1
|
Nikolla E, Grandberry A, Jamerson D, Flynn CR, Sundaresan S. The Enteric Neuronal Circuitry: A Key Ignored Player in Nutrient Sensing Along the Gut-Brain Axis. FASEB J 2025; 39:e70586. [PMID: 40318068 PMCID: PMC12048873 DOI: 10.1096/fj.202500220rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
The role of the gut-to-brain axis in the regulation of nutrient sensing has been studied extensively for decades. Research has mainly centered on vagal afferent and efferent neurotransmission along the gastrointestinal tract, followed by the integration of luminal information in the nodose ganglia and transmission to vagal integral sites in the brain. The physiological and cellular mechanisms of nutrient sensing by enterocytes and enteroendocrine cells have been well established; however, the roles of the enteric nervous system (ENS) remain elusive. Recent advances in targeting specific neuronal subpopulations and imaging techniques unravel the plausible roles of the ENS in nutrient sensing. In this review, we highlight physiological, cellular, and molecular insights that direct toward direct and indirect roles of the ENS in luminal nutrient sensing and vagal neurotransmission along the gut-brain axis and discuss functional maladaptations observed during metabolic insults, as observed during obesity and associated comorbidities, including type 2 diabetes.
Collapse
Affiliation(s)
- Ester Nikolla
- Department of Physiology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Ava Grandberry
- Department of Biomedical Sciences, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Destiné Jamerson
- Department of Biomedical Sciences, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Charles Robb Flynn
- Department of SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sinju Sundaresan
- Department of Physiology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
- Chicago College of OptometryMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
2
|
Jalil A, Perino A, Dong Y, Imbach J, Volet C, Vico-Oton E, Demagny H, Plantade L, Gallart-Ayala H, Ivanisevic J, Bernier-Latmani R, Hapfelmeier S, Schoonjans K. Bile acid 7α-dehydroxylating bacteria accelerate injury-induced mucosal healing in the colon. EMBO Mol Med 2025; 17:889-908. [PMID: 40065134 DOI: 10.1038/s44321-025-00202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/23/2025] Open
Abstract
Host-microbiome communication is frequently perturbed in gut pathologies due to microbiome dysbiosis, leading to altered production of bacterial metabolites. Among these, 7α-dehydroxylated bile acids are notably diminished in inflammatory bowel disease patients. Herein, we investigated whether restoration of 7α-dehydroxylated bile acids levels by Clostridium scindens, a human-derived 7α-dehydroxylating bacterium, can reestablish intestinal epithelium homeostasis following colon injury. Gnotobiotic and conventional mice were subjected to chemically-induced experimental colitis following administration of Clostridium scindens. Colonization enhanced the production of 7α-dehydroxylated bile acids and conferred prophylactic and therapeutic protection against colon injury through epithelial regeneration and specification. Computational analysis of human datasets confirmed defects in intestinal cell renewal and differentiation in ulcerative colitis patients while expression of genes involved in those pathways showed a robust positive correlation with 7α-dehydroxylated bile acid levels. Clostridium scindens administration could therefore be a promising biotherapeutic strategy to foster mucosal healing following colon injury by restoring bile acid homeostasis.
Collapse
Affiliation(s)
- Antoine Jalil
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jéromine Imbach
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eduard Vico-Oton
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hadrien Demagny
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lucie Plantade
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Sun Y, Qu Y, Yang Z, Lv B, Wang G, Fan K, Wang Y, Pan J, Du Z, Yu Y. Suppressed intestinal secondary bile acids in moxifloxacin-induced hyperglycemia: studies in normal and diabetic GK rats. Front Pharmacol 2025; 16:1569856. [PMID: 40255568 PMCID: PMC12006139 DOI: 10.3389/fphar.2025.1569856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Objective Moxifloxacin (MFLX) frequently induces dysglycemia when used in the treatment of infectious diseases, particularly in patients with diabetes. However, the mechanism through which MFLX affects host glucose metabolism remains unclear. This study aimed to investigate the possible mechanism underlying MFLX-induced hyperglycemia. Methods In this study, we investigated the short-term (3 days) and long-term (14 days) effects of MFLX on glucose metabolism in normal and type 2 diabetic GK rats. After oral administration of 40 mg/kg of MFLX, blood glucose, insulin, GLP-1, and fibroblast growth factor 15 (FGF15) levels in the blood of rats, as well as bile acids in both blood and feces, and gut microbiota, were examined. Liver and ileum tissues were promptly harvested for detecting the expression of hepatic 7α-hydroxylase (CYP7A1) and intestinal Takeda G-protein-coupled receptor 5 (TGR5) and farnesoid X receptor (FXR). In addition, we explored the effect of secondary bile acids (SBAs) on GLP-1 secretion in NCI-H716 cells, and observed the direct effect of MFLX on the expression of CYP7A1 in HepG2 cells and TGR5, FXR in NCI-H716 cells. Results It was demonstrated that MFLX induced hyperglycemia in diabetic rats, with a more pronounced reduction in serum insulin, GLP-1, and FGF15 levels than observed in normal rats. Gut microbiota associated with SBAs metabolism were significantly reduced, leading to decreased intestinal deoxycholic acid (DCA) and lithocholic acid (LCA). In vitro studies revealed that DCA and LCA (25 μM, 50 μM, and 100 μM) promoted GLP-1 secretion in a concentration-dependent manner in NCI-H716 cells. Meanwhile, we observed that the expression of intestinal TGR5 and FXR significantly downregulated, whereas CYP7A1 expression in liver was increased in GK rats after MFLX treatment. MFLX itself (0.1 μM, 1 μM, and 10 μM) did not directly altered TGR5 or FXR expressions in NCI-H716 cells, nor did it alter CYP7A1 expression in HepG2 cells, which indicated that the impact of MFLX on glucose metabolism was primarily induced by changes in bile acids metabolism resulting from alterations in the gut microbiota. Conclusion Our studies showed MFLX more likely to cause hyperglycemia when used in diabetic states and highlighted the critical role of gut microbiota-SBAs-TGR5/FXR pathway in MFLX-induced hyperglycemia.
Collapse
Affiliation(s)
- Yewen Sun
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Yuchen Qu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhuan Yang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Bo Lv
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanjun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Kai Fan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyan Du
- Department of Respiration Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunli Yu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Chao J, Coleman RA, Keating DJ, Martin AM. Gut Microbiome Regulation of Gut Hormone Secretion. Endocrinology 2025; 166:bqaf004. [PMID: 40037297 PMCID: PMC11879239 DOI: 10.1210/endocr/bqaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 03/06/2025]
Abstract
The gut microbiome, comprising bacteria, viruses, fungi, and bacteriophages, is one of the largest microbial ecosystems in the human body and plays a crucial role in various physiological processes. This review explores the interaction between the gut microbiome and enteroendocrine cells (EECs), specialized hormone-secreting cells within the intestinal epithelium. EECs, which constitute less than 1% of intestinal epithelial cells, are key regulators of gut-brain communication, energy metabolism, gut motility, and satiety. Recent evidence shows that gut microbiota directly influence EEC function, maturation, and hormone secretion. For instance, commensal bacteria regulate the production of hormones like glucagon-like peptide 1 and peptide YY by modulating gene expression and vesicle cycling in EE cells. Additionally, metabolites such as short-chain fatty acids, derived from microbial fermentation, play a central role in regulating EEC signaling pathways that affect metabolism, gut motility, and immune responses. Furthermore, the interplay between gut microbiota, EECs, and metabolic diseases, such as obesity and diabetes, is examined, emphasizing the microbiome's dual role in promoting health and contributing to disease states. This intricate relationship between the gut microbiome and EECs offers new insights into potential therapeutic strategies for metabolic and gut disorders.
Collapse
Affiliation(s)
- Jessica Chao
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Rosemary A Coleman
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Damien J Keating
- Gut Sensory Systems Group, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Alyce M Martin
- Gut Hormones in Health and Disease Lab, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
5
|
Nerild HH, Gilliam-Vigh H, Ellegaard AM, Forman JL, Vilsbøll T, Sonne DP, Brønden A, Knop FK. Expression of Bile Acid Receptors and Transporters Along the Intestine of Patients With Type 2 Diabetes and Controls. J Clin Endocrinol Metab 2025; 110:e660-e666. [PMID: 38636096 DOI: 10.1210/clinem/dgae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT The enterohepatic circulation of bile acids depends on intestinal absorption by bile acid transporters and activation of bile acid receptors, which stimulates secretion of hormones regulating glucose and lipid metabolism and appetite. Distribution of bile acid transporters and receptors in the human gut and their potential involvement in type 2 diabetes (T2D) pathophysiology remain unknown. OBJECTIVE We explored the expression of genes involved in bile acid metabolism throughout the intestines of patients with T2D and matched healthy controls. METHODS Intestinal mucosa biopsies sampled along the intestinal tract in 12 individuals with T2D and 12 healthy controls underwent messenger RNA (mRNA) sequencing. We report expression profiles of apical sodium-dependent bile acid transporter (ASBT), organic solute transporter (OST) α/β, farnesoid X receptor (FXR), Takeda G receptor 5 (TGR5), fibroblast growth factor 19 (FGF19), and FGF receptor 4 (FGFR4). RESULTS Expression of ASBT and OSTα/β was evident in the duodenum of both groups with increasing levels through the small intestine, and no (ASBT) or decreasing levels (OSTα/β) through the large intestine. The FXR expression pattern followed that of OSTα/β whereas FGFR4 was evenly expressed through the intestines. Negligible levels of TGR5 and FGF19 were evident. Patients with T2D exhibited lower levels of FGF19, FXR, ASBT, and OSTα/β mRNAs compared with healthy controls, although the differences were not statistically significant after adjusting for multiple testing. CONCLUSION We demonstrate distinct expression patterns of bile acid transporters and receptors through the intestinal tract with signs of reduced ASBT, OSTα/β, FXR, and FGF19 mRNAs in T2D.
Collapse
MESH Headings
- Humans
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Male
- Female
- Middle Aged
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Case-Control Studies
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Bile Acids and Salts/metabolism
- Symporters/genetics
- Symporters/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Aged
- Organic Anion Transporters, Sodium-Dependent/genetics
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Adult
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Duodenum/metabolism
- RNA, Messenger
Collapse
Affiliation(s)
- Henriette H Nerild
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Hannah Gilliam-Vigh
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Ferraz ÁAB, Vianna CFM, Henriques DF, Gorgulho GCF, Santa-Cruz F, Siqueira LT, Kreimer F. The Impact of Cholecystectomy on the Metabolic Profile of Patients Previously Submitted to Bariatric Surgery. Surg Laparosc Endosc Percutan Tech 2025; 35:e1348. [PMID: 39618187 DOI: 10.1097/sle.0000000000001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To evaluate the influence of late cholecystectomy following bariatric surgery on the postoperative evolution of weight loss and biochemical, metabolic, and micronutrient parameters. METHODS A retrospective study that assessed 86 patients who underwent cholecystectomy after at least 18 months of bariatric surgery. The analyzed variables included demographic data, comorbidities, weight loss, and biochemical, metabolic, and micronutrient parameters. RESULTS Among the analyzed patients, 20 underwent gastric bypass (GB) and 66 underwent sleeve gastrectomy (SG). The GB group comprised 55% of women, with a mean age of 54.4 years and a mean preoperative body mass index (BMI) of 29.2 kg/m 2 . The mean time elapsed between GB and cholecystectomy was 118.3±43.9 months. The sample of SG comprised 83.3% of women, with a mean age of 41.1 years and a mean preoperative BMI of 28.7 kg/m 2 . The mean time elapsed between SG and cholecystectomy was 26.1±17.5 months. Both SG and GB groups showed a reduction in the mean BMI, but it was not statistically significant after cholecystectomy. In the metabolic, biochemical, and micronutrient evaluation, there was no statistically significant difference, except in the GB group, where an increase in vitamin D was observed after cholecystectomy with statistical significance. CONCLUSION Cholecystectomy does not negatively impact the clinical and anthropometric evolution of patients previously submitted to bariatric surgery.
Collapse
Affiliation(s)
| | - Cassio F M Vianna
- Medical School, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Krieger JP, Daniels D, Lee S, Mastitskaya S, Langhans W. Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart. Compr Physiol 2025; 15:e7. [PMID: 39887844 PMCID: PMC11790259 DOI: 10.1002/cph4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025]
Abstract
Glucagon-like peptide-1 (GLP-1), a hormone released from enteroendocrine cells in the distal small and large intestines in response to nutrients and other stimuli, not only controls eating and insulin release, but is also involved in drinking control as well as renal and cardiovascular functions. Moreover, GLP-1 functions as a central nervous system peptide transmitter, produced by preproglucagon (PPG) neurons in the hindbrain. Intestinal GLP-1 inhibits eating by activating vagal sensory neurons directly, via GLP-1 receptors (GLP-1Rs), but presumably also indirectly, by triggering the release of serotonin from enterochromaffin cells. GLP-1 enhances glucose-dependent insulin release via a vago-vagal reflex and by direct action on beta cells. Finally, intestinal GLP-1 acts on the kidneys to modulate electrolyte and water movements, and on the heart, where it provides numerous benefits, including anti-inflammatory, antiatherogenic, and vasodilatory effects, as well as protection against ischemia/reperfusion injury and arrhythmias. Hindbrain PPG neurons receive multiple inputs and project to many GLP-1R-expressing brain areas involved in reward, autonomic functions, and stress. PPG neuron-derived GLP-1 is involved in the termination of large meals and is implicated in the inhibition of water intake. This review details GLP-1's roles in these interconnected systems, highlighting recent findings and unresolved issues, and integrating them to discuss the physiological and pathological relevance of endogenous GLP-1 in coordinating these functions. As eating poses significant threats to metabolic, fluid, and immune homeostasis, the body needs mechanisms to mitigate these challenges while sustaining essential nutrient intake. Endogenous GLP-1 plays a crucial role in this "ingestive homeostasis."
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Jean-Philippe Krieger, Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich
| | - Derek Daniels
- Department of Biological Sciences and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo NY 14260 USA
| | - Shin Lee
- Shin J. Lee, Neurimmune AG, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Svetlana Mastitskaya
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Dept. of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
8
|
Galsgaard KD, Modvig IM, Holst JJ. Understanding the release mechanisms and secretion patterns for glucagon-like peptide-1 using the isolated perfused intestine as a model. Biochem Soc Trans 2025; 53:BST20241062. [PMID: 39887325 DOI: 10.1042/bst20241062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
In the gastrointestinal (GI) tract, food is digested and absorbed while GI hormones are secreted from the enteroendocrine cells (EECs). These hormones regulate food intake, glucose homeostasis, digestion, GI motility, and metabolism. Although ECCs may express more than a single hormone, the ECCs usually secrete only one or a few hormones. The pattern of EEC secretion varies along the length of the GI tract as the different EEC types are scattered in different densities along the GI tract. Following bariatric surgery, a postprandial hypersecretion of certain GI hormones occurs which contributes to the postsurgery weight loss. Mimicking this postprandial hypersecretion of GI hormones by targeting endogenous EEC secretion, using specific modulators of receptors, ion channels, and transporters found on specific EECs, to induce weight loss is a current research aim. To achieve this, a more complete understanding of the release mechanisms, expression of receptors, transporters, and the secretion pattern of the different ECC types is needed. Using the vascularly perfused intestinal model, it is possible to obtain a detailed knowledge of these release mechanisms by evaluating the effects on secretion of blocking or stimulating specific receptors, ion channels, and transporters as well as evaluating nutrient handling and absorption in each of the different sections of the intestine. This mini-review will focus on how the isolated perfused intestine has been used in our group as a model to investigate the nutrient-induced release mechanisms of ECCs with a focus on glucagon-like peptide-1 secreting cells.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida M Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
10
|
Guccio N, Alcaino C, Miedzybrodzka EL, Santos-Hernández M, Smith CA, Davison A, Bany Bakar R, Kay RG, Reimann F, Gribble FM. Molecular mechanisms underlying glucose-dependent insulinotropic polypeptide secretion in human duodenal organoids. Diabetologia 2025; 68:217-230. [PMID: 39441374 DOI: 10.1007/s00125-024-06293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 10/25/2024]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by enteroendocrine K cells in the proximal small intestine. This study aimed to explore the function of human K cells at the molecular and cellular levels. METHODS CRISPR-Cas9 homology-directed repair was used to insert transgenes encoding a yellow fluorescent protein (Venus) or an Epac-based cAMP sensor (Epac-S-H187) in the GIP locus in human duodenal-derived organoids. Fluorescently labelled K cells were purified by FACS for RNA-seq and peptidomic analysis. GIP reporter organoids were employed for GIP secretion assays, live-cell imaging of Ca2+ using Fura-2 and cAMP using Epac-S-H187, and basic electrophysiological characterisation. The G protein-coupled receptor genes GPR142 and CASR were knocked out to evaluate roles in amino acid sensing. RESULTS RNA-seq of human duodenal K cells revealed enrichment of several G protein-coupled receptors involved in nutrient sensing, including FFAR1, GPBAR1, GPR119, CASR and GPR142. Glucose induced action potential firing and cytosolic Ca2+ elevation and caused a 1.8-fold increase in GIP secretion, which was inhibited by the sodium glucose co-transporter 1/2 (SGLT1/2) blocker sotagliflozin. Activation of the long-chain fatty acid receptor free fatty acid receptor 1 (FFAR1) induced a 2.7-fold increase in GIP secretion, while tryptophan and phenylalanine stimulated secretion by 2.8- and 2.1-fold, respectively. While CASR knockout blunted intracellular Ca2+ responses, a CASR/GPR142 double knockout was needed to reduce GIP secretory responses to aromatic amino acids. CONCLUSIONS/INTERPRETATION The newly generated human organoid K cell model enables transcriptomic and functional characterisation of nutrient-sensing pathways involved in human GIP secretion. Both calcium-sensing receptor (CASR) and G protein-coupled receptor 142 (GPR142) contribute to protein-stimulated GIP secretion. This model will be further used to identify potential targets for modulation of native GIP secretion in diabetes and obesity.
Collapse
Affiliation(s)
- Nunzio Guccio
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Constanza Alcaino
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Emily L Miedzybrodzka
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Marta Santos-Hernández
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Christopher A Smith
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adam Davison
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Rula Bany Bakar
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Fiona M Gribble
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Smith CA, Lu VB, Bakar RB, Miedzybrodzka E, Davison A, Goldspink D, Reimann F, Gribble FM. Single-cell transcriptomics of human organoid-derived enteroendocrine cell populations from the small intestine. J Physiol 2024:10.1113/JP287463. [PMID: 39639676 PMCID: PMC7617304 DOI: 10.1113/jp287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Gut hormones control intestinal function, metabolism and appetite, and have been harnessed therapeutically to treat type 2 diabetes and obesity. Our understanding of the enteroendocrine axis arises largely from animal studies, but intestinal organoid models make it possible to identify, genetically modify and purify human enteroendocrine cells (EECs). This study aimed to map human EECs using single-cell RNA sequencing. Organoids derived from human duodenum and ileum were genetically modified using CRISPR-Cas9 to express the fluorescent protein Venus driven by the chromogranin-A promoter. Fluorescent cells from CHGA-Venus organoids were purified by flow cytometry and analysed by 10X single-cell RNA sequencing. Cluster analysis separated EEC populations, allowing an examination of differentially expressed hormones, nutrient-sensing machinery, transcription factors and exocytotic machinery. Bile acid receptor GPBAR1 was most highly expressed in L-cells (producing glucagon-like peptide 1 and peptide YY), long-chain fatty acid receptor FFAR1 was highest in I-cells (cholecystokinin), K-cells (glucose-dependent insulinotropic polypeptide) and L-cells, short-chain fatty acid receptor FFAR2 was highest in ileal L-cells and enterochromaffin cells, olfactory receptor OR51E1 was notably expressed in ileal enterochromaffin cells, and the glucose-sensing sodium glucose cotransporter SLC5A1 was highly and differentially expressed in K- and L-cells, reflecting their known responsiveness to ingested glucose. The organoid EEC atlas was merged with published data from human intestine and organoids, with good overlap between enteroendocrine datasets. Understanding the similarities and differences between human EEC types will facilitate the development of drugs targeting the enteroendocrine axis for the treatment of conditions such as diabetes, obesity and intestinal disorders. KEY POINTS: Gut hormones regulate intestinal function, nutrient homeostasis and metabolism and form the basis of the new classes of drugs for obesity and diabetes. As enteroendocrine cells (EECs) comprise only ∼1% of the intestinal epithelium, they are under-represented in current single-cell atlases. To identify, compare and characterise human EECs we generated chromogranin-A labelled organoids from duodenal and ileal biopsies by CRISPR-Cas9. Fluorescent chromogranin-A positive EECs were purified and analysed by single-cell RNA sequencing, revealing predominant cell clusters producing different gut hormones. Cell clusters exhibited differential expression of nutrient-sensing machinery including bile acid receptors, long- and short-chain fatty acid receptors and glucose transporters. Organoid-derived EECs mapped well onto data from native intestinal cell populations, extending coverage of EECs.
Collapse
Affiliation(s)
- Christopher A Smith
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Van B Lu
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Rula Bany Bakar
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Emily Miedzybrodzka
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Adam Davison
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Deborah Goldspink
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
12
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
13
|
An P, Fan Y, Wang Q, Huang N, Chen H, Sun J, Du Z, Zhang C, Li J. Cholic acid activation of GPBAR1 does not induce or exacerbate acute pancreatitis but promotes exocrine pancreatic secretion. Biochem Biophys Res Commun 2024; 735:150825. [PMID: 39426134 DOI: 10.1016/j.bbrc.2024.150825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Obstruction of bile ducts due to gallstones can lead to biliary acute pancreatitis (BAP). According to Perides et al., G protein-coupled bile acid receptor-1 (GPBAR1) mediates BAP. However, Zi's findings suggest that GPR39, rather than GPBAR1, mediates TLCAS-induced increases in cytosolic calcium and acinar cell necrosis, casting doubt on the role of GPBAR1 in BAP. Numerous G protein-coupled receptors on pancreatic acinar cells utilize Ca2+ and cyclic adenosine monophosphate (cAMP) as second messengers to manage pancreatic exocrine secretion, with significant cross-talk between these signals. The primary bile acid cholic acid (CA) and its conjugated forms are predominant in the human gallbladder. This study aimed to clarify the role and physiological significance of GPBAR1 by investigating the physiological and pathological effects of CA activation on GPBAR1 in pancreatic acinar cells. Isolated rat pancreatic acinar cells were treated with CA and CCK in vitro to observe the effect of CA-induced cAMP signaling on CCK-induced physiological and pathological calcium signaling. In vivo evaluations involved reverse biliopancreatic duct injections of 5 % sodium taurocholate (STC) or 5 % CA in rats. CA induced intracellular cAMP signaling in a concentration-dependent manner without increasing the intracellular Ca2+ concentration. CA did not independently cause calcium overload or enzyme activation, nor did it exacerbate calcium overload or enzyme activation from high-dose CCK. Reverse biliopancreatic duct injections of 5 % CA did not cause acute pancreatitis in the rats. Transcriptomic analysis revealed that 50 μM CA induced changes in gene expression related to protein synthesis in the endoplasmic reticulum and ribosomes. Furthermore, 50 μM CA accelerated the calcium waves and increased the enzyme secretion induced by CCK. GPBAR1 was found on the basolateral membrane in rat pancreatic tissue rather than near the apical region of acinar cells. GPBAR1 activation is not crucial for BAP activity but may play a role in bile acid regulation of pancreatic exocrine secretion, suggesting that GPBAR1 is a potential therapeutic target for pancreatic exocrine insufficiency.
Collapse
Affiliation(s)
- Peng An
- Department of Integrated Chinese Traditional and Western Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Yudan Fan
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Qian Wang
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Haiyan Chen
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Ziwei Du
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
14
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
15
|
Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, Völlmy F, Krueger D, Busslinger GA, Martínez-Silgado A, Boot C, Yousef Yengej FA, Puschhof J, Van de Wetering WJ, Knoops K, López-Iglesias C, Peters PJ, Vivié JA, Mooijman D, van Es JH, Clevers H. Description and functional validation of human enteroendocrine cell sensors. Science 2024; 386:341-348. [PMID: 39418382 PMCID: PMC7616728 DOI: 10.1126/science.adl1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors. We describe differentiation of stomach EECs to complement existing intestinal organoid protocols. CD200 emerged as a pan-EEC surface marker, allowing deep transcriptomic profiling from primary human tissue along the stomach-intestinal tract. We generated loss-of-function mutations in 22 receptors and subjected organoids to ligand-induced secretion experiments. We delineate the role of individual human EEC sensors in the secretion of hormones, including GLP-1. These represent potential pharmacological targets to influence appetite, bowel movement, insulin sensitivity, and mucosal immunity.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Ninouk Akkerman
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Franziska Völlmy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Georg A. Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Wiline J. Van de Wetering
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Kevin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | | | - Dylan Mooijman
- Single Cell Discoveries BV, 3584 BWUtrecht, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| |
Collapse
|
16
|
Chen W, Huang J, Xiao J, Xu Q, Liu W, He X. Ileum excision partially reverses improvement of glucose metabolism in diabetic rats after biliopancreatic diversion with duodenal switch. Surg Obes Relat Dis 2024; 20:962-969. [PMID: 38782612 DOI: 10.1016/j.soard.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bile acids can stimulate the secretion of glucagon-like peptide-1 (GLP-1) and be mostly reabsorbed in the ileum. OBJECTIVES We aimed to investigate whether ileum excision could reverse the glucose improvement after biliopancreatic diversion with duodenal switch (BPD/DS). SETTING Peking Union Medical College Hospital. METHODS Thirty diabetic rats were randomly divided into the BPD/DS group, BPD/DS plus ileectomy (BDI) group, and control group. The fasting blood glucose, bile acids, and glucagon-like peptide-1(GLP-1) levels in plasma samples were analyzed. RESULTS In postoperative week 20, the fasting blood glucose level in the BDI group was significantly higher than that in the BPD/DS group (11.5 ± 1.4 mmol/L versus 7.6 ± 1.0 mmol/L, P < .001), and the AUCOGTT value was also significantly higher than that in the BPD/DS group (2186.1 ± 237.2 mmol/L·min versus 1551.2 ± 136.9 mmol/L·min, P < .001). The plasma level of bile acids in the BDI group was lower than that in the BPD/DS group (P = .012) and was not significantly different from that in the control group (P = .629). The plasma level of GLP-1 in the BDI group was lower than that in the BPD/DS group (P = .009) and was not significantly different from that in the control group (P = .530). Moreover, the intestinal TGR5 expression in the BDI group was significantly lower than that in the BPD/DS group (P < .001). CONCLUSIONS The results show that excision of the ileum can partially reverse the improvement in glucose metabolism after BPD/DS.
Collapse
Affiliation(s)
- Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jianhao Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Wei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
17
|
Di Ciaula A, Khalil M, Baffy G, Portincasa P. Advances in the pathophysiology, diagnosis and management of chronic diarrhoea from bile acid malabsorption: a systematic review. Eur J Intern Med 2024; 128:10-19. [PMID: 39069430 DOI: 10.1016/j.ejim.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Medical School, Bari, Italy.
| |
Collapse
|
18
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Lin YL, Yao T, Wang YW, Yu JS, Zhen C, Lin JF, Chen SB. Association between primary biliary cholangitis with diabetes and cardiovascular diseases: A bidirectional multivariable Mendelian randomization study. Clin Res Hepatol Gastroenterol 2024; 48:102419. [PMID: 38992425 DOI: 10.1016/j.clinre.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is an autoimmune disease often accompanied by multisystem damage. This study aimed to explore the causal association between genetically predicted PBC and diabetes, as well as multiple cardiovascular diseases (CVDs). METHODS Genome-wide association studies (GWAS) summary data of PBC in 24,510 individuals of European ancestry from the European Association for the Study of the Liver was used to identify genetically predicted PBC. We conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to estimate the impacts of PBC on diabetes (N = 17,685 to 318,014) and 20 CVDs from the genetic consortium (N = 171,875 to 1,030,836). RESULTS SVMR provided evidence that genetically predicted PBC is associated with an increased risk of type 1 diabetes (T1D), type 2 diabetes (T2D), myocardial infarction (MI), heart failure (HF), hypertension, atrial fibrillation (AF), stroke, ischemic stroke, and small-vessel ischemic stroke. Additionally, there was no evidence of a causal association between PBC and coronary atherosclerosis. In the MVMR analysis, PBC maintained independent effects on T1D, HF, MI, and small-vessel ischemic stroke in most models. CONCLUSION Our findings revealed the causal effects of PBC on diabetes and 7 CVDs, and no causal relationship was detected between PBC and coronary atherosclerosis.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Sheng Yu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Cheng Zhen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Shui-Bing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
20
|
Vico-Oton E, Volet C, Jacquemin N, Dong Y, Hapfelmeier S, Meibom KL, Bernier-Latmani R. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid. BMC Microbiol 2024; 24:286. [PMID: 39090543 PMCID: PMC11293179 DOI: 10.1186/s12866-024-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.
Collapse
Affiliation(s)
- Eduard Vico-Oton
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquemin
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE EML CH A1 375 (Bâtiment CH), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
21
|
Angelini G, Russo S, Mingrone G. Incretin hormones, obesity and gut microbiota. Peptides 2024; 178:171216. [PMID: 38636809 DOI: 10.1016/j.peptides.2024.171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic β cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.
Collapse
Affiliation(s)
| | - Sara Russo
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
22
|
Lin YN, Hsu JR, Wang CL, Huang YC, Wang JY, Wu CY, Wu LL. Nuclear factor interleukin 3 and metabolic dysfunction-associated fatty liver disease development. Commun Biol 2024; 7:897. [PMID: 39048678 PMCID: PMC11269659 DOI: 10.1038/s42003-024-06565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
This study investigates sex-specific effects in a gain-of-function model to evaluate Nfil3 function in relation to high-fat diet (HFD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) and gut microbiota (GM)-induced alterations in the bile acid (BA) profile. MASLD is induced in both wild type and Nfil3-deficient (NKO) C57BL/6 J mice through an HFD. The hepatic immune response is evaluated using flow cytometry, revealing that NKO mice exhibit lower body weight, serum triglyceride (TG) levels, tissue injury, inflammation, and fat accumulation. The Nfil3 deletion reduces macrophage counts in fibrotic liver tissues, decreases proinflammatory gene and protein expression, and diminishes gut barrier function. Alpha and beta diversity analysis reveal increased GM alpha diversity across different sexes. The Nfil3 gene deletion modifies the BA profile, suggesting that negative feedback through the Nfil3-FXR-FGF15 axis facilitates BA recycling from the liver via enterohepatic circulation. Therefore, inhibiting Nfil3 in the liver offers a viable treatment approach for MASLD.
Collapse
Grants
- CI-110-22 Yen Tjing Ling Medical Foundation
- 11210 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- National Science and Technology Council (NSTC), Taiwan (nos. 108-2320-B-010-045-MY3, 110-2320-B-002-080-MY3, MOST 111-2314-B-A49-072, and NSTC 112-2314-B-A49-028-MY3 to L.L.W and NSTC 112-2740-B-A49-002, NSTC 112-2327-B-A49-005–, NSTC 112-2321-B-A49-005–, MOHW112-TDU-B-221-124007, and MOHW113-TDU-B-221-13400 to C.Y. Wu), Yen Tjing Ling Medical Foundation (nos.CI-110-22 and CI-111-24 to L.L.W), and the TYGH-NYCU Joint Research Program (no. PTH110001) and Ministry of Health and Welfare (No. 11210).
Collapse
Affiliation(s)
- Yung-Ni Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rou Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Lin Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Huang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jzy-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chun-Ying Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
23
|
Abuawwad M, Tibude A, Bansi D, Idris I, Madhok B. A commentary review on endoscopic sleeve gastroplasty: Indications, outcomes and future implications. Diabetes Obes Metab 2024; 26:2546-2553. [PMID: 38685614 DOI: 10.1111/dom.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Metabolic and bariatric surgeries have been shown to be the most effective strategy to induce and maintain significant weight loss for people living with severe obesity. However, ongoing concerns regarding operative risks, irreversibility and excess costs limit their broader clinical use. Endoscopic bariatric therapies are pragmatic alternatives for patients who are not suitable for metabolic and bariatric surgeries or who are concerned regarding their long-term safety. Endoscopic sleeve gastroplasty has emerged as a novel technique of endoscopic bariatric therapies, which have garnered significant interest and evidence in the past few years. Its safety, efficacy and cost-effectiveness have been shown in various studies, while comparisons with sleeve gastrectomy have been widely made. This review brings together current evidence pertaining to the technicality of the procedure itself, current indications, safety and efficacy, cost-effectiveness, as well as its future role and development.
Collapse
Affiliation(s)
- Mahmoud Abuawwad
- East Midlands Bariatric and Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
- Bariatric Surgery - General Surgery Department, Royal Sunderland Hospital, Sunderland, UK
| | - Ameya Tibude
- East Midlands Bariatric and Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
| | - Devinder Bansi
- Honorary Clinical Senior Lecturer, Faculty of Medicine, Imperial College London, London, UK
| | - Iskandar Idris
- East Midlands Bariatric and Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Brijesh Madhok
- East Midlands Bariatric and Metabolic Institute (EMBMI), Royal Derby Hospital, Derby, UK
| |
Collapse
|
24
|
Jiang L, Hao Y, Li Q, Dai Z. Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. Int J Mol Sci 2024; 25:6694. [PMID: 38928404 PMCID: PMC11203607 DOI: 10.3390/ijms25126694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut function and health. However, whether these metabolites modulate gut ion transport and serotonin (5-HT) metabolism and signaling requires further investigation. The aim of this study was to investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current, and 100 μM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 μM cinnamic acid, indolelactic acid (ILA), and 10 μM CGA or indoleacetaldehyde (IAld) treatments downregulated (p < 0.05) the mRNA levels of Tph1. In addition, 10 μM IAld or 100 μM ILA upregulated (p < 0.05) the expression of monoamine oxidase A (Maoa). However, 10 μM CGA or 100 μM PA downregulated (p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05) the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced (p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related gut homeostasis in health and disease.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| | - Qianjun Li
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.J.); (Y.H.)
| |
Collapse
|
25
|
Yue Z, Zhao F, Guo Y, Zhang Y, Chen Y, He L, Li L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct 2024; 15:6450-6458. [PMID: 38804210 DOI: 10.1039/d4fo01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acrylamide (AA) is a toxic food contaminant that has been reported to cause glucose metabolism disorders (GMD) at high doses. However, it is unclear whether chronic low-dose AA can induce GMD and whether probiotics can alleviate AA-induced GMD. Here, C57BL/6N mice were orally administered with 5 mg per kg bw AA for 10 weeks, followed by another 3 weeks of glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) treatment. Chronic low-dose AA exposure increased the blood glucose level and decreased serum insulin and GLP-1 levels, whereas dulaglutide treatment decreased the blood glucose level and increased the serum insulin level in AA-exposed mice. Then, mice were administered with AA or AA + INT-777 (Takeda G-protein-coupled receptor 5 (TGR5) agonist) for 10 weeks. INT-777 treatment reversed AA-induced downregulation of ileal TGR5 and proglucagon (PG) gene expression and decreased the serum GLP-1 level. These findings indicated that chronic low-dose AA induced GMD via inhibiting the TGR5-GLP-1 axis. Finally, mice were administered with AA for 10 weeks, followed by another 3 weeks of Lactobacillus reuteri JCM 1112 supplementation. L. reuteri supplementation significantly increased serum glucose, insulin and GLP-1 levels, upregulated ileal TGR5 and PG gene expression, and effectively restored the imbalance of bile acid (BA) metabolism in AA-exposed mice, demonstrating that L. reuteri ameliorates chronic AA-induced GMD via the BA-TGR5-GLP-1 axis. In addition, L. reuteri significantly enhanced ileal superoxide dismutase and catalase activities and total antioxidant capacity, thereby preventing chronic AA-induced oxidative stress. Our research provides new insights into the GMD toxicity of chronic low-dose AA and confirms the role of probiotics in alleviating AA-induced GMD.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Feiyue Zhao
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yuqi Guo
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yidan Zhang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Le He
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
26
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
27
|
Chen S, Hu Z, Tang J, Zhu H, Zheng Y, Xiao J, Xu Y, Wang Y, Luo Y, Mo X, Wu Y, Guo J, Zhang Y, Luo H. High temperature and humidity in the environment disrupt bile acid metabolism, the gut microbiome, and GLP-1 secretion in mice. Commun Biol 2024; 7:465. [PMID: 38632312 PMCID: PMC11024098 DOI: 10.1038/s42003-024-06158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.
Collapse
Affiliation(s)
- Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongren Hu
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jianbang Tang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | | | - Yuhua Zheng
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiedong Xiao
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Yao Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Mo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yalan Wu
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianwen Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, The Life Science Institute, National University of Singapore, Singapore, Singapore.
| | - Huanhuan Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Nerild HH, Brønden A, Haddouchi AE, Ellegaard AM, Hartmann B, Rehfeld JF, Holst JJ, Sonne DP, Vilsbøll T, Knop FK. Elucidating the glucose-lowering effect of the bile acid sequestrant sevelamer. Diabetes Obes Metab 2024; 26:1252-1263. [PMID: 38151760 DOI: 10.1111/dom.15421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
AIM Bile acid sequestrants are cholesterol-lowering drugs, which also improve glycaemic control in people with type 2 diabetes. The mechanism behind the glucose-lowering effect is unknown but has been proposed to be mediated by increased glucagon-like peptide-1 (GLP-1) secretion. Here, we investigated the glucose-lowering effects of sevelamer including any contribution from GLP-1 in people with type 2 diabetes. MATERIALS AND METHODS In a randomized, double-blind, placebo-controlled, crossover study, 15 people with type 2 diabetes on metformin monotherapy underwent two 17-day treatment periods with the bile acid sequestrant sevelamer and placebo, respectively, in a randomized order and with an interposed wash-out period of minimum 6 weeks. On days 15 and 17 of each treatment period, participants underwent experimental days with 4-h liquid meal tests and application of concomitant infusion of exendin(9-39)NH2 or saline. RESULTS Compared with placebo, sevelamer improved insulin sensitivity (assessed by homeostatic model assessment of insulin resistance) and beta-cell sensitivity to glucose and lowered fasting and postprandial plasma glucose concentrations. In both treatment periods, exendin(9-39)NH2 increased postprandial glucose excursions compared with saline but without absolute or relative difference between the two treatment periods. In contrast, exendin(9-39)NH2 abolished the sevelamer-induced improvement in beta-cell glucose sensitivity. CONCLUSIONS The bile acid sequestrant sevelamer improved insulin sensitivity and beta-cell sensitivity to glucose, but using the GLP-1 receptor antagonist exendin(9-39)NH2 we were not able to detect a GLP-1-mediated glucose-lowering effect of sevelamer in individuals with type 2 diabetes. Nevertheless, the sevelamer-induced improvement of beta-cell sensitivity to glucose was shown to be GLP-1-dependent.
Collapse
Affiliation(s)
- Henriette H Nerild
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Abdullah E Haddouchi
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
29
|
Lange AH, Pedersen MG, Ellegaard AM, Nerild HH, Brønden A, Sonne DP, Knop FK. The bile-gut axis and metabolic consequences of cholecystectomy. Eur J Endocrinol 2024; 190:R1-R9. [PMID: 38551177 DOI: 10.1093/ejendo/lvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Cholelithiasis and cholecystitis affect individuals of all ages and are often treated by surgical removal of the gallbladder (cholecystectomy), which is considered a safe, low-risk procedure. Nevertheless, recent findings show that bile and its regulated storage and excretion may have important metabolic effects and that cholecystectomy is associated with several metabolic diseases postoperatively. Bile acids have long been known as emulsifiers essential to the assimilation of lipids and absorption of lipid-soluble vitamins, but more recently, they have also been reported to act as metabolic signaling agents. The nuclear receptor, farnesoid X receptor (FXR), and the G protein-coupled membrane receptor, Takeda G protein-coupled receptor 5 (TGR5), are specific to bile acids. Through activation of these receptors, bile acids control numerous metabolic functions. Cholecystectomy affects the storage and excretion of bile acids, which in turn may influence the activation of FXR and TGR5 and their effects on metabolism including processes leading to metabolic conditions such as metabolic dysfunction-associated steatotic liver disease and metabolic syndrome. Here, with the aim of elucidating mechanisms behind cholecystectomy-associated dysmetabolism, we review studies potentially linking cholecystectomy and bile acid-mediated metabolic effects and discuss possible pathophysiological mechanisms behind cholecystectomy-associated dysmetabolism.
Collapse
Affiliation(s)
- Andreas H Lange
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Miriam G Pedersen
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Henriette H Nerild
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
30
|
Gether IM, Bahne E, Nerild HH, Rehfeld JF, Hartmann B, Holst JJ, Vilsbøll T, Sonne DP, Knop FK. Colesevelam has no acute effect on postprandial GLP-1 levels but abolishes gallbladder refilling. Eur J Endocrinol 2024; 190:314-326. [PMID: 38551029 DOI: 10.1093/ejendo/lvae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Colesevelam, a bile acid sequestrant approved for the treatment of hypercholesterolaemia, improves glycaemic control in type 2 diabetes. We hypothesised that single-dose colesevelam increases postprandial GLP-1 secretion, thus, reducing postprandial glucose excursions in individuals with type 2 diabetes. Further, we explored the effects of single-dose colesevelam on ultrasonography-assessed postprandial gallbladder motility, paracetamol absorption (proxy for gastric emptying), and circulating factors known to affect gallbladder motility. METHODS In a randomised, double-blind, placebo-controlled crossover study, 12 individuals with type 2 diabetes (mean ± SD: age 61 ± 8.8 years; body mass index 29.8 ± 3.0 kg/m2) were subjected to 4 mixed meal tests on separate days; 2 with orally administered colesevelam (3.75 g) and 2 with placebo, with intravenous infusion of the GLP-1 receptor antagonist exendin(9-39)NH2 or saline. RESULTS Single-dose colesevelam had no effect on postprandial concentrations of glucose (P = .786), C-peptide (P = .440), or GLP-1 (P = .729), and exendin(9-39)NH2 administration revealed no GLP-1-mediated effects of colesevelam. Colesevelam did not affect gallbladder emptying but abolished gallbladder refilling (P = .001), increased postprandial cholecystokinin (CCK) secretion (P = .010), and decreased postprandial serum concentrations of fibroblast growth factor 19 (FGF19) (P = .035) and bile acids (P = .043). CONCLUSION Single-dose colesevelam had no effect on postprandial GLP-1 responses or glucose tolerance but disrupted postprandial gallbladder refilling by increasing CCK secretion and reducing circulating concentrations of FGF19 and bile acids. These findings leave the antidiabetic actions of colesevelam unresolved but provide mechanistic insights into its effect on gallbladder motility.
Collapse
Affiliation(s)
- Ida M Gether
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Henriette H Nerild
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - David P Sonne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
31
|
Zhuo N, Yun Y, Zhang C, Guo S, Yin J, Zhao T, Ge X, Gu M, Xie X, Nan F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg Chem 2024; 144:107132. [PMID: 38241768 DOI: 10.1016/j.bioorg.2024.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.
Collapse
Affiliation(s)
- Ning Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
32
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
33
|
Herta T, Dröge C, Herber A, Keitel V, Berg T. Odevixibat treatment in an adult patient with advanced icteric progressive cholestatic liver disease. JHEP Rep 2024; 6:100978. [PMID: 38375459 PMCID: PMC10875579 DOI: 10.1016/j.jhepr.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- Toni Herta
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Carola Dröge
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| | - Adam Herber
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto von Guericke University, Magdeburg, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
34
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
35
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Song H, Liu J, Wang L, Hu X, Li J, Zhu L, Pang R, Zhang A. Tauroursodeoxycholic acid: a bile acid that may be used for the prevention and treatment of Alzheimer's disease. Front Neurosci 2024; 18:1348844. [PMID: 38440398 PMCID: PMC10909943 DOI: 10.3389/fnins.2024.1348844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease that has become one of the main factors affecting human health. It has serious impacts on individuals, families, and society. With the development of population aging, the incidence of AD will further increase worldwide. Emerging evidence suggests that many physiological metabolic processes, such as lipid metabolism, are implicated in the pathogenesis of AD. Bile acids, as the main undertakers of lipid metabolism, play an important role in the occurrence and development of Alzheimer's disease. Tauroursodeoxycholic acid, an endogenous bile acid, has been proven to possess therapeutic effects in different neurodegenerative diseases, including Alzheimer's disease. This review tries to find the relationship between bile acid metabolism and AD, as well as explore the therapeutic potential of bile acid taurocursodeoxycholic acid for this disease. The potential mechanisms of taurocursodeoxycholic acid may include reducing the deposition of Amyloid-β protein, regulating apoptotic pathways, preventing tau hyperphosphorylation and aggregation, protecting neuronal synapses, exhibiting anti-inflammatory properties, and improving metabolic disorders. The objective of this study is to shed light on the use of tauroursodeoxycholic acid preparations in the prevention and treatment of AD, with the aim of identifying effective treatment targets and clarifying various treatment mechanisms involved in this disease.
Collapse
Affiliation(s)
- Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Li Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
37
|
Evans LL, Lee WG, Karimzada M, Patel VH, Aribindi VK, Kwiat D, Graham JL, Cummings DE, Havel PJ, Harrison MR. Evaluation of a Magnetic Compression Anastomosis for Jejunoileal Partial Diversion in Rhesus Macaques. Obes Surg 2024; 34:515-523. [PMID: 38135738 PMCID: PMC10810932 DOI: 10.1007/s11695-023-07012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Metabolic surgery remains underutilized for treating type 2 diabetes, as less invasive alternative interventions with improved risk profiles are needed. We conducted a pilot study to evaluate the feasibility of a novel magnetic compression device to create a patent limited caliber side-to-side jejunoileal partial diversion in a nonhuman primate model. MATERIALS AND METHODS Using an established nonhuman primate model of diet-induced insulin resistance, a magnetic compression device was used to create a side-to-side jejunoileal anastomosis. Primary outcomes evaluated feasibility (e.g., device mating and anastomosis patency) and safety (e.g., device-related complications). Secondary outcomes evaluated the device's ability to produce metabolic changes associated with jejunoileal partial diversion (e.g., homeostatic model assessment of insulin resistance [HOMA-IR] and body weight). RESULTS Device mating, spontaneous detachment, and excretion occurred in all animals (n = 5). There were no device-related adverse events. Upon completion of the study, ex vivo anastomoses were widely patent with healthy mucosa and no evidence of stricture. At 6 weeks post-device placement, HOMA-IR improved to below baseline values (p < 0.05). Total weight also decreased in a linear fashion (R2 = 0.97) with total weight loss at 6 weeks post-device placement of 14.4% (p < 0.05). CONCLUSION The use of this novel magnetic compression device to create a limited caliber side-to-side jejunoileal anastomosis is safe and likely feasible in a nonhuman primate model. The observed glucoregulatory and metabolic effects of a partial jejunoileal bypass with this device warrant further investigation to validate the long-term glucometabolic impact of this approach.
Collapse
Affiliation(s)
- Lauren L Evans
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - William G Lee
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Mohammad Karimzada
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Veeshal H Patel
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Vamsi K Aribindi
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Dillon Kwiat
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, USA
| | - David E Cummings
- Division of Metabolism, Endocrinology and Nutrition, University of Washington and VA Puget Sound Health Care System, Seattle, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, USA
| | - Michael R Harrison
- Department of Surgery, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
38
|
Mao L, Gao B, Chang H, Shen H. Interaction and Metabolic Pathways: Elucidating the Role of Gut Microbiota in Gestational Diabetes Mellitus Pathogenesis. Metabolites 2024; 14:43. [PMID: 38248846 PMCID: PMC10819307 DOI: 10.3390/metabo14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.
Collapse
Affiliation(s)
- Lindong Mao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Biling Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.M.); (B.G.); (H.C.)
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
| |
Collapse
|
39
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
40
|
Wang Q, Lin H, Shen C, Zhang M, Wang X, Yuan M, Yuan M, Jia S, Cao Z, Wu C, Chen B, Gao A, Bi Y, Ning G, Wang W, Wang J, Liu R. Gut microbiota regulates postprandial GLP-1 response via ileal bile acid-TGR5 signaling. Gut Microbes 2023; 15:2274124. [PMID: 37942583 PMCID: PMC10730136 DOI: 10.1080/19490976.2023.2274124] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
The gut microbiota interacts with intestinal epithelial cells through microbial metabolites to regulate the release of gut hormones. We investigated whether the gut microbiota affects the postprandial glucagon-like peptide-1 (GLP-1) response using antibiotic-treated mice and germ-free mice. Gut microbiome depletion completely abolished postprandial GLP-1 response in the circulation and ileum in a lipid tolerance test. Microbiome depletion did not influence the GLP-1 secretory function of primary ileal cells in response to stimulators in vitro, but dramatically changed the postprandial dynamics of endogenous bile acids, particularly ω-muricholic acid (ωMCA) and hyocholic acid (HCA). The bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) but not farnesoid X receptor (FXR), participated in the regulation of postprandial GLP-1 response in the circulation and ileum, and ωMCA or HCA stimulated GLP-1 secretion via TGR5. Finally, fecal microbiota transplantation or ωMCA and HCA supplementation restored postprandial GLP-1 response. In conclusion, gut microbiota is indispensable for maintaining the postprandial GLP-1 response specifically in the ileum, and bile acid (ωMCA and HCA)-TGR5 signaling is involved in this process. This study helps to understand the essential interplay between the gut microbiota and host in regulating postprandial GLP-1 response and opens the foundation for new therapeutic targets.
Collapse
Affiliation(s)
- Qiaoling Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huibin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongrong Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minchun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Banru Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Reimann F. Dorothy Hodgkin lecture 2023: The enteroendocrine system-Sensors in your guts. Diabet Med 2023; 40:e15212. [PMID: 37638546 PMCID: PMC10946932 DOI: 10.1111/dme.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Glucagon-like peptide-1 (GLP-1)-based medication is now widely employed in the treatment of type 2 diabetes and obesity. Like other gut hormones, GLP-1 is released from eneteroendocrine cells after a meal and in this review, based on the Dorothy Hodgkin lecture delivered during the annual meeting of Diabetes UK in 2023, I argue that there is sufficient spare capacity of GLP-1 and other gut hormone expressing cells that could be recruited therapeutically. Years of research has revealed several receptors expressed in enteroendocrine cells that could be targeted to stimulate hormone release: although from this research it seems unlikely to find agents that selectively boost GLP-1, release of a mixture of hormones might be the more desirable outcome anyway, given the recent promising results of new peptides combining GLP1-receptor with other gut hormone receptor activation. Alternatively, the fact that GLP-1 and peptideYY (PYY) expressing cells are found in greater density in the ileum might be exploited by increasing the delivery of chyme to the distal small intestine.
Collapse
Affiliation(s)
- Frank Reimann
- Department of Clinical BiochemistryInstitute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of CambridgeCambridgeUK
| |
Collapse
|
42
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Jensen ASH, Winther-Sørensen M, Burisch J, Bergquist A, Ytting H, Gluud LL, Wewer Albrechtsen NJ. Autoimmune liver diseases and diabetes: A propensity score matched analysis and a proportional meta-analysis. Liver Int 2023; 43:2479-2491. [PMID: 37752719 DOI: 10.1111/liv.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND AND AIMS Patients with some chronic liver diseases have increased risk of diabetes. Whether this is also the case for patients with autoimmune liver diseases is unknown. The study aimed to calculate risk and worldwide prevalence of diabetes in patients with autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). METHODS We performed a case-control study using data from the United Kingdom Biobank (UKB) and compared frequency of type 1 diabetes (T1D) and type 2 diabetes (T2D) in AIH and PBC with age-, sex-, BMI- and ethnicity-matched controls. Next, we performed a systematic review and proportional meta-analysis searching PubMed, Embase, Cochrane Library and Web of Science (inception to 1 May 2022 [AIH]; 20 August 2022 [PBC]; 11 November 2022 [PSC]). The pooled prevalence of diabetes was calculated using an inverse method random effects model. RESULTS Three hundred twenty-eight AIH patients and 345 PBC patients were identified in UKB and risk of T1D and T2D significantly increased compared with matched controls. Our systematic search identified 6914 records including the UKB study. Of these, 77 studies were eligible for inclusion comprising 36 467, 39 924 and 4877 individuals with AIH, PBC and PSC, respectively. The pooled prevalence of T1D was 3.8% (2.6%-5.7%), 1.7% (0.9%-3.1%), 3.1% (1.9%-4.8%) and of T2D 14.8% (11.1%-19.5%), 18.1% (14.6%-22.2%), 6.3% (2.8%-13.3%) in patients with AIH, PBC and PSC, respectively. CONCLUSIONS Patients with autoimmune liver diseases have increased risk of diabetes. Increased awareness of diabetes risk in patients with autoimmune liver diseases is warranted.
Collapse
Affiliation(s)
- Anne-Sofie H Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Johan Burisch
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Annika Bergquist
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Ytting
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Lise L Gluud
- Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
44
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
45
|
Martinez TM, Wachsmuth HR, Meyer RK, Weninger SN, Lane AI, Kangath A, Schiro G, Laubitz D, Stern JH, Duca FA. Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats. Nutr Metab (Lond) 2023; 20:44. [PMID: 37858106 PMCID: PMC10585811 DOI: 10.1186/s12986-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.
Collapse
Affiliation(s)
- Taylor M Martinez
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Hallie R Wachsmuth
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel K Meyer
- School of Nutritional Science and Wellness, University of Arizona, Tucson, AZ, USA
| | - Savanna N Weninger
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Adelina I Lane
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA.
- BIO 5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
46
|
Silva V, Faria HOF, Sousa-Filho CPB, de Alvarenga JFR, Fiamoncini J, Otton R. Thermoneutrality or standard temperature: is there an ideal housing temperature to study the antisteatotic effects of green tea in obese mice? J Nutr Biochem 2023; 120:109411. [PMID: 37423321 DOI: 10.1016/j.jnutbio.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a condition characterized by excessive accumulation of triglycerides in hepatocytes, currently considered the number one cause of chronic liver disease. MAFLD is strongly associated with obesity, type 2 diabetes, hyperlipidaemia, and hypertension. Emphasis has been placed on the use of green tea (GT), produced from the Camellia sinensis plant, rich in antioxidants as polyphenols and catechins, on obesity and MAFLD treatment/prevention. Studies carried out in rodent models housed at a standard temperature (ST, 22°C) are being questioned as ST is a determining factor on generating changes in the physiology of immune response, and energy metabolism. On the other hand, it seems that thermoneutrality (TN, 28°C) represents a closer parallel to human physiology. In this perspective, we investigated the effects of GT (500 mg/kg of body weight, over 12 weeks, 5 days/week) by comparing mice housed at ST or TN in a model of MAFLD of diet-induced obese males C57Bl/6 mice. We show that the liver phenotype at TN exhibits a more severe MAFLD while GT ameliorates this condition. In parallel, GT restores the expression of genes involved in the lipogenic pathway, regardless of temperature, with slight modifications in lipolysis/fatty acid oxidation. We observed an increase promoted by GT in PPARα and PPARγ proteins independently of housing temperature and a dual pattern of bile acid synthesis. Thus, animals' conditioning temperature is a key factor that can interfere in the results involving obesity and MAFLD, although GT has beneficial effects against MAFLD independently of the housing temperature of mice.
Collapse
Affiliation(s)
- Victória Silva
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil
| | | | | | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosemari Otton
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
47
|
Zou Y, Ghaderpour A, Munkhbileg B, Seo SU, Seong SY. Taurodeoxycholate ameliorates DSS-induced colitis in mice. Int Immunopharmacol 2023; 122:110628. [PMID: 37454634 DOI: 10.1016/j.intimp.2023.110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is typically managed using medications such as 5-aminosalicylic acid (5-ASA), glucocorticoids, anti-TNFα Ab, or anti-IL-12/23 Ab. However, some patients do not respond well to these treatments or frequently experience relapses. Therefore, alternative therapeutic options are needed. Since the activation of the inflammasome is crucial to the pathogenesis of IBD, inhibiting the inflammasome may be beneficial for patients. MATERIALS AND METHODS We tested the efficacy of taurodeoxycholate (TDCA), which is a known G-protein coupled receptor 19 (GPCR19) agonist, in a mouse colitis model induced by dextran sodium sulfate (DSS). RESULTS In the mouse colitis model, TDCA prevented loss of body weight, shortening of the colon, production of pro-inflammatory cytokines, infiltration of pro-inflammatory cells, and mucosal ulceration in the colon. In vitro, TDCA inhibited the activation of NF-κB in bone marrow-derived macrophages (BMDMs) by activating the cAMP-PKA axis. TDCA downregulated the expression of purinergic receptor P2X7 (P2X7R) and enhanced the colocalization of P2X7R with GPCR19, and inhibited the Ca2+ mobilization of BMDMs when stimulated with ATP or BzATP, which plays a pivotal role in activating the NLRP3 inflammasome (N3I) via P2X7R. TDCA inhibited the oligomerization of NLRP3-ASC and downregulated the expression of NLRP3 and ASC, as well as suppressed the maturation of pro-caspase-1 and pro-IL-1β. TDCA also increased the percentage of M2 macrophages while decreasing the number of M1 macrophages, Th1, Th2, and Th17 cells in the colon. CONCLUSION TDCA ameliorated DSS-induced colitis in mice, possibly by inhibiting both the priming phase (via the GPCR19-cAMP-PKA-NF-κB axis) and the activation phase (via the GPCR19-P2X7R-NLRP3-Caspase 1-IL-1β axis) of N3I signaling.
Collapse
Affiliation(s)
- Yunyun Zou
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Aziz Ghaderpour
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bolormaa Munkhbileg
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Shaperon Inc., Seoul, Republic of Korea.
| |
Collapse
|
48
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
49
|
Meyer RK, Duca FA. RISING STARS: Endocrine regulation of metabolic homeostasis via the intestine and gut microbiome. J Endocrinol 2023; 258:e230019. [PMID: 37171833 PMCID: PMC10524498 DOI: 10.1530/joe-23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
The gastrointestinal system is now considered the largest endocrine organ, highlighting the importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and neural and hormonal factors, and they regulate systemic metabolism via multiple mechanisms. While extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that several of these hormones act as endocrine signaling molecules with direct effects on the target organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut peptide secretion, and directly, acting as endocrine factors. This review will provide an overview of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the potential endocrine impact of microbial metabolites on host metabolic tissue function.
Collapse
Affiliation(s)
- Rachel K Meyer
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
50
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|