA1 mutation recapitulate early-stage carcinogenesis. Cell Rep 2021; 37:110146. [PMID: 34965417 PMCID: PMC9000920 DOI: 10.1016/j.celrep.2021.110146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022] Open
Abstract
Germline pathogenic mutations in BReast CAncer (BRCA1) genes are thought to drive normal fallopian tube epithelial (FTE) cell transformation to high-grade serous ovarian cancer. No human models capture the sequence of events for disease initiation and progression. Here, we generate induced pluripotent stem cells (iPSCs) from healthy individuals and young ovarian cancer patients with germline pathogenic BRCA1 mutations (BRCA1mut). Following differentiation into FTE organoids, BRCA1mut lines exhibit cellular abnormalities consistent with neoplastic transformation compared to controls. BRCA1mut organoids show an increased production of cancer-specific proteins and survival following transplantation into mice. Organoids from women with the most aggressive ovarian cancer show the greatest pathology, indicating the potential value to predict clinical severity prior to disease onset. These human FTE organoids from BRCA1mut carriers provide a faithful physiological in vitro model of FTE lesion generation and early carcinogenesis. This platform can be used for personalized mechanistic and drug screening studies. Yucer et al. generate a human BRCA1 mutant iPSC-derived fallopian tube organoid model, which recapitulates BRCA1 mutant ovarian carcinogenesis in vitro and shows tumors in vivo. This model provides a biologically relevant platform to validate drugs and a basis for personalized early detection and preventative strategies for women carrying BRCA1 mutations.
Collapse
|
19
|
Morrisson MJ, Bi F, Yang K, Cady SL, Hartwich TMP, Cerchia AP, Li Z, Kim J, Irwin ML, Yang-Hartwich Y. Effect of exercise on peritoneal microenvironment and progression of ovarian cancer. Am J Cancer Res 2021; 11:5045-5062. [PMID: 34765311 PMCID: PMC8569339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies and lacks treatments that do not significantly impact patient health-related quality of life. Exercise has been associated with reduced cancer risk and improved clinical outcomes; however the underlying molecular mechanisms are unknown. In this study, we utilized a treadmill-running exercise model to investigate the effects of exercise on high-grade serous ovarian carcinoma (HGSOC) progression and chemotherapy outcomes. We found that treadmill-running suppressed peritoneal colonization of tumors in a syngeneic mouse ovarian cancer model. Acute exercise stimulated the production of CCL2 and IL-15 in the peritoneal microenvironment while downregulating CCL22, VEGF, and CCL12. Using a co-culture model, we demonstrated the role of CCL2 in mediating the activity of peritoneal cells to inhibit cancer cell viability. We showed that the activation of M1 macrophages may contribute to the exercise-induced changes in the peritoneal microenvironment. We identified that chronic exercise modulates gene expression of intraperitoneal fat tissues related to lipid formation, thermogenesis, browning, and inflammation, which can contribute to inhibiting the colonization of metastatic ovarian cancer. Treadmill running also lowered blood urea nitrogen levels and reduced incidence of neutropenia and thrombocytopenia during chemotherapy in a mouse model, suggesting the potential beneficial effects of exercise in improving chemotherapy outcomes. Our data provided new insights into the acute and chronic effects of physical activity on ovarian cancer at the molecular and in vivo levels.
Collapse
Affiliation(s)
- Madeline J Morrisson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
- Sheng Jing Hospital of China Medical UniversityShenyang 110004, Liaoning, China
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Sarah L Cady
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Tobias MP Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Alexandra P Cerchia
- Department of Biology and Environmental Science, University of New HavenWest Haven, CT 06516, USA
| | - Zhigui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolis, IN 46202, USA
- Melvin & Bren Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Melinda L Irwin
- Yale School of Public HealthNew Haven, CT 06510, USA
- Yale Cancer CenterNew Haven, CT 06510, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of MedicineNew Haven, CT 06510, USA
- Yale Cancer CenterNew Haven, CT 06510, USA
| |
Collapse
|
20
|
Shi M, Whorton AE, Sekulovski N, Paquet M, MacLean JA, Song Y, Van Dyke T, Hayashi K. Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol Reprod 2021; 102:1055-1064. [PMID: 31930396 DOI: 10.1093/biolre/ioaa008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer (OvCa) remains the most common cause of death from gynecological malignancies. Genetically engineered mouse models have been used to study initiation, origin, progression, and/or mechanisms of OvCa. Based on the clinical features of OvCa, we examined a quadruple combination of pathway perturbations including PTEN, TRP53, RB1, and/or CDH1. To characterize the cancer-promoting events in the ovarian surface epithelium (OSE), Amhr2cre/+ mice were used to ablate floxed alleles of Pten, Trp53, and Cdh1, which were crossed with TgK19GT121 mice to inactivate RB1 in KRT19-expressing cells. Inactivation of PTEN, TRP53, and RB1 with or without CDH1 led to the development of type I low-grade OvCa with enlarged serous papillary carcinomas and some high-grade serous carcinomas (HGSCs) in older mice. Initiation of epithelial hyperplasia and micropapillary carcinoma started earlier at 1 month in the triple mutations of Trp53, Pten, and Rb1 mice as compared to 2 months in quadruple mutations of Trp53, Pten, Rb1, and Cdh1 mice, whereas both genotypes eventually developed enlarged proliferating tumors that invaded into the ovary at 3-4 months. Mice with triple and quadruple mutations developed HGSC and/or metastatic tumors, which disseminated into the peritoneal cavity at 4-6 months. In summary, inactivation of PTEN, TRP53, and RB1 initiates OvCa from the OSE. Additional ablation of CDH1 further increased persistence of tumor dissemination and ascites fluid accumulation enhancing peritoneal metastasis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Marilène Paquet
- Departement de Pathologie et de Microbiologie, Université de Montreal, St-Hyacinthe, Quebec, Canada
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Yurong Song
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Terry Van Dyke
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
21
|
Adeniran BV, Bjarkadottir BD, Appeltant R, Lane S, Williams SA. Improved preservation of ovarian tissue morphology that is compatible with antigen detection using a fixative mixture of formalin and acetic acid. Hum Reprod 2021; 36:1871-1890. [PMID: 33956944 PMCID: PMC8213453 DOI: 10.1093/humrep/deab075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2021] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can ovarian tissue morphology be better preserved whilst enabling histological molecular analyses following fixation with a novel fixative, neutral buffered formalin (NBF) with 5% acetic acid (referred to hereafter as Form-Acetic)? SUMMARY ANSWER Fixation with Form-Acetic improved ovarian tissue histology compared to NBF in multiple species while still enabling histological molecular analyses. WHAT IS KNOWN ALREADY NBF fixation results in tissue shrinkage in various tissue types including the ovary. Components of ovarian tissue, notably follicles, are particularly susceptible to NBF-induced morphological alterations and can lead to data misrepresentation. Bouin’s solution (which contains 5% acetic acid) better preserves tissue architecture compared to NBF but is limited for immunohistochemical analyses. STUDY DESIGN, SIZE, DURATION A comparison of routinely used fixatives, NBF and Bouin’s, and a new fixative, Form-Acetic was carried out. Ovarian tissue was used from three different species: human (n = 5 patients), sheep (n = 3; 6 ovaries; 3 animals per condition) and mouse (n = 14 mice; 3 ovaries from 3 different animals per condition). PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue from humans (aged 13 weeks to 32 years), sheep (reproductively young i.e. 3–6 months) and mice (10 weeks old) were obtained and fixed in 2 ml NBF, Bouin’s or Form-Acetic for 4, 8, and 24 h at room temperature. Tissues were embedded and sectioned. Five-micron sections were stained with haemotoxylin and eosin (H&E) and the percentage of artefact (clear space as a result of shrinkage) between ovarian structures was calculated. Additional histological staining using Periodic acid-Schiff and Masson’s trichrome were performed on 8 and 24 h NBF, Bouin’s and Form-Acetic fixed samples to assess the compatibility of the new fixative with stains. On ovarian tissue fixed for both 8 and 24 h in NBF and Form-Acetic, immunohistochemistry (IHC) studies to detect FOXO3a, FoxL2, collagen IV, laminin and anti-Müllerian hormone (AMH) proteins were performed in addition to the terminal deoxynucleotidyl transferase nick end labelling (TUNEL) assay to determine the compatibility of Form-Acetic fixation with types of histological molecular analyses. MAIN RESULTS AND THE ROLE OF CHANCE Fixation in Form-Acetic improved ovarian tissue morphology compared to NBF from all three species and either slightly improved or was comparable to Bouin’s for human, mouse and sheep tissues. Form-Acetic was compatible with H&E, Periodic acid-Schiff and Masson’s trichrome staining and all proteins (FOXO3a, FoxL2, collagen IV and laminin and AMH) could be detected via IHC. Furthermore, Form-Acetic, unlike NBF, enabled antigen recognition for most of the proteins tested without the need for antigen retrieval. Form-Acetic also enabled the detection of damaged DNA via the TUNEL assay using fluorescence. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION In this study, IHC analysis was performed on a select number of protein types in ovarian tissue thus encouraging further studies to confirm the use of Form-Acetic in enabling the detection of a wider range of protein forms in addition to other tissue types. WIDER IMPLICATIONS OF THE FINDINGS The simplicity in preparation of Form-Acetic and its superior preservative properties whilst enabling forms of histological molecular analyses make it a highly valuable tool for studying ovarian tissue. We, therefore, recommend that Form-Acetic replaces currently used fixatives and encourage others to introduce it into their research workflow. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Oxford Medical Research Council Doctoral Training Programme (Oxford MRC-DTP) grant awarded to B.D.B. (Grant no. MR/N013468/1), the Fondation Hoffmann supporting R.A. and the Petroleum Technology Development Fund (PTDF) awarded to B.V.A.
Collapse
Affiliation(s)
- B V Adeniran
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - B D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - R Appeltant
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Lane
- Future Fertility Programme Oxford, Oxford, UK.,Department of Paediatric Oncology and Haematology, Children's Hospital Oxford, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S A Williams
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Future Fertility Programme Oxford, Oxford, UK
| |
Collapse
|
22
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
23
|
Ribeiro E Ribeiro R, Valenzuela A, Beffa L, Sung CJ, Quddus MR. Low-grade serous carcinoma with extensive osseous metaplasia arising from ovarian serous cystadenofibroma. Gynecol Oncol Rep 2021; 36:100707. [PMID: 33553558 PMCID: PMC7851766 DOI: 10.1016/j.gore.2021.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 11/24/2022] Open
Abstract
Bilateral ovarian low-grade serous carcinoma presenting with extensive osseous metaplasia. Both lesions arising directly from ovarian cystadenofibromas, skipping the “borderline phase”. No micropapillary serous borderline component was identified. This case may represent a “skipped step” in low-grade serous carcinogenesis.
Collapse
Affiliation(s)
- Renan Ribeiro E Ribeiro
- Women & Infants Hospital, Providence, RI, USA.,Brown University, Providence, RI, USA.,Laboratório Cicap - Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil
| | - Ashley Valenzuela
- Women & Infants Hospital, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - Lindsey Beffa
- Women & Infants Hospital, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - C James Sung
- Women & Infants Hospital, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - M Ruhul Quddus
- Women & Infants Hospital, Providence, RI, USA.,Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Kim O, Park EY, Kwon SY, Shin S, Emerson RE, Shin YH, DeMayo FJ, Lydon JP, Coffey DM, Hawkins SM, Quilliam LA, Cheon DJ, Fernández FM, Nephew KP, Karpf AR, Widschwendter M, Sood AK, Bast RC, Godwin AK, Miller KD, Cho CH, Kim J. Targeting progesterone signaling prevents metastatic ovarian cancer. Proc Natl Acad Sci U S A 2020; 117:31993-32004. [PMID: 33262282 PMCID: PMC7749341 DOI: 10.1073/pnas.2013595117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effective cancer prevention requires the discovery and intervention of a factor critical to cancer development. Here we show that ovarian progesterone is a crucial endogenous factor inducing the development of primary tumors progressing to metastatic ovarian cancer in a mouse model of high-grade serous carcinoma (HGSC), the most common and deadliest ovarian cancer type. Blocking progesterone signaling by the pharmacologic inhibitor mifepristone or by genetic deletion of the progesterone receptor (PR) effectively suppressed HGSC development and its peritoneal metastases. Strikingly, mifepristone treatment profoundly improved mouse survival (∼18 human years). Hence, targeting progesterone/PR signaling could offer an effective chemopreventive strategy, particularly in high-risk populations of women carrying a deleterious mutation in the BRCA gene.
Collapse
MESH Headings
- Adult
- Animals
- BRCA1 Protein/genetics
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Cystadenocarcinoma, Serous/chemistry
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/prevention & control
- Disease Models, Animal
- Estradiol/administration & dosage
- Female
- Humans
- Mice
- Middle Aged
- Mifepristone/pharmacology
- Mifepristone/therapeutic use
- Mutation
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Ovarian Neoplasms/chemically induced
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/prevention & control
- Ovary/pathology
- Ovary/surgery
- Progesterone/administration & dosage
- Progesterone/antagonists & inhibitors
- Progesterone/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Salpingo-oophorectomy
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, 41931 Daegu, Republic of Korea
| | - Sojin Shin
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, 41931 Daegu, Republic of Korea
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yong-Hyun Shin
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - John P Lydon
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | - Donna M Coffey
- Department of Pathology and Genomic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX 77030
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405
| | - Adam R Karpf
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Martin Widschwendter
- Department of Women's Cancer, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom
- Research Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, 6060 Hall in Tirol, Austria
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Kathy D Miller
- Department of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, 41931 Daegu, Republic of Korea;
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202;
| |
Collapse
|
25
|
CA125 and Ovarian Cancer: A Comprehensive Review. Cancers (Basel) 2020; 12:cancers12123730. [PMID: 33322519 PMCID: PMC7763876 DOI: 10.3390/cancers12123730] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CA125 has been the most promising biomarker for screening ovarian cancer; however, it still does not have an acceptable accuracy in population-based screening for ovarian cancer. In this review article, we have discussed the role of CA125 in diagnosis, evaluating response to treatment and prognosis of ovarian cancer and provided some suggestions in improving the clinical utility of this biomarker in the early diagnosis of aggressive ovarian cancers. These include using CA125 to screen individuals with symptoms who seek medical care rather than screening the general population, increasing the cutoff point for the CA125 level in the plasma and performing the test at point-of-care rather than laboratory testing. By these strategies, we would detect more aggressive ovarian cancer patients in stages that the tumour can be completely removed by surgery, which is the most important factor in redusing recurrence rate and improving the survival of the patients with ovarian cancer. Abstract Ovarian cancer is the second most lethal gynecological malignancy. The tumour biomarker CA125 has been used as the primary ovarian cancer marker for the past four decades. The focus on diagnosing ovarian cancer in stages I and II using CA125 as a diagnostic biomarker has not improved patients’ survival. Therefore, screening average-risk asymptomatic women with CA125 is not recommended by any professional society. The dualistic model of ovarian cancer carcinogenesis suggests that type II tumours are responsible for the majority of ovarian cancer mortality. However, type II tumours are rarely diagnosed in stages I and II. The recent shift of focus to the diagnosis of low volume type II ovarian cancer in its early stages of evolution provides a new and valuable target for screening. Type II ovarian cancers are usually diagnosed in advanced stages and have significantly higher CA125 levels than type I tumours. The detection of low volume type II carcinomas in stage IIIa/b is associated with a higher likelihood for optimal cytoreduction, the most robust prognostic indicator for ovarian cancer patients. The diagnosis of type II ovarian cancer in the early substages of stage III with CA125 may be possible using a higher cutoff point rather than the traditionally used 35 U/mL through the use of point-of-care CA125 assays in primary care facilities. Rapid point-of-care testing also has the potential for effective longitudinal screening and quick monitoring of ovarian cancer patients during and after treatment. This review covers the role of CA125 in the diagnosis and management of ovarian cancer and explores novel and more effective screening strategies with CA125.
Collapse
|
26
|
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous group of diseases with distinct biological and clinical behaviour. Despite the differences between them, the capability of tumour cells to continuously proliferate and avoid death is maintained among histotypes. This ability is the result of alterations at different levels, causing the deregulation of cell cycle and proliferative-related pathways. Even if the leading role is played by RB and TP53, changes in other molecular pathways are involved in the development of EOC. This ability can be exploited to generate in vitro and in vivo models resembling the conditions of tumour development in a patient. In vivo models, such as patient-derived xenografts (PDX) or genetically engineered mouse models (GEMM), represent a fundamental tool in the study of the molecular mechanisms implicated in each EOC biotype for testing new therapeutic approaches. Herein we describe the major proliferation-related pathways and its disruption found in EOC and how these features can be used to establish in vivo models for translational research. Epithelial ovarian cancer (EOC) molecular biotypes are defined by distinct biology and clinical behaviour. Sustained proliferation and resistance to cell death mechanisms characterised tumour cells. RB and TP53 tumour-suppressor genes are highly implicated in EOC pathogenesis. In vitro and in vivo models have a key role in the study of molecular mechanisms involved in EOC pathogenesis. Development of animal models that mimic disease features constitute essential tools for new drugs testing.
Collapse
|
27
|
Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response. Virology 2020; 555:44-55. [PMID: 33453650 DOI: 10.1016/j.virol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.
Collapse
|
28
|
Lo Riso P, Villa CE, Gasparoni G, Vingiani A, Luongo R, Manfredi A, Jungmann A, Bertolotti A, Borgo F, Garbi A, Lupia M, Laise P, Das V, Pruneri G, Viale G, Colombo N, Manzo T, Nezi L, Cavallaro U, Cacchiarelli D, Walter J, Testa G. A cell-of-origin epigenetic tracer reveals clinically distinct subtypes of high-grade serous ovarian cancer. Genome Med 2020; 12:94. [PMID: 33121525 PMCID: PMC7597028 DOI: 10.1186/s13073-020-00786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a major unmet need in oncology. The remaining uncertainty on its originating tissue has hampered the discovery of molecular oncogenic pathways and the development of effective therapies. METHODS We used an approach based on the retention in tumors of a DNA methylation trace (OriPrint) that distinguishes the two putative tissues of origin of HGSOC, the fimbrial (FI) and ovarian surface epithelia (OSE), to stratify HGSOC by several clustering methods, both linear and non-linear. The identified tumor subtypes (FI-like and OSE-like HGSOC) were investigated at the RNAseq level to stratify an in-house cohort of macrodissected HGSOC FFPE samples to derive overall and disease-free survival and identify specific transcriptional alterations of the two tumor subtypes, both by classical differential expression and weighted correlation network analysis. We translated our strategy to published datasets and verified the co-occurrence of previously described molecular classification of HGSOC. We performed cytokine analysis coupled to immune phenotyping to verify alterations in the immune compartment associated with HGSOC. We identified genes that are both differentially expressed and methylated in the two tumor subtypes, concentrating on PAX8 as a bona fide marker of FI-like HGSOC. RESULTS We show that: - OriPrint is a robust DNA methylation tracer that exposes the tissue of origin of HGSOC. - The tissue of origin of HGSOC is the main determinant of DNA methylation variance in HGSOC. - The tissue of origin is a prognostic factor for HGSOC patients. - FI-like and OSE-like HGSOC are endowed with specific transcriptional alterations that impact patients' prognosis. - OSE-like tumors present a more invasive and immunomodulatory phenotype, compatible with its worse prognostic impact. - Among genes that are differentially expressed and regulated in FI-like and OSE-like HGSOC, PAX8 is a bona fide marker of FI-like tumors. CONCLUSIONS Through an integrated approach, our work demonstrates that both FI and OSE are possible origins for human HGSOC, whose derived subtypes are both molecularly and clinically distinct. These results will help define a new roadmap towards rational, subtype-specific therapeutic inroads and improved patients' care.
Collapse
Affiliation(s)
- Pietro Lo Riso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Andrea Vingiani
- Department of Pathology, Biobank for Translational Medicine Unit, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Present affiliation: Department of Pathology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Raffaele Luongo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,SEMM, European School of Molecular Medicine, Milan, Italy
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Alessia Bertolotti
- Present affiliation: Department of Pathology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Annalisa Garbi
- Division of Gynecologic Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Pasquale Laise
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Present affiliation: DarwinHealth Inc., New York, NY, USA
| | - Vivek Das
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Novo Nordisk Research Center Seattle, Inc. (NNRCSI), Seattle, WA, USA
| | - Giancarlo Pruneri
- Department of Pathology, Biobank for Translational Medicine Unit, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Present affiliation: Department of Pathology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Giuseppe Viale
- Department of Pathology, Biobank for Translational Medicine Unit, IEO, European Institute of Oncology IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Jörn Walter
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
29
|
Kim O, Park EY, Klinkebiel DL, Pack SD, Shin YH, Abdullaev Z, Emerson RE, Coffey DM, Kwon SY, Creighton CJ, Kwon S, Chang EC, Chiang T, Yatsenko AN, Chien J, Cheon DJ, Yang-Hartwich Y, Nakshatri H, Nephew KP, Behringer RR, Fernández FM, Cho CH, Vanderhyden B, Drapkin R, Bast RC, Miller KD, Karpf AR, Kim J. In vivo modeling of metastatic human high-grade serous ovarian cancer in mice. PLoS Genet 2020; 16:e1008808. [PMID: 32497036 PMCID: PMC7297383 DOI: 10.1371/journal.pgen.1008808] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Metastasis is responsible for 90% of human cancer mortality, yet it remains a challenge to model human cancer metastasis in vivo. Here we describe mouse models of high-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), the most common and deadliest human ovarian cancer type. Mice genetically engineered to harbor Dicer1 and Pten inactivation and mutant p53 robustly replicate the peritoneal metastases of human HGSC with complete penetrance. Arising from the fallopian tube, tumors spread to the ovary and metastasize throughout the pelvic and peritoneal cavities, invariably inducing hemorrhagic ascites. Widespread and abundant peritoneal metastases ultimately cause mouse deaths (100%). Besides the phenotypic and histopathological similarities, mouse HGSCs also display marked chromosomal instability, impaired DNA repair, and chemosensitivity. Faithfully recapitulating the clinical metastases as well as molecular and genomic features of human HGSC, this murine model will be valuable for elucidating the mechanisms underlying the development and progression of metastatic ovarian cancer and also for evaluating potential therapies. Rarely does an experimental model fully replicate the clinical metastases of a human malignancy. Faithfully representing the clinical metastases of human high-grade serous ovarian cancer with complete penetrance, coupled with histopathological, molecular, and genomic similarities, these mouse models, particularly one harboring mutant p53, will be vital to elucidating the underlying pathogenesis of human ovarian cancer. In-depth understanding of the development and progression of ovarian cancer is crucial to medical advances in the early detection, effective treatment, and prevention of ovarian cancer. Also, these robust mouse models, as well as cell lines established from the mouse primary and metastatic tumors, will serve as useful preclinical tools to evaluate therapeutic target genes and new therapies in ovarian cancer.
Collapse
Affiliation(s)
- Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - David L. Klinkebiel
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Svetlana D. Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yong-Hyun Shin
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert E. Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Donna M. Coffey
- Department of Pathology and Genomic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, Texas, United States of America
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sanghoon Kwon
- Research and Development Center, Bioway Inc, Seoul, Republic of Korea
| | - Edmund C. Chang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander N. Yatsenko
- Department of Obstetrics, Gynecology & Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States of America
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Richard R. Behringer
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kathy D. Miller
- Department of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Adam R. Karpf
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ovarian BDNF promotes survival, migration, and attachment of tumor precursors originated from p53 mutant fallopian tube epithelial cells. Oncogenesis 2020; 9:55. [PMID: 32471985 PMCID: PMC7260207 DOI: 10.1038/s41389-020-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. New evidence supports a hypothesis that HGSOC can originate from fallopian tube epithelium (FTE). It is unclear how genetic alterations and pathophysiological processes drive the progression of FTE tumor precursors into widespread HGSOCs. In this study, we uncovered that brain-derived neurotrophic factor (BDNF) in the follicular fluid stimulates the tropomyosin receptor kinase B (TrkB)-expressing FTE cells to promote their survival, migration, and attachment. Using in vitro and in vivo models, we further identified that the acquisition of common TP53 gain-of-function (GOF) mutations in FTE cells led to enhanced BDNF/TrkB signaling compared to that of FTE cells with TP53 loss-of-function (LOF) mutations. Different mutant p53 proteins can either increase TrkB transcription or enhance TrkB endocytic recycling. Our findings have demonstrated possible interplays between genetic alterations in FTE tumor precursors (i.e., p53 GOF mutations) and pathophysiological processes (i.e., the release of follicular fluid upon ovulation) during the initiation of HGSOC from the fallopian tube. Our data revealed molecular events underlying the link between HGSOC tumorigenesis and ovulation, a physiological process that has been associated with risk factors of HGSOC.
Collapse
|
31
|
Alvero AB, Hanlon D, Pitruzzello M, Filler R, Robinson E, Sobolev O, Tedja R, Ventura A, Bosenberg M, Han P, Edelson RL, Mor G. Transimmunization restores immune surveillance and prevents recurrence in a syngeneic mouse model of ovarian cancer. Oncoimmunology 2020; 9:1758869. [PMID: 32566387 PMCID: PMC7302442 DOI: 10.1080/2162402x.2020.1758869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer accounts for most deaths from gynecologic malignancies. Although more than 80% of patients respond to first-line standard of care, most of these responders present with recurrence and eventually succumb to carcinomatosis and chemotherapy-resistant disease. To improve patient survival, new modalities must, therefore, target or prevent recurrent disease. Here we describe for the first time a novel syngeneic mouse model of recurrent high-grade serous ovarian cancer (HGSOC), which allows immunotherapeutic interventions in a time course relevant to human carcinomatosis and disease course. Using this model, we demonstrate the efficacy of Transimmunization (TI), a dendritic cell (DC) vaccination strategy that uses autologous and physiologically derived DC loaded with autologous whole tumor antigens. TI has been proven successful in the treatment of human cutaneous T cell lymphoma and we report for the first time its in vivo efficacy against an intra-peritoneal solid tumor. Given as a single therapy, TI is able to elicit an effective anti-tumor immune response and inhibit immune-suppressive crosstalks with sufficient power to curtail tumor progression and establishment of carcinomatosis and recurrent disease. Specifically, TI is able to inhibit the expansion of tumor-associated macrophages as well as myeloid-derived suppressive cells consequently restoring T cell immune-surveillance. These results demonstrate the possible value of TI in the management of ovarian cancer and other intra-peritoneal tumors.
Collapse
Affiliation(s)
- Ayesha B Alvero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas Hanlon
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Filler
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Eve Robinson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Olga Sobolev
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Roslyn Tedja
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandra Ventura
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Han
- Department of Chemical & Environmental Engineering, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| | - Richard L Edelson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
32
|
Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, McNeish IA, Kwong J. Paclitaxel Induces Immunogenic Cell Death in Ovarian Cancer via TLR4/IKK2/SNARE-Dependent Exocytosis. Cancer Immunol Res 2020; 8:1099-1111. [PMID: 32354736 DOI: 10.1158/2326-6066.cir-19-0616] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Emerging evidence shows that the efficacy of chemotherapeutic drugs is reliant on their capability to induce immunogenic cell death (ICD), thus transforming dying tumor cells into antitumor vaccines. We wanted to uncover potential therapeutic strategies that target ovarian cancer by having a better understanding of the standard-of-care chemotherapy treatment. Here, we showed in ovarian cancer that paclitaxel induced ICD-associated damage-associated molecular patterns (DAMP, such as CALR exposure, ATP secretion, and HMGB1 release) in vitro and elicited significant antitumor responses in tumor vaccination assays in vivo Paclitaxel-induced TLR4 signaling was essential to the release of DAMPs, which led to the activation of NF-κB-mediated CCL2 transcription and IkappaB kinase 2-mediated SNARE-dependent vesicle exocytosis, thus exposing CALR on the cell surface. Paclitaxel induced endoplasmic reticulum stress, which triggered protein kinase R-like ER kinase activation and eukaryotic translation initiation factor 2α phosphorylation independent of TLR4. Paclitaxel chemotherapy induced T-cell infiltration in ovarian tumors of the responsive patients; CALR expression in primary ovarian tumors also correlated with patients' survival and patient response to chemotherapy. These findings suggest that the effectiveness of paclitaxel relied upon the activation of antitumor immunity through ICD via TLR4 and highlighted the importance of CALR expression in cancer cells as an indicator of response to paclitaxel chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Tat San Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Loucia Kit Ying Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Gene Chi Wai Man
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Chi Hang Wong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jacqueline Ho Sze Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - So Fan Yim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tak Hong Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Iain A McNeish
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
33
|
Choi PW, So WW, Yang J, Liu S, Tong KK, Kwan KM, Kwok JSL, Tsui SKW, Ng SK, Hales KH, Hales DB, Welch WR, Crum CP, Fong WP, Berkowitz RS, Ng SW. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread. Oncogene 2020; 39:4045-4060. [PMID: 32214198 DOI: 10.1038/s41388-020-1264-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Epidemiologic and histopathologic findings and the laying hen model support the long-standing incessant ovulation hypothesis and cortical inclusion cyst involvement in sporadic ovarian cancer development. MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. Herewith, we show that ovarian surface epithelial (OSE) cells with ectopic miR-200 expression formed stabilized cysts in three-dimensional (3D) organotypic culture with E-cadherin fragment expression and steroid hormone pathway activation, whereas ovarian cancer 3D cultures with miR-200 knockdown showed elevated TGF-β expression, mitotic spindle disorientation, increased lumenization, disruption of ROCK-mediated myosin II phosphorylation, and SRC signaling, which led to histotype-dependent loss of collective movement in tumor spread. Gene expression profiling revealed that epithelial-mesenchymal transition and hypoxia were the top enriched gene sets regulated by miR-200 in both OSE and ovarian cancer cells. The molecular changes uncovered by the in vitro studies were verified in both human and laying hen ovarian cysts and tumor specimens. As miR-200 is also essential for ovulation, our results of estrogen pathway activation in miR-200-expressing OSE cells add another intriguing link between incessant ovulation and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Wing So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzheng Yang
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shubai Liu
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ka Kui Tong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jamie S-L Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia
| | - Karen H Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Dale B Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA.,Department of Physiology, Biochemistry & Molecular Biology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ross S Berkowitz
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shu-Wing Ng
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
34
|
Otsuka I, Matsuura T. Screening and Prevention for High-Grade Serous Carcinoma of the Ovary Based on Carcinogenesis-Fallopian Tube- and Ovarian-Derived Tumors and Incessant Retrograde Bleeding. Diagnostics (Basel) 2020; 10:E120. [PMID: 32098383 PMCID: PMC7168061 DOI: 10.3390/diagnostics10020120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and lethal subtype of ovarian carcinoma. Many HGSCs are now believed to originate in the fallopian tube epithelium; ovarian surface epithelium is another possible origin. Thus, current screening methods, i.e., ultrasonography and serum CA-125 measurements, have a limitation in their early detection. Recently, circulating biomarkers, such as tumor DNA, autoantibody, and microRNA, have been investigated to detect HGSCs. As cancer cells in the fallopian tube flow into the endometrial cavity, the detection of exfoliated cells, tumor DNA, and proteome from samples obtained from the endometrial cavity or the cervix may be useful. The risk of ovarian serous carcinoma is affected by the use of oral contraceptive and menopausal hormone therapy (MHT). MHT regimens causing endometrial bleeding increase serous carcinoma risk, hence, incessant retrograde bleeding from the endometrial cavity into the Douglas pouch appears to play an important role in high-grade serous carcinogenesis. In this review, we provide an overview of current and novel screening methods and prevention approaches for ovarian and fallopian tube HGSC.
Collapse
Affiliation(s)
- Isao Otsuka
- Department of Obstetrics and Gynecology, Kameda Medical Center, Kamogawa 296-8602, Japan;
| | | |
Collapse
|
35
|
CD105 Is Expressed in Ovarian Cancer Precursor Lesions and Is Required for Metastasis to the Ovary. Cancers (Basel) 2019; 11:cancers11111710. [PMID: 31684072 PMCID: PMC6896092 DOI: 10.3390/cancers11111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
: Most high-grade serous ovarian cancers (HGSCs) initiate from the fallopian tube epithelium and then metastasize to the ovary and throughout the abdomen. Genomic analyses suggest that most HGSCs seed the ovary prior to abdominal dissemination. Similarly, animal models support a critical role for the ovary in driving abdominal dissemination. Thus, HGSC cell recruitment to the ovary appears to be a critical component of HGSC cell metastasis. We sought to identify factors driving HGSC recruitment to the ovary. We identified CD105 (endoglin, or ENG, a TGF- receptor family member) as a mediator of HGSC cell ovarian recruitment. We found that CD105 was expressed on both serous tubal intraepithelial carcinoma (STIC) cells (STICs-HGSC precursors in the fallopian tube epithelium) and HGSC cells. Using data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE), we showed that high CD105 expression by HGSC cells correlated with a metastatic signature. Furthermore, intravenous injection of CD105(+) HGSC tumor cells, but not CD105(-), resulted in ovarian-specific metastasis and abdominal dissemination of disease. CD105 knockdown or blockade with a clinically relevant CD105-neutralizing mAb (TRC105), inhibited HGSC metastasis, reduced ascites, and impeded growth of abdominal tumor nodules, thereby improving overall survival in animal models of ovarian cancer. CD105 knockdown was associated with a reduction in TGF-signaling. Together, our data support CD105 as a critical mediator of ovarian cancer spread to the ovary and implicate it as a potential therapeutic target.
Collapse
|
36
|
Detecting TP53 mutations in diagnostic and archival liquid-based Pap samples from ovarian cancer patients using an ultra-sensitive ddPCR method. Sci Rep 2019; 9:15506. [PMID: 31664085 PMCID: PMC6820715 DOI: 10.1038/s41598-019-51697-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common subtype of epithelial ovarian cancer and early detection is challenging. TP53 mutations are a hallmark of HGSOC and detection of these mutations in liquid-based Pap samples could provide a method for early diagnosis. Here we evaluate the use of IBSAFE, an ultra-sensitive droplet digital PCR (ddPCR) method, for detecting TP53 mutations in liquid-based Pap samples collected from fifteen women at the time of diagnosis (diagnostic samples) and/or up to seven years prior to diagnosis (archival samples). We analysed tumours for somatic TP53 mutations with next generation sequencing and were able to detect the corresponding mutations in diagnostic samples from six of eight women, while one patient harboured a germline mutation. We further detected a mutation in an archival sample obtained 20 months prior to the ovarian cancer diagnosis. The custom designed IBSAFE assays detected minor allele frequencies (MAFs) with very high assay sensitivity (MAF = 0.0068%) and were successful despite low DNA abundance (0.17–206.14 ng, median: 17.27 ng). These results provide support for further evaluation of archival liquid-based Pap samples for diagnostic purposes and demonstrate that ultra-sensitive ddPCR should be evaluated for ovarian cancer screening in high-risk groups or in the recurrent setting.
Collapse
|
37
|
Tudrej P, Kujawa KA, Cortez AJ, Lisowska KM. Characteristics of in Vivo Model Systems for Ovarian Cancer Studies. Diagnostics (Basel) 2019; 9:E120. [PMID: 31540126 PMCID: PMC6787695 DOI: 10.3390/diagnostics9030120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the molecular pathogenesis and heterogeneity of ovarian cancer holds promise for the development of early detection strategies and novel, efficient therapies. In this review, we discuss the advantages and limitations of animal models available for basic and preclinical studies. The fruit fly model is suitable mainly for basic research on cellular migration, invasiveness, adhesion, and the epithelial-to-mesenchymal transition. Higher-animal models allow to recapitulate the architecture and microenvironment of the tumor. We discuss a syngeneic mice model and the patient derived xenograft model (PDX), both useful for preclinical studies. Conditional knock-in and knock-out methodology allows to manipulate selected genes at a given time and in a certain tissue. Such models have built our knowledge about tumor-initiating genetic events and cell-of-origin of ovarian cancers; it has been shown that high-grade serous ovarian cancer may be initiated in both the ovarian surface and tubal epithelium. It is postulated that clawed frog models could be developed, enabling studies on tumor immunity and anticancer immune response. In laying hen, ovarian cancer develops spontaneously, which provides the opportunity to study the genetic, biochemical, and environmental risk factors, as well as tumor initiation, progression, and histological origin; this model can also be used for drug testing. The chick embryo chorioallantoic membrane is another attractive model and allows the study of drug response.
Collapse
Affiliation(s)
- Patrycja Tudrej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Alexander Jorge Cortez
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
38
|
Huang D, Gaul DA, Nan H, Kim J, Fernández FM. Deep Metabolomics of a High-Grade Serous Ovarian Cancer Triple-Knockout Mouse Model. J Proteome Res 2019; 18:3184-3194. [PMID: 31290664 DOI: 10.1021/acs.jproteome.9b00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade serous carcinoma (HGSC) is the most common and deadliest ovarian cancer (OC) type, accounting for 70-80% of OC deaths. This high mortality is largely due to late diagnosis. Early detection is thus crucial to reduce mortality, yet the tumor pathogenesis of HGSC remains poorly understood, making early detection exceedingly difficult. Faithfully and reliably representing the clinical nature of human HGSC, a recently developed triple-knockout (TKO) mouse model offers a unique opportunity to examine the entire disease spectrum of HGSC. Metabolic alterations were investigated by applying ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to serum samples collected from these mice at premalignant, early, and advanced stages of HGSC. This comprehensive analysis revealed a panel of 29 serum metabolites that distinguished mice with HGSC from controls and mice with uterine tumors with over 95% accuracy. Meanwhile, our panel could further distinguish early-stage HGSC from controls with 100% accuracy and from advanced-stage HGSC with over 90% accuracy. Important identified metabolites included phospholipids, sphingomyelins, sterols, N-acyltaurine, oligopeptides, bilirubin, 2(3)-hydroxysebacic acids, uridine, N-acetylneuraminic acid, and pyrazine derivatives. Overall, our study provides insights into dysregulated metabolism associated with HGSC development and progression, and serves as a useful guide toward early detection.
Collapse
Affiliation(s)
- Danning Huang
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - David A Gaul
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | | | | - Facundo M Fernández
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
39
|
Luderer U, Meier MJ, Lawson GW, Beal MA, Yauk CL, Marchetti F. In Utero Exposure to Benzo[a]pyrene Induces Ovarian Mutations at Doses That Deplete Ovarian Follicles in Mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:410-420. [PMID: 30353947 PMCID: PMC6615722 DOI: 10.1002/em.22261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are ubiquitous environmental contaminants formed during incomplete combustion of organic materials. Our prior work showed that transplacental exposure to BaP depletes ovarian follicles and increases prevalence of epithelial ovarian tumors later in life. We used the MutaMouse transgenic rodent model to address the hypothesis that ovarian mutations play a role in tumorigenesis caused by prenatal exposure to BaP. Pregnant MutaMouse females were treated with 0, 10, 20, or 40 mg/(kg day) BaP orally on gestational days 7-16, covering critical windows of ovarian development. Female offspring were euthanized at 10 weeks of age; some ovaries with oviducts were processed for follicle counting; other ovaries/oviducts and bone marrow were processed for determination of lacZ mutant frequency (MF). Mutant plaques were pooled within dose groups and sequenced to determine the mutation spectrum. BaP exposure caused highly significant dose-related decreases in ovarian follicles and increases in ovarian/oviductal and bone marrow mutant frequencies at all doses. Absence of follicles, cell packets, and epithelial tubular structures were observed with 20 and 40 mg/(kg day) BaP. Depletion of ovarian germ cells was inversely associated with ovarian MF. BaP induced primarily G > T and G > C transversions and deletions in ovaries/oviducts and bone marrow cells and produced a mutation signature highly consistent with that of tobacco smoking in human cancers. Overall, our results show that prenatal BaP exposure significantly depletes ovarian germ cells, causes histopathological abnormalities, and increases the burden of ovarian/oviductal mutations, which may be involved in pathogenesis of epithelial ovarian tumors. Environ. Mol. Mutagen. 60:410-420, 2019. © 2018 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Ulrike Luderer
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA 92617
- Program in Public Health, UC Irvine, Irvine, CA 92617
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Present address: Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
| | - Gregory W. Lawson
- Office for Laboratory Animal Care, University of California Berkeley, Berkeley, CA 94720
| | - Marc A. Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
40
|
Soong TR, Howitt BE, Horowitz N, Nucci MR, Crum CP. The fallopian tube, "precursor escape" and narrowing the knowledge gap to the origins of high-grade serous carcinoma. Gynecol Oncol 2018; 152:426-433. [PMID: 30503267 DOI: 10.1016/j.ygyno.2018.11.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Most ovarian carcinomas are high-grade serous carcinomas (HGSC) that contain TP53 mutations, present at advanced stage, and eventually become resistant to chemotherapy. The rapid evolution of this disease has been attributed to an origin in the distal fallopian tube, in the form of serous tubal intraepithelial carcinomas (STICs). This has led to a disease model where malignancy develops first in the tube and spreads to the peritoneum or regional lymph nodes. However, although most early or incidentally discovered HGSCs manifest in the tube with STICs, many advanced HGSCs are not accompanied by a malignancy in the fimbria. To resolve this paradox, the focus has shifted to earlier, premalignant serous proliferations (ESPs) in the tubes, which lack the cytomorphologic features of malignancy but contain TP53 mutations. These have been termed p53 signatures or serous tubal intraepithelial lesions (STILs). Although they have not been presumed to have cancer-causing potential by themselves, some ESPs have recently been shown to share identical TP53 mutations with concurrent HGSCs, indicating a shared lineage between these early mucosal changes and metastatic malignancy. This discovery supports a paradigm by which HGSCs can emerge not only from STICs but also from exfoliated precursor cells (precursor escape) that eventually undergo malignant transformation within the peritoneal cavity. This paradigm unifies both localized and widespread HGSCs to a visible pre-existing cellular alteration in the tubal epithelium, and highlights a consistent and necessary biologic event (TP53 mutation) rarely encountered in the ovary or secondary Mullerian system. This dual pathway to HGSCs underscores the subtle nature of many serous cancer origins in the tube, explains contrasting clinico-pathologic presentations, and explains why, until recently, the fallopian tube was unappreciated as the principal origin of HGSCs. Moreover, it highlights additional challenges faced in preventing or intercepting HGSCs at a curable stage.
Collapse
Affiliation(s)
- Thing Rinda Soong
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, United States of America
| | - Brooke E Howitt
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA 94305, United States of America
| | - Neil Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Marisa R Nucci
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, United States of America.
| |
Collapse
|
41
|
Soong TR, Kolin DL, Teschan NJ, Crum CP. Back to the Future? The Fallopian Tube, Precursor Escape and a Dualistic Model of High-Grade Serous Carcinogenesis. Cancers (Basel) 2018; 10:cancers10120468. [PMID: 30486509 PMCID: PMC6316244 DOI: 10.3390/cancers10120468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Beginning with the discovery of the BRCA-associated ovarian cancer susceptibility genes and subsequent detailed examination of risk-reducing salpingo-oophorectomy (RRSO) specimens, a new paradigm of ovarian carcinogenesis has unfolded with attention to the distal fallopian tube. The primary focus has been an early cancer or neoplasm in the fallopian tube which is seen in virtually all incidentally discovered high-grade serous cancers in asymptomatic women. This high-frequency of tubal involvement in early serous neoplasm (usually in the form of serous tubal intraepithelial carcinoma—STIC) has galvanized attention to this organ as a primary source of this disease. However, an enduring mystery has been the relatively low frequency of STIC in the fallopian tubes of women with advanced malignancy. This paradox, a high frequency of tubal involvement early on and a low frequency of involvement later in the disease process, has spurred interest in other potential sources, such as the ovarian surface epithelium or cortical inclusions and the secondary Mullerian system. However, because essentially all high-grade serous carcinomas are linked by TP53 mutations, and because fallopian tubes frequently contain early serous proliferations (ESPs) with these mutations, attention has turned to the possibility that the nonmalignant but TP53 mutated tubal epithelium could be responsible for an eventual malignancy. Recent data have shown evidence of a lineage continuity between ESPs and concurrent serous carcinomas prompting the concept of “precursor escape”. This creates a second component of the paradigm by which cells from early precursors are shed from the tube and undergo subsequent malignant transformation, emerging suddenly as widespread intraperitoneal malignancy. This dualistic model thus provides a unique pathway by which the future outcome (wide spread high-grade serous carcinomas—HGSC) is ultimately explained by going back in time to an early serous proliferation. This paradigm also brings the peritoneal cavity into focus, raising new questions about the potential co-variables or exposures that might facilitate the occasional malignant transformation of an ESP in the peritoneal cavity or on the peritoneal surface.
Collapse
Affiliation(s)
- T Rinda Soong
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA.
| | - David L Kolin
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Nathan J Teschan
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Kim J, Park EY, Kim O, Schilder JM, Coffey DM, Cho CH, Bast RC. Cell Origins of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10110433. [PMID: 30424539 PMCID: PMC6267333 DOI: 10.3390/cancers10110433] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
High-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), is the most common and deadliest type of ovarian cancer. HGSC appears to arise from the ovary, fallopian tube, or peritoneum. As most HGSC cases present with widespread peritoneal metastases, it is often not clear where HGSC truly originates. Traditionally, the ovarian surface epithelium (OSE) was long believed to be the origin of HGSC. Since the late 1990s, the fallopian tube epithelium has emerged as a potential primary origin of HGSC. Particularly, serous tubal intraepithelial carcinoma (STIC), a noninvasive tumor lesion formed preferentially in the distal fallopian tube epithelium, was proposed as a precursor for HGSC. It was hypothesized that STIC lesions would progress, over time, to malignant and metastatic HGSC, arising from the fallopian tube or after implanting on the ovary or peritoneum. Many clinical studies and several mouse models support the fallopian tube STIC origin of HGSC. Current evidence indicates that STIC may serve as a precursor for HGSC in high-risk women carrying germline BRCA1 or 2 mutations. Yet not all STIC lesions appear to progress to clinical HGSCs, nor would all HGSCs arise from STIC lesions, even in high-risk women. Moreover, the clinical importance of STIC remains less clear in women in the general population, in which 85–90% of all HGSCs arise. Recently, increasing attention has been brought to the possibility that many potential precursor or premalignant lesions, though composed of microscopically—and genetically—cancerous cells, do not advance to malignant tumors or lethal malignancies. Hence, rigorous causal evidence would be crucial to establish that STIC is a bona fide premalignant lesion for metastatic HGSC. While not all STICs may transform into malignant tumors, these lesions are clearly associated with increased risk for HGSC. Identification of the molecular characteristics of STICs that predict their malignant potential and clinical behavior would bolster the clinical importance of STIC. Also, as STIC lesions alone cannot account for all HGSCs, other potential cellular origins of HGSC need to be investigated. The fallopian tube stroma in mice, for instance, has been shown to be capable of giving rise to metastatic HGSC, which faithfully recapitulates the clinical behavior and molecular aspect of human HGSC. Elucidating the precise cell(s) of origin of HGSC will be critical for improving the early detection and prevention of ovarian cancer, ultimately reducing ovarian cancer mortality.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jeanne M Schilder
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| | - Donna M Coffey
- Department of Pathology and Genomic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX 77030, USA.
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu 41931, Korea.
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Hum Pathol 2018; 80:11-27. [DOI: 10.1016/j.humpath.2018.06.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
|
44
|
Zhang C, Wang X, Anaya Y, Parodi L, Cheng L, Anderson ML, Hawkins SM. Distinct molecular pathways in ovarian endometrioid adenocarcinoma with concurrent endometriosis. Int J Cancer 2018; 143:2505-2515. [PMID: 30152524 DOI: 10.1002/ijc.31768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/19/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Abstract
Women with endometriosis, a benign growth of endometrial tissue outside the uterine cavity, are at increased risk of specific histotypes of epithelial ovarian cancer, such as ovarian endometrioid adenocarcinoma (OEA). Women with OEA who have endometriosis at time of surgical staging demonstrate improved clinical prognosis compared to women with OEA without evidence of endometriosis. However, the molecular contributions of the endometriotic tumor microenvironment to these ovarian cancers remain poorly understood. As a starting point, we used a platform for genome-wide transcriptomic profiling to compare specimens of OEA from women with and without concurrent endometriosis and benign reproductive tract tissues, including proliferative endometrium and typical and atypical endometrioma samples (n = 20). Principle component analysis revealed distinct clustering between benign and malignant samples as well as malignant samples with and without concurrent endometriosis. Examination of gene signatures revealed that OEA with concurrent endometriosis contained a unique molecular signature compared to OEA without concurrent endometriosis, distinguished by 682 unique genes differentially expressed (fold change < or >1.5, p < 0.01). Bioinformatic analysis of these differentially expressed gene products using ingenuity pathway analysis revealed activation of NFkB signaling, an inflammatory signaling pathway constitutively active in endometriosis. DAVID functional annotation clustering further revealed enrichment in RAS signaling as both cytoskeleton organization and GTPase regulator activity relied heavily on RAS protein signal transduction. Gene set enrichment analysis highlighted immune and inflammatory nodes involved in OEA with concurrent endometriosis. These observations provide novel resources for understanding molecular subtleties potentially involved in OEA within the context of the endometriotic tumor microenvironment.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Yanett Anaya
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Luca Parodi
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
- Department of Obstetrics and Gynecology, Istituto Clinico Sant' Anna, Brescia, Italy
| | - Lijun Cheng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
45
|
Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer? Cancers (Basel) 2018; 10:cancers10080241. [PMID: 30042330 PMCID: PMC6116003 DOI: 10.3390/cancers10080241] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Poor overall survival, particularly for patients with high grade serous (HGS) ovarian cancer, is often attributed to late stage at diagnosis and relapse following chemotherapy. HGS ovarian cancer is a heterogenous disease in that few genes are consistently mutated between patients. Additionally, HGS ovarian cancer is characterized by high genomic instability. For these reasons, personalized approaches may be necessary for effective treatment and cure. Understanding the molecular mechanisms that contribute to tumor metastasis and chemoresistance are essential to improve survival rates. One favored model for tumor metastasis and chemoresistance is the cancer stem cell (CSC) model. CSCs are cells with enhanced self-renewal properties that are enriched following chemotherapy. Elimination of this cell population is thought to be a mechanism to increase therapeutic response. Therefore, accurate identification of stem cell populations that are most clinically relevant is necessary. While many CSC identifiers (ALDH, OCT4, CD133, and side population) have been established, it is still not clear which population(s) will be most beneficial to target in patients. Therefore, there is a critical need to characterize CSCs with reliable markers and find their weaknesses that will make the CSCs amenable to therapy. Many signaling pathways are implicated for their roles in CSC initiation and maintenance. Therapeutically targeting pathways needed for CSC initiation or maintenance may be an effective way of treating HGS ovarian cancer patients. In conclusion, the prognosis for HGS ovarian cancer may be improved by combining CSC phenotyping with targeted therapies for pathways involved in CSC maintenance.
Collapse
|
46
|
Mathieu KB, Bedi DG, Thrower SL, Qayyum A, Bast RC. Screening for ovarian cancer: imaging challenges and opportunities for improvement. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51. [PMID: 28639753 PMCID: PMC5788737 DOI: 10.1002/uog.17557] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) recently reported a reduction in the average overall mortality among ovarian cancer patients screened with an annual sequential, multimodal strategy that tracked biomarker CA125 over time, where increasing serum CA125 levels prompted ultrasound. However, multiple cases were documented wherein serum CA125 levels were rising, but ultrasound screens were normal, thus delaying surgical intervention. A significant factor which could contribute to false negatives is that many aggressive ovarian cancers are believed to arise from epithelial cells on the fimbriae of the fallopian tubes, which are not readily imaged. Moreover, because only a fraction of metastatic tumors may reach a sonographically-detectable size before they metastasize, annual screening with ultrasound may fail to detect a large fraction of early-stage ovarian cancers. The ability to detect ovarian carcinomas before they metastasize is critical and future efforts towards improving screening should focus on identifying unique features specific to aggressive, early-stage tumors, as well as improving imaging sensitivity to allow for detection of tubal lesions. Implementation of a three-stage multimodal screening strategy in which a third modality is employed in cases where the first-line blood-based assay is positive and the second-line ultrasound exam is negative may also prove fruitful in detecting early-stage cases missed by ultrasound.
Collapse
Affiliation(s)
- K B Mathieu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1902, Houston, TX, 77054, USA
| | - D G Bedi
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S L Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1902, Houston, TX, 77054, USA
| | - A Qayyum
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Nagendra PB, Goad J, Nielsen S, Rassam L, Lombard JM, Nahar P, Tanwar PS. Ovarian hormones through Wnt signalling regulate the growth of human and mouse ovarian cancer initiating lesions. Oncotarget 2018; 7:64836-64853. [PMID: 27588493 PMCID: PMC5323120 DOI: 10.18632/oncotarget.11711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer (OC) is the most deadly gynaecological disease largely because the majority of patients are asymptomatic and diagnosed at later stages when cancer has spread to other vital organs. Therefore, the initial stages of this disease are poorly characterised. Women with BRCA1/2 mutations have a genetic predisposition for developing OC, but not all of these women develop the disease. Epidemiological findings show that lifestyle factors such as contraceptive use and pregnancy, a progesterone dominant state, decrease the risk of getting OC. How ovarian hormones modify the risk of OC is currently unclear. Our study identifies activated Wnt signalling to be a marker for precursor lesions of OC and successfully develops a mouse model that mimics the earliest events in pathogenesis of OC by constitutively activating βcatenin. Using this model and human OC cells, we show that oestrogen promotes and progesterone suppresses the growth of OC cells.
Collapse
Affiliation(s)
- Prathima B Nagendra
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jyoti Goad
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Nielsen
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia
| | - Loui Rassam
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Area Pathology Services, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Janine M Lombard
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Medical Oncology, Gynaecology Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Gynaecology and Obstetrics, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
48
|
Karthikeyan S, Lantvit DD, Chae DH, Burdette JE. Cadherin-6 type 2, K-cadherin (CDH6) is regulated by mutant p53 in the fallopian tube but is not expressed in the ovarian surface. Oncotarget 2018; 7:69871-69882. [PMID: 27563818 PMCID: PMC5342521 DOI: 10.18632/oncotarget.11499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy and may arise in either the fallopian tube epithelium (FTE) or ovarian surface epithelium (OSE). A mutation in p53 is reported in 96% of HGSOC, most frequently at R273 and R248. The goal of this study was to identify specific gene targets in the FTE that are altered by mutant p53, but not in the OSE. Gene analysis revealed that both R273 and R248 mutant p53 reduces CDH6 expression in the oviduct, but CDH6 was not detected in murine OSE cells. p53R273H induced SLUG and FOXM1 while p53R248W did not induce SLUG and only modestly increased FOXM1, which correlated with less migration as compared to p53R273H. An oviduct specific PAX8Cre/+/p53R270H/+ mouse model was created and confirmed that in vivo mutant p53 repressed CDH6 but was not sufficient to stabilize p53 expression alone. Overexpression of mutant p53 in the p53 null OVCAR5 cells decreased CDH6 levels indicating this was a gain-of-function. SLUG knockdown in murine oviductal cells with p53R273H restored CDH6 repression and a ChIP analysis revealed direct binding of mutant p53 on the CDH6 promoter. NSC59984, a small molecule that degrades mutant p53R273H, rescued CDH6 expression. In summary, CDH6 is expressed in the oviduct, but not the ovary, and is repressed by mutant p53. CDH6 expression with further validations may aide in establishing markers that inform upon the cell of origin of high grade serous tumors.
Collapse
Affiliation(s)
- Subbulakshmi Karthikeyan
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA 60607
| | - Daniel D Lantvit
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA 60607
| | - Dam Hee Chae
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA 60607
| | - Joanna E Burdette
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA 60607
| |
Collapse
|
49
|
Walton JB, Farquharson M, Mason S, Port J, Kruspig B, Dowson S, Stevenson D, Murphy D, Matzuk M, Kim J, Coffelt S, Blyth K, McNeish IA. CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Sci Rep 2017; 7:16827. [PMID: 29203787 PMCID: PMC5715106 DOI: 10.1038/s41598-017-17119-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
Transplantable murine models of ovarian high grade serous carcinoma (HGSC) remain an important research tool. We previously showed that ID8, a widely-used syngeneic model of ovarian cancer, lacked any of the frequent mutations in HGSC, and used CRISPR/Cas9 gene editing to generate derivatives with deletions in Trp53 and Brca2. Here we have used one ID8 Trp53 -/- clone to generate further mutants, with additional mutations in Brca1, Pten and Nf1, all of which are frequently mutated or deleted in HGSC. We have also generated clones with triple deletions in Trp53, Brca2 and Pten. We show that ID8 Trp53 -/-;Brca1 -/- and Trp53 -/-;Brca2 -/- cells have defective homologous recombination and increased sensitivity to both platinum and PARP inhibitor chemotherapy compared to Trp53 -/-. By contrast, loss of Pten or Nf1 increases growth rate in vivo, and reduces survival following cisplatin chemotherapy in vivo. Finally, we have also targeted Trp53 in cells isolated from a previous transgenic murine fallopian tube carcinoma model, and confirmed that loss of p53 expression in this second model accelerates intraperitoneal growth. Together, these CRISPR-generated models represent a new and simple tool to investigate the biology of HGSC, and the ID8 cell lines are freely available to researchers.
Collapse
Affiliation(s)
| | | | - Susan Mason
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Suzanne Dowson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Martin Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jaeyeon Kim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seth Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
50
|
Bajwa P, Nagendra PB, Nielsen S, Sahoo SS, Bielanowicz A, Lombard JM, Wilkinson JE, Miller RA, Tanwar PS. Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget 2017; 7:19214-27. [PMID: 27036037 PMCID: PMC4991377 DOI: 10.18632/oncotarget.8468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer.
Collapse
Affiliation(s)
- Preety Bajwa
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, New South Wales, Australia
| | - Prathima B Nagendra
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, New South Wales, Australia
| | | | - Subhransu S Sahoo
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, New South Wales, Australia
| | - Amanda Bielanowicz
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, New South Wales, Australia
| | - Janine M Lombard
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Division of Gynaecology Oncology, Department of Medical Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - J Erby Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, New South Wales, Australia
| |
Collapse
|