1
|
Satari S, Mota INR, Silva ACL, Brito HO, Oliveira PA, Gil da Costa RM, Medeiros R. Hallmarks of Cancer Cachexia: Sexual Dimorphism in Related Pathways. Int J Mol Sci 2025; 26:3952. [PMID: 40362192 PMCID: PMC12071346 DOI: 10.3390/ijms26093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer-associated cachexia (CAC), also known as wasting syndrome, is a systemic condition that affects multiple tissues and organs via a variety of metabolic pathways. Systemic inflammation, progressive weight loss, depletion of adipose tissue, and skeletal muscle impairment are some of the hallmark features of cachexia. Despite various studies on the clinical features of CAC, the complexity of the syndrome continues to pose significant challenges in clinical practice, leading to late diagnoses and the absence of a standardised treatment. Men and women respond differently to CAC, which may be prompted by the pre-existing physiologic sex differences. This review presents the sexual dimorphism associated with the hallmark pathways involved in CAC. A comprehensive understanding of sexual dimorphism in these pathways could drive research on cachexia to prioritise the inclusion of more females in related studies in order to achieve personalised sex-based therapeutic approaches and, consequently, enhance treatment efficacy and better patient outcomes.
Collapse
Affiliation(s)
- Setareh Satari
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Pathology and Laboratory Medicine Dep./Clinical Pathology, Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (S.S.); (I.N.R.M.); (A.C.L.S.); (R.M.G.d.C.)
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- The Institute of Public Health, University of Porto (ISPUP), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Pathology and Laboratory Medicine Dep./Clinical Pathology, Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (S.S.); (I.N.R.M.); (A.C.L.S.); (R.M.G.d.C.)
- Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Ana Carolina Leão Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Pathology and Laboratory Medicine Dep./Clinical Pathology, Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (S.S.); (I.N.R.M.); (A.C.L.S.); (R.M.G.d.C.)
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Haissa Oliveira Brito
- Research Center For Experimental and Clinical Physiology and Pharmacology (NEC)/Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Bioanalysis Lab (LaBIO), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Rui Miguel Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Pathology and Laboratory Medicine Dep./Clinical Pathology, Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (S.S.); (I.N.R.M.); (A.C.L.S.); (R.M.G.d.C.)
- Research Center For Experimental and Clinical Physiology and Pharmacology (NEC)/Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)/Bioanalysis Lab (LaBIO), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Pathology and Laboratory Medicine Dep./Clinical Pathology, Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (S.S.); (I.N.R.M.); (A.C.L.S.); (R.M.G.d.C.)
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Biomedical Research Center, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
- ECO-European Cancer Organization, 1040 Brussels, Belgium
- Research Department of the Portuguese League Against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-172 Porto, Portugal
| |
Collapse
|
2
|
Varghese M, Thekkelnaycke R, Soni T, Zhang J, Maddipati K, Singer K. Sex differences in the lipid profiles of visceral adipose tissue with obesity and gonadectomy. J Lipid Res 2025; 66:100803. [PMID: 40245983 DOI: 10.1016/j.jlr.2025.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
In obesity, adipose tissue (AT) expansion is accompanied by chronic inflammation. Altered lipid composition in the visceral or gonadal white AT (GWAT) directly drive AT macrophage accumulation and activation to a proinflammatory phenotype. Sex steroid hormones modulate visceral versus subcutaneous lipid accumulation that correlates with metabolic syndrome, especially in men and postmenopausal women who are more prone to abdominal obesity. Prior studies demonstrated sex differences in GWAT lipid species in HFD-fed mice, but the role of sex hormones is still unclear. We hypothesized that sex hormone alterations with gonadectomy (GX) would further impact lipid composition in the obese GWAT. Untargeted lipidomics of obese GWAT identified sex differences in phospholipids, sphingolipids, sterols, fatty acyls, saccharolipids and prenol lipids. Males had significantly more precursor fatty acids (palmitic, oleic, linoleic, and arachidonic acid) than females and GX mice. Targeted lipidomics for fatty acids and oxylipins in the HFD-fed male and female GWAT stromal vascular fraction identified higher omega-6 to omega-3 free fatty acid profile in males and differences in PUFAs-derived prostaglandins, thromboxanes, and leukotrienes. Both obese male and female GWAT stromal vascular fraction showed increased levels of arachidonic acid-derived oxylipins compared to their lean counterparts. Bulk RNA-seq of sorted GWAT AT macrophages highlighted sex and diet differences in PUFA and oxylipin metabolism genes. These findings of sexual dimorphism in both stored lipid species and PUFA-derived mediators with diet and GX emphasize sex differences in lipid metabolism pathways that drive inflammation responses and metabolic disease risk in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajendiran Thekkelnaycke
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Jiayu Zhang
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Aghaee F, Abedinpour M, Anvari S, Saberi A, Fallah A, Bakhshi A. Natural killer cells in multiple sclerosis: foe or friends? Front Cell Neurosci 2025; 19:1500770. [PMID: 40255388 PMCID: PMC12006147 DOI: 10.3389/fncel.2025.1500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder involving the central nervous system (CNS), in which demyelination is caused. The initiation and progression of MS is thought to depend largely on CD4+ T lymphocytes, yet new data has emphasized the involvement of the innate immune system in the MS disease responses. Generally, several types of immune cells play a part, with natural killer (NK) cells being essential. Different subsets of natural killer cells function differently within the course of an autoimmune disease, such as MS. There are mainly two types of natural killers in humans: immature CD56 bright CD16- and mature CD56 dim CD16+ natural killers, together with their respective subtypes. Factors from natural killers expand the T cell population and control the process by which native CD4+ T cells differentiate into Th1 or Th2 lymphocytes, which affect autoimmune responses. Natural killer subsets CD56 bright and CD56 dim may have differing roles in MS development. The impact of these NK cell subsets is influenced by factors such as Granzymes, genetics, infections, TLR, and HSP. We reviewed and evaluated the relationship between natural killer cells and MS.
Collapse
Affiliation(s)
- Fatemeh Aghaee
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Abedinpour
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Anvari
- Department of Neurology, Neurosciences Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Department of Internal Medicine, Regenerative Medicine Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Fallah
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Escarcega RD, M J VK, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Blasco Conesa MP, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. Neurobiol Dis 2025; 204:106747. [PMID: 39617329 DOI: 10.1016/j.nbd.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vijay Kumar M J
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vasilia E Kyriakopoulos
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Escarcega RD, Vijay Kumar MJ, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Conesa MPB, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623108. [PMID: 39605322 PMCID: PMC11601308 DOI: 10.1101/2024.11.11.623108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - M. J. Vijay Kumar
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | | | - Guadalupe J. Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M. Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P. Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W. Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H. Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M. Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S. Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
6
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
7
|
McKenna CF, Stierwalt HD, Zemski Berry KA, Ehrlicher SE, Robinson MM, Zarini S, Kahn DE, Snell-Bergeon JK, Perreault L, Bergman BC, Newsom SA. Intramuscular diacylglycerol accumulates with acute hyperinsulinemia in insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2024; 327:E183-E193. [PMID: 38895980 PMCID: PMC11427097 DOI: 10.1152/ajpendo.00368.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipid concentrations in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to or exacerbating insulin resistance. We therefore investigated the impact of acute hyperinsulinemia on the skeletal muscle lipid profile to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. In a cross-sectional comparison, endurance athletes (n = 12), sedentary lean adults (n = 12), and individuals with obesity (n = 13) and T2D (n = 7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. Although there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D during acute hyperinsulinemia (P = 0.087). Moreover, C18 1,2-DAG species increased during the clamp with T2D only, which negatively correlated with insulin sensitivity (P < 0.050). Basal muscle C18:0 total ceramides were elevated with T2D (P = 0.029), but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared with only 46% with T2D (albeit not statistically significant, main effect of group, P = 0.624). Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.NEW & NOTEWORTHY Postprandial hyperinsulinemia is a risk factor for type 2 diabetes and may increase muscle lipids. However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to insulin resistance. We observed that acute hyperinsulinemia elevates muscle 1,2-DAGs in insulin-resistant phenotypes, whereas ceramides were unaltered. Insulin-mediated acylcarnitine reductions are also hindered with high-fat feeding. The postprandial period may exacerbate insulin resistance in metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Harrison D Stierwalt
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah E Ehrlicher
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Matthew M Robinson
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darcy E Kahn
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janet K Snell-Bergeon
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sean A Newsom
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
8
|
Entrup GP, Unadkat A, Warheit-Niemi HI, Thomas B, Gurczynski SJ, Cui Y, Smith AM, Gallagher KA, Moore BB, Singer K. Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:317-327. [PMID: 38905107 PMCID: PMC11250913 DOI: 10.4049/jimmunol.2400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/23/2024]
Abstract
Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.
Collapse
Affiliation(s)
| | - Aayush Unadkat
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | | | - Brooke Thomas
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Yuxiao Cui
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | | | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
9
|
Kallies A, Vasanthakumar A. Transcriptional and hormonal control of adipose Treg heterogeneity and function. Immunol Rev 2024; 324:42-51. [PMID: 38733158 DOI: 10.1111/imr.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Adipose tissue stores excess energy and produces a broad range of factors that regulate multiple physiological processes including systemic energy homeostasis. Visceral adipose tissue (VAT) plays a particularly important role in glucose metabolism as its endocrine function underpins food uptake and energy expenditure. Caloric excess triggers VAT inflammation which can impair insulin sensitivity and cause metabolic deregulation. Regulatory T cells (Tregs) that reside in the VAT suppress inflammation and protect from metabolic disease. The cellular components of VAT and its secretory products play a vital role in fostering the differentiation and maintenance of VAT Tregs. Critically, the physiology and inflammatory tone of VAT exhibit sex-specific disparities, resulting in substantial VAT Treg heterogeneity. Indeed, cytokines and sex hormones promote the differentiation of distinct populations of mature VAT Tregs, each characterized by unique phenotypes, homeostatic requirements, and functions. This review focuses on key findings that have significantly advanced our understanding of VAT Treg biology and the current state of the field, while also discussing open questions that require further exploration.
Collapse
Affiliation(s)
- Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Yoon DJ, Zhang J, Zapata RC, Ulivieri M, Libster AM, McMurray MS, Osborn O, Dulawa SC. The attenuation of activity-based anorexia by obese adipose tissue transplant is AgRP neuron-dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590824. [PMID: 38712190 PMCID: PMC11071374 DOI: 10.1101/2024.04.23.590824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Anorexia nervosa (AN) is an eating disorder observed primarily in girls and women, and is characterized by a low body mass index, hypophagia, and hyperactivity. The activity-based anorexia (ABA) paradigm models aspects of AN, and refers to the progressive weight loss, hypophagia, and hyperactivity developed by rodents exposed to time-restricted feeding and running wheel access. Recent studies identified white adipose tissue (WAT) as a primary location of the 'metabolic memory' of prior obesity, and implicated WAT-derived signals as drivers of recidivism to obesity following weight loss. Here, we tested whether an obese WAT transplant could attenuate ABA-induced weight loss in normal female mice. Recipient mice received a WAT transplant harvested from normal chow-fed, or HFD-fed obese mice; obese fat recipient (OFR) and control fat recipient (CFR) mice were then tested for ABA. During ABA, OFR mice survived longer than CFR mice, defined as maintaining 75% of their initial body weight. Next, we tested whether agouti-related peptide (AgRP) neurons, which regulate feeding behavior and metabolic sensing, mediate this effect of obese WAT transplant. CFR and OFR mice received either control or neonatal AgRP ablation, and were assessed for ABA. OFR intact mice maintained higher body weights longer than CFR intact mice, and this effect was abolished by neonatal AgRP ablation; further, ablation reduced survival in OFR, but not CFR mice. In summary, obese WAT transplant communicates with AgRP neurons to increase body weight maintenance during ABA. These findings encourage the examination of obese WAT-derived factors as potential treatments for AN.
Collapse
Affiliation(s)
- Dongmin J. Yoon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rizaldy C. Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martina Ulivieri
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avraham M. Libster
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephanie C. Dulawa
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Lee MJ, Kim J. The pathophysiology of visceral adipose tissues in cardiometabolic diseases. Biochem Pharmacol 2024; 222:116116. [PMID: 38460909 PMCID: PMC11407912 DOI: 10.1016/j.bcp.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Central pattern of fat distribution, especially fat accumulation within the intraabdominal cavity increases risks for cardiometabolic diseases. Portal hypothesis combined with a pathological remodeling in visceral fat is considered the major etiological factor explaining the independent contribution of visceral obesity to cardiometabolic diseases. Excessive remodeling in visceral fat during development of obesity leads to dysfunctions in the depot, characterized by hypertrophy and death of adipocytes, hypoxia, inflammation, and fibrosis. Dysfunctional visceral fat secretes elevated levels of fatty acids, glycerol, and proinflammatory and profibrotic cytokines into the portal vein directly impacting the liver, the central regulator of systemic metabolism. These metabolic and endocrine products induce ectopic fat accumulation, insulin resistance, inflammation, and fibrosis in the liver, which in turn causes or exacerbates systemic metabolic derangements. Elucidation of underlying mechanisms that lead to the pathological remodeling and higher degree of dysfunctions in visceral adipose tissue is therefore, critical for the development of therapeutics to prevent deleterious sequelae in obesity. We review depot differences in metabolic and endocrine properties and expendabilities as well as underlying mechanisms that contribute to the pathophysiological aspects of visceral adiposity in cardiometabolic diseases. We also discuss impacts of different weight loss interventions on visceral adiposity and cardiometabolic diseases.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Hawaii 96822, USA.
| | - Jeehoon Kim
- Department of Sociology, Social Work, and Criminology, Idaho State University, Idaho 83209, USA
| |
Collapse
|
13
|
Tran V, Brettle H, Diep H, Dinh QN, O'Keeffe M, Fanson KV, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. Sex-specific effects of a high fat diet on aortic inflammation and dysfunction. Sci Rep 2023; 13:21644. [PMID: 38062083 PMCID: PMC10703842 DOI: 10.1038/s41598-023-47903-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity and vascular dysfunction are independent and sexually dimorphic risk factors for cardiovascular disease. A high fat diet (HFD) is often used to model obesity in mice, but the sex-specific effects of this diet on aortic inflammation and function are unclear. Therefore, we characterized the aortic immune cell profile and function in 6-week-old male and female C57BL/6 mice fed a normal chow diet (NCD) or HFD for 10 weeks. Metabolic parameters were measured weekly and fortnightly. At end point, aortic immune cell populations and endothelial function were characterized using flow cytometry and wire myography. HFD-male mice had higher bodyweight, blood cholesterol, fasting blood glucose and plasma insulin levels than NCD mice (P < 0.05). HFD did not alter systolic blood pressure (SBP), glycated hemoglobin or blood triglycerides in either sex. HFD-females had delayed increases in bodyweight with a transient increase in fasting blood glucose at week 8 (P < 0.05). Flow cytometry revealed fewer proinflammatory aortic monocytes in females fed a HFD compared to NCD. HFD did not affect aortic leukocyte populations in males. Conversely, HFD impaired endothelium-dependent vasorelaxation, but only in males. Overall, this highlights biological sex as a key factor determining vascular disease severity in HFD-fed mice.
Collapse
Affiliation(s)
- Vivian Tran
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Holly Brettle
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Maeve O'Keeffe
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Kerry V Fanson
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
14
|
van Baak MA, Mariman ECM. Obesity-induced and weight-loss-induced physiological factors affecting weight regain. Nat Rev Endocrinol 2023; 19:655-670. [PMID: 37696920 DOI: 10.1038/s41574-023-00887-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/13/2023]
Abstract
Weight regain after successful weight loss resulting from lifestyle interventions is a major challenge in the management of overweight and obesity. Knowledge of the causal mechanisms for weight regain can help researchers and clinicians to find effective strategies to tackle weight regain and reduce obesity-associated metabolic and cardiovascular complications. This Review summarizes the current understanding of a number of potential physiological mechanisms underlying weight regain after weight loss, including: the role of adipose tissue immune cells; hormonal and neuronal factors affecting hunger, satiety and reward; resting energy expenditure and adaptive thermogenesis; and lipid metabolism (lipolysis and lipid oxidation). We describe and discuss obesity-associated changes in these mechanisms, their persistence during weight loss and weight regain and their association with weight regain. Interventions to prevent or limit weight regain based on these factors, such as diet, exercise, pharmacotherapy and biomedical strategies, and current knowledge on the effectiveness of these interventions are also reviewed.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Tikhonova N, Milovanov AP, Aleksankina VV, Kulikov IA, Fokina TV, Aleksankin AP, Belousova TN, Mikhaleva LM, Niziaeva NV. Adipocytes in the Uterine Wall during Experimental Healing and in Cesarean Scars during Pregnancy. Int J Mol Sci 2023; 24:15255. [PMID: 37894936 PMCID: PMC10607476 DOI: 10.3390/ijms242015255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
We have suggested that adipocytes in uterine scars may affect the development of the placenta accrete spectrum (PAS). In the experimental part, we explored adipocytes in the uterine wall by the twelfth sexual cycle after surgery. In the clinical part, we investigated adipocyte clusters in the cesarean scar of pregnant women with and without PAS. The uterine wall was evaluated in gross and histological sections using morphometry, histochemistry (hematoxylin and eosin stain, Mallory stain), and immunohistochemistry for FABP4 (adipocyte markers), CD68, CD163, CD206 (macrophages), CD 34 (endothelium), cytokeratin 8 (epithelium), aSMA (smooth muscle cells). The design included an experimental study on Sprague-Dawley rats (n = 18) after a full-thickness surgical incision on the seventh (n = 6), 30th (n = 6), and 60th day (n = 6). The clinical groups include pregnant women without uterine scars (n = 10), pregnant women with a uterine scar after previous cesarean sections (n = 10), and women with PAS (n = 11). Statistical processing was carried out using nonparametric methods. Comparisons were conducted using the Mann-Whitney U-test and Kruskal-Wallis test. Statistical significance was considered at p < 0.05. On the seventh day, the rat uterine horn was enveloped by adipose tissue, which contained crown-like structures with FABP4+, CD68+, CD206+, and CD163+ cells. FABP4+ cells in the uterine wall were absent by the 30th day. The number of CD206+ and CD163+ cells in the adipose tissue decreased by the 30th day. On the 60th day, the attachment of fat tissue was revealed in the form of single strands. The serous layer around the damaged area totally recovered on the 60th day. FABP4+ cells were not detected in the uterine wall samples from pregnant women without a previous cesarean section. Adipocytes were found in the scar during non-complicated pregnancy and with PAS. Reducing the number of CD68+ cells in adipocyte clusters, there were in myometrium with PAS. Increased CD206+ and CD163+ cells were revealed in uterine adipocyte clusters of the group. According to the experimental finding, adipocytes should be absent in the uterine wall by the 12th sexual cycle after a full-thickness surgical incision. The presence of adipocyte clusters in cesarean scar indicated the disturbance of cell interaction. Differences in the numbers of CD206 and CD163 cells in adipocyte clusters between groups with and without PAS may be indirect evidence that uterine adipocytes affect the development of PAS.
Collapse
Affiliation(s)
- Natalia Tikhonova
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Andrey P. Milovanov
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Valentina V. Aleksankina
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Ilyas A. Kulikov
- SBHI of the Moscow Region “Vidnovsky Perinatal Center”, 142700 Moscow, Russia (T.N.B.)
| | - Tatiana V. Fokina
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Andrey P. Aleksankin
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Tamara N. Belousova
- SBHI of the Moscow Region “Vidnovsky Perinatal Center”, 142700 Moscow, Russia (T.N.B.)
| | - Ludmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| | - Natalya V. Niziaeva
- Avtsyn Research Institute of Human Morphology of FSBSI “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia (T.V.F.); (A.P.A.); (N.V.N.)
| |
Collapse
|
16
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
17
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Lu Y, Qie D, Yang F, Wu J. LncRNA MEG3 aggravates adipocyte inflammation and insulin resistance by targeting IGF2BP2 to activate TLR4/NF-κB signaling pathway. Int Immunopharmacol 2023; 121:110467. [PMID: 37348228 DOI: 10.1016/j.intimp.2023.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Recently, emerging evidence has shown that LncRNA MEG3 is involved in adipocyte inflammation and insulin resistance progression, however, the specific mechanism of action remains unclear. In this study, we found that LncRNA MEG3 expression was increased in TNF-α stimulated 3T3-L1 mature adipocytes, and inflammatory factors IL-6 and MCP-1 secretion levels were increased, cell apoptosis and caspase3 activity was enhanced, ROS content was increased, and iNOS protein expression was increased. Moreover, TNF-α treatment attenuated glucose uptake, promoted triglyceride accumulation, inhibited GLUT4 protein expression at the plasma membrane, and reduced the phosphorylation levels of AMPK and ACC in the cells. Interestingly, we found that transfection of si-MEG3 reversed TNF-α caused inflammatory injury and insulin resistance of 3T3-L1 mature adipocytes. Next, we found that IGF2BP2 is an RNA binding protein of LncRNA MGE3 and transfection of si-IGF2BP2 reversed TNF-α caused inflammatory injury and insulin resistance in 3T3-L1 mature adipocytes, the same effects as transfection of si-MEG3. Mechanistically, LncRNA MGE3 was able to aggravate adipocyte inflammatory injury and dysregulation of insulin sensitivity by activating TLR4 pathway through upregulating the protein expression of IGF2BP2. In vivo findings showed that HFD mice with knockdown of MEG3 had reduced body weight, lower glucose concentrations and insulin levels in plasma, decreased inflammatory factors secretion, and reduced MEG3 and IGF2BP2 expression in epididymal adipose tissues and reduced fat accumulation in mice compared with HFD mice. Our results indicate that LncRNA MEG3 can aggravate chronic inflammation and insulin resistance in adipocytes by activating TLR4/NF-κB signaling pathway via targeting IGF2BP2.
Collapse
Affiliation(s)
- You Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Di Qie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.; Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China..
| | - Jinhui Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China.; Department of Child Healthcare nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, Sichuan, China..
| |
Collapse
|
19
|
Nance SA, Muir L, Delproprosto J, Lumeng CN. MSR1 is not required for obesity-associated inflammation and insulin resistance in mice. Sci Rep 2023; 13:2651. [PMID: 36788340 PMCID: PMC9927046 DOI: 10.1038/s41598-023-29736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.
Collapse
Affiliation(s)
- Sierra A Nance
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Delproprosto
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Rudyk M, Hurmach Y, Serhiichuk T, Akulenko I, Skivka L, Berehova T, Ostapchenko L. Multi-probiotic consumption sex-dependently interferes with MSG-induced obesity and concomitant phagocyte pro-inflammatory polarization in rats: Food for thought about personalized nutrition. Heliyon 2023; 9:e13381. [PMID: 36816299 PMCID: PMC9932736 DOI: 10.1016/j.heliyon.2023.e13381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Epidemic scope which obesity has reached in many countries necessitates shifting the emphasis in medicine from traditional reaction to individualized and personalized prevention. Numerous trials convincingly prove sexual dimorphism of obesity in morbidity, pathophysiology, comorbidity, outcomes and prophylaxis efficacy. Obesity is characterized by chronic systemic low-grade inflammation that creates the preconditions for the emergence of numerous comorbidities. Leading role in the initiation, propagation and resolution of inflammation belongs to tissue resident and circulating phagocytes. The outcome of inflammation largely depends on phagocyte functional polarization, which in turn is governed by environmental stimuli. Gut microbiota (GM), whose disturbances are one of the key pathogenetic features in obesity, substantially affect phagocyte functions and can either aggravate or calm obesity-associated inflammation. Probiotics possess promising physiological functions, including microbiota-restoring and anti-inflammatory traits, that may possibly help prevent obesity. However, sex-specific effects of probiotic supplementation for targeted obesity prevention remain unknown. The aim of the current study was aimed to compare the effect of multi-probiotic preparation used in prophylactic regimen on the adiposity, profile of culturable GM and its short-chain fatty acids as well as on functional profile of phagocytes from different locations in male and female rats with monosodium glutamate (MSG)-induced obesity. Obesity was induced by neonatal MSG injections in male and female rats, who were given the multi-species probiotic during juvenile and adult developmental stages. Culturable fecal and mucosa-associated microbiota of the intestine were examined using selective diagnostic media. Short-chain fatty acid profile in fecal samples was determined by GC-MS. Phagocyte functional profile was evaluated using flow cytometry and colorimetric methods. Probiotic supplementation after the administration of MSG prevented weight gain and fat accumulation, inflammatory phagocyte activation and alterations in GM in female rats. In male MSG-injected rats, probiotic supplementation restricted but did not prevent weight gain and fat deposition, alleviated but did not prevent systemic inflammation, prevented the alterations in GM, but with residual imbalance in the ratio of obligate anaerobic to facultative anaerobic bacteria. Our findings emphasize the necessity of sex-centered approaches to the prophylactic use of probiotics in obesity in the context of predictive preventive and personalized medicine.
Collapse
Affiliation(s)
- Mariia Rudyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine,Corresponding author.
| | - Yevheniia Hurmach
- Bogomolets National Medical University, 13, T. Shevchenko Blvd, Kyiv, 01601, Ukraine
| | - Tetiana Serhiichuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Iryna Akulenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Tetiana Berehova
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| | - Liudmyla Ostapchenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Prospekt Hlushkov, Kyiv, 03022, Ukraine
| |
Collapse
|
21
|
Choi Y, Choi SI, Kim N, Nam RH, Jang JY, Na HY, Shin CM, Lee DH, Min H, Kim YR, Seok YJ. Effect of Clostridium butyricum on High-Fat Diet-Induced Intestinal Inflammation and Production of Short-Chain Fatty Acids. Dig Dis Sci 2023; 68:2427-2440. [PMID: 36670324 DOI: 10.1007/s10620-023-07835-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS A high-fat diet (HFD) can cause intestinal inflammation and alter the gut microbiota; probiotics, however, are known to have anti-inflammatory effects. This study aimed to investigate the response of rat colon to HFD and the effect of Clostridium butyricum on HFD-induced intestinal inflammation and production of short-chain fatty acids (SCFAs) according to sex. METHODS Male and female 6-week-old Fischer-344 rats were fed a chow diet or HFD for 8 weeks, and Biovita or three different concentrations of C. butyricum were orally gavaged. The levels of tight junction proteins (TJPs), inflammatory markers in the ascending colonic mucosa, and bile acids (BAs) and SCFAs in stool were measured. RESULTS HFD significantly increased the histological inflammation scores and fat proportions. Fecal BA levels were higher in the HFD group than in the control group, with a more prominent increase in deoxycholic acid/cholic acid after probiotics administration in females; however, no statistically significant differences were observed. TJPs showed an opposite response to HFD depending on sex, and tended to increase and decrease after HFD in males and females, respectively. The HFD-reduced TJPs were recovered by probiotics, with some statistical significance in females. HFD-decreased butyric acid in stools appeared to be recovered by probiotics in males, but not in females. The expression of inflammatory markers (TNF-α) was increased by HFD in males and decreased with medium-concentration probiotic supplementation. The opposite was observed in females. MPO was increased by HFD in both sexes and decreased by probiotic supplementation. CONCLUSIONS The probiotic C. butyricum improved indicators of HFD-induced colonic inflammation such as levels of inflammatory markers and increased the production of SCFAs and the expression of TJPs. These effects tended to be more pronounced in male rats, showing sex difference.
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Huitae Min
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Thangavel H, Dhanyalayam D, Lizardo K, Oswal N, Dolgov E, Perlin DS, Nagajyothi JF. Susceptibility of Fat Tissue to SARS-CoV-2 Infection in Female hACE2 Mouse Model. Int J Mol Sci 2023; 24:1314. [PMID: 36674830 PMCID: PMC9863100 DOI: 10.3390/ijms24021314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease (COVID-19) is a highly contagious viral illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 has had a catastrophic effect globally causing millions of deaths worldwide and causing long-lasting health complications in COVID-19 survivors. Recent studies including ours have highlighted that adipose tissue can act as a reservoir where SARS-CoV-2 can persist and cause long-term health problems. Here, we evaluated the effect of SARS-CoV-2 infection on adipose tissue physiology and the pathogenesis of fat loss in a murine COVID-19 model using humanized angiotensin-converting enzyme 2 (hACE2) mice. Since epidemiological studies reported a higher mortality rate of COVID-19 in males than in females, we examined hACE2 mice of both sexes and performed a comparative analysis. Our study revealed for the first time that: (a) viral loads in adipose tissue and the lungs differ between males and females in hACE2 mice; (b) an inverse relationship exists between the viral loads in the lungs and adipose tissue, and it differs between males and females; and (c) CoV-2 infection alters immune signaling and cell death signaling differently in SARS-CoV-2 infected male and female mice. Overall, our data suggest that adipose tissue and loss of fat cells could play important roles in determining susceptibility to CoV-2 infection in a sex-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
23
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
24
|
Sex- and Gender-Related Aspects in Pulmonary Hypertension. Heart Fail Clin 2023; 19:11-24. [PMID: 36435566 DOI: 10.1016/j.hfc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
26
|
Vasileva A, Marx T, Beaudry JL, Stern JH. Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. Am J Physiol Endocrinol Metab 2022; 323:E389-E401. [PMID: 36002172 PMCID: PMC9576180 DOI: 10.1152/ajpendo.00078.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the physiological role of glucagon receptor signaling in the liver is well defined, the impact of glucagon receptor (Gcgr) signaling on white adipose tissue (WAT) continues to be debated. Although numerous studies propose that glucagon stimulates WAT lipolysis, we lack evidence that physiological concentrations of glucagon regulate WAT lipolysis. In turn, we performed studies in both wild-type and WAT Gcgr knockout mice to determine if glucagon regulates lipolysis at WAT in the mouse. We assessed the effects of fasting and acute exogenous glucagon administration in wild-type C57BL/6J and GcgrAdipocyte+/+ versus GcgrAdipocyte-/- mice. Using an ex vivo lipolysis protocol, we further examined the direct effects of glucagon on physiologically (fasted) and pharmacologically stimulated lipolysis. We found that adipocyte Gcgr expression did not affect fasting-induced lipolysis or hepatic lipid accumulation in lean or diet-induced obese (DIO) mice. Acute glucagon administration did not affect serum nonesterified fatty acids (NEFA), leptin, or adiponectin concentration, but did increase serum glucose and FGF21, regardless of genotype. Glucagon did not affect ex vivo lipolysis in explants from either GcgrAdipocyte+/+ or GcgrAdipocyte-/- mice. Gcgr expression did not affect fasting-induced or isoproterenol-stimulated lipolysis from WAT explants. Moreover, glucagon receptor signaling at WAT did not affect body weight or glucose homeostasis in lean or DIO mice. Our studies have established that physiological levels of glucagon do not regulate WAT lipolysis, either directly or indirectly. Given that glucagon receptor agonism can improve dyslipidemia and decrease hepatic lipid accumulation, it is critical to understand the tissue-specific effects of glucagon receptor action. Unlike the crucial role of hepatic glucagon receptor signaling in maintaining glucose and lipid homeostasis, we observed no metabolic consequence of WAT glucagon receptor deletion.NEW & NOTEWORTHY It has been postulated that glucagon stimulates lipolysis and fatty acid release from white adipose tissue. We observed no metabolic effects of eliminating or activating glucagon receptor signaling at white adipose tissue.
Collapse
Affiliation(s)
- Anastasiia Vasileva
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Tyler Marx
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
27
|
Ludzki AC, Krueger EM, Gillen JB, Taylor NM, Middlebrook DO, Baldwin TC, Karabetsos KC, Schleh MW, Horowitz JF. One week of overeating upregulates angiogenic and lipolytic gene expression in human subcutaneous adipose tissue from exercise trained and untrained adults. Appl Physiol Nutr Metab 2022; 47:992-1004. [PMID: 35816737 PMCID: PMC10127504 DOI: 10.1139/apnm-2022-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective storage of excess energy in abdominal subcutaneous adipose tissue during periods of overeating may help attenuate weight-gain-related insulin resistance. The objective of this study was to assess changes in the expression of factors regulating abdominal subcutaneous adipose tissue storage capacity in response to a brief exposure to overeating in nonobese adults. Because exercise can alter the expression of genes involved in regulating adipose tissue storage capacity, we compared the responses to overeating in regular exercisers (EX, n = 11) and nonexercisers (nonEX, n = 11). Abdominal subcutaneous adipose tissue samples and oral glucose tolerance tests were performed before and after participants ate 30% above their estimated daily energy requirements for 1 week. Both EX and nonEX gained ∼1 kg (P < 0.01), and Matsuda insulin sensitivity index was reduced ∼15% (P = 0.04) in both groups. Gene expression of factors involved in lipid metabolism (HSL, ATGL, DGAT, and PPARγ) and angiogenesis (HIF1α and KDR) were increased (P < 0.05), with no differences observed between EX and nonEX. In contrast, protein abundance of these factors did not change. The modest overeating stimulus did not increase markers of inflammation in the systemic circulation or adipose tissue. Overall, our findings indicate that a brief and modest overeating stimulus can impair insulin sensitivity and upregulate genes involved in abdominal adipose tissue storage capacity similarly in exercisers and nonexercisers. ClinicalTrials.gov ID#: NCT02701738.
Collapse
Affiliation(s)
- Alison C Ludzki
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily M Krueger
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jenna B Gillen
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Natalie M Taylor
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Toree C Baldwin
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael W Schleh
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Steiner BM, Berry DC. The Regulation of Adipose Tissue Health by Estrogens. Front Endocrinol (Lausanne) 2022; 13:889923. [PMID: 35721736 PMCID: PMC9204494 DOI: 10.3389/fendo.2022.889923] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its' associated metabolic diseases such as type 2 diabetes and cardiometabolic disorders are significant health problems confronting many countries. A major driver for developing obesity and metabolic dysfunction is the uncontrolled expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of visceral WAT is often associated with metabolic dysfunction due to changes in adipokine secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-inflammatory immune cells. A critical determinate of body fat distribution and WAT health is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically healthy subcutaneous fat over visceral fat growth while protecting against changes in metabolic dysfunction. Our review will focus on the role of estrogen on body fat partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function, and thermogenesis to control WAT health and systemic metabolism.
Collapse
Affiliation(s)
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Cottam MA, Caslin HL, Winn NC, Hasty AH. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun 2022; 13:2950. [PMID: 35618862 PMCID: PMC9135744 DOI: 10.1038/s41467-022-30646-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Within adipose tissue (AT), immune cells and parenchymal cells closely interact creating a complex microenvironment. In obesity, immune cell derived inflammation contributes to insulin resistance and glucose intolerance. Diet-induced weight loss improves glucose tolerance; however, weight regain further exacerbates the impairment in glucose homeostasis observed with obesity. To interrogate the immunometabolic adaptations that occur in AT during murine weight loss and weight regain, we utilized cellular indexing of transcriptomes and epitopes by sequencing (CITEseq) in male mice. Obesity-induced imprinting of AT immune cells persisted through weight-loss and progressively worsened with weight regain, ultimately leading to impaired recovery of type 2 regulatory cells, activation of antigen presenting cells, T cell exhaustion, and enhanced lipid handling in macrophages in weight cycled mice. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease. For further discovery, we provide an open-access web portal of diet-induced AT immune cell imprinting: https://hastylab.shinyapps.io/MAIseq .
Collapse
Affiliation(s)
- Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
30
|
Wang Q, Song W, Tian Y, Hu P, Liu X, Xu L, Gong Z. Targeted Lipidomics Reveal the Effect of Perchlorate on Lipid Profiles in Liver of High-Fat Diet Mice. Front Nutr 2022; 9:837601. [PMID: 35360694 PMCID: PMC8964020 DOI: 10.3389/fnut.2022.837601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Perchlorate, commonly available in drinking water and food, acts on the iodine uptake by the thyroid affecting lipid metabolism. High-fat diets leading to various health problems continually raise public concern. In the present study, liver lipid metabolism profiles and metabolic pathways were investigated in C57BL/6J mice chronically exposed to perchlorate using targeted metabolomics. Mice were fed a high-fat diet and treated orally with perchlorate at 0.1 mg/kg bw (body weight), 1 mg/kg bw and 10 mg/kg bw daily for 12 weeks. Perchlorate induced disorders of lipid metabolism in vivo and hepatic lipid accumulation confirmed by serum biochemical parameters and histopathological examination. There were 34 kinds of lipid in liver detected by UHPLC-MS/MS and key metabolites were identified by multivariate statistical analysis evaluated with VIP > 1, p-value < 0.05, fold change > 1.2 or < 0.8. Perchlorate low, medium and high dose groups were identified with 11, 7 and 8 significantly altered lipid metabolites compared to the control group, respectively. The results of the metabolic pathway analysis revealed that the differential metabolites classified into different experimental groups contribute to the glycerophospholipid metabolic pathway. These findings provide insights into the effects of perchlorate on lipid metabolism during long-term exposure to high-fat diets and contribute to the evaluation of perchlorate liver toxic mechanisms and health effects.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wanying Song
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Peihao Hu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
31
|
Wakefield CB, Lee VR, Johnston D, Boroumand P, Pillon NJ, Sayedyahossein S, O'Donnell BL, Tang J, Sanchez-Pupo RE, Barr KJ, Gros R, Flynn L, Borradaile NM, Klip A, Beier F, Penuela S. Pannexin 3 deletion reduces fat accumulation and inflammation in a sex-specific manner. Int J Obes (Lond) 2022; 46:726-738. [PMID: 34897286 DOI: 10.1038/s41366-021-01037-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.
Collapse
Affiliation(s)
- C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
| | - Vanessa R Lee
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nicolas J Pillon
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Samar Sayedyahossein
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Justin Tang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Rafael E Sanchez-Pupo
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Kevin J Barr
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Lauren Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
- Department of Chemical and Biomedical Engineering, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank Beier
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON, N6G 2V4, Canada.
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
32
|
Bechmann N, Barthel A, Schedl A, Herzig S, Varga Z, Gebhard C, Mayr M, Hantel C, Beuschlein F, Wolfrum C, Perakakis N, Poston L, Andoniadou CL, Siow R, Gainetdinov RR, Dotan A, Shoenfeld Y, Mingrone G, Bornstein SR. Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes Endocrinol 2022; 10:221-230. [PMID: 35114136 PMCID: PMC8803381 DOI: 10.1016/s2213-8587(21)00346-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Current evidence suggests that severity and mortality of COVID-19 is higher in men than in women, whereas women might be at increased risk of COVID-19 reinfection and development of long COVID. Differences between sexes have been observed in other infectious diseases and in the response to vaccines. Sex-specific expression patterns of proteins mediating virus binding and entry, and divergent reactions of the immune and endocrine system, in particular the hypothalamic-pituitary-adrenal axis, in response to acute stress might explain the higher severity of COVID-19 in men. In this Personal View, we discuss how sex hormones, comorbidities, and the sex chromosome complement influence these mechanisms in the context of COVID-19. Due to its role in the severity and progression of SARS-CoV-2 infections, we argue that sexual dimorphism has potential implications for disease treatment, public health measures, and follow-up of patients predisposed to the development of long COVID. We suggest that sex differences could be considered in future pandemic surveillance and treatment of patients with COVID-19 to help to achieve better disease stratification and improved outcomes.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Barthel
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Medicover Bochum, Bochum, Germany
| | - Andreas Schedl
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Université Côte d'Azur, INSERM, CNRS, iBV, Nice, France
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Manuel Mayr
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Constanze Hantel
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland; Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucilla Poston
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, London, UK
| | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK; Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and St Petersburg University Hospital, St Petersburg State University, St Petersburg, Russia
| | - Arad Dotan
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel; Ariel University, Ariel, Israel
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Department of Internal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK.
| |
Collapse
|
33
|
Aziz MH, van Dongen JC, Saida L, Suker M, van Vugt JLA, van Putten Y, Sideras K, Groen JV, Mieog JSD, Lucassen CJ, Droop A, Mauff K, Shahbazi Feshtali S, Groot Koerkamp B, Mustafa DAM, van Eijck CJ. High Systemic Immune Inflammation Index Is Associated With Low Skeletal Muscle Quantity in Resectable Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:827755. [PMID: 35296013 PMCID: PMC8919513 DOI: 10.3389/fonc.2022.827755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Failing immune surveillance in pancreatic ductal adenocarcinoma (PDAC) is related to poor prognosis. PDAC is also characterized by its substantial alterations to patients' body composition. Therefore, we investigated associations between the host systemic immune inflammation response and body composition in patients with resected PDAC. Methods Patients who underwent a pancreatectomy for PDAC between 2004 and 2016 in two tertiary referral centers were included. Skeletal muscle mass quantity and muscle attenuation, as well as subcutaneous and visceral adipose tissue at the time of diagnosis, were determined by CT imaging measured transversely at the third lumbar vertebra level. Baseline clinicopathological characteristics, laboratory values including the systemic immune inflammation index (SIII), postoperative, and survival outcomes were collected. Results A total of 415 patients were included, and low skeletal muscle mass quantity was found in 273 (65.7%) patients. Of the body composition indices, only low skeletal muscle mass quantity was independently associated with a high (≥900) SIII (OR 7.37, 95% CI 2.31-23.5, p=0.001). The SIII was independently associated with disease-free survival (HR 1.86, 95% CI 1.12-3.04), and cancer-specific survival (HR 2.21, 95% CI 1.33-3.67). None of the body composition indices were associated with survival outcomes. Conclusion This study showed a strong association between preoperative low skeletal muscle mass quantity and elevated host systemic immune inflammation in patients with resected PDAC. Understanding how systemic inflammation may contribute to changes in body composition or whether reversing these changes may affect the host systemic immune inflammation response could expose new therapeutic possibilities for improving patients' survival outcomes.
Collapse
Affiliation(s)
- Mohammad Hosein Aziz
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jelle C. van Dongen
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lawlaw Saida
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus, University Medical Center, Rotterdam, Netherlands
| | - Mustafa Suker
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Yordi van Putten
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kostandinos Sideras
- Divisions of Medical Oncology and Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jesse V. Groen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Claudia J. Lucassen
- Department of Dietetics, Leiden University Medical Center, Leiden, Netherlands
| | - Anneke Droop
- Department of Dietetics, Leiden University Medical Center, Leiden, Netherlands
| | - Katya Mauff
- Department of Biostatistics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus, University Medical Center, Rotterdam, Netherlands
| | - Casper J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Muir LA, Cho KW, Geletka LM, Baker NA, Flesher CG, Ehlers AP, Kaciroti N, Lindsly S, Ronquist S, Rajapakse I, O'Rourke RW, Lumeng CN. Human CD206+ macrophages associate with diabetes and adipose tissue lymphoid clusters. JCI Insight 2022; 7:146563. [PMID: 34990410 PMCID: PMC8855803 DOI: 10.1172/jci.insight.146563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.
Collapse
Affiliation(s)
| | | | | | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Niko Kaciroti
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Stephen Lindsly
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott Ronquist
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Mathematics and.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, Michigan, USA
| | - Carey N Lumeng
- Department of Pediatrics and.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Leffler J, Trend S, Gorman S, Hart PH. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front Neurol 2022; 13:835162. [PMID: 35185777 PMCID: PMC8850837 DOI: 10.3389/fneur.2022.835162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
The immunological mechanisms that contribute to multiple sclerosis (MS) differ between males and females. Females are 2–3 times more likely to develop MS compared to males, however the reason for this discrepancy is unknown. Once MS is established, there is a more inflammatory yet milder form of disease in females whereas males generally suffer from more severe disease and faster progression, neural degradation, and disability. Some of these differences relate to genetics, including genetic control of immune regulatory genes on the X-chromosome, as well as immune modulatory properties of sex hormones. Differences in MS development may also relate to how sex interacts with environmental risk factors. There are several environmental risk factors for MS including late-onset Epstein Barr virus infection, low serum vitamin D levels, low UV radiation exposure, smoking, obesity, and lack of physical activity. Most of these risk factors impact males and females differently, either due to biological or immunological processes or through behavioral differences. In this review, we explore these differences further and focus on how the interaction of environmental risk factors with sex hormones may contribute to significantly different prevalence and pathology of MS in males and females.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Jonatan Leffler
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Prue H. Hart
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
36
|
Chattopadhyay S, Joharapurkar A, Das N, Khatoon S, Kushwaha S, Gurjar AA, Singh AK, Shree S, Ahmed MZ, China SP, Pal S, Kumar H, Ramachandran R, Patel V, Trivedi AK, Lahiri A, Jain MR, Chattopadhyay N, Sanyal S. Estradiol overcomes adiponectin-resistance in diabetic mice by regulating skeletal muscle adiponectin receptor 1 expression. Mol Cell Endocrinol 2022; 540:111525. [PMID: 34856343 DOI: 10.1016/j.mce.2021.111525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
Adiponectin and insulin resistance creates a vicious cycle that exacerbates type 2 diabetes. Earlier, we observed that female leptin receptor-deficient BLKS mice (BKS-db/db) were more sensitive to an adiponectin mimetic GTDF than males, which led us to explore if E2 plays a crucial role in modulation of adiponectin-sensitivity. Male but not female BKS-db/db mice were resistant to metabolic effects of globular adiponectin treatment. Male BKS-db/db displayed reduced skeletal muscle AdipoR1 protein expression, which was consequent to elevated polypyrimidine tract binding protein 1 (PTB) and miR-221. E2 treatment in male BKS-db/db, and ovariectomized BALB/c mice rescued AdipoR1 protein expression via downregulation of PTB and miR-221, and also directly increased AdipoR1 mRNA by its classical nuclear receptors. Estrogen receptor regulation via dietary or pharmacological interventions may improve adiponectin resistance and consequently ameliorate insulin resistance in type 2 diabetes.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Drug Resistance/genetics
- Estradiol/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Receptors, Leptin/genetics
- Sex Characteristics
Collapse
Affiliation(s)
- Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | | | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapana Kushwaha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anagha Ashok Gurjar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Abhishek Kumar Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sonal Shree
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Md Zohaib Ahmed
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shyamsundar Pal China
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Harish Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravishankar Ramachandran
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Arun Kumar Trivedi
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Lahiri
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India.
| |
Collapse
|
37
|
Caslin HL, Cottam MA, Piñon JM, Boney LY, Hasty AH. Weight cycling induces innate immune memory in adipose tissue macrophages. Front Immunol 2022; 13:984859. [PMID: 36713396 PMCID: PMC9876596 DOI: 10.3389/fimmu.2022.984859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Methods Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Results Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS ex vivo as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Discussion Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Jacqueline M Piñon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Likem Y Boney
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
38
|
Dahlquist KJ, Camell CD. Aging Leukocytes and the Inflammatory Microenvironment of the Adipose Tissue. Diabetes 2022; 71:23-30. [PMID: 34995348 PMCID: PMC8763870 DOI: 10.2337/dbi21-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Age-related immunosenescence, defined as an increase in inflammaging and the decline of the immune system, leads to tissue dysfunction and increased risk for metabolic disease. The elderly population is expanding, leading to a heightened need for therapeutics to improve health span. With age, many alterations of the immune system are observed, including shifts in the tissue-resident immune cells, increased expression of inflammatory factors, and the accumulation of senescent cells, all of which are responsible for a chronic inflammatory loop. Adipose tissue and the immune cell activation within are of particular interest for their well-known roles in metabolic disease. Recent literature reveals that adipose tissue is an organ in which signs of initial aging occur, including immune cell activation. Aged adipose tissue reveals changes in many innate and adaptive immune cell subsets, revealing a complex interaction that contributes to inflammation, increased senescence, impaired catecholamine-induced lipolysis, and impaired insulin sensitivity. Here, we will describe current knowledge surrounding age-related changes in immune cells while relating those findings to recent discoveries regarding immune cells in aged adipose tissue.
Collapse
Affiliation(s)
| | - Christina D. Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
39
|
Varghese M, Clemente J, Lerner A, Abrishami S, Islam M, Subbaiah P, Singer K. Monocyte Trafficking and Polarization Contribute to Sex Differences in Meta-Inflammation. Front Endocrinol (Lausanne) 2022; 13:826320. [PMID: 35422759 PMCID: PMC9001155 DOI: 10.3389/fendo.2022.826320] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is associated with systemic inflammation and immune cell recruitment to metabolic tissues. Sex differences have been observed where male mice challenged with high fat diet (HFD) exhibit greater adipose tissue inflammation than females demonstrating a role for sex hormones in differential inflammatory responses. Circulating monocytes that respond to dietary lipids and chemokines and produce cytokines are the primary source of recruited adipose tissue macrophages (ATMs). In this study, we investigated sexual dimorphism in biological pathways in HFD-fed ATMs from male and female mice by RNA-seq. We also conducted chemotaxis assays to investigate sex differences in the migration of monocytes isolated from bone marrow from male and female mice toward a dietary saturated lipid - palmitate (PA), and a chemokine - monocyte chemoattractant protein 1 (MCP1), factors known to stimulate myeloid cells in obesity. ATM RNA-Seq demonstrated sex differences of both metabolic and inflammatory activation, including pathways for chemokine signaling and leukocyte trans-endothelial migration. In vivo monocyte transfer studies demonstrated that male monocytes traffic to female adipose tissue to generate ATMs more readily. In chemotaxis assays, lean male monocytes migrated in greater numbers than females toward PA and MCP1. With short-term HFD, male and female monocytes migrated similarly, but in chronic HFD, male monocytes showed greater migration than females upon PA and MCP1 stimulation. Studies with monocytes from toll-like receptor 4 knockout mice (Tlr4-/- ) demonstrated that both males and females showed decreased migration than WT in response to PA and MCP1 implying a role for TLR4 in monocyte influx in response to meta-inflammation. Overall, these data demonstrate the role of sexual dimorphism in monocyte recruitment and response to metabolic stimuli that may influence meta-inflammation in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Perla Subbaiah
- Department of Statistics and Mathematics, Oakland University, Rochester, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Kanakadurga Singer,
| |
Collapse
|
40
|
White Adipose Tissue Depots Respond to Chronic Beta-3 Adrenergic Receptor Activation in a Sexually Dimorphic and Depot Divergent Manner. Cells 2021; 10:cells10123453. [PMID: 34943961 PMCID: PMC8700379 DOI: 10.3390/cells10123453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERβ) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERβ.
Collapse
|
41
|
Varghese M, Griffin C, Abrishami S, Eter L, Lanzetta N, Hak L, Clemente J, Agarwal D, Lerner A, Westerhoff M, Patel R, Bowers E, Islam M, Subbaiah P, Singer K. Sex hormones regulate metainflammation in diet-induced obesity in mice. J Biol Chem 2021; 297:101229. [PMID: 34599964 PMCID: PMC8526779 DOI: 10.1016/j.jbc.2021.101229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Men have a statistically higher risk of metabolic and cardiovascular disease than premenopausal women, but the mechanisms mediating these differences are elusive. Chronic inflammation during obesity contributes to disease risk and is significantly more robust in males. Prior work demonstrated that compared with obese males, obese females have reduced proinflammatory adipose tissue macrophages (ATMs). Given the paucity of data on how sex hormones contribute to macrophage responses in obesity, we sought to understand the role of sex hormones in promoting obesity-induced myeloid inflammation. We used gonadectomy, estrogen receptor-deficient alpha chimeras, and androgen-insensitive mice to model sex hormone deficiency. These models were evaluated in diet-induced obesity conditions (high-fat diet [HFD]) and in vitro myeloid assays. We found that ovariectomy increased weight gain and adiposity. Ovariectomized females had increased ATMs and bone marrow myeloid colonies compared with sham-gonadectomized females. In addition, castrated males exposed to HFD had improved glucose tolerance, insulin sensitivity, and adiposity with fewer Ly6chi monocytes and bone marrow myeloid colonies compared with sham-gonadectomized males, although local adipose inflammation was enhanced. Similar findings were observed in androgen-insensitive mice; however, these mice had fewer CD11c+ ATMs, implying a developmental role for androgens in myelopoiesis and adipose inflammation. We concluded that gonadectomy results in convergence of metabolic and inflammatory responses to HFD between the sexes, and that myeloid estrogen receptor alpha contributes minimally to diet-induced inflammatory responses, whereas loss of androgen-receptor signaling improves metabolic and inflammatory outcomes. These studies demonstrate that sex hormones play a critical role in sex differences in obesity, metabolic dysfunction, and myeloid inflammation.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Cameron Griffin
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Leila Eter
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas Lanzetta
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Layla Hak
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Devyani Agarwal
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Westerhoff
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ravi Patel
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Bowers
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Perla Subbaiah
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, USA
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
42
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
43
|
Costa A, Reynés B, Konieczna J, Martín M, Fiol M, Palou A, Romaguera D, Oliver P. Use of human PBMC to analyse the impact of obesity on lipid metabolism and metabolic status: a proof-of-concept pilot study. Sci Rep 2021; 11:18329. [PMID: 34526523 PMCID: PMC8443582 DOI: 10.1038/s41598-021-96981-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are widely used as a biomarker source in nutrition/obesity studies because they reflect gene expression profiles of internal tissues. In this pilot proof-of-concept study we analysed in humans if, as we previously suggested in rodents, PBMC could be a surrogate tissue to study overweight/obesity impact on lipid metabolism. Pre-selected key lipid metabolism genes based in our previous preclinical studies were analysed in PBMC of normoglycemic normal-weight (NW), and overweight-obese (OW-OB) subjects before and after a 6-month weight-loss plan. PBMC mRNA levels of CPT1A, FASN and SREBP-1c increased in the OW-OB group, according with what described in liver and adipose tissue of humans with obesity. This altered expression pattern was related to increased adiposity and early signs of metabolic impairment. Greater weight loss and/or metabolic improvement as result of the intervention was related to lower CPT1A, FASN and SREBP-1c gene expression in an adjusted linear mixed-effects regression analysis, although no gene expression recovery was observed when considering mean comparisons. Thus, human PBMC reflect lipid metabolism expression profile of energy homeostatic tissues, and early obesity-related alterations in metabolic at-risk subjects. Further studies are needed to understand PBMC usefulness for analysis of metabolic recovery in weigh management programs.
Collapse
Affiliation(s)
- Andrea Costa
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Jadwiga Konieczna
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Marian Martín
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Miquel Fiol
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain. .,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain. .,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.
| | - Dora Romaguera
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| |
Collapse
|
44
|
Remodeling of Macrophages in White Adipose Tissue under the Conditions of Obesity as well as Lipolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9980877. [PMID: 34504646 PMCID: PMC8423577 DOI: 10.1155/2021/9980877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
Adipose tissue macrophages (ATM) are a major source of low-grade inflammation in obesity, and yet reasons driving ATM accumulation in white adipose tissue (WAT) are not fully understood. Emerging evidence suggested that ATM underwent extensive remodeling in obesity. In addition to abundance, ATM in obesity were lipid-laden and metabolically reprogrammed, which in turn was tightly related to their functional alterations and persistence in obesity. Herein, we aimed to discuss that activation of lipid sensing signaling associated with metabolic reprogramming in ATM was indispensible for their migration, retention, or proliferation in obesity. Likewise, lipolysis also induced similar but transient ATM remodeling. Therefore, we assumed that obesity might share overlapping mechanisms with lipolysis in remodeling ATM. Formation of crown-like structures (CLS) in WAT was presumably a common event initiating ATM remodeling, with a spectrum of lipid metabolites released from adipocytes being potential signaling molecules. Moreover, adipose interlerkin-6 (IL-6) exhibited homologous alterations by obesity and lipolysis. Thus, we postulated a positive feedback loop between ATM and adipocytes via IL-6 signaling backing ATM persistence by comparison of ATM remodeling under obesity and lipolysis. An elucidation of ATM persistence could help to provide novel therapeutic targets for obesity-associated inflammation.
Collapse
|
45
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
46
|
Maternal Metformin Intervention during Obese Glucose-Intolerant Pregnancy Affects Adiposity in Young Adult Mouse Offspring in a Sex-Specific Manner. Int J Mol Sci 2021; 22:ijms22158104. [PMID: 34360870 PMCID: PMC8347264 DOI: 10.3390/ijms22158104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.
Collapse
|
47
|
Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol 2021; 17:47-66. [PMID: 33173188 DOI: 10.1038/s41574-020-00431-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Obesity is associated with many adverse health effects, such as an increased cardiometabolic risk. Despite higher adiposity for a given BMI, premenopausal women are at lower risk of cardiometabolic disease than men of the same age. This cardiometabolic advantage in women seems to disappear after the menopause or when type 2 diabetes mellitus develops. Sexual dimorphism in substrate supply and utilization, deposition of excess lipids and mobilization of stored lipids in various key metabolic organs (such as adipose tissue, skeletal muscle and the liver) are associated with differences in tissue-specific insulin sensitivity and cardiometabolic risk profiles between men and women. Moreover, lifestyle-related factors and epigenetic and genetic mechanisms seem to affect metabolic complications and disease risk in a sex-specific manner. This Review provides insight into sexual dimorphism in adipose tissue distribution, adipose tissue, skeletal muscle and liver substrate metabolism and tissue-specific insulin sensitivity in humans, as well as the underlying mechanisms, and addresses the effect of these sex differences on cardiometabolic health. Additionally, this Review highlights the implications of sexual dimorphism in the pathophysiology of obesity-related cardiometabolic risk for the development of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
48
|
Safari H, Kaczorowski N, Felder ML, Brannon ER, Varghese M, Singer K, Eniola-Adefeso O. Biodegradable, bile salt microparticles for localized fat dissolution. SCIENCE ADVANCES 2020; 6:eabd8019. [PMID: 33277261 PMCID: PMC7821899 DOI: 10.1126/sciadv.abd8019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Bile acids are proposed as therapeutic agents for various diseases, including liver diseases and obesity. However, oral or subcutaneous administration of a solubilized version of these drugs has limited efficacy and imposes unwanted side effects. Here, we describe a gold-templating method for fabricating stable, bile salt-cholate or deoxycholate-microparticles. The gold ions' reduction at the oil-water interface in a double emulsion solvent evaporation process enables a gold-bile salt interaction and the formation of bile salt particles. We demonstrate that composite microparticles release cholate/deoxycholate into solution via a surface erosion process. We illustrate these particles' capability to lyse adipocytes, both in vitro and in vivo, with minimal side effects, contrary to the Food and Drug Administration-approved salt solution that leads to severe inflammation and ulceration. Overall, particle-based cholate/deoxycholate opens opportunities for localized delivery of these salts, improving efficacy while minimizing side effects associated with oral and subcutaneous use.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas Kaczorowski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mita Varghese
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
49
|
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology 2020; 161:bqaa154. [PMID: 32880654 PMCID: PMC7499583 DOI: 10.1210/endocr/bqaa154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.
Collapse
Affiliation(s)
- Gabrielle P Huizinga
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Integrative Research in Critical Care, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kanakadurga Singer
- Department of Pediatrics and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
50
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|