1
|
Hamnett R, Bendrick JL, Saha Z, Robertson K, Lewis CM, Marciano JH, Zhao ET, Kaltschmidt JA. Enteric glutamatergic interneurons regulate intestinal motility. Neuron 2025; 113:1019-1035.e6. [PMID: 39983724 PMCID: PMC11968238 DOI: 10.1016/j.neuron.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
The enteric nervous system (ENS) controls digestion autonomously via a complex neural network within the gut wall. Enteric neurons expressing glutamate have been identified by transcriptomic studies as a distinct subpopulation, and glutamate can affect intestinal motility by modulating enteric neuron activity. However, the nature of glutamatergic neurons, their position within the ENS circuit, and their function in regulating gut motility are unknown. We identify glutamatergic neurons as longitudinally projecting descending interneurons in the small intestine and colon and as a novel class of circumferential neurons only in the colon. Both populations make synaptic contact with diverse neuronal subtypes and signal with multiple neurotransmitters and neuropeptides in addition to glutamate, including acetylcholine and enkephalin. Knocking out the glutamate transporter VGLUT2 from enkephalin neurons disrupts gastrointestinal transit, while ex vivo optogenetic stimulation of glutamatergic neurons initiates colonic propulsive motility. Our results posit glutamatergic neurons as key interneurons that regulate intestinal motility.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| | - Jacqueline L Bendrick
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Zinnia Saha
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Cheyanne M Lewis
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Jack H Marciano
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Ameku T, Laddach A, Beckwith H, Milona A, Rogers LS, Schwayer C, Nye E, Tough IR, Thoumas JL, Gautam UK, Wang YF, Jha S, Castano-Medina A, Amourda C, Vaelli PM, Gevers S, Irvine EE, Meyer L, Andrew I, Choi KL, Patel B, Francis AJ, Studd C, Game L, Young G, Murphy KG, Owen B, Withers DJ, Rodriguez-Colman M, Cox HM, Liberali P, Schwarzer M, Leulier F, Pachnis V, Bellono NW, Miguel-Aliaga I. Growth of the maternal intestine during reproduction. Cell 2025:S0092-8674(25)00200-4. [PMID: 40112802 DOI: 10.1016/j.cell.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
The organs of many female animals are remodeled by reproduction. Using the mouse intestine, a striking and tractable model of organ resizing, we find that reproductive remodeling is anticipatory and distinct from diet- or microbiota-induced resizing. Reproductive remodeling involves partially irreversible elongation of the small intestine and fully reversible growth of its epithelial villi, associated with an expansion of isthmus progenitors and accelerated enterocyte migration. We identify induction of the SGLT3a transporter in a subset of enterocytes as an early reproductive hallmark. Electrophysiological and genetic interrogations indicate that SGLT3a does not sustain digestive functions or enterocyte health; rather, it detects protons and sodium to extrinsically support the expansion of adjacent Fgfbp1-positive isthmus progenitors, promoting villus growth. Our findings reveal unanticipated specificity to physiological organ remodeling. We suggest that organ- and state-specific growth programs could be leveraged to improve pregnancy outcomes or prevent maladaptive consequences of such growth.
Collapse
Affiliation(s)
- Tomotsune Ameku
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anna Laddach
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Beckwith
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexandra Milona
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Loranzie S Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Shreya Jha
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alvaro Castano-Medina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Patric M Vaelli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Elaine E Irvine
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Leah Meyer
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Andrew
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ka Lok Choi
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alice J Francis
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bryn Owen
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maria Rodriguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Irene Miguel-Aliaga
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
3
|
Krogh J. The homeo-FIT-prolactin hypothesis: the role of prolactin in metabolic homeostasis - association or causality? Rev Endocr Metab Disord 2024; 25:1077-1086. [PMID: 39388004 DOI: 10.1007/s11154-024-09916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
The homeo-fit-prolactin hypothesis proposes a causal metabolic role for prolactin with hypoprolactinemia and hyperprolactinemia leading to adverse metabolic alterations. However, prolactin within the normal range and up to four times the upper reference limit may be a consequence of metabolic adaption and have a positive metabolic role similar to increased insulin in pre-diabetes. As a consequence, drugs that would increase prolactin levels within this threshold may hold promising effects, particularly for patients with type 2 diabetes. A documented positive metabolic effect of prolactin just above the normal threshold would not just be of benefit to patients with diabetes but assist in the decision to treat mild hyperprolactinemia in other patient groups as well, e.g. drug-induced hyperprolactinemia or idiopathic hyperprolactinemia. Prolactin receptors are present in the pancreas, liver, and adipose tissue, and pre-clinical studies suggest a positive and causal effect of prolactin on the gluco-insulinemic profile and lipid metabolism. This narrative review examines the evidence for the homeo-fit-prolactin hypothesis with a particular focus on results from human studies.
Collapse
Affiliation(s)
- Jesper Krogh
- Clinic for Pituitary Disorders, Department of Medicine, Zealand University Hospital, Køge, Denmark.
| |
Collapse
|
4
|
Grattan DR. Does the brain make prolactin? J Neuroendocrinol 2024; 36:e13432. [PMID: 39041379 DOI: 10.1111/jne.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
5
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Gustafson PE, Al-Isawi SA, Phillipps HR, Crosse HW, Grattan DR, Bunn SJ, Yip SH. The role of prolactin in the suppression of the response to restraint stress in the lactating mouse. J Neuroendocrinol 2024; 36:e13330. [PMID: 37608555 DOI: 10.1111/jne.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Suppression of the hypothalamic-pituitary-adrenal (HPA) axis is a well-characterised maternal adaptation that limits the exposure of the offspring to maternally-derived stress hormones. This current study has investigated the possible involvement of the lactogenic hormone, prolactin, in this physiologically important adaptation. As expected, circulating prolactin levels were higher in unstressed lactating mice compared to their virgin counterparts. Interestingly however, the ability of an acute period of restraint stress to further elevate prolactin levels was diminished in the former group. The stress-induced rise in prolactin levels in the virgin animals was concurrent with an increase in prolactin receptor activation within the adrenal cortical cells. This adrenal response was not seen in either the stressed or control lactation group, an observation that may be in part explained by the observed downregulation of prolactin receptor mRNA expression within this tissue. Further evidence of suppression of the HPA axis during lactation was revealed using in situ hybridisation to demonstrate that while acute restraint stress increased corticotrophin releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus in both virgin and lactating mice, the magnitude of this response was reduced in the latter group. This potentially adaptive response did not, however, appear to result from the altered prolactin profile during lactation because it was not affected by the pharmacological suppression of prolactin secretion from the pituitary. This study therefore suggests that during lactation the response of the HPA axis to stress is suppressed at multiple physiological levels which are mediated by both prolactin-dependent and prolactin-independent mechanisms.
Collapse
Affiliation(s)
- Papillon E Gustafson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shahd A Al-Isawi
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hollian R Phillipps
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hugo W Crosse
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Intra-pituitary follicle-stimulating hormone signaling regulates hepatic lipid metabolism in mice. Nat Commun 2023; 14:1098. [PMID: 36841874 PMCID: PMC9968338 DOI: 10.1038/s41467-023-36681-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Inter-organ communication is a major hallmark of health and is often orchestrated by hormones released by the anterior pituitary gland. Pituitary gonadotropes secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate gonadal function and control fertility. Whether FSH and LH also act on organs other than the gonads is debated. Here, we find that gonadotrope depletion in adult female mice triggers profound hypogonadism, obesity, glucose intolerance, fatty liver, and bone loss. The absence of sex steroids precipitates these phenotypes, with the notable exception of fatty liver, which results from ovary-independent actions of FSH. We uncover paracrine FSH action on pituitary corticotropes as a mechanism to restrain the production of corticosterone and prevent hepatic steatosis. Our data demonstrate that functional communication of two distinct hormone-secreting cell populations in the pituitary regulates hepatic lipid metabolism.
Collapse
|
8
|
Smiley KO, Brown RSE, Grattan DR. Prolactin Action Is Necessary for Parental Behavior in Male Mice. J Neurosci 2022; 42:8308-8327. [PMID: 36163141 PMCID: PMC9653282 DOI: 10.1523/jneurosci.0558-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Parental care is critical for successful reproduction in mammals. Recent work has implicated the hormone prolactin in regulating male parental behavior, similar to its established role in females. Male laboratory mice show a mating-induced suppression of infanticide (normally observed in virgins) and onset of paternal behavior 2 weeks after mating. Using this model, we sought to investigate how prolactin acts in the forebrain to regulate paternal behavior. First, using c-fos immunoreactivity in prolactin receptor (Prlr) Prlr-IRES-Cre-tdtomato reporter mouse sires, we show that the circuitry activated during paternal interactions contains prolactin-responsive neurons in multiple sites, including the medial preoptic nucleus, bed nucleus of the stria terminalis, and medial amygdala. Next, we deleted Prlr from three prominent cell types found in these regions: glutamatergic, GABAergic, and CaMKIIα. Prlr deletion from CaMKIIα, but not glutamatergic or GABAergic cells, had a profound effect on paternal behavior as none of these KO males completed the pup-retrieval task. Prolactin was increased during mating, but not in response to pups, suggesting that the mating-induced secretion of prolactin is important for establishing the switch from infanticidal to paternal behavior. Pharmacological blockade of prolactin secretion at mating, however, had no effect on paternal behavior. In contrast, suppressing prolactin secretion at the time of pup exposure resulted in failure to retrieve pups, with exogenous prolactin administration rescuing this behavior. Together, our data show that paternal behavior in sires is dependent on basal levels of circulating prolactin acting at the time of interaction with pups, mediated through Prlr on CaMKIIα-expressing neurons.SIGNIFICANCE STATEMENT Parental care is critical for offspring survival. Compared with maternal care, however, the neurobiology of paternal care is less well understood. Here we show that the hormone prolactin, which is most well known for its female-specific role in lactation, has a role in the male brain to promote paternal behavior. In the absence of prolactin signaling specifically during interactions with pups, father mice fail to show normal retrieval behavior of pups. These data demonstrate that prolactin has a similar action in both males and females to promote parental care.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Physiology, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9016, New Zealand
- Department of Anatomy, School of Biomedical Science, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| |
Collapse
|
9
|
Radecki KC, Ford MJ, Phillipps HR, Lorenson MY, Grattan DR, Yamanaka Y, Walker AM. Multiple cell types in the oviduct express the prolactin receptor. FASEB Bioadv 2022; 4:485-504. [PMID: 35812077 PMCID: PMC9254223 DOI: 10.1096/fba.2022-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Little is known about the physiological role of prolactin in the oviduct. Examining mRNA for all four isoforms of the prolactin receptor (PRLR) in mice by functional oviduct segment and stage of the estrous cycle, we found short form 3 (SF3) to be the most highly expressed, far exceeding the long form (LF) in highly ciliated areas such as the infundibulum, whereas in areas of low ciliation, the SF3 to LF ratio was ~1. SF2 expression was low throughout the oviduct, and SF1 was undetectable. Only in the infundibulum did PRLR ratios change with the estrous cycle. Immunofluorescent localization of SF3 and LF showed an epithelial (both mucosal and mesothelial) distribution aligned with the mRNA results. Despite the high SF3/LF ratio in densely ciliated regions, these regions responded to an acute elevation of prolactin (30 min, intraperitoneal), with LF-tyrosine phosphorylated STAT5 seen within cilia. Collectively, these results show ciliated cells are responsive to prolactin and suggest that prolactin regulates estrous cyclic changes in ciliated cell function in the infundibulum. Changes in gene expression in the infundibulum after prolonged prolactin treatment (7-day) showed prolactin-induced downregulation of genes necessary for cilium development/function, a result supporting localization of PRLRs on ciliated cells, and one further suggesting hyperprolactinemia would negatively impact ciliated cell function and therefore fertility. Flow cytometry, single-cell RNAseq, and analysis of LF-td-Tomato transgenic mice supported expression of PRLRs in at least a proportion of epithelial cells while also hinting at additional roles for prolactin in smooth muscle and other stromal cells.
Collapse
Affiliation(s)
- Kelly C. Radecki
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - Matthew J. Ford
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Hollian R. Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Mary Y. Lorenson
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Yojiro Yamanaka
- Department of Human GeneticsRosalind and Morris Goodman Cancer Institute, McGill UniversityQuebecCanada
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of MedicineUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
10
|
Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GES. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem 2022; 477:1381-1392. [PMID: 35147901 PMCID: PMC8831165 DOI: 10.1007/s11010-022-04381-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prolactin (PRL) is a peptide hormone secreted from anterior pituitary involved in milk production in the females and regulation of sex drive in both sexes. PRL has pro-inflammatory and anti-inflammatory functions. High PRL serum level or hyperprolactinemia is associated with different viral infections. In coronavirus disease 2019 (Covid-19), which caused by positive-sense single-strand RNA virus known as severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2), PRL serum level is increased. PRL in Covid-19 may exacerbate the underlying inflammatory status by induction release of pro-inflammatory cytokines. However, PRL through its anti-inflammatory effects may reduce the hyperinflammatory status in Covid-19. The underlying mechanism of increasing PRL in Covid-19 is poorly understood. Therefore, in this review we try to find the potential anti-inflammatory or pro-inflammatory role of PRL in Covid-19. As well, this review was aimed to discuss the underlying causes and mechanisms for Covid-19-induced hyperprolactinemia.
Collapse
Affiliation(s)
| | - Ali I. Al-Gareeb
- College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511 Egypt
| |
Collapse
|
11
|
Farrar VS, Harris RM, Austin SH, Nava Ultreras BM, Booth AM, Angelier F, Lang AS, Feustel T, Lee C, Bond A, MacManes MD, Calisi RM. Prolactin and prolactin receptor expression in the HPG axis and crop during parental care in both sexes of a biparental bird (Columba livia). Gen Comp Endocrinol 2022; 315:113940. [PMID: 34756919 DOI: 10.1016/j.ygcen.2021.113940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022]
Abstract
During breeding, multiple circulating hormones, including prolactin, facilitate reproductive transitions in species that exhibit parental care. Prolactin underlies parental behaviors and related physiological changes across many vertebrates, including birds and mammals. While circulating prolactin levels often fluctuate across breeding, less is known about how relevant target tissues vary in their prolactin responsiveness via prolactin receptor (PRLR) expression. Recent studies have also investigated prolactin (PRL) gene expression outside of the pituitary (i.e., extra-pituitary PRL), but how PRL gene expression varies during parental care in non-pituitary tissue (e.g., hypothalamus, gonads) remains largely unknown. Further, it is unclear if and how tissue-specific PRL and PRLR vary between the sexes during biparental care. To address this, we measured PRL and PRLR gene expression in tissues relevant to parental care, the endocrine reproductive hypothalamic-pituitary- gonadal (HPG) axis and the crop (a tissue with a similar function as the mammalian mammary gland), across various reproductive stages in both sexes of a biparental bird, the rock dove (Columba livia). We also assessed how these genes responded to changes in offspring presence by adding chicks mid-incubation, simulating an early hatch when prolactin levels were still moderately low. We found that pituitary PRL expression showed similar increases as plasma prolactin levels, and detected extra-pituitary PRL in the hypothalamus, gonads and crop. Hypothalamic and gonadal PRLR expression also changed as birds began incubation. Crop PRLR expression correlated with plasma prolactin, peaking when chicks hatched. In response to replacing eggs with a novel chick mid-incubation, hypothalamic and gonadal PRL and PRLR gene expression differed significantly compared to mid-incubation controls, even when plasma prolactin levels did not differ. We also found sex differences in PRL and PRLR that suggest gene expression may allow males to compensate for lower levels in prolactin by upregulating PRLR in all tissues. Overall, this study advances our understanding of how tissue-specific changes in responsiveness to parental hormones may differ across key reproductive transitions, in response to offspring cues, and between the sexes.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States.
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Brandon M Nava Ultreras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - April M Booth
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Andrew S Lang
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Tanner Feustel
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Candice Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Annie Bond
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
12
|
Lopez-Vicchi F, De Winne C, Ornstein AM, Sorianello E, Toneatto J, Becu-Villalobos D. Severe Hyperprolactinemia Promotes Brown Adipose Tissue Whitening and Aggravates High Fat Diet Induced Metabolic Imbalance. Front Endocrinol (Lausanne) 2022; 13:883092. [PMID: 35757410 PMCID: PMC9226672 DOI: 10.3389/fendo.2022.883092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of high serum prolactin and increased body weight is positive but controversial, therefore we hypothesized that additional factors such as diets and the impact of prolactin on brown adipose tissue may condition its metabolic effects. METHODS We used LacDrd2KO females with lifelong severe hyperprolactinemia due dopamine-D2 receptor deletion from lactotropes, and slow onset of metabolic disturbances, and compared them to their respective controls (Drd2 loxP/loxP ). Food intake, and binge eating was evaluated. We then challenged mice with a High Fat (HFD) or a Control Diet (CD) for 8 weeks, beginning at 3 months of age, when no differences in body weight are found between genotypes. At the end of the protocol brown and white adipose tissues were weighed, and thermogenic and lipogenic markers studied, using real time PCR (Ucp1, Cidea, Pgc1a, Lpl, adiponectin, Prlr) or immunohistochemistry (UCP1). Histochemical analysis of brown adipose tissue, and glucose tolerance tests were performed. RESULTS Hyperprolactinemic mice had increased food intake and binge eating behavior. Metabolic effects induced by a HFD were exacerbated in lacDrd2KO mice. Hyperprolactinemia aggravated HFD-induced body weight gain and glucose intolerance. In brown adipose tissue pronounced cellular whitening as well as decreased expression of the thermogenic markers Ucp1 and Pgc1a were observed in response to high prolactin levels, regardless of the diet, and furthermore, hyperprolactinemia potentiated the decrease in Cidea mRNA expression induced by HFD. In subcutaneous white adipose tissue hyperprolactinemia synergistically increased tissue weight, while decreasing Prlr, Adiponectin and Lpl mRNA levels regardless of the diet. CONCLUSIONS Pathological hyperprolactinemia has a strong impact in brown adipose tissue, lowering thermogenic markers and evoking tissue whitening. Furthermore, it modifies lipogenic markers in subcutaneous white adipose, and aggravates HFD-induced glucose intolerance and Cidea decrease. Therefore, severe high prolactin levels may target BAT function, and furthermore represent an adjuvant player in the development of obesity induced by high fat diets.
Collapse
|
13
|
Georgescu T, Swart JM, Grattan DR, Brown RSE. The Prolactin Family of Hormones as Regulators of Maternal Mood and Behavior. Front Glob Womens Health 2021; 2:767467. [PMID: 34927138 PMCID: PMC8673487 DOI: 10.3389/fgwh.2021.767467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Transition into motherhood involves profound physiological and behavioral adaptations that ensure the healthy development of offspring while maintaining maternal health. Dynamic fluctuations in key hormones during pregnancy and lactation induce these maternal adaptations by acting on neural circuits in the brain. Amongst these hormonal changes, lactogenic hormones (e.g., prolactin and its pregnancy-specific homolog, placental lactogen) are important regulators of these processes, and their receptors are located in key brain regions controlling emotional behaviors and maternal responses. With pregnancy and lactation also being associated with a marked elevation in the risk of developing mood disorders, it is important to understand how hormones are normally regulating mood and behavior during this time. It seems likely that pathological changes in mood could result from aberrant expression of these hormone-induced behavioral responses. Maternal mental health problems during pregnancy and the postpartum period represent a major barrier in developing healthy mother-infant interactions which are crucial for the child's development. In this review, we will examine the role lactogenic hormones play in driving a range of specific maternal behaviors, including motivation, protectiveness, and mother-pup interactions. Understanding how these hormones collectively act in a mother's brain to promote nurturing behaviors toward offspring will ultimately assist in treatment development and contribute to safeguarding a successful pregnancy.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Judith M. Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S. E. Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021; 29:1813-1824. [PMID: 34623766 DOI: 10.1002/oby.23224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.
Collapse
Affiliation(s)
- Georgia S Clarke
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Richard L Young
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Aoki M, Gamayun I, Wyatt A, Grünewald R, Simon-Thomas M, Philipp SE, Hummel O, Wagenpfeil S, Kattler K, Gasparoni G, Walter J, Qiao S, Grattan DR, Boehm U. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. SCIENCE ADVANCES 2021; 7:eabg4074. [PMID: 34623921 PMCID: PMC8500514 DOI: 10.1126/sciadv.abg4074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/19/2021] [Indexed: 06/10/2023]
Abstract
Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Martin Simon-Thomas
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Stephan E. Philipp
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Oliver Hummel
- Faculty of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University School of Medicine, Homburg, Germany
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
16
|
Paré P, Reales G, Paixão-Côrtes VR, Vargas-Pinilla P, Viscardi LH, Fam B, Pissinatti A, Santos FR, Bortolini MC. Molecular evolutionary insights from PRLR in mammals. Gen Comp Endocrinol 2021; 309:113791. [PMID: 33872604 DOI: 10.1016/j.ygcen.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.
Collapse
Affiliation(s)
- Pamela Paré
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Vanessa R Paixão-Côrtes
- Laboratório de Biologia Evolutiva e Genômica (LABEG), Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Pedro Vargas-Pinilla
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Henriques Viscardi
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução da Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte, MG, Brazil.
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
18
|
Valente S, Marques T, Lima SQ. No evidence for prolactin's involvement in the post-ejaculatory refractory period. Commun Biol 2021; 4:10. [PMID: 33398068 PMCID: PMC7782750 DOI: 10.1038/s42003-020-01570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
In many species, ejaculation is followed by a state of decreased sexual activity, the post-ejaculatory refractory period. Several lines of evidence have suggested prolactin, a pituitary hormone released around the time of ejaculation in humans and other animals, to be a decisive player in the establishment of the refractory period. However, data supporting this hypothesis is controversial. We took advantage of two different strains of house mouse, a wild derived and a classical laboratory strain that differ substantially in their sexual performance, to investigate prolactin's involvement in sexual activity and the refractory period. First, we show that there is prolactin release during sexual behavior in male mice. Second, using a pharmacological approach, we show that acute manipulations of prolactin levels, either mimicking the natural release during sexual behavior or inhibiting its occurrence, do not affect sexual activity or shorten the refractory period, respectively. Therefore, we show compelling evidence refuting the idea that prolactin released during copulation is involved in the establishment of the refractory period, a long-standing hypothesis in the field of behavioral endocrinology.
Collapse
Affiliation(s)
- Susana Valente
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, s/n Lisboa, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-465, Porto, Portugal
| | - Tiago Marques
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, 02139, USA
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, s/n Lisboa, Portugal.
| |
Collapse
|
19
|
Li H, Clarke GS, Christie S, Ladyman SR, Kentish SJ, Young RL, Gatford KL, Page AJ. Pregnancy-related plasticity of gastric vagal afferent signals in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G183-G192. [PMID: 33206550 DOI: 10.1152/ajpgi.00357.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the central nervous system, to integrate control of meal termination. Pregnancy is characterized by increased maternal food intake, which is essential for normal fetal growth and to maximize progeny survival and health. However, it is unknown whether GVA function is altered during pregnancy to promote food intake. This study aimed to determine the mechanosensitivity of GVAs and food intake during early, mid-, and late stages of pregnancy in mice. Pregnant mice consumed more food compared with nonpregnant mice, notably in the light phase during mid- and late pregnancy. The increased food intake was predominantly due to light-phase increases in meal size across all stages of pregnancy. The sensitivity of GVA tension receptors to gastric distension was significantly attenuated in mid- and late pregnancy, whereas the sensitivity of GVA mucosal receptors to mucosal stroking was unchanged during pregnancy. To determine whether pregnancy-associated hormonal changes drive these adaptations, the effects of estradiol, progesterone, prolactin, and growth hormone on GVA tension receptor mechanosensitivity were determined in nonpregnant female mice. The sensitivity of GVA tension receptors to gastric distension was augmented by estradiol, attenuated by growth hormone, and unaffected by progesterone or prolactin. Together, the data indicate that the sensitivity of GVA tension receptors to tension is reduced during pregnancy, which may attenuate the perception of gastric fullness and explain increased food intake. Further, these adaptations may be driven by increases in maternal circulating growth hormone levels during pregnancy.NEW & NOTEWORTHY This study provides first evidence that gastric vagal afferent signaling is attenuated during pregnancy and inversely associated with meal size. Growth hormone attenuated mechanosensitivity of gastric vagal afferents, adding support that increases in maternal growth hormone may mediate adaptations in gastric vagal afferent signaling during pregnancy. These findings have important implications for the peripheral control of food intake during pregnancy.
Collapse
Affiliation(s)
- Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Georgia S Clarke
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Stewart Christie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sharon R Ladyman
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Stephen J Kentish
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Richard L Young
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kathryn L Gatford
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
20
|
Khant Aung Z, Kokay IC, Grattan DR, Ladyman SR. Prolactin-Induced Adaptation in Glucose Homeostasis in Mouse Pregnancy Is Mediated by the Pancreas and Not in the Forebrain. Front Endocrinol (Lausanne) 2021; 12:765976. [PMID: 34867810 PMCID: PMC8632874 DOI: 10.3389/fendo.2021.765976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ilona C. Kokay
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Sharon R. Ladyman,
| |
Collapse
|
21
|
Holland CT, Hsu J, Walker AM. S179D Prolactin Sensitizes Human PC3 Prostate Cancer Xenografts to Anti-tumor Effects of Well-Tolerated Doses of Calcitriol. ACTA ACUST UNITED AC 2020; 4:442-456. [PMID: 33179012 PMCID: PMC7655011 DOI: 10.26502/jcsct.5079085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Calcitriol has been shown to have multiple anti-prostate cancer effects both in vitro and in xenograft models, and associations between low levels of calcitriol and more aggressive forms of prostate cancer have been observed clinically. However, the concentrations of calcitriol required to have a substantive anti-cancer effect in vivo are toxic. In previous work, we had observed that the selective prolactin receptor modulator, S179D PRL, sensitized prostate cancer cells in vitro to physiological concentrations of calcitriol through an ability to increase expression of the vitamin D receptor. Here, we have investigated whether administration of S179D PRL would likewise sensitize androgen-insensitive human PC3 xenografts in vivo and do so without inducing tissue damage akin to hypervitaminosis D. Using low concentrations of both S179D PRL (250 ng/h) and calcitriol (up to 220 pg/h), we found no effect of each alone or in combination on the growth rate of tumors. However, there was increased central tumor death with their combination that was more than additive at 250 ng S179D PRL and 220 pg calcitriol per hour. Both S179D PRL and calcitriol alone were antiangiogenic, but their antiangiogenic effects were not additive. Also, both S179D PRL and calcitriol alone increased the number of apoptotic cells in tumor sections, but their combination reduced the number, suggesting more effective clearance of apoptotic cells. Histopathology of the livers and kidneys showed no changes consistent with hypervitaminosis D. We conclude that dual therapy holds promise as a means to harness the anti-tumor effects of well-tolerated doses of calcitriol.
Collapse
Affiliation(s)
| | | | - Ameae M. Walker
- Corresponding Author: Dr. Ameae M. Walker, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA, Tel: 1-951-565-1339;
| |
Collapse
|
22
|
Gustafson P, Ladyman SR, McFadden S, Larsen C, Khant Aung Z, Brown RSE, Bunn SJ, Grattan DR. Prolactin receptor-mediated activation of pSTAT5 in the pregnant mouse brain. J Neuroendocrinol 2020; 32:e12901. [PMID: 33000513 DOI: 10.1111/jne.12901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Pregnancy represents a period of remarkable adaptive physiology throughout the body, with many of these important adaptations mediated by changes in gene transcription in the brain. A marked activation of the transcription factor signal transducer and activator of transcription 5 (STAT5) has been described in the brain during pregnancy and likely drives some of these changes. We aimed to investigate the physiological mechanism causing this increase in phosphorylated STAT5 (pSTAT5) during pregnancy. In various tissues, STAT5 is known to be activated by a number of different cytokines, including erythropoietin, growth hormone and prolactin. Because the lactogenic hormones that act through the prolactin receptor (PRLR), prolactin and its closely-related placental analogue placental lactogen, are significantly increased during pregnancy, we hypothesised that this receptor was primarily responsible for the pregnancy-induced increase in pSTAT5 in the brain. By examining temporal changes in plasma prolactin levels and the pattern of pSTAT5 immunoreactivity in the hypothalamus during early pregnancy, we found that the level of pSTAT5 was sensitive to circulating levels of endogenous prolactin. Using a transgenic model to conditionally delete PRLRs from forebrain neurones (Prlrlox/lox /CamK-Cre), we assessed the relative contribution of the PRLR to the up-regulation of pSTAT5 in the brain of pregnant mice. In the absence of PRLRs on most forebrain neurones, a significant reduction in pSTAT5 was observed throughout the hypothalamus and amygdala in late pregnancy, confirming that PRLR is key in mediating this response. The exception to this was the hypothalamic paraventricular nucleus, where only 17% of pSTAT5 immunoreactivity during pregnancy was in PRLR-expressing cells. Taken together, these data indicate that, although there are region-specific mechanisms involved, lactogenic activity through the PRLR is the primary signal activating STAT5 in the brain during pregnancy.
Collapse
Affiliation(s)
- Papillon Gustafson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sarah McFadden
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caroline Larsen
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Lopez-Vicchi F, De Winne C, Brie B, Sorianello E, Ladyman SR, Becu-Villalobos D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol 2020; 32:e12888. [PMID: 33463813 DOI: 10.1111/jne.12888] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.
Collapse
Affiliation(s)
- Felicitas Lopez-Vicchi
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Belen Brie
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Damasia Becu-Villalobos
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| |
Collapse
|
24
|
Georgescu T, Ladyman SR, Brown RSE, Grattan DR. Acute effects of prolactin on hypothalamic prolactin receptor expressing neurones in the mouse. J Neuroendocrinol 2020; 32:e12908. [PMID: 33034148 DOI: 10.1111/jne.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In addition to its critical role in lactation, the anterior pituitary hormone prolactin also influences a broad range of other physiological processes. In particular, widespread expression of prolactin receptor (Prlr) in the brain has highlighted pleiotropic roles for prolactin in regulating neuronal function, including maternal behaviour, reproduction and energy balance. Research into the central actions of prolactin has predominately focused on effects on gene transcription via the canonical JAK2/STAT5; however, it is evident that prolactin can exert rapid actions to stimulate activity in specific populations of neurones. We aimed to investigate how widespread these rapid actions of prolactin are in regions of the brain with large populations of prolactin-sensitive neurones, and whether physiological state alters these responses. Using transgenic mice where the Cre-dependent calcium indicator, GCaMP6f, was conditionally expressed in cells expressing the long form of the Prlr, we monitored changes in levels of intracellular calcium ([Ca2+ ]i ) in ex vivo brain slice preparations as a surrogate marker of cellular activity. Here, we surveyed hypothalamic regions implicated in the diverse physiological functions of prolactin such as the arcuate (ARC) and paraventricular nuclei of the hypothalamus (PVN), as well as the medial preoptic area (MPOA). We observed that, in the ARC of males and in both virgin and lactating females, prolactin can exert rapid actions to stimulate neuronal activity in the majority of Prlr-expressing neurones. In the PVN and MPOA, we found a smaller subset of cells that rapidly respond to prolactin. In these brain regions, the effects we detected ranged from rapid or sustained increases in [Ca2+ ]i to inhibitory effects, indicating a heterogeneous nature of these Prlr-expressing populations. These results enhance our understanding of mechanisms by which prolactin acts on hypothalamic neurones and provide insights into how prolactin might influence neuronal circuits in the mouse brain.
Collapse
Affiliation(s)
- Teodora Georgescu
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
25
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
26
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Front Cell Dev Biol 2020; 8:68. [PMID: 32266252 PMCID: PMC7098375 DOI: 10.3389/fcell.2020.00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium, as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Aurelie Chiche
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Elsa Charifou
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Han Li
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
28
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
29
|
Ladyman SR, Hackwell ECR, Brown RSE. The role of prolactin in co-ordinating fertility and metabolic adaptations during reproduction. Neuropharmacology 2019; 167:107911. [PMID: 32058177 DOI: 10.1016/j.neuropharm.2019.107911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
Mammalian pregnancy and lactation is accompanied by a period of infertility that takes place in the midst of a sustained increase in food intake. Indeed, successful reproduction in females is dependent on co-ordination of the distinct systems that regulate reproduction and metabolism. Rather than arising from different mechanisms during pregnancy and lactation, we propose that elevations in lactogenic hormones (predominant among these being prolactin and the placental lactogens), are ideally placed to influence both of these systems at the appropriate time. We review the literature examining the impacts of lactogens on fertility and energy homeostasis in the virgin state, during pregnancy and lactation and potential long-term impacts of reproductive experience. Taken together, the literature indicates that duration and pattern of lactogen exposure is a vital factor in the ability of these hormones to alter reproduction and food intake. Transient increases in prolactin, as typically seen in healthy virgin females and males, are unable to exert lasting impacts. Importantly, both suppression of fertility and increased food intake are only observed following exposure to chronically-elevated levels of lactogens. Physiologically, the only time this pattern of lactogenic secretion is maintained in the healthy female is during pregnancy and lactation, when co-ordination between these regulatory systems emerges. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Eleni C R Hackwell
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|