1
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
2
|
Chiloiro S, Giampietro A, Gagliardi I, Bondanelli M, Veleno M, Ambrosio MR, Zatelli MC, Pontecorvi A, Giustina A, De Marinis L, Bianchi A. Impact of the diagnostic delay of acromegaly on bone health: data from a real life and long term follow-up experience. Pituitary 2022; 25:831-841. [PMID: 35922724 PMCID: PMC9362053 DOI: 10.1007/s11102-022-01266-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Acromegaly is a chronic disease with systemic complications. Disease onset is insidious and consequently typically burdened by diagnostic delay. A longer diagnostic delay induces more frequently cardiovascular, respiratory, metabolic, neuropsychiatric and musculoskeletal comorbidities. No data are available on the effect of diagnostic delay on skeletal fragility. We aimed to evaluate the effect of diagnostic delay on the frequency of incident and prevalent of vertebral fractures (i-VFs and p-VFs) in a large cohort of acromegaly patients. PATIENTS AND METHODS A longitudinal, retrospective and multicenter study was conducted on 172 acromegaly patients. RESULTS Median diagnostic delay and duration of follow-up were respectively 10 years (IQR: 6) and 10 years (IQR: 8). P-VFs were observed in 18.6% and i-VFs occurred in 34.3% of patients. The median estimated diagnostic delay was longer in patients with i-VFs (median: 11 years, IQR: 3), in comparison to those without i-VFs (median: 8 years, IQR: 7; p = 0.02). Age at acromegaly diagnosis and at last follow-up were higher in patients with i-VFs, with respect to those without i-VFs. The age at acromegaly diagnosis was positively associated with the diagnostic delay (p < 0.001, r = 0.216). A longer history of active acromegaly was associated with a high frequency of i-VFs (p = 0.03). The logistic regression confirmed that patients with a diagnostic delay > 10 years had 1.5-folds increased risk of developing i-VFs (OR: 1.5; 95%CI: 1.1-2; p = 0.017). CONCLUSION Our data showed that the diagnostic delay in acromegaly has a significant impact on VF risk, further supporting the clinical relevance of an early acromegaly diagnosis.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Giampietro
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Irene Gagliardi
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Bondanelli
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Miriam Veleno
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Rosaria Ambrosio
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milan, Italy
| | - Laura De Marinis
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18:353-365. [PMID: 35288658 DOI: 10.1038/s41574-022-00649-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are important regulators of bone remodelling and metabolism and have an essential role in the achievement and maintenance of bone mass throughout life. Evidence from animal models and human diseases shows that both GH deficiency (GHD) and excess are associated with changes in bone remodelling and cause profound alterations in bone microstructure. The consequence is an increased risk of fractures in individuals with GHD or acromegaly, a condition of GH excess. In addition, functional perturbations of the GH-IGF1 axis, encountered in individuals with anorexia nervosa and during ageing, result in skeletal fragility and osteoporosis. The effect of interventions used to treat GHD and acromegaly on the skeleton is variable and dependent on the duration of the disease, the pre-existing skeletal state, coexistent hormone alterations (such as those occurring in hypogonadism) and length of therapy. This variability could also reflect the irreversibility of the skeletal structural defect occurring during alterations of the GH-IGF1 axis. Moreover, the effects of the treatment of GHD and acromegaly on locally produced IGF1 and IGF binding proteins are uncertain and in need of further study. This Review highlights the pathophysiological, clinical and therapeutic aspects of skeletal fragility associated with perturbations in the GH-IGF1 axis.
Collapse
Affiliation(s)
- Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Ermolin VI, Mokhirev MA, Romanova EM. [The use of platelet rich plasma in bone-reconstructive in cranio-maxillo-facial surgery]. STOMATOLOGII︠A︡ 2020; 99:122-126. [PMID: 33034189 DOI: 10.17116/stomat202099051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRP-therapy - method, based on local application platelet rich plasma. Efficiency of this method is investigated and approved both in vitro and in vivo. PRP includes growth factors: platelet derived growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, vascular endothelial growth factor, which significantly accelerate regenerative process. PRP-therapy reduces pain syndrome, accelerates tissue regeneration and has an anti-inflammatory effect.
Collapse
Affiliation(s)
- V I Ermolin
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Mokhirev
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - E M Romanova
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Papageorgiou M, Elliott-Sale KJ, Parsons A, Tang JCY, Greeves JP, Fraser WD, Sale C. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017; 105:191-199. [PMID: 28847532 DOI: 10.1016/j.bone.2017.08.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/22/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The short-term effects of low energy availability (EA) on bone metabolism in physically active women and men are currently unknown. PURPOSE We evaluated the effects of low EA on bone turnover markers (BTMs) in a cohort of women and a cohort of men, and compared effects between sexes. METHODS These studies were performed using a randomised, counterbalanced, crossover design. Eleven eumenorrheic women and eleven men completed two 5-day protocols of controlled (CON; 45kcal·kgLBM-1·d-1) and restricted (RES; 15kcal·kgLBM-1·d-1) EAs. Participants ran daily on a treadmill at 70% of their peak aerobic capacity (VO2 peak) resulting in an exercise energy expenditure of 15kcal·kgLBM-1·d-1 and consumed diets providing 60 and 30kcal·kgLBM-1·d-1. Blood was analysed for BTMs [β-carboxyl-terminal cross-linked telopeptide of type I collagen (β-CTX) and amino-terminal propeptide of type 1 procollagen (P1NP)], markers of calcium metabolism [parathyroid hormone (PTH), albumin-adjusted calcium (ACa), magnesium (Mg) and phosphate (PO4)] and regulatory hormones [sclerostin, insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), insulin, leptin, glucagon-like-peptide-2 (GLP-2)]. RESULTS In women, β-CTX AUC was significantly higher (P=0.03) and P1NP AUC was significantly lower (P=0.01) in RES compared to CON. In men, neither β-CTX (P=0.46) nor P1NP (P=0.12) AUCs were significantly different between CON and RES. There were no significant differences between sexes for any BTM AUCs (all P values>0.05). Insulin and leptin AUCs were significantly lower following RES in women only (for both P=0.01). There were no differences in any AUCs of regulatory hormones or markers of calcium metabolism between men and women following RES (all P values>0.05). CONCLUSIONS When comparing within groups, five days of low EA (15kcal·kgLBM-1·d-1) decreased bone formation and increased bone resorption in women, but not in men, and no sex specific differences were detected.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, UK.
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, UK.
| | - Alan Parsons
- School of Health and Social Care, University of Derby, Derby, UK.
| | - Johnathan C Y Tang
- Norwich Medical School, University of East Anglia, UK; Norfolk and Norwich University Hospital, Norfolk, UK.
| | | | - William D Fraser
- Norwich Medical School, University of East Anglia, UK; Norfolk and Norwich University Hospital, Norfolk, UK.
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, UK.
| |
Collapse
|
7
|
Smad1 promotes colorectal cancer cell migration through Ajuba transactivation. Oncotarget 2017; 8:110415-110425. [PMID: 29299158 PMCID: PMC5746393 DOI: 10.18632/oncotarget.22780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
SMAD family member 1 (Smad1) have been involved in metastatic progression of many cancer types. However, the detailed molecular signalling pathway underlying the regulatory link between Smad1 and metastasis remains elusive. Here, we demonstrate that Smad1 promotes migration of colorectal cancer (CRC) cells by inducing Snail and Ajuba expression simultaneously, but no apparent effect on Twist1 expression. Remarkably, E-cadherin, the best known Snail/Ajuba target gene is downregulated by Smad1 expression. Further, depletion of Ajuba in HCT116 cells significantly dampens the cell migration capability induced by Smad1 overexpression, suggesting that Ajuba is required for Smad1 to induce cell migration. Moreover, clinical analysis shows a significant positive correlation between the level of Smad1 and Ajuba in CRC samples. Together, our data provides the first evidence of the regulatory network of Smad1/Snail/Ajuba axis in CRC migration, suggesting that Smad1 and Ajuba are potential new therapeutic targets and prognostic factors for CRC.
Collapse
|
8
|
The skeletal developmental toxicity of chlormequat chloride and its underlying mechanisms. Toxicology 2017; 381:1-9. [DOI: 10.1016/j.tox.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
|
9
|
Bima C, Chiloiro S, Mormando M, Piacentini S, Bracaccia E, Giampietro A, Tartaglione L, Bianchi A, De Marinis L. Understanding the effect of acromegaly on the human skeleton. Expert Rev Endocrinol Metab 2016; 11:263-270. [PMID: 30058934 DOI: 10.1080/17446651.2016.1179108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acromegaly, caused in most cases by Growth Hormone (GH)-secreting pituitary adenomas, is characterized by increased skeletal growth and enlargement of the soft tissue, because GH and its effector Insulin-like Growth factor-1 are important regulators of bone homeostasis and have a central role in the longitudinal bone growth and maintenance of bone mass. Areas covered: Despite the anabolic effect of these hormones is well known, as a result of the stimulation of bone turnover and especially of bone formation, many acromegalic patients are suffering from a form of secondary osteoporosis with increased risk of fractures. Expert commentary: In this review, we summarize the pathophysiology, diagnosis, clinical picture, disease course and management of skeletal complications of acromegaly, focusing in particular on secondary osteoporosis and fracture risk in acromegaly.
Collapse
Affiliation(s)
- C Bima
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - S Chiloiro
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - M Mormando
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - S Piacentini
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - E Bracaccia
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - A Giampietro
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - L Tartaglione
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - A Bianchi
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - L De Marinis
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| |
Collapse
|
10
|
Li B, Zheng XF, Ni BB, Yang YH, Jiang SD, Lu H, Jiang LS. Reduced Expression of Insulin-like Growth Factor 1 Receptor Leads to Accelerated Intervertebral Disc Degeneration in Mice. Int J Immunopathol Pharmacol 2013; 26:337-47. [PMID: 23755749 DOI: 10.1177/039463201302600207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) and its receptor (insulin-like growth factor 1 receptor, IGF1R) can regulate the extracellular matrix synthesis and play a crucial role in maintaining the normal functions of the intervertebral disc (IVD). The objective of this study was to investigate whether there would be accelerated IVD degeneration (IVDD) in IGF1R+/- mice. Three IGF1R+/- male mice and three wild-type male mice were sacrificed respectively at 6, 12, and 18 weeks after birth. Six lumbar disc samples were harvested from each mouse, with a total of 54 disc samples taken from each genotype. Histomorphological analysis for the IVD was performed to assess the degenerative extent according to the classification system proposed by Boos et al. Quantitative real-time PCR and semi-quantitative histologic scoring (HScore) for immunohistochemical staining were used to evaluate the expression level of type-II collagen, aggrecan and matrix metallopeptidase 13 (MMP-13). Histomorphological analysis for the discs revealed significantly less amounts of proteoglycan and type-II collagen, and significantly higher total degenerative score in IGF1R+/- mice than in wild-type mice. Real-time PCR showed that the mRNA expressions of type-II collagen and aggrecan in the discs were significantly lower, while MMP-13 was significantly higher in IGF1R+/- mice than in wild-type mice. The results of HScore analysis were similar to those obtained from the quantitative real-time PCR. Taken together, our study indicates that reduced expression of IGF1R would lead to accelerated degeneration of IVD. IGF1R+/- mice could be regarded as a good animal model to study IVD degeneration (IVDD), and studies on the IVD of IGF1R+/- mice could provide further insight into the pathogenesis of IVDD.
Collapse
Affiliation(s)
- B. Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - X-F. Zheng
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - B-B. Ni
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-H. Yang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - S-D. Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H. Lu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L-S. Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Yu J, Li K, Zheng X, He D, Ye X, Wang M. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants. PLoS One 2013; 8:e57564. [PMID: 23483914 PMCID: PMC3590211 DOI: 10.1371/journal.pone.0057564] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.
Collapse
Affiliation(s)
- Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai, People’s Republic of China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Meiyan Wang
- National Engineering Research Center for Nanotechnology, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Significance of the adrenal and sympathetic response to burn injury. TOTAL BURN CARE 2012. [DOI: 10.1016/b978-1-4377-2786-9.00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
13
|
Blakytny R, Spraul M, Jude EB. Review: The diabetic bone: a cellular and molecular perspective. INT J LOW EXTR WOUND 2011; 10:16-32. [PMID: 21444607 DOI: 10.1177/1534734611400256] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the increasing worldwide prevalence of diabetes the resulting complications, their consequences and treatment will lead to a greater social and financial burden on society. One of the many organs to be affected is bone. Loss of bone is observed in type 1 diabetes, in extreme cases mirroring osteoporosis, thus a greater risk of fracture. In the case of type 2 diabetes, both a loss and an increase of bone has been observed, although in both cases the quality of the bone overall was poorer, again leading to a greater risk of fracture. Once a fracture has occurred, healing is delayed in diabetes, including nonunion. The reasons leading to such changes in the state of the bone and fracture healing in diabetes is under investigation, including at the cellular and the molecular levels. In comparison with our knowledge of events in normal bone homeostasis and fracture healing, that for diabetes is much more limited, particularly in patients. However, progress is being made, especially with the use of animal models for both diabetes types. Identifying the molecular and cellular changes in the bone in diabetes and understanding how they arise will allow for targeted intervention to improve diabetic bone, thus helping to counter conditions such as Charcot foot as well as preventing fracture and accelerating healing when a fracture does occur.
Collapse
|
14
|
Courtland HW, Elis S, Wu Y, Sun H, Rosen CJ, Jepsen KJ, Yakar S. Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner. PLoS One 2011; 6:e14762. [PMID: 21445249 PMCID: PMC3060807 DOI: 10.1371/journal.pone.0014762] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays a critical role in the development of the growing skeleton by establishing both longitudinal and transverse bone accrual. IGF-1 has also been implicated in the maintenance of bone mass during late adulthood and aging, as decreases in serum IGF-1 levels appear to correlate with decreases in bone mineral density (BMD). Although informative, mouse models to date have been unable to separate the temporal effects of IGF-1 depletion on skeletal development. To address this problem, we performed a skeletal characterization of the inducible LID mouse (iLID), in which serum IGF-1 levels are depleted at selected ages. We found that depletion of serum IGF-1 in male iLID mice prior to adulthood (4 weeks) decreased trabecular bone architecture and significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th) by 16 weeks (adulthood). Likewise, depletion of serum IGF-1 in iLID males at 8 weeks of age, resulted in significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th) by 32 weeks (late adulthood), but had no effect on trabecular bone architecture. In contrast, depletion of serum IGF-1 after peak bone acquisition (at 16 weeks) resulted in enhancement of trabecular bone architecture, but no significant changes in cortical bone properties by 32 weeks as compared to controls. These results indicate that while serum IGF-1 is essential for bone accrual during the postnatal growth phase, depletion of IGF-1 after peak bone acquisition (16 weeks) is compartment-specific and does not have a detrimental effect on cortical bone mass in the older adult mouse.
Collapse
Affiliation(s)
- Hayden-William Courtland
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sebastien Elis
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yingjie Wu
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Hui Sun
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Karl J. Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tran GT, Pagkalos J, Tsiridis E, Narvani AA, Heliotis M, Mantalaris A, Tsiridis E. Growth hormone: does it have a therapeutic role in fracture healing? Expert Opin Investig Drugs 2010; 18:887-911. [PMID: 19480608 DOI: 10.1517/13543780902893069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The role of growth hormone (GH) in augmenting fracture healing has been postulated for over half a century. GH has been shown to play a role in bone metabolism and this can be mediated directly or indirectly through IGF-I. OBJECTIVES The use of GH was evaluated as a possible therapeutic agent in augmenting fracture healing. METHOD A literature search was undertaken on GH and its effect on bone fracture healing primarily using MEDLINE/OVID (1950 to January 2009). Key words and phrases including 'growth hormone', 'insulin like growth factor', 'insulin like growth factor binding protein', 'insulin like growth factor receptor', 'fracture repair', 'bone healing', 'bone fracture', 'bone metabolism', 'osteoblast' and 'osteoclast' were used in different combinations. Manual searches of the bibliography of key papers were also undertaken. RESULTS Current evidence suggests a positive role of GH on fracture healing as demonstrated by in vitro studies on osteoblasts, osteoclasts and the crosstalk between the two. Animal studies have demonstrated a number of factors influencing the effect of GH in vivo such as dose, timing and method of administration. Application of this knowledge in humans is limited but clearly demonstrates a positive effect on fracture healing. Concern has been raised in the past regarding the safety profile of the pharmacological use of GH when used in critically ill patients. CONCLUSION The optimal dose and method of administration is still to be determined, and the safety profile of this novel use of GH needs to be investigated prior to establishing its widespread use as a fracture-healing agent.
Collapse
Affiliation(s)
- Gui Tong Tran
- University of Leeds School of Medicine, Academic Department of Trauma and Orthopaedics, Leeds General Infirmary, Great George Street, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIO) refers to a clinical condition in which a class of corticosteroids increases the susceptibility of bones to fracture. Numerous recent studies have improved our understanding of the underlying biology of this condition, whereas data from randomized controlled trials have provided clinicians with more options for prevention of GIO. OBJECTIVE To review the pathophysiology and epidemiology of GIO, as well as current pharmacologic treatment and prevention modalities available. To review the state of healthcare provider concordance with GIO prevention guidelines. METHODS Representative examples of various cellular and molecular processes underlying GIO were included, with an emphasis towards more recent discoveries. The data used to describe the epidemiology of GIO were derived from both randomized controlled studies and observational studies, framed through a discussion of known osteoporosis risk factors. RESULTS/CONCLUSION Progress has been made in clarifying the pathophysiologic mechanisms that result in GIO. Although the options for preventions and treatment of GIO continue to expand, provider compliance with preventive measures remains suboptimal.
Collapse
Affiliation(s)
- Liron Caplan
- University of Colorado Denver, Denver Veterans Affairs Medical Center, PO Box 6511, B115, Colorado 80045, Denver, USA.
| | | |
Collapse
|
17
|
Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008; 29:535-59. [PMID: 18436706 PMCID: PMC2726838 DOI: 10.1210/er.2007-0036] [Citation(s) in RCA: 590] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 04/03/2008] [Indexed: 12/18/2022]
Abstract
GH and IGF-I are important regulators of bone homeostasis and are central to the achievement of normal longitudinal bone growth and bone mass. Although GH may act directly on skeletal cells, most of its effects are mediated by IGF-I, which is present in the systemic circulation and is synthesized by peripheral tissues. The availability of IGF-I is regulated by IGF binding proteins. IGF-I enhances the differentiated function of the osteoblast and bone formation. Adult GH deficiency causes low bone turnover osteoporosis with high risk of vertebral and nonvertebral fractures, and the low bone mass can be partially reversed by GH replacement. Acromegaly is characterized by high bone turnover, which can lead to bone loss and vertebral fractures, particularly in patients with coexistent hypogonadism. GH and IGF-I secretion are decreased in aging individuals, and abnormalities in the GH/IGF-I axis play a role in the pathogenesis of the osteoporosis of anorexia nervosa and after glucocorticoid exposure.
Collapse
Affiliation(s)
- Andrea Giustina
- Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy.
| | | | | |
Collapse
|
18
|
Bujor AM, Pannu J, Bu S, Smith EA, Muise-Helmericks RC, Trojanowska M. Akt blockade downregulates collagen and upregulates MMP1 in human dermal fibroblasts. J Invest Dermatol 2008; 128:1906-14. [PMID: 18323784 DOI: 10.1038/jid.2008.39] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acutely transforming retrovirus AKT8 in rodent T-cell lymphoma (Akt) is a serine/threonine kinase that plays important roles in survival, cell-cycle progression, and cell proliferation, and has recently been implicated in collagen regulation. The aim of this study was to determine the role of Akt in collagen deposition by normal dermal fibroblasts, and to determine the sensitivity of cultured systemic sclerosis (SSc) fibroblasts to Akt inhibition. We show that blockade of Akt using pharmacological inhibitors, small interfering RNA (siRNA), and a dominant-negative Akt mutant led to inhibition of the basal type I collagen production. Furthermore, inhibition of Akt upregulated basal matrix metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of transforming growth factor-beta (TGF-beta) on MMP1 gene expression. In addition, SSc fibroblasts were more sensitive to Akt inhibition, with respect to collagen and MMP1 production. These findings suggest that in human dermal fibroblasts, Akt has dual profibrotic effects, increasing collagen synthesis and decreasing its degradation via downregulation of MMP1. Akt could directly contribute to elevated collagen in SSc fibroblasts and it may represent an attractive target for therapy of SSc fibrosis.
Collapse
Affiliation(s)
- Andreea M Bujor
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Truong LH, Kuliwaba JS, Tsangari H, Fazzalari NL. Differential gene expression of bone anabolic factors and trabecular bone architectural changes in the proximal femoral shaft of primary hip osteoarthritis patients. Arthritis Res Ther 2007; 8:R188. [PMID: 17187661 PMCID: PMC1794534 DOI: 10.1186/ar2101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/04/2006] [Accepted: 12/22/2006] [Indexed: 11/10/2022] Open
Abstract
Previous studies have shown a generalised increase in bone mass in patients with osteoarthritis (OA). Using molecular histomorphometry, this study examined the in vivo expression of mRNA encoding bone anabolic factors and collagen type I genes (COL1A1, COL1A2) in human OA and non-OA bone. Bone samples were obtained from the intertrochanteric (IT) region of the proximal femur, a skeletal site distal to the active site of disease, from individuals with hip OA at joint replacement surgery and from autopsy controls. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed elevated mRNA expression levels of alkaline phosphatase (p < 0.002), osteocalcin (OCN) (p < 0.0001), osteopontin (p < 0.05), COL1A1 (p < 0.0001), and COL1A2 (p < 0.002) in OA bone compared to control, suggesting possible increases in osteoblastic biosynthetic activity and/or bone turnover at the IT region in OA. Interestingly, the ratio of COL1A1/COL1A2 mRNA was almost twofold greater in OA bone compared to control (p < 0.001), suggesting the potential presence of collagen type I homotrimer at the distal site. Insulin-like growth factor (IGF)-I, IGF-II, and transforming growth factor-beta1 mRNA levels were similar between OA and control bone. Bone histomorphometric analysis indicated that OA IT bone had increased surface density of bone (p < 0.0003), increased trabecular number (Tb.N) (p < 0.0003), and decreased trabecular separation (Tb.Sp) (p < 0.0001) compared to control bone. When the molecular and histomorphometric data were plotted, positive associations were observed in the controls for OCN/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) versus bone tissue volume (r = 0.82, p < 0.0007) and OCN/GAPDH versus Tb.N (r = 0.56, p < 0.05) and a negative association was observed for OCN/GAPDH versus Tb.Sp (r = -0.64, p < 0.02). These relationships were not evident in trabecular bone from patients with OA, suggesting that bone regulatory processes leading to particular trabecular structures may be altered in this disease. The finding of differential gene expression, as well as architectural changes and differences in molecular histomorphometric associations between OA and controls, at a skeletal site distal to the active site of joint degeneration supports the concept of generalised involvement of bone in the pathogenesis of OA.
Collapse
Affiliation(s)
- Le-Hoa Truong
- Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and the Hanson Institute, Frome Road, Adelaide, 5000, Australia
- Discipline of Pathology, School of Medical Sciences, The University of Adelaide, Frome Road, Adelaide, 5005, Australia
| | - Julia S Kuliwaba
- Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and the Hanson Institute, Frome Road, Adelaide, 5000, Australia
- Discipline of Pathology, School of Medical Sciences, The University of Adelaide, Frome Road, Adelaide, 5005, Australia
| | - Helen Tsangari
- Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and the Hanson Institute, Frome Road, Adelaide, 5000, Australia
| | - Nicola L Fazzalari
- Bone and Joint Research Laboratory, Division of Tissue Pathology, Institute of Medical and Veterinary Science and the Hanson Institute, Frome Road, Adelaide, 5000, Australia
- Discipline of Pathology, School of Medical Sciences, The University of Adelaide, Frome Road, Adelaide, 5005, Australia
| |
Collapse
|
21
|
Jones SB, Muthu K, Shankar R, Gamelli RL. Significance of the adrenal and sympathetic response to burn injury. TOTAL BURN CARE 2007:343-360. [DOI: 10.1016/b978-1-4160-3274-8.50028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
22
|
Rubin J, Fan X, Rahnert J, Sen B, Hsieh CL, Murphy TC, Nanes MS, Horton LG, Beamer WG, Rosen CJ. IGF-I secretion by prostate carcinoma cells does not alter tumor-bone cell interactions in vitro or in vivo. Prostate 2006; 66:789-800. [PMID: 16482567 DOI: 10.1002/pros.20379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND IGF-I is an important growth and differentiative factor for osteoblasts and may have a role in defining prostate cancer risk and skeletal metastases. METHODS Conditioned media (CM) from human prostate cancer (PC), C4-2 and C4-2B, which produce osteoblastic lesions, and PC-3, which causes osteolysis, was added to MC3T3-E1 bone cultures. SCID mice were injected intratibially with these engineered cells. Tumor bearing tibiae were analyzed by microCT and pQCT. RESULTS CM from PC cells increased osteoblast proliferation and differentiation and was unaltered by the type of PC cell, IGF-I antibodies, or exogenous IGF-I and IGFBP2. Study of intratibial PC tumors in SCID mice showed that C4-2 cells grew slowly preserving bone structure, while PC-3 tumors caused rapid osteolysis. Overexpression of IGF-I did not change either tumor progression or skeletal response. CONCLUSIONS IGF-I is neither necessary nor sufficient for the osteoblastic response to PC metastases.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, Emory University & VAMC, Decatur, Georgia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fiedler J, Brill C, Blum WF, Brenner RE. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun 2006; 345:1177-83. [PMID: 16716263 DOI: 10.1016/j.bbrc.2006.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/07/2006] [Indexed: 01/14/2023]
Abstract
Insulin-like growth factors (IGFs) are known to be key regulators of bone growth, remodeling, and repair. Since all these processes depend on the recruitment of cells with the potential to be committed to the osteoblastic lineage, we studied possible effects of IGF-I and -II on migration of human mesenchymal progenitor cells (MPC) using a modified Boyden chamber assay. The results were compared to those of primary osteoblasts and in vitro-osteogenic-differentiated MPC. IGF-I and -II stimulated cell migration of all these cell populations in a dose-dependent manner from 1 to 100ng/mL. The maximal chemotactic index (CI) was 4-5 for MPC and primary osteoblasts and about 3 for in vitro-differentiated MPC. Checkerboard analysis revealed that IGFs stimulated true directed cell migration (chemotaxis) and not simply chemokinesis. Addition of an antibody against the type I IGF receptor (alphaIR3) completely abolished (MPC) or markedly reduced (primary osteoblasts) the chemotactic effects of each of the IGFs. IGFBP-3 itself had no direct effect, while IGFBP-5 stimulated MPC migration at concentrations of 80 and 160ng/mL. Parallel application of IGFBP-3 had borderline inhibitory effects while the addition of 40ng/mL of IGFBP-5 enhanced the chemotactic effect of IGF-I on MPC. In conclusion, our results show that IGF-I and -II are chemotactic factors for MPC and indicate that IGFBP-5 both modulates the IGF-I effect and directly stimulates migration of human mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Jörg Fiedler
- Orthopaedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Insulin-like growth factors (IGFs) promote longitudinal growth and display anabolic effects in adult bone by acting through endocrine and autocrine/paracrine mechanisms. Binding of IGF-I to its specific tyrosine-kinase receptor leads to interaction with the intracellular proteins, insulin receptor substrate-1 and -2, and the activation of distinct intracellular signaling pathways. In cartilage, IGF-I regulates the differentiation of chondrocytes and stimulates the synthesis of components of the extracellular matrix. In bone tissue, IGF-I increases the function of the differentiated osteoblasts and mediates selected anabolic actions of parathyroid hormone. Genetically modified mice, in which selected components of the IGF system were targeted in a tissue-specific fashion, have documented that circulating IGF-I is essential for physiological skeletal growth and adult bone remodeling and that local autocrine/paracrine IGF-I activities are required for optimal trabecular bone mass and mineralization. Studies in humans have indicated a correlation between serum IGF-I levels and bone mineral density. However, there is little information on the use of IGF-I in patients with metabolic bone disease.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- a Dipartimento di Neuroscienze e Riabilitazione, Instituto Giannina, Gaslini, Genova, Italy.
| | | |
Collapse
|
25
|
Atti E, Boskey AL, Canalis E. Overexpression of IGF-binding protein 5 alters mineral and matrix properties in mouse femora: an infrared imaging study. Calcif Tissue Int 2005; 76:187-93. [PMID: 15570402 DOI: 10.1007/s00223-004-0076-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The anabolic effects of insulin-like growth factors (IGFs) are modulated by a family of IGF-binding proteins (IGFBPs). Among the six known IGFBPs, IGFBP-5 is considered to play a role in bone formation. To investigate the effects of IGFBP-5 on bone mineral and matrix properties, femurs from transgenic mice overexpressing IGFBP-5 under the control of the osteocalcin promoter were evaluated by Fourier Transform Infrared Imaging (FTIRI). Analyses were done at the time of maximal osteocalcin expression (5 weeks). The spectroscopic parameters monitored were mineral-to-matrix ratio (indicative of the relative amount of mineral present), mineral crystallinity (index of the mineral crystal size and perfection) and collagen maturity (reflecting the ratio of non-reducible and reducible collagen cross-links). Multiple fields were selected for each femur, ranging from epiphysis to diaphysis. Previously, we showed that these transgenic mice display decreased osteoblastic function and osteopenia. In the present work, FTIRI showed that transgenic mice as compared to wild types have a different pattern of bone mineralization and matrix maturation. Specifically, cortical bone, primary spongiosa, and secondary ossification centers had lower values for mineral-to-matrix ratio and collagen maturity. Differences were not statistically significant in all cases although the trends were consistent. The mineral crystallinity did not vary significantly between the two groups, implying that the crystal maturation of mineral was not affected by IGFBP-5 overexpression. This study demonstrates that femurs from transgenic mice over expressing IGFBP-5 under the control of the osteocalcin promoter have modest alterations in mineral and matrix distribution, consistent with a role of IGF in osteoblast maturation.
Collapse
Affiliation(s)
- E Atti
- Hospital for Special Surgery, New York, NY, USA
| | | | | |
Collapse
|
26
|
Varghese S, Rydziel S, Canalis E. Bone morphogenetic protein-2 suppresses collagenase-3 promoter activity in osteoblasts through a runt domain factor 2 binding site. J Cell Physiol 2005; 202:391-9. [PMID: 15389594 DOI: 10.1002/jcp.20130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-beta (TGFbeta) superfamily of growth factors, which include bone morphogenetic proteins (BMPs), have multiple effects in osteoblasts. In this study, we examined the regulation of collagenase-3 promoter activity by BMP-2 in osteoblast-enriched (Ob) cells from fetal rat calvariae. BMP-2 suppressed the activity of a -2 kb collagenase-3 promoter/luciferase recombinant in a time- and dose-dependent manner. The BMP-2 effect on the collagenase-3 promoter was further tested in several collagenase-3 promoter deletion constructs and it was narrowed down to a -148 to -94 nucleotide segment of the promoter containing a runt domain factor 2 (Runx2) site at nucleotide -132 to -126. The effect of BMP-2 was obliterated in a collagenase-3 promoter/luciferase construct containing a mutated Runx2 (mRunx2) sequence indicating that the Runx2 site mediates the BMP-2 response. Electrophoretic mobility shift assays, using nuclear extracts from control and BMP-2-treated Ob cells, indicated that the Runx2 protein is a component of the specific DNA-protein complex formed on the Runx2 site and that the BMP-2 effect may be associated with minor protein modifications rather than major changes in the composition of specific proteins interacting with the Runx2 site. We confirmed that other members of the TGFbeta family can down-regulate the collagenase-3 promoter by showing that TGFbeta1 also suppresses the promoter activity in a time- and dose-dependent manner. In conclusion, this study demonstrates that BMP-2 and TGFbeta1 suppress collagenase-3 promoter activity in osteoblasts and establishes a link between BMP-2 action and collagenase-3 expression via Runx2, a major regulator of osteoblast formation and function.
Collapse
Affiliation(s)
- Samuel Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
27
|
Varghese S, Canalis E. Transcriptional regulation of collagenase-3 by interleukin-1 alpha in osteoblasts. J Cell Biochem 2003; 90:1007-14. [PMID: 14624460 DOI: 10.1002/jcb.10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1 (IL-1)alpha is an autocrine/paracrine agent of the skeletal tissue and it regulates bone remodeling. Collagenase-3 or matrix metalloproteinase (MMP)-13 is expressed in osteoblasts and its expression is modulated by several cytokines including IL-1alpha. Because the molecular mechanism of increased synthesis of collagenase-3 in bone cells by IL-1alpha is not known, we investigated if collagenase-3 expression by IL-1alpha in osteoblasts is mediated by transcriptional or post-transcriptional mechanisms. Exposure of rat osteoblastic cultures (Ob cells) to IL-1alpha at concentrations higher than 0.5 nM increased the synthesis of collagenase-3 mRNA up to eightfold and the secretion of immunoreactive protein up to 21-fold. The effects of IL-1alpha on collagenase-3 were time- and dose-dependent. Although prostaglandins stimulate collagenase-3 expression, stimulation of collagenase-3 in Ob cells by IL-1alpha was not mediated through increased biosynthesis of prostaglandins. The half-life of collagenase-3 mRNA from control and IL-1alpha-treated Ob cells was similar suggesting that the stabilization of collagenase-3 mRNA did not contribute to the increase in collagenase-3. However, IL-1alpha stimulated the rate of transcription of the collagenase-3 gene by twofold to fourfold indicating regulation of collagenase-3 expression in Ob cells at the transcriptional level. Stimulation of collagenase-3 by IL-1alpha in osteoblasts may in part mediate the effects of IL-1alpha in bone metabolism.
Collapse
Affiliation(s)
- Samuel Varghese
- The Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | |
Collapse
|
28
|
Jadlowiec JA, Celil AB, Hollinger JO. Bone tissue engineering: recent advances and promising therapeutic agents. Expert Opin Biol Ther 2003; 3:409-23. [PMID: 12783610 DOI: 10.1517/14712598.3.3.409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone regeneration can be accomplished with growth factors, cells and delivery systems. This review is a summary of these components that may be used for tissue regeneration. Support for the potential therapeutic applications of transcription factors in bone tissue engineering will also be discussed.
Collapse
Affiliation(s)
- Julie A Jadlowiec
- Bone Tissue Engineering Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
29
|
Zhang M, Faugere MC, Malluche H, Rosen CJ, Chernausek SD, Clemens TL. Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res 2003; 18:836-43. [PMID: 12733722 DOI: 10.1359/jbmr.2003.18.5.836] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor binding protein 4 (IGFBP-4) is abundantly expressed in bone and is generally believed to function as an inhibitor of IGF action. To investigate the function of locally produced IGFBP-4 in bone in vivo, we targeted expression of IGFBP-4 to osteoblasts using a human osteocalcin promoter to direct transgene expression. IGFBP-4 protein levels in calvaria of transgenic (OC-BP4) mice as measured by Western ligand blot were increased 25-fold over the endogenous level. Interestingly, levels of IGFBP-5 were decreased in the OC-BP4 mice, possibly because of a compensatory alteration in IGF-1 action. Morphometric measurements showed a decrease in femoral length and total bone volume in transgenic animals compared with the controls. Quantitative histomorphometry at the distal femur disclosed a striking reduction in bone turnover in the OC-BP4 mice. Osteoblast number/bone length and bone formation rate/bone surface in OC-BP4 mice were approximately one-half that seen in control mice. At birth, OC-BP4 mice were of normal size and weight but exhibited striking postnatal growth retardation. Organ allometry (mg/g body weight) analysis revealed that, whereas most organs exhibited a proportional reduction in weight, calvarial and femoral wet weights were disproportionally small (approximately 70% and 80% of control, respectively). In conclusion, paracrine overexpression of IGFBP-4 in the bone microenvironment markedly reduced cancellous bone formation and turnover and severely impaired overall postnatal skeletal and somatic growth. We attribute these effects to the sequestration of IGF-1 by IGFBP-4 and consequent impairment of IGF-1 action in skeletal tissue.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Delany AM, Durant D, Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 2001; 15:1781-9. [PMID: 11579210 DOI: 10.1210/mend.15.10.0704] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids have profound effects on bone formation, decreasing IGF I transcription in osteoblasts, but the mechanisms involved are poorly understood. We previously showed that the bp +34 to +192 region of the rat IGF I exon 1 promoter was responsible for repression of IGF I transcription by cortisol in cultures of osteoblasts from fetal rat calvariae (Ob cells). Here, site-directed mutagenesis was used to show that a binding site for members of the CAAT/enhancer binding protein family of transcription factors, within the +132 to +158 region of the promoter, mediates this glucocorticoid effect. EMSAs demonstrated that cortisol increased binding of osteoblast nuclear proteins to the +132 to +158 region of the IGF I promoter. Supershift assays showed that CAAT/enhancer binding protein alpha, beta, and delta interact with this sequence, and binding of CAAT/enhancer binding protein delta, in particular, was increased in the presence of cortisol. Northern blot analysis showed that CAAT/enhancer binding protein delta and beta transcripts were increased by cortisol in Ob cells. Further, cortisol increased the transcription of these genes and increased the stability of CAAT/enhancer binding protein delta mRNA. In conclusion, cortisol represses IGF I transcription in osteoblasts, and CAAT/enhancer binding proteins appear to play a role in this effect.
Collapse
Affiliation(s)
- A M Delany
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|
31
|
Hess J, Porte D, Munz C, Angel P. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem 2001; 276:20029-38. [PMID: 11274169 DOI: 10.1074/jbc.m010601200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of MMP13 (collagenase-3), a member of the matrix metalloproteinase family, is increased in vivo as well as in cultured osteosarcoma cell lines by parathyroid hormone (PTH), a major regulator of calcium homeostasis. Binding sites for AP-1 and Cbfa/Runt transcription factors in close proximity have been identified as cis-acting elements in the murine and rat mmp13 promoter required for PTH-induced expression. The cooperative function of these factors in response to PTH in osteoblastic cells suggests a direct interaction between AP-1 and Cbfa/Runt transcription factors. Here, we demonstrate interaction between c-Jun and c-Fos with Cbfa/Runt proteins. This interaction depends on the leucine zipper of c-Jun or c-Fos and the Runt domain of Cbfa/Runt proteins, respectively. Moreover, c-Fos interacts with the C-terminal part of Cbfa1 and Cbfa2, sharing a conserved transcriptional repression domain. In addition to the distal osteoblast-specific element 2 (OSE2) element in the murine and rat mmp13 promoter, we identified a new proximal OSE2 site overlapping with the TRE motif. Both interaction of Cbfa/Runt proteins with AP-1 and the presence of a functional proximal OSE2 site are required for enhanced transcriptional activity of the mmp13 promoter in transient transfected fibroblasts and in PTH-treated osteosarcoma cells.
Collapse
Affiliation(s)
- J Hess
- Deutsches Krebsforschungszentrum Heidelberg, Division of Signal Transduction and Growth Control (B0800), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Hui W, Rowan AD, Cawston T. Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1alpha. Ann Rheum Dis 2001; 60:254-61. [PMID: 11171688 PMCID: PMC1753584 DOI: 10.1136/ard.60.3.254] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1alpha (IL1alpha) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes. METHODS Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1alpha or IL1alpha + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot. RESULTS IGF1 can partially inhibit the release of collagen induced by IL1alpha or IL1alpha + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1alpha or IL1alpha + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes. CONCLUSION This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.
Collapse
Affiliation(s)
- W Hui
- Department of Rheumatology, Medical School, University of Newcastle, Newcastle Upon Tyne, NE2 4HH, UK.
| | | | | |
Collapse
|
33
|
Rydziel S, Durant D, Canalis E. Platelet-derived growth factor induces collagenase 3 transcription in osteoblasts through the activator protein 1 complex. J Cell Physiol 2000; 184:326-33. [PMID: 10911363 DOI: 10.1002/1097-4652(200009)184:3<326::aid-jcp6>3.0.co;2-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-derived growth factor (PDGF) BB is a mitogen that stimulates bone resorption and increases collagenase 3 transcription in osteoblasts, although the mechanisms involved are as yet unknown. We examined the effect of PDGF BB on collagenase 3 transcription in cultures of osteoblasts from fetal rat calvariae (Ob cells). PDGF BB increased the activity of collagenase 3 promoter fragments transiently transfected into Ob cells. Deletion analysis of the collagenase promoter revealed three regions that impaired the induction of collagenase 3 by PDGF BB. A construct spanning base pair -53 to +28 collagenase 3 sequences, in relation to the start site of transcription +1, was fully responsive to PDGF BB and was studied in detail. Targeted mutations of an AP-1 site in this fragment decreased basal collagenase promoter activity and the responsiveness to PDGF BB, whereas mutations of Stat3 and Ets binding sites did not alter the response to PDGF. Electrophoretic mobility shift assay, using nuclear extracts from control and treated cells, revealed AP-1 nuclear protein complexes that were enhanced in extracts from PDGF BB-treated Ob cells. Supershift assays revealed that antibodies to c-Fos, Fos B, Fra-2, c-Jun, Jun B, and Jun D shifted the binding of nuclear extracts from cells treated with PDGF BB to AP-1 sequences. In conclusion, PDGF BB induces collagenase 3 transcription in osteoblasts by regulating nuclear proteins interacting with AP-1 sequences.
Collapse
Affiliation(s)
- S Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | |
Collapse
|
34
|
Abstract
The rare benign extra-abdominal desmoid tumor is characterized by aggressive invasion of normal tissue. Treatment is complicated by its recurrence, invasiveness, and persistence. The etiology is unknown and the pathophysiology is obscure. Because of exuberant fibroblastic proliferation with collagenous tissue being the primary tissue component, this desmoid tumor has been compared with keloids arising from excessive scar formation in healing wounds. Numerous cytokines are associated with signaling for growth and maintenance of mesenchymal cells. Altered expression of these proteins is associated with many pathologic conditions. It has been proposed that the enhanced expression of platelet-derived growth factor and its receptor characterize desmoid tumors. We tested the hypothesis that the exuberant fibrosis of desmoid tumors may have resulted from the initiation of the cascade of molecular events producing increased expression of cytokines. We used immunohistochemical analysis of cytokines in desmoid tumors compared with keloids and skin to localize the expression of cytokines. The results showed localized increased expression of the cytokines epidermal growth factor, transforming growth factor-beta, tumor necrosis factor-alpha, vascular endothelial growth factor, interleukin-1beta, and interleukin-6 in the endothelial cells of blood vessels in the tumors. Production of tumor necrosis factor-alpha and interleukin-1beta in tumor tissue was increased, but we did not find increased expression of platelet-derived growth factor. We concluded that the increased expression of cytokines associated with angiogenesis usually found in wound healing and invasive tumors may contribute to the pathophysiology of the desmoid tumor.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Endothelial Growth Factors/analysis
- Endothelial Growth Factors/biosynthesis
- Epidermal Growth Factor/analysis
- Epidermal Growth Factor/biosynthesis
- ErbB Receptors/analysis
- ErbB Receptors/biosynthesis
- Female
- Fibroblast Growth Factor 1/analysis
- Fibroblast Growth Factor 1/biosynthesis
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/biosynthesis
- Fibromatosis, Aggressive/metabolism
- Fibromatosis, Aggressive/physiopathology
- Humans
- Interleukin-1/analysis
- Interleukin-1/biosynthesis
- Interleukin-6/analysis
- Interleukin-6/biosynthesis
- Lymphokines/analysis
- Lymphokines/biosynthesis
- Male
- Platelet-Derived Growth Factor/analysis
- Platelet-Derived Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Interleukin-6/analysis
- Receptors, Interleukin-6/biosynthesis
- Receptors, Platelet-Derived Growth Factor/analysis
- Receptors, Platelet-Derived Growth Factor/biosynthesis
- Receptors, Vitronectin/analysis
- Receptors, Vitronectin/biosynthesis
- Soft Tissue Neoplasms/metabolism
- Soft Tissue Neoplasms/physiopathology
- Transforming Growth Factor alpha/analysis
- Transforming Growth Factor alpha/biosynthesis
- Transforming Growth Factor beta/analysis
- Transforming Growth Factor beta/biosynthesis
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- B G Mills
- Department of Basic Sciences, School of Dentistry, University of Southern California, Los Angeles, USA.
| | | | | |
Collapse
|
35
|
Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, Gittes GK, Longaker MT. Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats. Plast Reconstr Surg 2000; 105:2028-38. [PMID: 10839400 DOI: 10.1097/00006534-200005000-00018] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.
Collapse
Affiliation(s)
- D S Steinbrech
- Institute of Reconstructive Plastic Surgery, and the Department of Surgery, New York University Medical Center, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Millis DL. Bone- and non-bone-derived growth factors and effects on bone healing. Vet Clin North Am Small Anim Pract 1999; 29:1221-46. [PMID: 10503293 DOI: 10.1016/s0195-5616(99)50111-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the future, it may be possible to manipulate the fracture site with exogenous growth factors to allow successful union of the bone ends without additional surgery. The complex interaction of growth factors, the timing of their appearance and disappearance at the wound site, and the concentrations necessary to achieve specific effects must be studied more thoroughly. For growth factors to find widespread clinical use, there must be evidence that healing is enhanced. It may be difficult to enhance the healing of fresh fractures in normal animals, and it may also be difficult to demonstrate the healing of nonunion fractures. Because of the great variability in fractures of clinical patients, studies designed to determine the effect of growth factors on bone healing must be carefully designed with appropriate attention given to randomizing patients based on the risk of delayed healing and other patient characteristics.
Collapse
Affiliation(s)
- D L Millis
- Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, USA
| |
Collapse
|
37
|
Pereira RC, Jorgetti V, Canalis E. Triiodothyronine induces collagenase-3 and gelatinase B expression in murine osteoblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E496-504. [PMID: 10484362 DOI: 10.1152/ajpendo.1999.277.3.e496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triiodothyronine (T3) increases bone resorption, but its effects on matrix metalloprotease (MMP) expression in bone are unknown. We tested the effects of T3 on collagenase-3 and gelatinase A and B expression in MC3T3 osteoblastic cells. T3 at 1 nM to 1 microM for 24-72 h increased collagenase-3 and gelatinase B mRNA levels, but it did not increase gelatinase A transcripts. In addition, T3 increased immunoreactive collagenase and gelatinase activity. Cycloheximide prevented the stimulatory effect of T3 on collagenase-3 but not on gelatinase B transcripts. Indomethacin did not prevent the effect of T3 on either MMP. T3 did not alter the decay of collagenase-3 or gelatinase B mRNA in transcriptionally arrested MC3T3 cells, and it increased the rate of collagenase-3 and gelatinase B gene transcription. Although T3 enhanced the expression of the tissue inhibitor of metalloproteinase-1 in MC3T3 cells, it increased collagen degradation in cultured intact rat calvariae. In conclusion, T3 increases collagenase-3 and gelatinase B synthesis in osteoblasts by transcriptional mechanisms. This effect may contribute to the actions of T3 on bone matrix remodeling.
Collapse
Affiliation(s)
- R C Pereira
- Departments of Research and Medicine, Saint Francis Hospital and Medical Center, Hartford 06105, Connecticut, USA
| | | | | |
Collapse
|
38
|
Gazzerro E, Rydziel S, Canalis E. Skeletal bone morphogenetic proteins suppress the expression of collagenase-3 by rat osteoblasts. Endocrinology 1999; 140:562-7. [PMID: 9927278 DOI: 10.1210/endo.140.2.6493] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted by skeletal cells, induce the differentiation of mesenchymal cells into cells of the osteoblastic lineage, and increase their differentiated function. BMPs also decrease collagenase-3 expression by the osteoblast. We tested the autocrine role of BMPs on collagenase-3 expression in osteoblast-enriched cells from fetal rat calvariae (Ob cells) by examining the effects of noggin, a specific inhibitor of BMP binding and function. Although collagenase-3 transcript expression declined in untreated Ob cells in culture over a 24-h period, BMP-2, -4, and -6 decreased collagenase-3 messenger RNA levels in cells treated for 2-24 h. The addition of noggin prevented the decrease of collagenase-3 transcripts in control cultures, opposed the inhibitory actions of BMP-2, and increased the levels of the protease in the culture medium. Noggin did not alter the decay of collagenase-3 messenger RNA in transcriptionally arrested cells, and it increased the levels of collagenase-3 heterogeneous nuclear RNA in Ob cells. In conclusion, noggin enhances the synthesis of collagenase-3 in osteoblasts, supporting the notion that BMPs act as autocrine suppressors of collagenase-3 in skeletal cells, an effect that may contribute to the maintenance of the bone matrix.
Collapse
Affiliation(s)
- E Gazzerro
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | |
Collapse
|
39
|
Kawane T, Horiuchi N. Insulin-like growth factor I suppresses parathyroid hormone (PTH)/PTH-related protein receptor expression via a mitogen-activated protein kinase pathway in UMR-106 osteoblast-like cells. Endocrinology 1999; 140:871-9. [PMID: 9927318 DOI: 10.1210/endo.140.2.6517] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is important in skeletal growth and has been implicated in the maintenance of bone integrity. PTH stimulates bone resorption through the G protein-linked PTH/PTH-related protein (PTHrP) receptor in osteoblasts. Using a heterogeneous nuclear RNA assay and Northern blot analysis, we showed that IGF-I inhibited expression of the gene for PTH/PTHrP receptor in a dose- and time-dependent fashion, but did not alter the stability of the receptor messenger RNA (mRNA) in UMR-106 osteoblast-like cells. IGF-I treatment for 48 h also caused a decrease in the receptor number to 45% of that in controls without affecting receptor affinity and in functional receptor expression to 50-60% of that in controls as measured by PTH-stimulated cAMP production. In MC3T3-E1 murine nontransformed osteoblasts, IGF suppressed receptor mRNA expression dose dependently. In UMR-106 cells, IGF-I induced the mitogen-activated protein (MAP) kinase pathway. The effect of IGF-I was blocked by PD98059, a specific inhibitor of the MAP kinase-activating kinase, but not by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. IGF-I inhibition of PTH/PTHrP receptor mRNA expression in UMR-106 cells was abrogated completely by pretreatment with cycloheximide, an inhibitor of protein synthesis. These findings indicate that IGF-I suppresses gene expression for PTH/PTHrP receptor via the MAP kinase pathway, and this inhibition is required for new protein synthesis in UMR-106 osteoblast-like cells.
Collapse
Affiliation(s)
- T Kawane
- Department of Biochemistry, Ohu University School of Dentistry, Koriyama, Japan
| | | |
Collapse
|
40
|
Takiguchi T, Kobayashi M, Suzuki R, Yamaguchi A, Isatsu K, Nishihara T, Nagumo M, Hasegawa K. Recombinant human bone morphogenetic protein-2 stimulates osteoblast differentiation and suppresses matrix metalloproteinase-1 production in human bone cells isolated from mandibulae. J Periodontal Res 1998; 33:476-85. [PMID: 9879521 DOI: 10.1111/j.1600-0765.1998.tb02347.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bone morphogenetic protein (BMP), a member of the transforming growth factor superfamily, is one of the most potent growth factors that stimulate osteoblast differentiation and bone formation. We investigated the effects of recombinant human BMP-2 (rhBMP-2) on osteoblast differentiation and matrix metalloproteinase-1 (MMP-1) production in human bone cells (HBC) isolated from mandibulae of 3 adult patients. rhBMP-2 at concentrations over 50 ng/ml significantly stimulated alkaline phosphatase activity and parathyroid hormone (PTH)-dependent 3', 5'-cyclic adenosine monophosphate accumulation, which are early markers of osteoblast differentiation, in HBCs. rhBMP-2 (500 ng/ml) also enhanced the level of PTH/PTH related-peptide receptor mRNA expression in HBCs. Although neither HBCs untreated nor treated with rhBMP-2 produced measurable amounts of osteocalcin, which is a marker of more mature osteoblasts, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced ostocalcin mRNA expression and its protein synthesis in these cells. rhBMP-2 inhibited 1,25(OH)2D3-induced osteocalcin synthesis in HBCs at both the mRNA and protein level. rhBMP-2 also significantly suppressed MMP-1 production and MMP-1 mRNA expression at concentrations over 500 ng/ml. These results suggest that rhBMP-2 exerts anabolic effects on human osteoblastic cells derived from mandibulae by stimulation of osteoblast differentiation and down-regulation of MMP-1 synthesis.
Collapse
Affiliation(s)
- T Takiguchi
- Department of Periodontics, Showa University Dental School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gangji V, Rydziel S, Gabbitas B, Canalis E. Insulin-like growth factor II promoter expression in cultured rodent osteoblasts and adult rat bone. Endocrinology 1998; 139:2287-92. [PMID: 9564836 DOI: 10.1210/endo.139.5.5964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor (IGF)-II stimulates bone formation by increasing the replication of cells of the osteoblastic lineage and by enhancing the differentiated function of the osteoblast. Although IGF-II is synthesized by skeletal cells, little is known about the mechanisms involved and its regulation by growth factors. IGF-II expression is tissue specific and is developmentally regulated. In the present study, we examined the expression of IGF-II in fetal rat, newborn mouse and MC3T3-E1 osteoblastic (Ob) cells, and in adult rat calvariae. We also determined mechanisms involved in the regulation of IGF-II by platelet-derived growth factor (PDGF) BB, fibroblast growth factor-2 (FGF-2), and transforming growth factor (TGF) beta1. Northern analysis revealed IGF-II transcripts of 3.6 and 1.2 kb in osteoblastic cells and adult rat calvariae. Ribonuclease (RNase) protection assay using probes specific to the three known IGF-II promoters, P1, P2, and P3, demonstrated messenger RNA (mRNA) expression driven by P3 in osteoblasts and adult rat calvariae, but no expression of P1 or P2 transcripts. PDGF BB, FGF-2, and TGF beta1 inhibited the expression of IGF-II P3 mRNA by 50%. PDGF BB, FGF-2, and TGF beta1 also decreased the rates of IGF-II transcription in rat Ob cells as determined by nuclear run-on assays and did not modify the decay of IGF-II in transcriptionally arrested rat Ob cells. In conclusion, the synthesis of IGF-II in osteoblastic cells and in adult rat calvariae is driven by IGF-II P3 and is regulated by skeletal growth factors acting at the transcriptional level using the IGF-II P3.
Collapse
Affiliation(s)
- V Gangji
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | | | |
Collapse
|
42
|
Langdahl BL, Kassem M, Møller MK, Eriksen EF. The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur J Clin Invest 1998; 28:176-83. [PMID: 9568461 DOI: 10.1046/j.1365-2362.1998.00265.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have previously shown that growth hormone (GH) consistently stimulates proliferation of human osteoblasts in vitro. In rat osteoblasts, GH augments the effects of insulin-like growth factor (IGF) I on cell proliferation and differentiation. We therefore investigated the effects of IGF-I and -II alone and in combination with GH on human osteoblasts in vitro. METHODS Human osteoblast-like cells (HOB) were established from trabecular explants (n = 18) and human marrow stromal cells (HMS) from marrow aspiration (n = 21). The cell cultures were stimulated with IGF-I or IGF-II (1, 10 or 100 ng mL-1) alone, in combination with hGH (100 ng mL-1) or after prestimulation with hGH. RESULTS IGF-I alone, in combination with hGH and after pretreatment with hGH, increased proliferation of HOB and HMS by 49-190% (P < 0.05-0.01). IGF-II alone, in combination with hGH and after pretreatment with hGH increased proliferation of HOB by 57-158% (P < 0.01). In HMS only IGF-II in combination with hGH and after prestimulation with hGH increased proliferation. IGF-I alone and in combination with hGH decreased alkaline phosphatase (AP) in both cell types. IGF-II did not affect AP in HOB, but increased AP in HMS, this effect was abolished by hGH. In HOB, collagen production (PICP) was increased by IGF-II but unaffected by IGF-I. In HMS, PICP was decreased by IGF-I and -II but increased by hGH. Co-stimulation further increased PICP. CONCLUSION IGF-I and -II exerted proliferative effects on both HOB and HMS. Co-stimulation with GH exhibited synergism in enhancing the proliferative response. In HMS prestimulation improved the proliferative response significantly. The effects of the IGFs on differentiation are more complex and dependent on cell maturation and of the IGF used.
Collapse
Affiliation(s)
- B L Langdahl
- Aarhus Bone and Mineral Research Group, University Department of Endocrinology and Metabolism, Aarhus Amtssygehus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
43
|
Rydziel S, Delany AM, Canalis E. Insulin-like growth factor I inhibits the transcription of collagenase 3 in osteoblast cultures. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19971101)67:2<176::aid-jcb3>3.0.co;2-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Verhaeghe J, Van Herck E, van Bree R, Moermans K, Bouillon R. Decreased osteoblast activity in spontaneously diabetic rats. In vivo studies on the pathogenesis. Endocrine 1997; 7:165-75. [PMID: 9549042 DOI: 10.1007/bf02778138] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes in both humans and rats is accompanied by low bone formation, which is presumably caused by serum-borne factors. To explore its pathogenesis, we carried out experiments in diabetic and nondiabetic BB rats, using plasma osteocalcin concentrations (OC) as a marker for osteoblast activity. In nondiabetic rats, the i.v. infusion of glucose (30%, 4 d) did not change OC; s.c. insulin infusion (4 U/d, 14 d) reduced OC by 27% (p < 0.01). In diabetic rats, OC were decreased from the first day of glycosuria (71 +/- 5% of paired controls), declining exponentially to 24 +/- 3% after 5 wk. Insulin infusion (1, 2, and 3 U/d, 14 d) produced gradual restoration of OC. OC were better correlated with insulin-like growth factor-I (IGF-I) than with insulin levels in these experiments. OC were dramatically increased 4 d after adrenalectomy (ADX) in all diabetic rats (73 +/- 8 vs 22 +/- 4 micrograms/L before ADX; p < 0.001), but not if corticosterone was administered. Ligand blotting of IGF binding proteins showed a marked decrease in two bands (44-49 and 32-35 kDa) 10-14 d after diabetes onset; the density of these bands was increased, but not normalized after ADX. Thus, decreased osteoblast activity is present from the onset of diabetes, is dependent on endogenous corticosterone, and cannot be reproduced by hyperglycemia in nondiabetic rats.
Collapse
Affiliation(s)
- J Verhaeghe
- Department of Obstetrics and Gynecology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
45
|
Abstract
Insulin-like growth factors (IGF) I and II are the most abundant growth factors secreted by skeletal cells, and retinoic acid has many important action on cell differentiation and osteoblastic function. Some of these actions may be mediated by changes in the expression of IGF I and II since IGFs are known to enhance the differentiated function of the osteoblast. We examined the effects of all-transretinoic acid on IGF I and IGF II expression in cultures of osteoblast-enriched cells from 22 day fetal rat calvariae (Ob cells). Retinoic acid caused a transient increase in IGF I and IGF II mRNA levels after 6 h, but after 24 and 48 h of treatment a dose-dependent decrease was observed. Cycloheximide prevented the inhibitory effect of retinoic acid. Retinoic acid treatment for 48 h decreased IGF I polypeptide levels in the culture medium. In contrast, 48 h exposure to retinoic acid increased IGF II polypeptide levels, possible due to increased levels of IGF binding protein-6. The decay of IGF I and II mRNA in transcriptionally arrested Ob cells was similar in control and retinoic acid-treated cells. After 2 h, retinoic acid increased the rates of IGF I and II transcription, as determined by a nuclear run-on assay and heterogeneous nuclear RNA levels, but after 24 h retinoic acid was inhibitory. Retinoic acid had opposite effects to IGFs in osteoblasts and inhibited DNA and collagen synthesis. In conclusion, following a small transient increase, retinoic acid causes a pronounced decrease in IGF I and IGF II mRNA expression in Ob cells. However, treatment with retinoic acid causes a decrease in IGF I and an increase in IGF II polypeptide levels. These changes in the IGF/IGFBP axis may be relevant to the mechanism of action of retinoic acid in bone.
Collapse
Affiliation(s)
- B Gabbitas
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | |
Collapse
|
46
|
Abstract
Previously we have shown that transforming growth factor beta (TGF beta) 1, basic fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) BB inhibit the synthesis of insulin-like growth factor (IGF) II, but their effects on IGF binding protein (IGFBP)-6 in osteoblast cultures are not known. IGFBP-6 binds IGF II with high affinity and prevents IGF II-mediated effects, so that a possible mode of regulating the IGF II available to bone cells would be by changing the levels of IGFBP-6. To enhance our understanding of the actions of growth factors on the IGF II axis in bone, we tested the effects of TGF beta 1, basic FGF, PDGF BB, IGF I, and IGF II on the expression of IGFBP-6 in cultures of osteoblast-enriched cells from 22 day fetal rat calvariae (Ob cells). Treatment of Ob cells with TGF beta 1 caused a time- and dose-dependent decrease in IGFBP-6 mRNA levels, as determined by Northern blot analysis. The effect was maximal after 48 h and observed with TGF beta 1 concentrations of 0.04 nM and higher. TGF beta 1 also decreased IGFBP-6 polypeptide levels in the medium, as determined by Western immunoblot analysis. Cycloheximide at 3.6 microM decreased IGFBP-6 transcripts and prevented the effect of TGF beta 1. The decay of IGFBP-6 mRNA in transcriptionally arrested Ob cells was not modified by TGF beta 1. In addition, TGF beta 1 decreased the rates of IGFBP-6 transcription as determined by a nuclear run-on assay. In contrast, basic FGF, PDGF BB, IGF I, and IGF II did not change IGFBP-6 mRNA levels in Ob cells. In conclusion, TGF beta 1 inhibits IGFBP-6 expression in Ob cells by transcriptional mechanisms. Since IGFBP-6 binds IGF II and prevents its effects on bone cells, decreased synthesis of IGFBP-6 induced by TGF beta 1 could be a local feedback mechanism to increase the amount of IGF II available in the bone microenvironment.
Collapse
Affiliation(s)
- B Gabbitas
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
47
|
D'avis PY, Frazier CR, Shapiro JR, Fedarko NS. Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J 1997; 324 ( Pt 3):753-60. [PMID: 9210398 PMCID: PMC1218490 DOI: 10.1042/bj3240753] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of insulin-like growth factor I (IGF-I) in extracellular matrix metabolism was studied in both proliferating and confluent human osteoblast-like cultures derived from donors of different ages. In proliferating cultures, recombinant human (rh)IGF-I was found to increase the incorporation of [3H]thymidine in a dose- and age-dependent manner. To study cell proliferation dynamically, continuous growth curves with and without rhIGF-I were modelled by a modified logistic function. Increasing doses of rhIGF-I decreased the lag time and maximal growth rates, whereas plateau values decreased only at the highest dose (100 ng/ml). In post-proliferative cell strains, rhIGF-I (0.1-100 ng/ml) increased levels of type I collagen, biglycan and decorin, and to a smaller extent fibronectin and thrombospondin, whereas it decreased the levels of hyaluronan and a versican-like proteoglycan when protein and proteoglycan metabolism were followed by steady-state radiolabelling with [3H]proline, [3H]glucosamine or [35S]sulphate. These responses to rhIGF-I were found to be age-dependent, with osteoblast-like cells derived from younger patients being more responsive to rhIGF-I. When extracellular matrix turnover was analysed by pulse-chase experiments, rhIGF-I had no effect. The steady-state levels of collagen, decorin, hyaluronan and a versican-like proteoglycan for bone cells treated with rhIGF-I on day 7 in culture were equivalent to levels of these matrix components in untreated osteoblasts grown for 14 days. These results are consistent with rhIGF-I's altering cellular proliferative capacity and matrix synthesis, causing a change in the osteoblast differentiated state.
Collapse
Affiliation(s)
- P Y D'avis
- Division of Geriatrics, Department of Medicine, Room 5A-50 JHAAC, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
48
|
Franchimont N, Rydziel S, Delany AM, Canalis E. Interleukin-6 and its soluble receptor cause a marked induction of collagenase 3 expression in rat osteoblast cultures. J Biol Chem 1997; 272:12144-50. [PMID: 9115285 DOI: 10.1074/jbc.272.18.12144] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin-6 (IL-6), a cytokine produced by skeletal cells, increases bone resorption, but its effects on collagenase expression are unknown. We tested the effects of IL-6 and its soluble receptor on collagenase 3 expression in osteoblast-enriched cells from fetal rat calvariae (Ob cells). IL-6 caused a small increase in collagenase mRNA levels, but in the presence of IL-6-soluble receptor (IL-6sR), IL-6 caused a marked increase in collagenase transcripts after 2-24 h. In addition, IL-6sR increased collagenase mRNA when tested alone. IL-6 and IL-6sR increased immunoreactive collagenase levels. Cycloheximide and indomethacin did not prevent the effect of IL-6 and IL-6sR on collagenase mRNA levels. IL-6 and IL-6sR did not alter the decay of collagenase mRNA in transcriptionally arrested Ob cells and increased the levels of collagenase heterogeneous nuclear RNA and the rate of collagenase gene transcription in Ob cells. IL-6 and IL-6sR increased collagenase 3 mRNA in MC3T3 cells but only modestly in skin fibroblasts. IL-6 and IL-6sR enhanced the expression of tissue inhibitor of metalloproteinases 1. In conclusion, IL-6, in the presence of IL-6sR, increases collagenase 3 synthesis in osteoblasts by transcriptional mechanisms. This effect may contribute to the action of IL-6 on bone matrix degradation and bone resorption.
Collapse
Affiliation(s)
- N Franchimont
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor superfamily of peptides, induces ectopic bone formation in vivo. The actions of BMP-2 on osteoblastic cells include stimulation of collagen synthesis, but the role of BMP-2 on collagen degradation is not known. We examined whether BMP-2 affects the expression of collagenase-3, an enzyme that degrades type I collagen at neutral pH, and that of tissue inhibitors of matrix metalloproteinases (TIMPs) in primary osteoblast-enriched cells from 22-day-old fetal rat calvariae. BMP-2 suppressed collagenase messenger RNA (mRNA) and immunoreactive protein levels. BMP-2 did not affect collagenase mRNA stability, but it reduced collagenase heterogeneous nuclear RNA levels and decreased the rate of transcription of the collagenase gene. BMP-2 also stimulated TIMP 1 and TIMP 3 mRNA levels, but failed to alter TIMP 2 expression. In conclusion, our studies indicate that BMP-2 suppresses collagenase-3 gene transcription and stimulates TIMP 1 and TIMP 3 expression in osteoblasts. The regulation of collagenase and TIMPs by BMP-2 in osteoblasts may play a role in osteoinduction.
Collapse
Affiliation(s)
- S Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
50
|
Rydziel S, Varghese S, Canalis E. Transforming growth factor beta1 inhibits collagenase 3 expression by transcriptional and post-transcriptional mechanisms in osteoblast cultures. J Cell Physiol 1997; 170:145-52. [PMID: 9009143 DOI: 10.1002/(sici)1097-4652(199702)170:2<145::aid-jcp6>3.0.co;2-o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor (TGF) beta1 is an autocrine regulator of bone cell function. We demonstrated that TGF beta1 enhances bone collagen synthesis, but its effects on collagen degradation are not well characterized. We tested the effects of TGF beta1 on rat collagenase 3 expression in cultures of osteoblast-enriched cells from fetal rat calvariae (Ob cells). Treatment with TGF beta1 at 0.4 nM decreased steady state collagenase mRNA levels after 2 to 24 h. This dose-dependent effect was observed at TGF beta1 concentrations of 4 pM to 1.2 nM, and was accompanied by decreased levels of immunoreactive procollagenase. The protein synthesis inhibitor cycloheximide increased collagenase transcripts, but did not prevent the effect of TGF beta1 on collagenase mRNA levels. TGF beta1 accelerated the decay of collagenase mRNA in transcriptionally arrested Ob cells. In addition, TGF beta1 decreased the levels of collagenase heterogeneous nuclear RNA and the rate of collagenase gene transcription in Ob cells. TGF beta1 enhanced the expression of tissue inhibitors of metalloproteinases (TIMP) 1 and 3 and caused a modest decrease of TIMP 2 mRNA levels. In conclusion, TGF beta1 decreases interstitial collagenase transcripts and protease levels in Ob cells by transcriptional and post-transcriptional mechanisms, and this effect may contribute to its actions on bone matrix.
Collapse
Affiliation(s)
- S Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|