1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Odeniyi IA, Ahmed B, Anbiah B, Hester G, Abraham PT, Lipke EA, Greene MW. An improved in vitro 3T3-L1 adipocyte model of inflammation and insulin resistance. Adipocyte 2024; 13:2414919. [PMID: 39415617 PMCID: PMC11487959 DOI: 10.1080/21623945.2024.2414919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor necrosis factor alpha (TNF-α)/hypoxia-treated 3T3-L1 adipocytes have been used to model inflamed and insulin-resistant adipose tissue: this study examines gaps in the model. We tested whether modulating TNF-α/hypoxia treatment time could reduce cell death while still inducing inflammation and insulin resistance. Adipocytes were treated with TNF-α (12 h or 24 h) and incubated in a hypoxic chamber for 24 h. To examine maintenance of the phenotype over time, glucose and FBS were added at 24 h post initiation of treatment, and the cells were maintained for an additional 48 h. Untreated adipocytes were used as a control. Viability, insulin resistance, and inflammation were assessed using Live/Dead staining, RT-qPCR, ELISA, and glucose uptake assays. Treatment for 12 h with TNF-α in the presence of hypoxia resulted in an increase in the percentage of live cells compared to 24 h treated cells. Importantly, insulin resistance and inflammation were still induced in the 12 h treated adipocytes: the expression of the insulin sensitive and inflammatory genes was decreased and increased, respectively. In 72 h treated adipocytes, no significant differences were found in the viability, glucose uptake or insulin-sensitive and inflammatory gene expression. This study provides a modified approach to in vitro odeling adipocyte inflammation and insulin resistance. .
Collapse
Affiliation(s)
| | - Bulbul Ahmed
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Grace Hester
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Peter T. Abraham
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Ezz-Eldin YM, Ewees MG, Azouz AA, Khalaf MM. Investigating the tamoxifen/high-fat diet synergy: a promising paradigm for nonalcoholic steatohepatitis induction in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9067-9079. [PMID: 38884676 PMCID: PMC11522070 DOI: 10.1007/s00210-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe liver condition characterized by excessive fat deposition, ballooning, and lobular inflammation. This investigation was conducted to estimate the capability of concomitant tamoxifen administration (TAM) with a high fat diet (HFD) to induce a reliable NASH model that mimics human NASH features. Rats were administered TAM (25 mg/kg/day p.o.) and consumed HFD for 5 weeks. A time-course investigation was conducted to determine the optimal time for NASH development. Liver function indices, hepatic lipid profile factors, oxidative stress biomarkers, and inflammatory mediators were estimated. Additionally, macroscopic and microscopic changes were examined. Compared with the time-matched control group receiving vehicle alone, TAM/HFD significantly impaired liver function indices represented as marked elevation in ALT, AST, and ALP serum levels. TAM/HFD significantly increased lipid profile factors including high TG and TC hepatic levels. Additionally, TAM/HFD remarkably raised hepatic levels of TNF-α and IL-17 and significantly decreased IL-10. The combination also increases the oxidative status evidenced by high content of MDA as well as low activity of GPx and SOD. Accordingly, the combination of TAM and HFD for 5 weeks collaboratively promotes NASH development by initiating compromised hepatocyte functionality, elevated lipid levels, oxidative stress, and liver inflammation.
Collapse
Affiliation(s)
- Yousra M Ezz-Eldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Tiwari R, Verma S, Verma N, Verma D, Narayan J. Correlation of serum uric acid levels with certain anthropometric parameters in prediabetic and drug-naive diabetic subjects. Ann Afr Med 2024; 23:13-18. [PMID: 38358165 PMCID: PMC10922179 DOI: 10.4103/aam.aam_40_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Uric acid is produced during the metabolism of nucleotide and adenosine triphosphate and contains the final product of human purine metabolism. It acts both as an antioxidant and pro-inflammatory marker and has a positive association with visceral fat in overweight subjects. The aim of the present study is to find an association of uric acid level with certain anthropometric parameters in subjects having type 2 diabetes. Materials and Methods The study included 124 urban drug-naive diabetic Indian subjects above 18 years of age from the general population of the city of North India. Uric acid concentrations were estimated by the uricase method. Fasting plasma glucose (FPG) concentrations were estimated by the glucose oxidase-peroxidase method. Anthropometric measurements and information on lifestyle factors and disease history were collected through in-person meeting. Results All participants of the study subjects had a body mass index (BMI) of more than 23.5. BMI, waist-to-hip ratio (WHR), waist-to-height ratio, waist circumference, neck circumference, weight, age, sagittal abdominal diameter (SAD), skinfold thickness, and body roundness index were positively correlated with the serum uric acid level. The correlation of weight, BMI, SAD, and WHR was statistically significant. Conclusion We found that serum uric acid level increases as body fat content increases. Statistical data show remarkable results for a significant correlation of uric acid level with BMI, WHR, SAD, and FPG. Hypertrophy occurs as a result of inflammatory processes and oxidative stress when the supply of energy starts to exceed the storage capacity of adipocytes, as a result, adipokines such as interleukin (IL)-1, IL-6, and tumor-necrosis factor-alpha are released more frequently which lead to low-grade chronic inflammation. Uric acid levels are much lean toward visceral obesity than overall body fat content.
Collapse
Affiliation(s)
- Ritu Tiwari
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Shivam Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Narsingh Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Dileep Verma
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Jagdish Narayan
- Department of Physiology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Subin P, Sabuhom P, Naladta A, Luecha P, Nualkaew S, Nualkaew N. An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Curr Issues Mol Biol 2023; 45:4891-4907. [PMID: 37367060 DOI: 10.3390/cimb45060311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
TPDM6315 is an antipyretic Thai herbal recipe that contains several herbs with anti-inflammatory and anti-obesity activities. This study aimed to investigate the anti-inflammatory effects of TPDM6315 extracts in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and TNF-α-induced 3T3-L1 adipocytes, and the effects of TPDM6315 extracts on lipid accumulation in 3T3-L1 adipocytes. The results showed that the TPDM6315 extracts reduced the nitric oxide production and downregulated the iNOS, IL-6, PGE2, and TNF-α genes regulating fever in LPS-stimulated RAW264.7 macrophages. The treatment of 3T3-L1 pre-adipocytes with TPDM6315 extracts during a differentiation to the adipocytes resulted in the decreasing of the cellular lipid accumulation in adipocytes. The ethanolic extract (10 µg/mL) increased the mRNA level of adiponectin (the anti-inflammatory adipokine) and upregulated the PPAR-γ in the TNF-α induced adipocytes. These findings provide evidence-based support for the traditional use of TPDM6315 as an anti-pyretic for fever originating from inflammation. The anti-obesity and anti-inflammatory actions of TPDM6315 in TNF-α induced adipocytes suggest that this herbal recipe could be useful for the treatment of metabolic syndrome disorders caused by obesity. Further investigations into the modes of action of TPDM6315 are needed for developing health products to prevent or regulate disorders resulting from inflammation.
Collapse
Affiliation(s)
- Phetpawi Subin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pattraporn Sabuhom
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prathan Luecha
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Zhai G, Pang Y, Zou Y, Wang X, Liu J, Zhang Q, Cao Z, Wang N, Li H, Wang Y. Effects of PLIN1 Gene Knockout on the Proliferation, Apoptosis, Differentiation and Lipolysis of Chicken Preadipocytes. Animals (Basel) 2022; 13:92. [PMID: 36611701 PMCID: PMC9817814 DOI: 10.3390/ani13010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Perilipin 1 (PLIN1) is one of the most abundant lipid droplet-related proteins on the surface of adipocytes. Our previous results showed that PLIN1 plays an important role in chicken lipid metabolism. To further reveal the role of PLIN1 in the growth and development of adipocytes, a chicken preadipocyte line with a PLIN1 gene knockout was established by the CRISPR/Cas9 gene editing technique, and the effects of the PLIN1 gene on the proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes were detected. The results showed that the CRISPR/Cas9 system effectively mediated knockout of the PLIN1 gene. After the deletion of PLIN1, the differentiation ability and early apoptotic activity of chicken preadipocytes decreased, and their proliferation ability increased. Moreover, knockout of PLIN1 promoted chicken preadipocyte lipolysis under basal conditions and inhibited chicken preadipocyte lipolysis under hormone stimulation. Taken together, our results inferred that PLIN1 plays a regulatory role in the process of proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes.
Collapse
Affiliation(s)
- Guiying Zhai
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yongjia Pang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yichong Zou
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jie Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
9
|
Suau R, Pardina E, Domènech E, Lorén V, Manyé J. The Complex Relationship Between Microbiota, Immune Response and Creeping Fat in Crohn's Disease. J Crohns Colitis 2022; 16:472-489. [PMID: 34528668 DOI: 10.1093/ecco-jcc/jjab159] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been growing interest in the pathological involvement of hypertrophic mesenteric fat attached to the serosa of the inflamed intestinal segments involved in Crohn's disease [CD], known as creeping fat. In spite of its protective nature, creeping fat harbours an aberrant inflammatory activity which, in an already inflamed intestine, may explain why creeping fat is associated with a greater severity of CD. The transmural inflammation of CD facilitates the interaction of mesenteric fat with translocated intestinal microorganisms, contributing to activation of the immune response. This may be not the only way in which microorganisms alter the homeostasis of this fatty tissue: intestinal dysbiosis may also impair xenobiotic metabolism. All these CD-related alterations have a functional impact on nuclear receptors such as the farnesoid X receptor or the peroxisome proliferator-activated receptor γ, which are implicated in regulation of the immune response, adipogenesis and the maintenance of barrier function, as well as on creeping fat production of inflammatory-associated cells such as adipokines. The dysfunction of creeping fat worsens the inflammatory course of CD and may favour intestinal fibrosis and fistulizing complications. However, our current knowledge of the pathophysiology and pathogenic role of creeping fat is controversial and a better understanding might provide new therapeutic targets for CD. Here we aim to review and update the key cellular and molecular alterations involved in this inflammatory process that link the pathological components of CD with the development of creeping fat.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eva Pardina
- Biochemistry and Molecular Biomedicine Department, University of Barcelona, Barcelona (Catalonia), Spain
| | - Eugeni Domènech
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, 'Germans Trias i Pujol' University Hospital, Badalona (Catalonia), Spain
| | - Violeta Lorén
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Josep Manyé
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
10
|
Krapić M, Kavazović I, Wensveen FM. Immunological Mechanisms of Sickness Behavior in Viral Infection. Viruses 2021; 13:v13112245. [PMID: 34835051 PMCID: PMC8624889 DOI: 10.3390/v13112245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Sickness behavior is the common denominator for a plethora of changes in normal behavioral routines and systemic metabolism during an infection. Typical symptoms include temperature, muscle weakness, and loss of appetite. Whereas we experience these changes as a pathology, in fact they are a carefully orchestrated response mediated by the immune system. Its purpose is to optimize immune cell functionality against pathogens whilst minimizing viral replication in infected cells. Sickness behavior is controlled at several levels, most notably by the central nervous system, but also by other organs that mediate systemic homeostasis, such as the liver and adipose tissue. Nevertheless, the changes mediated by these organs are ultimately initiated by immune cells, usually through local or systemic secretion of cytokines. The nature of infection determines which cytokine profile is induced by immune cells and therefore which sickness behavior ensues. In context of infection, sickness behavior is typically beneficial. However, inappropriate activation of the immune system may induce adverse aspects of sickness behavior. For example, tissue stress caused by obesity may result in chronic activation of the immune system, leading to lasting changes in systemic metabolism. Concurrently, metabolic disease prevents induction of appropriate sickness behavior following viral infection, thus impairing the normal immune response. In this article, we will revisit recent literature that elucidates both the benefits and the negative aspects of sickness behavior in context of viral infection.
Collapse
|
11
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
12
|
Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, Včev A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab Syndr Obes 2021; 14:67-83. [PMID: 33447066 PMCID: PMC7802907 DOI: 10.2147/dmso.s281186] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is recognized as a severe threat to overall human health and is associated with type 2 diabetes mellitus, dyslipidemia, hypertension, and cardiovascular diseases. Abnormal expansion of white adipose tissue involves increasing the existing adipocytes' cell size or increasing the number through the differentiation of new adipocytes. Adipogenesis is a process of proliferation and differentiation of adipocyte precursor cells in mature adipocytes. As a key process in determining the number of adipocytes, it is a possible therapeutic approach for obesity. Therefore, it is necessary to identify the molecular mechanisms involved in adipogenesis that could serve as suitable therapeutic targets. Reducing bodyweight is regarded as a major health benefit. Limited efficacy and possible side effects and drug interactions of available anti-obesity treatment highlight a constant need for finding novel efficient and safe anti-obesity ingredients. Numerous studies have recently investigated the inhibitory effects of natural products on adipocyte differentiation and lipid accumulation. Possible anti-obesity effects of natural products include the induction of apoptosis, cell-cycle arrest or delayed progression, and interference with transcription factor cascade or intracellular signaling pathways during the early phase of adipogenesis.
Collapse
Affiliation(s)
- Jelena Jakab
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Correspondence: Jelena Jakab Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Crkvena 21, Osijek31 000, CroatiaTel +385 91 224 1502 Email
| | - Blaženka Miškić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, General Hospital “Dr. Josip Benčević”, Slavonski Brod, Croatia
| | - Štefica Mikšić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Brankica Juranić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Cardiology, University Hospital Osijek, Osijek, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Special Hospital Radiochirurgia Zagreb, Zagreb, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
13
|
Ma M, Lee JH, Kim M. Identification of a TMEM182 rs141764639 polymorphism associated with central obesity by regulating tumor necrosis factor-α in a Korean population. J Diabetes Complications 2020; 34:107732. [PMID: 32938560 DOI: 10.1016/j.jdiacomp.2020.107732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
AIMS To investigate the effect of a single nucleotide polymorphism (SNP) in transmembrane protein 182 (TMEM182) on the risk of having central obesity and the related phenotype. METHODS In total, 2141 subjects with central obesity (n = 827) and normal controls (n = 1314) were included. The most strongly associated SNPs were related to waist circumference, and one SNP, rs141764639, was identified in TMEM182 (p = 7.30E-06, q = 0.0326). RESULTS The TC genotype was associated with more central obesity; higher levels of blood pressure, glucose-related parameters, and inflammatory markers; abnormal lipid profiles; and smaller LDL particle sizes than the major allele homozygotes in the total population. TNF-α in the TC genotype showed extremely high levels compared to the TT genotype. There were significant interactions between the genotypes and waist circumference in relation to LDL particle size, TNF-α level, and IL-6 level. Compared with the reference group, the odds ratio for central obesity in C allele carriers was significantly increased by 2-fold. CONCLUSIONS The polymorphism of TMEM182 rs141764639 might have an effect on the incidence of central obesity in the Korean population by interacting with the upregulation of TNF-α, a proinflammatory cytokine. Moreover, LDL particle size, which is an atherogenic lipid profile trait, was associated with the TMEM182 rs141764639 genotype.
Collapse
Affiliation(s)
- Minjueng Ma
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Kim
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea.
| |
Collapse
|
14
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Chang CC, Sia KC, Chang JF, Lin CM, Yang CM, Huang KY, Lin WN. Lipopolysaccharide promoted proliferation and adipogenesis of preadipocytes through JAK/STAT and AMPK-regulated cPLA2 expression. Int J Med Sci 2019; 16:167-179. [PMID: 30662340 PMCID: PMC6332489 DOI: 10.7150/ijms.24068] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
The proliferation and adipogenesis of preadipocytes played important roles in the development of adipose tissue and contributed much to the processes of obesity. On the other hand, lipopolysaccharide (LPS), also known as endotoxin, is a key outer membrane component of gram-negative bacteria in the gut microbiota, and has a dominant role in linking inflammation to high-fat diet-induced metabolic syndrome. Studies suggested the potential roles of LPS in hepatic steatosis and in obese mice models. However, the molecular mechanisms underlying LPS-regulated obesity remained largely unknown. Here we reported that LPS stimulated expression of cyosolic phospholipase A2 (cPLA2), one of inflammation regulators of obesity, in the preadipocytes. Pretreatment the inhibitors of JAK2, STAT3, STAT5 or AMPK significantly reduced LPS-increased mRNA and protein expression of cPLA2 together with phosphorylation of JAK2, STAT3, STAT5 and AMPK, separately. Similarly, transfection of siRNA against JAK2 or AMPK abolished expression of cPLA2 and phosphorylation of JAK2 or AMPK together with downregulated expression of JAK2 and AMPK protein. LPS enhanced activation of STAT3 and STAT5 via JAK2-dependent manner in the preadipocytes. Transfection of JAK2 or AMPK siRNA further proofed the independence of JAK2 and AMPK in LPS-treated preadipocytes. In addition, LPS-increased DNA synthesis, cell numbers and cell viability of preadipocytes were attenuated by AACOCF3, AG490, BML-275, cPLA2 siRNA, JAK2 siRNA or AMPK siRNA. Attenuation JAK2/STAT or AMPK-dependent cPLA2 expression reduced LPS-mediated adipogenesis of preadipocytes. Stimulation of arachidonic acid or AMPK activator, A-769662, increased cell numbers and cell viability and promoted differentiation of preadipocytes. Collectively, these results indicated that LPS increased preadipocytes proliferation and adipogenesis via JAK/STAT and AMPK-dependent cPLA2 expression. The mechanisms of LPS-stimulated cPLA2 expression may be a link between bacteria and obesity and provides the molecular basis for preventing metabolic syndrome or hyperplasic obesity.
Collapse
Affiliation(s)
- Chao-Chien Chang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jia-Feng Chang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, En-Chu-Kong Hospital, New Taipei City, Taiwan
| | - Chia-Mo Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan.,Division of Chest Medicine, Shin Kong Hospital, Taipei, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
16
|
Lee YS, Wollam J, Olefsky JM. An Integrated View of Immunometabolism. Cell 2018; 172:22-40. [PMID: 29328913 PMCID: PMC8451723 DOI: 10.1016/j.cell.2017.12.025] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
The worldwide obesity epidemic has emerged as a major cause of insulin resistance and Type 2 diabetes. Chronic tissue inflammation is a well-recognized feature of obesity, and the field of immunometabolism has witnessed many advances in recent years. Here, we review the major features of our current understanding with respect to chronic obesity-related inflammation in metabolic tissues and focus on how these inflammatory changes affect insulin sensitivity, insulin secretion, food intake, and glucose homeostasis. There is a growing appreciation of the varied and sometimes integrated crosstalk between cells within a tissue (intraorgan) and tissues within an organism (interorgan) that supports inflammation in the context of metabolic dysregulation. Understanding these pathways and modes of communication has implications for translational studies. We also briefly summarize the state of this field with respect to potential current and developing therapeutics.
Collapse
Affiliation(s)
- Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Joshua Wollam
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci Rep 2017; 7:16716. [PMID: 29196658 PMCID: PMC5711936 DOI: 10.1038/s41598-017-16686-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.
Collapse
|
18
|
Epigenetic Regulation of Adipokines. Int J Mol Sci 2017; 18:ijms18081740. [PMID: 28796178 PMCID: PMC5578130 DOI: 10.3390/ijms18081740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.
Collapse
|
19
|
Takase F, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Ueda Y, Kokubu T, Kurosaka M. Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: In vitro and in vivo evaluations. J Orthop Res 2017; 35:1806-1815. [PMID: 27684960 DOI: 10.1002/jor.23451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Atrophy with fatty degeneration is often seen in rotator cuff muscles with torn tendons. PRP has been reported to enhance tissue repair processes after tendon ruptures. However, the effect of PRP on atrophy and fatty degeneration of the muscle is not yet known. The aim of this study is to examine the effect of PRP on degeneration change of rotator cuff muscles in vitro and in vivo. A murine myogenic cell line and a rat rotator cuff tear model were used in this study and PRP was administrated into subacromial space which is widely used in clinical practice. In in vitro study, administration of PRP to C2C12 cells stimulated cell proliferation while inhibited both myogenic and adipogenic differentiation. In in vivo study, administration of PRP suppressed Oil Red-O positive lipid droplet formation. The expression of adipogenic genes was also decreased by PRP administration. In conclusion, PRP promoted proliferation of myoblast cells, while inhibiting adipogenic differentiation of myoblast cells and suppressing fatty degeneration change in rat torn rotator cuff muscles. Further investigations are needed to determine the clinical applicability of the PRP. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1806-1815, 2017.
Collapse
Affiliation(s)
- Fumiaki Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
20
|
The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int J Obes (Lond) 2016; 41:299-308. [PMID: 27780975 PMCID: PMC5309343 DOI: 10.1038/ijo.2016.189] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/01/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
Background: Obesity is a risk factor for metabolic diseases, while preadipocyte differentiation or adipogenesis is closely related to obesity occurrence. Long noncoding RNAs (lncRNAs) are a unique class of transcripts in regulation of a variety of biological processes. Using cDNA microarray, we found lncRNA U90926 is negatively correlated with 3T3-L1 preadipocyte differentiation. Objective: The aim of this study was to explore the role of lncRNA U90926 (lnc-U90926) in adipogenesis and the underlying mechanisms. Methods: Quantitative real-time PCR (qPCR) was performed to determine lnc-U90926 expression in 3T3-L1 preadipocytes, differentiated adipocytes, and in adipose tissues form mice. RNA fluorescent in situ hybridization (FISH) was performed to determine the localization of lnc-U90926 in 3T3-L1 preadipocytes. The effects of lnc-U90926 on 3T3-L1 adipogenesis were analyzed with lentivirus-mediated gain- and loss-of-function experiments. Lipid accumulation was evaluated by oil red O staining; several adipogenesis makers were analyzed by qPCR and western blotting. Dual luciferase assay was applied to explore the transactivation of target genes modulated by lnc-U90926. All measurements were performed at least for three times. Results: Lnc-U90926 expression decreased along the differentiation of 3T3-L1 preadipocytes. In mice, lnc-U90926 is predominantly expressed in adipose tissue. Obese mice have lower lnc-U90926 expression in subcutaneous and visceral adipose tissue than non-obese mice. FISH results showed that lnc-U90926 was mainly located in the cytoplasm. Overexpression lnc-U90926 attenuated 3T3-L1 adipocyte differentiation as evidenced by its ability to inhibit lipid accumulation, to decrease the mRNA levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid binding protein 4 (FABP4) and adiponectin (AdipoQ) as well as to reduce the protein levels of PPARγ and FABP4 (P<0.05). Knockdown of lnc-U90926 showed opposite effects, which increased mRNA expression of PPARγ2, FABP4, CCAAT/enhancer-binding proteinα (C/EBPα) and AdipoQ. Conclusion: Lnc-U90926 attenuates 3T3-L1 adipocyte differentiation via inhibiting the transactivation of PPARγ2 or PPARγ.
Collapse
|
21
|
Pham TX, Lee JY. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes. J Med Food 2016; 19:535-42. [PMID: 27206252 DOI: 10.1089/jmf.2015.0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.
Collapse
Affiliation(s)
- Tho X Pham
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut, USA
| |
Collapse
|
22
|
Moraes-Vieira PM, Castoldi A, Aryal P, Wellenstein K, Peroni OD, Kahn BB. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance. Diabetes 2016; 65:1317-27. [PMID: 26936962 PMCID: PMC4839203 DOI: 10.2337/db15-1696] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation.
Collapse
Affiliation(s)
- Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Angela Castoldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Zhang XM, Wang LH, Su DJ, Zhu D, Li QM, Chi MH. MicroRNA-29b promotes the adipogenic differentiation of human adipose tissue-derived stromal cells. Obesity (Silver Spring) 2016; 24:1097-105. [PMID: 27030318 DOI: 10.1002/oby.21467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Obesity is primarily characterized by the accumulation of large amounts of fat in adipose tissue. Within the adipose tissue, adipocytes are derived from adipose tissue-derived stromal cells (ADSCs) via a specialized cell lineage differentiation process, and ADSCs play a key role in the generation and metabolism of adipose tissue. This study investigated whether microRNAs (miRNAs) play a role in adipocyte differentiation. METHODS Using luciferase reporter and ChIP assays, the relationship between miR-29b, SP1, and TNF-α was examined. RESULTS During the normal adipogenic differentiation of ADSCs, up-regulation of miR-29b promoted adipogenesis by enhancing SP1-mediated inhibition of TNF-α. CONCLUSIONS This study investigated the regulatory role of miR-29b during the adipogenic differentiation of ADSCs and found that miR-29b is an effective positive regulator of adipogenesis.
Collapse
Affiliation(s)
- Xi-Mei Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Li-Hong Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, People's Republic of China
| | - Dong-Ju Su
- Department of Respiratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Dan Zhu
- Department of Nephrology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qiu-Ming Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Mei-Hua Chi
- Teaching Experiment Center of Morphology, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
24
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
25
|
Proulx M, Safoine M, Mayrand D, Aubin K, Maux A, Fradette J. Impact of TNF and IL-1β on capillary networks within engineered human adipose tissues. J Mater Chem B 2016; 4:3608-3619. [DOI: 10.1039/c6tb00265j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inflammatory cytokines lead to capillary network disorganization and secreted factor modulation within human microvascularized engineered adipose tissues.
Collapse
Affiliation(s)
- Maryse Proulx
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| | - Meryem Safoine
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| | - Dominique Mayrand
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| | - Kim Aubin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| | - Amandine Maux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX
- Québec
- Canada
- Division of Regenerative Medicine
- CHU de Québec – Université Laval Research Center
| |
Collapse
|
26
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
27
|
Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats. Eur J Nutr 2015; 56:151-160. [PMID: 26433940 DOI: 10.1007/s00394-015-1065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. METHODS We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser307. RESULTS Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. CONCLUSIONS The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.
Collapse
|
28
|
Cervantes-Camacho C, Beltrán-Langarica A, Ochoa-Uribe AK, Marsch-Moreno M, Ayala-Sumuano JT, Velez-delValle C, Kuri-Harcuch W. The transient expression of Klf4 and Klf5 during adipogenesis depends on GSK3β activity. Adipocyte 2015; 4:248-55. [PMID: 26451280 DOI: 10.1080/21623945.2015.1007823] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 10/23/2022] Open
Abstract
Adipogenesis is regulated by a complex cascade of transcriptional factors, among them KLF4. This factor was previously shown to be necessary for adipose differentiation. We found that GSK3β activity was required for Klf4 and Klf5 expression during adipogenesis. In addition, retinoic acid inhibited Klf4 and Klf5 expression but not that of Cebpb. Protein synthesis inhibition showed that the transient expression of Klf4, Cebpb and Klf5 during early adipogenesis seemed to require a yet unknown protein for their repression. We also found that Klf4 forced expression in 3T3-F442A cells cultured under non-adipogenic conditions did not induce adipogenesis, nor the expression of Cebpb or Klf5, a Cebpb target gene, showing that KLF4 was not sufficient for adipose differentiation to take place. This would suggest that a more complex combination of molecular pathways not yet understood, is involved during early adipogenesis.
Collapse
|
29
|
Ayala-Sumuano JT, Vélez-DelValle C, Marsch-Moreno M, Beltrán-Langarica A, Hernández-Mosqueira C, Kuri-Harcuch W. Retinoic Acid Inhibits Adipogenesis Modulating C/EBPβ Phosphorylation and Down Regulating Srebf1a Expression. J Cell Biochem 2015; 117:629-37. [PMID: 26271478 DOI: 10.1002/jcb.25311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022]
Abstract
Adipogenesis comprises a complex network of signaling pathways and transcriptional cascades; the GSK3β-C/EBPβ-srebf1a axis is a critical signaling pathway at early stages leading to the expression of PPARγ2, the master regulator of adipose differentiation. Previous work has demonstrated that retinoic acid inhibits adipogenesis affecting different signaling pathways. Here, we evaluated the anti-adipogenic effect of retinoic acid on the adipogenic transcriptional cascade, and the expression of adipogenic genes cebpb, srebf1a, srebf1c, pparg2, and cebpa. Our results demonstrate that retinoic acid blocks adipose differentiation during commitment, returning cells to an apparent non-committed state, since they have to be newly induced to adipose conversion after the retinoid is removed from the culture medium. Retinoic acid down regulates the expression of the adipogenic genes, srebf1a, srebf1c, pparg2, and cebpa; however, it did not down regulate the expression of cebpb, but it inhibited C/EBPβ phosphorylation at Thr188, a critical step for the progression of the adipogenic program. We also found that RA inhibition of adipogenesis did not increase the expression of dlk1, the gene encoding for Pref1, a well-known anti-adipogenic factor.
Collapse
Affiliation(s)
- Jorge-Tonatiuh Ayala-Sumuano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Blvd, Juriquilla 3001, Juriquilla, Querétaro, Mexico
| | - Cristina Vélez-DelValle
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, Mexico
| | - Meytha Marsch-Moreno
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, Mexico
| | - Alicia Beltrán-Langarica
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, Mexico
| | - Walid Kuri-Harcuch
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, Mexico
| |
Collapse
|
30
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
31
|
Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis 2015; 6:e1586. [PMID: 25569103 PMCID: PMC4669751 DOI: 10.1038/cddis.2014.553] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study.
Collapse
|
32
|
Kang S, Tsai LT, Zhou Y, Evertts A, Xu S, Griffin MJ, Issner R, Whitton HJ, Garcia BA, Epstein CB, Mikkelsen TS, Rosen ED. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol 2015; 17:44-56. [PMID: 25503565 PMCID: PMC4281178 DOI: 10.1038/ncb3080] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a cardinal feature of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, ageing and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumour necrosis factor-α or by the steroid dexamethasone to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms.
Collapse
Affiliation(s)
- Sona Kang
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Linus T Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Yiming Zhou
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Adam Evertts
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Su Xu
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Michael J Griffin
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Robbyn Issner
- Broad Institute, Cambridge, Massachusetts 02142, USA
| | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | - Evan D Rosen
- 1] Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [2] Broad Institute, Cambridge, Massachusetts 02142, USA [3] Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
33
|
Bou M, Todorčević M, Rodríguez J, Capilla E, Gutiérrez J, Navarro I. Interplay of adiponectin, TNFα and insulin on gene expression, glucose uptake and PPARγ, AKT and TOR pathways in rainbow trout cultured adipocytes. Gen Comp Endocrinol 2014; 205:218-25. [PMID: 24846393 DOI: 10.1016/j.ygcen.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 12/15/2022]
Abstract
Adipose tissue is being increasingly recognized as an important endocrine organ that produces and releases a variety of factors. In the present study we have evaluated in primary cultures of rainbow trout adipocytes, obtained from visceral adipose tissue, the interplay of the adiponectin system, TNFα and insulin at a transcriptional level and, their effects on the adipogenic transcription factor PPARγ, as well as on the activation of main insulin signaling pathways. Likewise, the implication of these adipokines in the regulation of glucose uptake in the adipocyte and their interactions with insulin or IGF-I were also evaluated. Similarly to the mammalian model, insulin enhanced adiponectin gene expression, while it exerted a negative modulation on adiponectin receptors. TNFα increased the mRNA levels of adiponectin receptor 1, but neither adiponectin nor TNFα modulated each other expression. Therefore, the reciprocal suppressive effect of both adipokines previously reported in mammals was not present in this model. Furthermore, the anti-adipogenic effect of TNFα was revealed by the down-regulation of PPARγ at a protein level, meanwhile adiponectin increased PPARγ expression in insulin-stimulated adipocytes, supporting its insulin-sensitizing role. Both adipokines stimulated glucose uptake without modifying AKT or TOR phosphorylation; however, glucose uptake in insulin-treated adipocytes was enhanced by TNFα but not by adiponectin. All in all, these results contribute to gain knowledge on the role of adipokines in rainbow trout adipose tissue and, to better understand the mechanisms that regulate glucose metabolism in this species.
Collapse
Affiliation(s)
- Marta Bou
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | | | - Júlia Rodríguez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
34
|
Adipose stromal-vascular fraction-derived paracrine factors regulate adipogenesis. Mol Cell Biochem 2014; 385:115-23. [PMID: 24122418 DOI: 10.1007/s11010-013-1820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to metabolic disease. Therefore, the adipogenic potential of different fat depots was investigated and found to be higher in subcutaneous compared with visceral stromal-vascular fraction (SVF), which contains adipocyte precursor cells. This increased differentiation capacity was not due to elevated numbers of Lin-Sca1+CD29+CD34+Pref1+ precursor cells, as the number of preadipocytes was higher in visceral than in subcutaneous SVF. The secreted heat-sensitive factors from the SVF inhibited adipocyte differentiation more in visceral than in subcutaneous SVF. In order to explore secreted proteins that potentially inhibit differentiation, the secretome of murine SVF was analyzed by mass spectrometry, which resulted in the identification of 113 secreted proteins with an overlap of 42 % between subcutaneous and visceral SVF. Comparison of the mRNA expression in SVF from both depots revealed 16 transcripts that were significantly expressed more in visceral than in subcutaneous SVF. A functional differentiation screen identified seven potential inhibitory candidates: biglycan, decorin, bone morphogenic protein 1, epidermal growth factor-containing fibulin-like extracellular matrix protein 2, elastin microfibril interfacer 1, matrix gla protein, and Sparc-like 1. For further verification, murine recombinant decorin or Sparc-like 1 was added to the media during the differentiation process leading to a dose-dependent decrease in adipogenesis. Further analysis will be necessary to assess the impact of the other candidates on adipocyte differentiation.
Collapse
|
35
|
Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q, Yuan L, Xi Q, Zhang Y. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 2013; 8:e71568. [PMID: 24098322 PMCID: PMC3787936 DOI: 10.1371/journal.pone.0071568] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/05/2013] [Indexed: 11/17/2022] Open
Abstract
Adipogenesis is tightly regulated by altering gene expression, and TNF-α is a multifunctional cytokine that plays an important role in regulating lipogenesis. MicroRNAs are strong post-transcriptional regulators of cell differentiation. In our previous work, we found high expression of miR-181a in a fat-rich pig breed. Using bioinformatic analysis, miR-181a was identified as a potential regulator of TNF-α. Here, we validated TNF-α as the target of miR-181a by a dual luciferase assay. In response to adipogenesis, a mimic or inhibitor was used to overexpress or reduce miR-181a expression in porcine pre-adipocytes, which were then induced into mature adipocytes. Overexpression of miR-181a accelerated accumulation of lipid droplets, increased the amount of triglycerides, and repressed TNF-α protein expression, while the inhibitor had the opposite effect. At the same time, TNF-alpha rescued the increased lipogenesis by miR181a mimics. Additionally, miR-181a suppression decreased the expression of fatty synthesis associated genes PDE3B (phosphodiesterase 3B), LPL (lipoprotein lipase), PPARγ (proliferator-activated receptor-γ), GLUT1(glucose transporter), GLUT4, adiponectin and FASN (fatty acid synthase), as well as key lipolytic genes HSL (hormone-sensitive lipase) and ATGL (adipose triglyceride lipase) as revealed by quantitative real-time PCR. Our study provides the first evidence of the role of miR-181a in adipocyte differentiation by regulation of TNF-α, which may became a new therapeutic target for anti-obesity drugs.
Collapse
Affiliation(s)
- Hongyi Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China ; Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, College of Life Science, Longyan University, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 2013; 56:1971-9. [PMID: 23756832 PMCID: PMC3737431 DOI: 10.1007/s00125-013-2950-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRNAs) are short endogenous RNAs that regulate multiple biological processes including adipogenesis and fat metabolism. We sought to identify miRNAs that correlate with BMI and to elucidate their upstream regulation and downstream targets. METHODS Microarray-based expression profiling of 233 miRNAs was performed on subcutaneous abdominal adipose tissue biopsies from 29 non-diabetic Pima Indian participants. Correlation of the expression levels of eight miRNAs with BMI was assessed by quantitative reverse transcription (QRT) PCR in adipose samples from 80 non-diabetic Pima Indians with a BMI of 21.6-54.0 kg/m(2). The upstream regulation of one of these miRNAs, miR-221, was tested by treating cultured human pre-adipocytes with leptin, TNF-α and insulin. Predicted targets of miR-221 were validated using QRT-PCR, immunoblots and luciferase assays. The downstream effects of miR-221 overexpression were assayed by proteomic analysis. RESULTS Expression levels of miR-221 were positively correlated with BMI (particularly in women) and fasting insulin concentrations, while the levels of miR-193a-3p and miR-193b-5p were negatively correlated with BMI; other miRNAs did not show significant associations in the 80 samples. miR-221 was downregulated by leptin and TNF-α treatment in cultured human pre-adipocytes. Conversely, miR-221 overexpression upregulated several proteins involved in fat metabolism, mimicking peroxisome proliferator-activated receptor (PPAR) activation. Furthermore, miR-221 directly downregulated the adiponectin receptor 1 (ADIPOR1) and the transcription factor v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS1). Adiponectin signalling is known to promote insulin sensitivity, and ETS1 is crucial for angiogenesis. CONCLUSIONS/INTERPRETATION Our data suggest that miR-221 may contribute to the development of the insulin resistance that typically accompanies obesity, by affecting PPAR signalling pathways and by directly downregulating ADIPOR1 and ETS1.
Collapse
Affiliation(s)
- A. Meerson
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| | - M. Traurig
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| | - V. Ossowski
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| | - J. M. Fleming
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| | - M. Mullins
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| | - L. J. Baier
- National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, 445 North 5th Street, Phoenix, AZ 85004 USA
| |
Collapse
|
37
|
Updates on Antiobesity Effect of Garcinia Origin (-)-HCA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:751658. [PMID: 23990846 PMCID: PMC3748738 DOI: 10.1155/2013/751658] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/07/2013] [Indexed: 12/11/2022]
Abstract
Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (−)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
Collapse
|
38
|
MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem Biophys 2013; 68:283-90. [DOI: 10.1007/s12013-013-9708-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Ren G, Beech C, Smas CM. The immunoglobulin superfamily protein differentiation of embryonic stem cells 1 (dies1) has a regulatory role in preadipocyte to adipocyte conversion. PLoS One 2013; 8:e65531. [PMID: 23799023 PMCID: PMC3684596 DOI: 10.1371/journal.pone.0065531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Differentiation of Embryonic Stem Cells 1 (Dies1) was recently identified as a novel type I immunoglobulin (IgG) domain-containing plasma membrane protein important for effective differentiation of a murine pluripotent embryonic stem cell line. In this setting, Dies1 enhances bone morphogenetic protein 4 (BMP4) signaling. Here we show Dies1 transcript expression is induced ∼225-fold during in vitro adipogenesis of 3T3-L1 murine preadipocytes. Immunocytochemical imaging using ectopic expression of Flag-tagged Dies1 in 3T3-L1 adipocytes revealed localization to the adipocyte plasma membrane. Modulation of adipocyte phenotype with with tumor necrosis factor-α (TNFα) treatment or by siRNA knockdown of the master pro-adipogenic transcription factor peroxisome proliferator activated receptor gamma (PPARγ) resulted in a 90% and 60% reduction of Dies1 transcript levels, respectively. Moreover, siRNA-mediated Dies1 knockdown in 3T3-L1 preadipocytes inhibited adipogenic conversion. Such cultures had a 35% decrease in lipid content and a 45%–65% reduction in expression of key adipocyte transcripts, including that for PPARγ. The standard protocol for full in vitro adipogenic conversion of committed preadipocytes, such as 3T3-L1, does not include BMP4 treatment. Thus we posit the positive role of Dies1 in adipogenesis, unlike that for Dies1 in differentiation of embryonic stem cells, does not include its pro-BMP4 effects. In support of this idea, 3T3-L1 adipocytes knocked down for Dies1 did not evidence decreased phospho-Smad1 levels upon BMP4 exposure. qPCR analysis of Dies1 transcript in multiple murine and human tissues reveals high enrichment in white adipose tissue (WAT). Interestingly, we observed a 10-fold induction of Dies1 transcript in WAT of fasted vs. fed mice, suggesting a role for Dies1 in nutritional response of mature fat cells in vivo. Together our data identify Dies1 as a new differentiation-dependent adipocyte plasma membrane protein whose expression is required for effective adipogenesis and that may also play a role in regard to nutritional status in WAT.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Cameron Beech
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Cynthia M. Smas
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.
Collapse
|
42
|
Wang X, Huang M, Wang Y. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). PLoS One 2012; 7:e48069. [PMID: 23110176 PMCID: PMC3482209 DOI: 10.1371/journal.pone.0048069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023] Open
Abstract
Fish final product can be affected by excessive lipid accumulation. Therefore, it is important to develop strategies to control obesity in cultivated fish to strengthen the sustainability of the aquaculture industry. As in mammals, the development of adiposity in fish depends on hormonal, cytokine and dietary factors. In this study, we investigated the proliferation and differentiation of preadipocytes isolated from the large yellow croaker and examined the effects of critical factors such as insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of adipocytes. Preadipocytes were isolated by collagenase digestion, after which their proliferation was evaluated. The differentiation process was optimized by assaying glycerol-3-phosphate dehydrogenase (GPDH) activity. Oil red O staining and electron microscopy were performed to visualize the accumulated triacylglycerol. Gene transcript levels were measured using SYBR green quantitative real-time PCR. Insulin promoted preadipocytes proliferation, stimulated cell differentiation and decreased lipolysis of mature adipocytes. TNFα and DHA inhibited cell proliferation and differentiation. While TNFα stimulated mature adipocyte lipolysis, DHA showed no lipolytic effect on adipocytes. The expressions of adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor α, γ (PPARα, PPARγ) were quantified during preadipocytes differentiation and adipocytes lipolysis to partly explain the regulation mechanisms. In summary, the results of this study indicated that although preadipocytes proliferation and the differentiation process in large yellow croaker are similar to these processes in mammals, the effects of critical factors such as insulin, TNFα and DHA on fish adipocytes development are not exactly the same. Our findings fill in the gaps in the basic data regarding the effects of critical factors on adiposity development in fish and will facilitate the further study of molecular mechanism by which these factors act in fish and the application of this knowledge to eventually control obesity in cultured species.
Collapse
Affiliation(s)
- Xinxia Wang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ming Huang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yizhen Wang
- Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
43
|
Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 2012; 303:E334-51. [PMID: 22569073 PMCID: PMC3423120 DOI: 10.1152/ajpendo.00084.2012] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To identify new genes that are important in fat metabolism, we utilized the Lexicon-Genentech knockout database of genes encoding transmembrane and secreted factors and whole murine genome transcriptional profiling data that we generated for 3T3-L1 in vitro adipogenesis. Cross-referencing null models evidencing metabolic phenotypes with genes induced in adipogenesis led to identification of a new gene, which we named RIFL (refeeding induced fat and liver). RIFL-null mice have serum triglyceride levels approximately one-third of wild type. RIFL transcript is induced >100-fold during 3T3-L1 adipogenesis and is also increased markedly during adipogenesis of murine and human primary preadipocytes. siRNA-mediated knockdown of RIFL during 3T3-L1 adipogenesis results in an ~35% decrease in adipocyte triglyceride content. Murine RIFL transcript is highly enriched in white and brown adipose tissue and liver. Fractionation of WAT reveals that RIFL transcript is exclusive to adipocytes with a lack of expression in stromal-vascular cells. Nutritional and hormonal studies are consistent with a prolipogenic function for RIFL. There is evidence of an approximately eightfold increase in RIFL transcript level in WAT in ob/ob mice compared with wild-type mice. RIFL transcript level in WAT and liver is increased ~80- and 12-fold, respectively, following refeeding of fasted mice. Treatment of 3T3-L1 adipocytes with insulin increases RIFL transcript ≤35-fold, whereas agents that stimulate lipolysis downregulate RIFL. Interestingly, the 198-amino acid RIFL protein is predicted to be secreted and shows ~30% overall conservation with the NH(2)-terminal half of angiopoietin-like 3, a liver-secreted protein that impacts lipid metabolism. In summary, our data suggest that RIFL is an important new regulator of lipid metabolism.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology and Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
44
|
Dave S, Kaur NJ, Nanduri R, Dkhar HK, Kumar A, Gupta P. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes. PLoS One 2012; 7:e30831. [PMID: 22292054 PMCID: PMC3265525 DOI: 10.1371/journal.pone.0030831] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/27/2011] [Indexed: 02/07/2023] Open
Abstract
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt–TSC2–mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein Giα1, as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.
Collapse
Affiliation(s)
- Sandeep Dave
- Institute of Microbial Technology (CSIR), Chandigarh, India
| | - Naval Jit Kaur
- Institute of Microbial Technology (CSIR), Chandigarh, India
| | | | | | - Ashwani Kumar
- Institute of Microbial Technology (CSIR), Chandigarh, India
| | - Pawan Gupta
- Institute of Microbial Technology (CSIR), Chandigarh, India
- * E-mail:
| |
Collapse
|
45
|
Liu S, Yang Y, Wu J. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun 2011; 414:618-24. [PMID: 21986534 DOI: 10.1016/j.bbrc.2011.09.131] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 01/14/2023]
Abstract
Tumor necrosis factor α (TNFα) is known to inhibit adipogenesis, but the molecular mechanism of this inhibition remains elusive. In the present study, we found that TNFα-induced inhibition of adipogenesis mainly occurs when 3T3-L1 preadipocytes are treated with TNFα within 2h induction of adipogenesis. We revealed that TNFα treatment results in the up-regulation of miR-155 through the NFκB pathway in 3T3-L1 cells. This overexpression of miR-155 may suppress the expression of C/EBPβ and CREB by directly targeting their 3' untranslated regions (3' UTRs). Importantly, anti-miR-155 reduces the TNFα-induced inhibition of adipogenesis, whereas exogenous expression of mir-155 inhibits adipogenesis. Taken together, these findings reveal a novel role for TNFα in the regulation of anti-adipogenic miRNAs.
Collapse
Affiliation(s)
- Sanhong Liu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
46
|
Qadir AS, Lee HL, Baek KH, Park HJ, Woo KM, Ryoo HM, Baek JH. Msx2 is required for TNF-α-induced canonical Wnt signaling in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2011; 408:399-404. [DOI: 10.1016/j.bbrc.2011.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
47
|
Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis 2011; 5:119-31. [PMID: 21406494 DOI: 10.1177/1753944711403189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Poor early nutrition has varying effects on subsequent cardiometabolic disease (CMD) rates. Fetal and neonatal periods are critical for the development and growth of the systems involved in CMD. The increased rates of hypertension, metabolic syndrome, diabetes mellitus type 2, renal failure and heart failure observed nowadays in Latin America could be the result of the discrepancy between the nutritional environment during fetal and early life and the adult environment. This discrepancy causes a mismatch between the fetal programming of the subject and its adult circumstances created by the imposition of new life styles. The two largest international studies on cardiovascular risk factors for a first myocardial infarction (INTERHEART) and stroke (INTERSTROKE) demonstrated that in Latin America the factor with the highest attributable population risk was abdominal obesity. The conflict between the earlier programming and the later presence of abdominal obesity produced a higher sensitivity of this population to develop a state of low-degree inflammation, insulin resistance and the epidemic of CMD to lower levels of abdominal adiposity. The relative roles played by genetic and environmental factors and the interaction between the two are the still subjects of great debate. We have reviewed the relationship between maternal malnutrition, early growth restriction, epigenetic adaptations, and the later occurrence of abdominal obesity and CMD in Latin America.
Collapse
Affiliation(s)
- Patricio Lopez-Jaramillo
- Research Direction, Fundacion Oftalmologica de Santander-Clinica Carlos Ardila-Lulle, Floridablanca, Santander, Colombia.
| | | | | |
Collapse
|
48
|
Ye J, Keller JN. Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY) 2010; 2:361-8. [PMID: 20606248 PMCID: PMC2919256 DOI: 10.18632/aging.100155] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caloric
restriction (CR), in the absence of malnutrition, delays aging and prevents
aging-related diseases through multiple mechanisms. A reduction in chronic
inflammation is widely observed in experimental models of caloric
restriction. The low inflammation status may contribute to the reduced
incidence of osteoporosis, Alzheimer's disease, cardiovascular diseases and
cancer in the aging subjects. The association of caloric restriction with
low inflammation suggests a role of energy accumulation in the origin of
the chronic inflammation. This point is enforced by recent advances in
obesity research. Abundant literature on obesity suggests that chronic
inflammation is a consequence of energy accumulation in the body. The
emerging evidence strongly supports that the inflammatory response induces
energy expenditure in a feedback manner to fight against energy surplus in
obesity.
If
this feedback system is deficient (Inflammation Resistance), energy
expenditure will be reduced and energy accumulation will lead to obesity. In this perspective, we propose
that an increase in inflammation in obesity promotes energy expenditure
with a goal to get rid of energy surplus. A decrease in inflammation under
caloric restriction contributes to energy saving. Inflammation is a
mechanism for energy balance in the body. Inflammation resistance will lead
to obesity. We will review the recent literature in support of the
viewpoints.
Collapse
Affiliation(s)
- Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, LA 70808, USA
| | | |
Collapse
|
49
|
Ishii-Yonemoto T, Masuzaki H, Yasue S, Okada S, Kozuka C, Tanaka T, Noguchi M, Tomita T, Fujikura J, Yamamoto Y, Ebihara K, Hosoda K, Nakao K. Glucocorticoid reamplification within cells intensifies NF-kappaB and MAPK signaling and reinforces inflammation in activated preadipocytes. Am J Physiol Endocrinol Metab 2010; 298:E930-40. [PMID: 19776225 DOI: 10.1152/ajpendo.00320.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased expression and activity of the intracellular glucocorticoid-reactivating enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) contribute to dysfunction of adipose tissue. Although the pathophysiological role of 11 beta-HSD1 in mature adipocytes has long been investigated, its potential role in preadipocytes still remains obscure. The present study demonstrates that the expression of 11 beta-HSD1 in preadipocyte-rich stromal vascular fraction (SVF) cells in fat depots from ob/ob and diet-induced obese mice was markedly elevated compared with lean control. In 3T3-L1 preadipocytes, the level of mRNA and reductase activity of 11 beta-HSD1 was augmented by TNF-alpha, IL-1 beta, and LPS, with a concomitant increase in inducible nitric oxide synthase (iNOS), monocyte chemoattractant protein-1 (MCP-1), or IL-6 secretion. Pharmacological inhibition of 11 beta-HSD1 and RNA interference against 11 beta-HSD1 reduced the mRNA and protein levels of iNOS, MCP-1, and IL-6. In contrast, overexpression of 11 beta-HSD1 further augmented TNF-alpha-induced iNOS, IL-6, and MCP-1 expression. Moreover, 11 beta-HSD1 inhibitors attenuated TNF-alpha-induced phosphorylation of NF-kappaB p65 and p38-, JNK-, and ERK1/2-MAPK. Collectively, the present study provides novel evidence that inflammatory stimuli-induced 11 beta-HSD1 in activated preadipocytes intensifies NF-kappaB and MAPK signaling pathways and results in further induction of proinflammatory molecules. Not limited to 3T3-L1 preadipocytes, we also demonstrated that the notion was reproducible in the primary SVF cells from obese mice. These findings highlight an unexpected, proinflammatory role of reamplified glucocorticoids within preadipocytes in obese adipose tissue.
Collapse
Affiliation(s)
- Takako Ishii-Yonemoto
- Division of Endocrinology and Metabolism, Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54, Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 2010; 110:564-72. [DOI: 10.1002/jcb.22598] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|