1
|
Kiyozumi D. Distinct actions of testicular endocrine and lumicrine signaling on the proximal epididymal transcriptome. Reprod Biol Endocrinol 2024; 22:40. [PMID: 38600586 PMCID: PMC11005294 DOI: 10.1186/s12958-024-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Research Institute for Microbial Diseases, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Kiyozumi D. Busulfan administration replicated the characteristics of the epididymal initial segment observed in mice lacking testis-epididymis lumicrine signaling. J Reprod Dev 2024; 70:104-114. [PMID: 38346723 PMCID: PMC11017096 DOI: 10.1262/jrd.2023-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024] Open
Abstract
The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, Tokyo 102-0076, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Liu MM, Fan CQ, Zhang GL. A Single-Cell Landscape of Spermioteleosis in Mice and Pigs. Cells 2024; 13:563. [PMID: 38607002 PMCID: PMC11011153 DOI: 10.3390/cells13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.
Collapse
Affiliation(s)
| | | | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (M.-M.L.); (C.-Q.F.)
| |
Collapse
|
4
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
5
|
Gong QQ, Dou ZL, Wang X, Zhang KY, Chen H, Gao JG, Sun XY. Epididymal initial segment-specific Cre recombinase activity in Lcn8-Cre knock-in mice. Mol Biol Rep 2021; 48:6015-6023. [PMID: 34328598 DOI: 10.1007/s11033-021-06604-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sperm acquire the ability to fertilize ova through a complex process of epididymal maturation. To identify the functions of genes expressed in the proximal epididymis, mouse models specific to this region are needed. METHODS AND RESULTS A Lcn8-Cre knock-in mouse line was generated using CRISPR/Cas9 technology. A 37 bp coding sequence of Lcn8 from the ATG start codon was replaced by an NLS-Cre-polyA cassette, resulting in Cre expression and the absence of Lcn8. Epididymal initial segment-specific Cre expression was identified using RT-PCR and western blotting, and the spatial-temporal Cre activity was further confirmed by using the Rosa26tdTomato reporter mice. Immunofluorescence staining showed that active Cre recombinase was present in the principal cells. Histological analyses of sperm and epididymides, and the four-month mating tests, were used to confirm that Cre expression did not affect normal development and male fecundity. CONCLUSIONS The novel Lcn8-Cre mice can be used to establish epididymal initial segment-specific conditional knock-out mouse models.
Collapse
Affiliation(s)
- Qian-Qian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhi-Lin Dou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yi Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jian-Gang Gao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Yang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Wen Z, Liu D, Zhu H, Sun X, Xiao Y, Lin Z, Zhang A, Ye C, Gao J. Deficiency for Lcn8 causes epididymal sperm maturation defects in mice. Biochem Biophys Res Commun 2021; 548:7-13. [PMID: 33631677 DOI: 10.1016/j.bbrc.2021.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022]
Abstract
Lipocalin family members, LCN8 and LCN9, are specifically expressed in the initial segment of mouse caput epididymis. However, the biological functions of the molecules in vivo are yet to be clarified. In this study, CRISPR/Cas9 technology was used to generate Lcn8 and Lcn9 knockout mice, respectively. Lcn8-/- and Lcn9-/- male mice showed normal spermatogenesis and fertility. In the cauda epididymis of Lcn8-/- male mice, morphologically abnormal sperm was increased significantly, the proportion of progressive motility sperm was decreased, the proportion of immobilized sperm was elevated, and the sperm spontaneous acrosome reaction (AR) frequency was increased. Conversely, the knockout of Lcn9 did not have any effect on the ratio of morphologically abnormal sperm, sperm motility, and sperm spontaneous AR frequencies. These results demonstrated the role of LCN8 in maintaining the sperm quality in the epididymis, and suggested that the deficiency of LCN8 leads to epididymal sperm maturation defects.
Collapse
Affiliation(s)
- Zongzhuang Wen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Zhuchun Lin
- Jinan First People's Hospital, Jinan, 250011, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Chao Ye
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
7
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Kearney RE, Smith CE, Vali H, Fernandez-Rodriguez J, Simon PHG, Mandato C, Nilsson T, Bergeron JJM. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm. Open Biol 2016; 5:rsob.150080. [PMID: 26311421 PMCID: PMC4554921 DOI: 10.1098/rsob.150080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body. By electron microscope gold antibody labelling, the Golgi trafficking protein TMED7/p27 localized to unstacked flattened cisternae of the Hermes body, as did GLUT-3, the most abundant protein. Its biogenesis was deduced through the mapping of protein expression for all 43 proteins during male germ cell differentiation in the testis. It is at the terminal step 19 of spermiogenesis that the 43 characteristic proteins accumulated in the nascent Hermes body.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Robert E Kearney
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy at the University of Gothenburg, PO Box 435, 40530 Gothenburg, Sweden
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - Craig Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7 Department of Medicine, McGill University Health Centre Research Institute, 1001 Decarie Blvd, Montreal, Quebec, Canada H4A 3J1 Royal Victoria Hospital, Center for Translational Biology, RI-MUHC, Glen Site, 1001 Decarie Blvd, Bloc E, Room E02.7210, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
8
|
Hermo L, Krzeczunowicz D, Ruz R. Cell Specificity of Aquaporins 0, 3, and 10 Expressed in the Testis, Efferent Ducts, and Epididymis of Adult Rats. ACTA ACUST UNITED AC 2013; 25:494-505. [PMID: 15223838 DOI: 10.1002/j.1939-4640.2004.tb02820.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aquaporins (AQPs) are transmembrane protein channels that allow the rapid passage of water across an epithelium at a low energy requirement, though some also transport glycerol, urea, and solutes of various sizes. At present, 11 members of the AQP family of proteins have been described in mammals, with several being localized to the testis (AQP-7 and AQP-8), efferent ducts (AQP-1 and AQP-9), and epididymis (AQP-1 and AQP-9) of adult rats. With the discovery of expression of multiple AQPs in different tissues, we undertook a systematic analysis of several other members of the AQP family on Bouin-fixed tissues of the male reproductive tract employing light microscope immunocytochemistry. In the testis, AQP-0 expression in the seminiferous epithelium was restricted to Sertoli cells and to Leydig cells of the interstitial space; no reaction was observed in the efferent ducts or epididymis. In Sertoli cells, a semicircular pattern of staining was noted, with only one fourth or one half of the Sertoli cells of a given tubule showing a reaction product. Furthermore, while Sertoli cells at stages VI-VIII of the cycle showed intense staining, those at stages IX-XIV were least reactive, with Sertoli cells at stages I-V showing intermediate levels of reaction product. The epithelial expression of AQP-10 was restricted to the microvilli of the nonciliated cells and the cilia of the ciliated cells of the efferent ducts; however, the endothelial cells of vascular channels of the efferent ducts and epididymis were also intensely reactive. AQP-3 expression was localized exclusively to the epididymis, where intense staining was noted exclusively over basal cells. Examination of orchidectomized rats revealed that AQP-3 expression was abolished over basal cells and that it was greatly diminished after efferent duct ligation. As the reaction was not fully restored in orchidectomized animals supplemented with high levels of testosterone, we suggest that AQP-3 expression in basal cells is regulated in part by testosterone, in addition to a luminal factor emanating from the testis. Together, the data indicate a cell- and tissue-specific expression for AQP-0, AQP-3, and AQP-10 in the testis, efferent ducts, and epididymis, as well as differential regulating factors for the expression of AQP-3 in basal cells.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
9
|
Li X, Zhan X, Liu S, Hu S, Zhu C, Hall SH, French FS, Liu Q, Zhang Y. Cloning and primary characterizations of rLcn9, a new member of epididymal lipocalins in rat. Acta Biochim Biophys Sin (Shanghai) 2012; 44:876-85. [PMID: 23017836 PMCID: PMC3459353 DOI: 10.1093/abbs/gms072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/03/2012] [Indexed: 01/24/2023] Open
Abstract
Lipocalins are a structurally conserved and diversely functional family of proteins that are of potential importance in epididymis functions. The rat Lcn9 gene was cloned by in silico methods and genome walking based on homology to the rhesus monkey epididymal ESC513 and its polyclonal antisera were prepared. The rat Lcn9 gene is located on chromosome 3p13 spanning 7 exons, contains 2.3 kb and encodes 179 amino acids with a 17-amino acid signal peptide. Northern blot, western blot, and immunohistochemical staining analysis revealed that rat Lcn9 was a novel epididymis-specific gene, expressed selectively in the proximal caput region, influenced by luminal fluid testicular factors. Moreover, Lcn9 protein was modified by N-glycosylation and bound on the postacrosomal domain of caput sperm. In conclusion, the rat Lcn9 exhibited tissue-, region-, and temporal-specific expression patterns and its expression was regulated by luminal testicular factors. Its potential roles in sperm maturation are discussed.
Collapse
Affiliation(s)
- Xiangqi Li
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xiaoni Zhan
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigui Liu
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Shuanggang Hu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunfang Zhu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Susan H. Hall
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | - Frank S. French
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | - Qiang Liu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yonglian Zhang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
10
|
Björkgren I, Saastamoinen L, Krutskikh A, Huhtaniemi I, Poutanen M, Sipilä P. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One 2012; 7:e38457. [PMID: 22701646 PMCID: PMC3368854 DOI: 10.1371/journal.pone.0038457] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/05/2012] [Indexed: 12/30/2022] Open
Abstract
Background The postnatal development of the epididymis is a complex process that results in a highly differentiated epithelium, divided into several segments. Recent studies indicate a role for RNA interference (RNAi) in the development of the epididymis, however, the actual requirement for RNAi has remained elusive. Here, we present the first evidence of a direct need for RNAi in the differentiation of the epididymal epithelium. Methodology/Principal Findings By utilizing the Cre-LoxP system we have generated a conditional knock-out of Dicer1 in the two most proximal segments of the mouse epididymis. Recombination of Dicer1, catalyzed by Defb41iCre/wt, took place before puberty, starting from 12 days postpartum. Shortly thereafter, downregulation of the expression of two genes specific for the most proximal epididymis (lipocalin 8 and cystatin 8) was observed. Following this, segment development continued until week 5 at which age the epithelium started to regress back to an undifferentiated state. The dedifferentiated epithelium also showed an increase in estrogen receptor 1 expression while the expression of androgen receptor and its target genes; glutathione peroxidase 5, lipocalin 5 and cysteine-rich secretory protein 1 was downregulated, indicating imbalanced sex steroid signaling. Conclusions/Significance At the time of the final epididymal development, Dicer1 acts as a regulator of signaling pathways essential for maintaining epithelial cell differentiation.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
| | - Lauri Saastamoinen
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anton Krutskikh
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, (TCDM), University of Turku, Turku, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, (TCDM), University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
11
|
Turunen HT, Sipilä P, Pujianto DA, Damdimopoulos AE, Björkgren I, Huhtaniemi I, Poutanen M. Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors. Reprod Biol Endocrinol 2011; 9:128. [PMID: 21942998 PMCID: PMC3192744 DOI: 10.1186/1477-7827-9-128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/26/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Spermatozoa leaving the testis are not able to fertilize the egg in vivo. They must undergo further maturation in the epididymis. Proteins secreted to the epididymal lumen by the epithelial cells interact with the spermatozoa and enable these maturational changes, and are responsible for proper storage conditions before ejaculation. The present study was carried out in order to characterize the expression of a novel Pate (prostate and testis expression) gene family, coding for secreted cysteine-rich proteins, in the epididymis. METHODS Murine genome databases were searched and sequence comparisons were performed to identify members of the Pate gene family, and their expression profiles in several mouse tissues were characterized by RT-PCR. Alternate transcripts were identified by RT-PCR, sequencing and Northern hybridization. Also, to study the regulation of expression of Pate family genes by the testis, quantitative (q) RT-PCR analyses were performed to compare gene expression levels in the epididymides of intact mice, gonadectomized mice, and gonadectomized mice under testosterone replacement treatment. RESULTS A revised family tree of Pate genes is presented, including a previously uncharacterized Pate gene named Pate-X, and the data revealed that Acrv1 and Sslp1 should also be considered as members of the Pate family. Alternate splicing was observed for Pate-X, Pate-C and Pate-M. All the Pate genes studied are predominantly expressed in the epididymis, whereas expression in the testis and prostate is notably lower. Loss of androgens and/or testicular luminal factors was observed to affect the epididymal expression of several Pate genes. CONCLUSIONS We have characterized a gene cluster consisting of at least 14 expressed Pate gene members, including Acrv1, Sslp1 and a previously uncharacterized gene which we named Pate-X. The genes code for putatively secreted, cysteine-rich proteins with a TFP/Ly-6/uPAR domain. Members of the Pate gene cluster characterized are predominantly expressed in the murine epididymis, not in the testis or prostate, and are regulated by testicular factors. Similar proteins are present in venoms of several reptiles, and they are thought to mediate their effects by regulating certain ion channels, and are thus expected to have a clinical relevance in sperm maturation and epididymal infections.
Collapse
Affiliation(s)
- Heikki T Turunen
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Kiinamyllynkatu 13, FIN-20520, Turku, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Turku Center for Disease Modeling, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Dwi Ari Pujianto
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Department of Biology, Faculty of Medicine, University of Indonesia, Jakarta Pusat, Indonesia
| | - Anastasios E Damdimopoulos
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Ida Björkgren
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Kiinamyllynkatu 13, FIN-20520, Turku, Finland
| | - Ilpo Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
- Turku Center for Disease Modeling, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| |
Collapse
|
12
|
Nynca J, Dietrich MA, Bilińska B, Kotula-Balak M, Kiełbasa T, Karol H, Ciereszko A. Isolation of lipocalin-type protein from rainbow trout seminal plasma and its localisation in the reproductive system. Reprod Fertil Dev 2011; 23:381-9. [DOI: 10.1071/rd10118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 11/23/2022] Open
Abstract
The lipocalin protein family is a large and diverse group of small extracellular proteins characterised by their ability to bind hydrophobic molecules. In the present study, we describe the isolation procedure for rainbow trout seminal plasma protein, characterised by a moderate migration rate during polyacrylamide gel electrophoresis, providing information regarding its basic features and immunohistochemical localisation. This protein was identified as a lipocalin-type protein (LTP). The molecular mass of LTP was found to be 18 848 Da and it was found to lack any carbohydrate components. Only a few Salmoniformes contain LTP in their seminal plasma. The abundance of LTP in the Sertoli and Leydig cells of the testes of the rainbow trout, as well as in secretory cells of the efferent duct, suggests that this protein is specific for rainbow trout milt, where it acts as a lipophilic carrier protein. Moreover, the specific localisation of LTP in the flagella of the spermatozoa suggests a role for LTP in sperm motility. Further experiments are necessary to identify the endogenous ligands for LTP in rainbow trout seminal plasma and to characterise the binding properties of this protein.
Collapse
|
13
|
Suzuki K, Yu X, Chaurand P, Araki Y, Lareyre JJ, Caprioli RM, Orgebin-Crist MC, Matusik RJ. Epididymis-specific lipocalin promoters. Asian J Androl 2007; 9:515-21. [PMID: 17589789 DOI: 10.1111/j.1745-7262.2007.00300.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized in the epididymis. Lipocalin 5 (Lcn5 or mE-RABP) and Lipocalin 8 (Lcn8 or mEP17) are homologous genes belonging to the epididymis-specific lipocalin gene cluster. Both the 5 kb promoter fragment of the Lcn5 gene and the 5.3 kb promoter fragment of the Lcn8 gene can direct transgene expression in the epididymis (Lcn5 to the distal caput and Lcn8 to the initial segment), indicating that these promoter fragments contain important cis-regulatory element(s) for epididymis-specific gene expression. To define further the fragments regulating gene expression, the Lcn5 promoter was examined in transgenic mice and immortalized epididymal cell lines. After serial deletion, the 1.8 kb promoter fragment of the Lcn5 gene was sufficient for tissue-specific and region-specific gene expression in transgenic mice. Transient transfection analysis revealed that a transcription factor forkhead box A2 (Foxa2) interacts with androgen receptor and binds to the 100 bp fragment of the Lcn5 promoter between 1.2 kb and 1.3 kb and that Foxa2 expression inhibits androgen-dependent induction of the Lcn5 promoter activity. Immunohistochemistry indicated a restricted expression of Foxa2 in the epididymis where endogenous Lcn5 gene expression is suppressed and that the Foxa2 inhibition of the Lcn5 promoter is consistent with the lack of expression of Lcn5 in the corpus and cauda. Our approach provides a basic strategy for further analysis of the epididymal lipocalin gene regulation and flexible control of epididymal function.
Collapse
Affiliation(s)
- Kichiya Suzuki
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pujianto DA, Damdimopoulos AE, Sipilä P, Jalkanen J, Huhtaniemi I, Poutanen M. Bfk, a novel member of the bcl2 gene family, is highly expressed in principal cells of the mouse epididymis and demonstrates a predominant nuclear localization. Endocrinology 2007; 148:3196-204. [PMID: 17412810 DOI: 10.1210/en.2007-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
B-cell lymphoma 2 (BCL2) family kin (BFK) is a recently identified novel protein that is similar to proteins of the BCL2 family. In the present study, we discovered that the mouse Bfk transcript is expressed at the highest level in the epididymis. Two transcripts of 0.9 and 2.6 kb in size were identified, with alternative exon 4 structures, resulting in a difference in the last three to five amino acids of the variants. However, the 0.9-kb transcript was found to be the predominant form in the epididymis and mammary gland, another tissue with strong Bfk expression. Epididymal Bfk expression was regulated both by androgens and other testicular factors. It is thus one of the few initial-segment enriched genes under androgen control, the majority of them being regulated by other testicular factors. BFK protein was expressed specifically in the principal cells of the epididymis. Its nuclear localization was evident in the initial segment and caput epididymis and in the epithelium of pregnant female mammary gland. The expression of BFK-enhanced green fluorescent protein recombinant protein in epididymal cells further confirmed the predominant nuclear localization of BFK with nucleo-cytoplasmic shuttling. Overexpressing BFK in epididymal cells did not induce apoptosis. However, enhanced caspase 3 activation was observed in the presence of BFK upon staurosporine-induced apoptosis. This suggests that BFK may have a proapoptotic role only after the process has been initiated by other mechanisms. Being exceptionally highly expressed in the initial segment, Bfk is suggested to have a role in the differentiation of this segment of the epididymis.
Collapse
Affiliation(s)
- Dwi Ari Pujianto
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Sipilä P, Pujianto DA, Shariatmadari R, Nikkilä J, Lehtoranta M, Huhtaniemi IT, Poutanen M. Differential Endocrine Regulation of Genes Enriched in Initial Segment and Distal Caput of the Mouse Epididymis as Revealed by Genome-Wide Expression Profiling1. Biol Reprod 2006; 75:240-51. [PMID: 16641146 DOI: 10.1095/biolreprod.105.047811] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have performed genome-wide expression profiling of endocrine regulation of genes expressed in the mouse initial segment (IS) and distal caput of the epididymis by using Affymetrix microarrays. The data revealed that of the 15 020 genes expressed in the epididymis, 35% were enriched in one of the two regions studied, indicating that differential functions can be attributed to the IS and the more distal caput regions. The data, furthermore, showed that 27% of the genes expressed in the IS and/or distal caput epididymidis are under the regulation of testicular factors present in the duct fluid, while bloodborne androgens can regulate for 14% of them. This is in line with the high testis dependency of epididymal physiology. We then focused on genes with moderate or strong expression, showing strict segment enrichment and strong dependency on testicular factors. Analyses of the 59 genes, including upregulated and downregulated genes, fulfilling the criteria indicated that the expression of 18 (17 downregulated genes; 1 upregulated gene) of 19 gonadectomy-responsive genes enriched in the IS was not maintained by the androgen treatment, whereas the expression of all six downregulated genes enriched in the distal caput and the majority of those with no strict segment enrichment of expression (28 of 34; consisting of 23 downregulated and 5 upregulated genes) were maintained by androgens. Hence, it is evident that testicular factors other than androgens are important for the expression of IS-enriched genes, whereas the expression of distal caput-enriched genes is typically regulated by androgens. Identical data were obtained by independent clustering analyses performed for the expression data of 3626 epididymal genes. Several novel genes with putative involvement in epididymal sperm maturation, such as a disintegrin and metallopeptidase domain 28 (Adam28) and a solute carrier organic anion transporter family, member 4C1 (Slco4c1), were identified, indicating that this approach is successful for identifying novel epididymal genes.
Collapse
Affiliation(s)
- Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Yu X, Suzuki K, Wang Y, Gupta A, Jin R, Orgebin-Crist MC, Matusik R. The role of forkhead box A2 to restrict androgen-regulated gene expression of lipocalin 5 in the mouse epididymis. Mol Endocrinol 2006; 20:2418-31. [PMID: 16740652 DOI: 10.1210/me.2006-0008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Murine epididymal retinoic acid-binding protein [or lipocalin 5 (Lcn5)] is synthesized and secreted by the principal cells of the mouse middle/distal caput epididymidis. A 5-kb promoter fragment of the Lcn5 gene can dictate androgen-dependent and epididymis region-specific gene expression in transgenic mice. Here, we reported that the 1.8-kb Lcn5 promoter confers epididymis region-specific gene expression in transgenic mice. To decipher the mechanism that directs transcription, 14 chimeric constructs that sequentially removed 100 bp of 1.8-kb Lcn5 promoter were generated and transfected into epididymal cells and nonepididymal cells. Transient transfection analysis revealed that 1.3 kb promoter fragment gave the strongest response to androgens. Between the 1.2-kb to 1.3-kb region, two androgen receptor (AR) binding sites were identified. Adjacent to AR binding sites, a Foxa2 [Fox (Forkhead box) subclass A] binding site was confirmed by gel shift assay. Similar Foxa binding sites were also found on the promoters of human and rat Lcn5, indicating the Foxa binding site is conserved among species. We previously reported that among the three members of Foxa family, Foxa1 and Foxa3 were absent in the epididymis whereas Foxa2 was detected in epididymal principal cells. Here, we report that Foxa2 displays a region-specific expression pattern along the epididymis: no staining observed in initial segment, light staining in proximal caput, gradiently heavier staining in middle and distal caput, and strongest staining in corpus and cauda, regions with little or no expression of Lcn5. In transient transfection experiments, Foxa2 expression inhibits AR induction of the Lcn5 promoter, which is consistent with the lack of expression of Lcn5 in the corpus and cauda. We conclude that Foxa2 functions as a repressor that restricts AR regulation of Lcn5 to a segment-specific pattern in the epididymis.
Collapse
Affiliation(s)
- Xiuping Yu
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tabuchi Y, Toyama Y, Toshimori K, Komiyama M, Mori C, Kondo T. Functional characterization of a conditionally immortalized mouse epididymis caput epithelial cell line MEPC5 using temperature-sensitive simian virus 40 large T-antigen. Biochem Biophys Res Commun 2005; 329:812-23. [PMID: 15752729 DOI: 10.1016/j.bbrc.2005.02.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 11/21/2022]
Abstract
A conditionally immortalized epididymis caput cell line, MEPC5, was established by infecting primary cultured mouse epididymis caput cells with a temperature-sensitive simian virus 40 large T-antigen. At a permissive temperature of 33 degrees C, the large T-antigen was expressed and the cells grew continuously. However, the downregulation of T-antigen at a nonpermissive temperature of 39 degrees C and the upregulation of cell density at 33 degrees C were associated with growth arrest and the increased protein expression of p21(waf1), a cell cycle inhibitor. The cells expressed epididymal caput-expressed genes such as phosphatidylethanolamine binding protein, polyoma enhancer activator 3, ME1, sulfated glycoprotein-2 (SGP-2), androgen receptor, and retinoic acid receptor alpha. Interestingly, the expression levels of ME1 and SGP-2 were significantly elevated under the cell growth-restricted conditions. The established mouse epididymis caput epithelial cell line MEPC5 retains some characteristics of differentiated epididymis epithelial cells, and should prove an excellent model for studies of gene expression and the physiological functions of epididymis caput epithelial cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics, Life Scientific Research Center, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Melner MH, Ducharme NA, Brash AR, Winfrey VP, Olson GE. Differential Expression of Genes in the Endometrium at Implantation: Upregulation of a Novel Member of the E2 Class of Ubiquitin-Conjugating Enzymes1. Biol Reprod 2004; 70:406-14. [PMID: 14561654 DOI: 10.1095/biolreprod.103.020719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The process of embryo attachment and implantation is accompanied by dramatic cellular and functional changes in the endometrium, the control and mechanisms of which are not clearly understood. The cDNA cloning of differentially expressed genes, specifically at implantation sites in the rabbit endometrium, was used to identify genes controlling functional and remodeling changes. Tissue from the endometrium of Day 6(3/4) (preimplantation) and Day 8 (implantation initiation) pregnant rabbits was used to screen for differentially expressed genes by combined cDNA subtraction/suppressive hybridization. Twenty-nine differentially expressed genes were identified encoding protein modification enzymes, signaling proteins, structural proteins, and enzymes. One of these is a novel member of the E2 ubiquitin-conjugating enzyme family we have designated UBCi (i for implantation), which displayed dramatic nucleotide and deduced amino acid sequence conservation between rabbits, humans, and mice. In situ hybridization indicated UBCi expression exclusively in the luminal epithelium of the endometrium while glandular epithelium, trophoblast, and myometrium were negative. Expression was specific for epithelial cells at implantation sites and was not detected in non-implant-site endometrium. UBCi mRNA was detected in both the mesometrial and antimesometrial epithelial cells of the implantation sites, sites undergoing both differentiation and/or apoptosis. These results identify a group of differentially expressed genes in the endometrium including UBCi and provide new focal targets for studying processes controlling cellular remodeling during implantation. The important roles of ubiquitination in controlling the activities and turnover of key signaling proteins suggest potential roles in controlling critical aspects of implantation.
Collapse
Affiliation(s)
- Michael H Melner
- Departments of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
19
|
Sipilä P, Shariatmadari R, Huhtaniemi IT, Poutanen M. Immortalization of epididymal epithelium in transgenic mice expressing simian virus 40 T antigen: characterization of cell lines and regulation of the polyoma enhancer activator 3. Endocrinology 2004; 145:437-46. [PMID: 14527890 DOI: 10.1210/en.2003-0831] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study epididymal epithelium was immortalized in transgenic mice by expressing simian virus 40 T antigen under a 5.0-kb mouse glutathione peroxidase 5 promoter (GPX5-Tag1). Epididymal tumorigenesis was associated with an increase in c-Myc expression, and a marked decrease in B-Myc expression, with a 500-fold lower level in the GPX5-Tag1 caput epididymis compared with wild-type caput. Furthermore, B-Myc was undetectable in the immortalized corpus and cauda epididymis. Hence, it is possible that the normally high B-Myc expression in the epididymis is one of the factors contributing to the highly resistant nature of epididymis toward immortalization. Morphologically different epithelial cell lines were generated from the immortalized epididymides, and the cells expressed several genes typical for epididymal epithelium, such as mouse epididymal 1, mouse epididymal protein 9, androgen and estrogen receptors, anion exchangers 2 and 4, retinoic acid receptor alpha, and polyoma enhancer activator 3 (PEA3). This indicated the differentiated status of the cells and their usefulness for analyzing epididymal gene expression in vitro. As PEA3 is considered to be one of the transcription factors responsible for epididymal gene expression, we further studied its regulation in epididymal cells in vitro. The data showed that PEA3 mRNA expression is regulated in the epididymis via protein kinase A and ERK signaling cascades. Inhibiting protein kinase A resulted in up-regulation and inhibiting ERK resulted in down-regulation of PEA3 mRNA, whereas no significant effect on PEA3 expression was found by modulating the protein kinase C, stress-activated p38, phosphoinositol 3-kinase and p70 S6 kinase cascades.
Collapse
Affiliation(s)
- Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | | | | | | |
Collapse
|
20
|
Hamil KG, Liu Q, Sivashanmugam P, Anbalagan M, Yenugu S, Soundararajan R, Grossman G, Rao AJ, Birse CE, Ruben SM, Richardson RT, Zhang YL, O'Rand MG, Petrusz P, French FS, Hall SH. LCN6, a novel human epididymal lipocalin. Reprod Biol Endocrinol 2003; 1:112. [PMID: 14617364 PMCID: PMC293424 DOI: 10.1186/1477-7827-1-112] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 11/14/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The lipocalin (LCN) family of structurally conserved hydrophobic ligand binding proteins is represented in all major taxonomic groups from prokaryotes to primates. The importance of lipocalins in reproduction and the similarity to known epididymal lipocalins prompted us to characterize the novel human epididymal LCN6. METHODS AND RESULTS LCN6 cDNA was identified by database analysis in a comprehensive human library sequencing program. Macaca mulatta (rhesus monkey) cDNA was obtained from an epididymis cDNA library and is 93% homologous to the human. The gene is located on chromosome 9q34 adjacent LCN8 and LCN5. LCN6 amino acid sequence is most closely related to LCN5, but the LCN6 beta-barrel structure is best modeled on mouse major urinary protein 1, a pheromone binding protein. Northern blot analysis of RNAs isolated from 25 human tissues revealed predominant expression of a 1.0 kb mRNA in the epididymis. No other transcript was detected except for weak expression of a larger hybridizing mRNA in urinary bladder. Northern hybridization analysis of LCN6 mRNA expression in sham-operated, castrated and testosterone replaced rhesus monkeys suggests mRNA levels are little affected 6 days after castration. Immunohistochemical staining revealed that LCN6 protein is abundant in the caput epithelium and lumen. Immunofluorescent staining of human spermatozoa shows LCN6 located on the head and tail of spermatozoa with the highest concentration of LCN6 on the post-acrosomal region of the head, where it appeared aggregated into large patches. CONCLUSIONS LCN6 is a novel lipocalin closely related to Lcn5 and Lcn8 and these three genes are likely products of gene duplication events that predate rodent-primate divergence. Predominant expression in the epididymis and location on sperm surface are consistent with a role for LCN6 in male fertility.
Collapse
Affiliation(s)
- Katherine G Hamil
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Qiang Liu
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - P Sivashanmugam
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Urology, Duke University, Durham, North Carolina 27708, USA
| | - M Anbalagan
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Suresh Yenugu
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Rama Soundararajan
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Present address: Department of Medicine, University of California, San Francisco 94143, USA
| | - Gail Grossman
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - AJ Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Stephen M Ruben
- Human Genome Sciences, Inc, Rockville, Maryland 20850, USA
- Present address: Celera Genomics, Rockville, Maryland 20850, USA
| | - Richard T Richardson
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yong-Lian Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael G O'Rand
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Frank S French
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Susan H Hall
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
21
|
Cooper TG, Wagenfeld A, Cornwall GA, Hsia N, Chu ST, Orgebin-Crist MC, Drevet J, Vernet P, Avram C, Nieschlag E, Yeung CH. Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. Biol Reprod 2003; 69:1750-62. [PMID: 12890734 DOI: 10.1095/biolreprod.103.017566] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transgenic male mice bearing inactive mutations of the receptor tyrosine kinase c-ros lack the initial segment of the epididymis and are infertile. Several techniques were applied to determine differences in gene expression in the epididymal caput of heterozygous fertile (HET) and infertile homozygous knockout (KO) males that may explain the infertility. Complementary DNA arrays, gene chips, Northern and Western blots, and immunohistochemistry indicated that some proteins were downregulated, including the initial segment/proximal caput-specific genes c-ros, cystatin-related epididymal-spermatogenic (CRES), and lipocalin mouse epididymal protein 17 (MEP17), whereas other caput-enriched genes (glutathione peroxidase 5, a disintegrin and metalloproteinase [ADAM7], bone morphogenetic proteins 7 and 8a, A-raf, CCAAT/enhancer binding protein beta, PEA3) were unchanged. Genes normally absent from the initial segment (gamma-glutamyltranspeptidase, prostaglandin D2 synthetase, alkaline phosphatase) were expressed in the undifferentiated proximal caput of the KO. More distally, lipocalin 2 (24p3), CRISP1 (formerly MEP7), PEBP (MEP9), and mE-RABP (MEP10) were unchanged in expression. Immunohistochemistry and Western blots confirmed the absence of CRES in epididymal tissue and fluid and the continued presence of CRES in spermatozoa of the KO mouse. The glutamate transporters EAAC1 (EAAT3) and EAAT5 were downregulated and upregulated, respectively. The genes of over 70 transporters, channels, and pores were detected in the caput epididymidis, but in the KO, only three were downregulated and six upregulated. The changes in these genes could affect sperm function by modifying the composition of epididymal fluid and explain the infertility of the KO males. These genes may be targets for a posttesticular contraceptive.
Collapse
Affiliation(s)
- Trevor G Cooper
- Institute of Reproductive Medicine of the University, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Andonian S, Hermo L. Immunolocalization of the Yb1 subunit of glutathione S-transferase in the adult rat epididymis following orchidectomy and efferent duct ligation. JOURNAL OF ANDROLOGY 2003; 24:577-87. [PMID: 12826697 DOI: 10.1002/j.1939-4640.2003.tb02709.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to the maturation of sperm, the epididymis also serves to protect sperm from harmful reactive oxygen species. To this end, various antioxidant enzymes are produced by the epididymis, such as glutathione S-transferases (GSTs), a family of dimeric proteins that catalyze the conjugation of glutathione to various electrophilic compounds, thus providing cellular detoxification. In the present study, the regulation of the Yb(1) subunit of GST was examined in Bouin-fixed epididymides of adult control, orchidectomized (O) rats with or without testosterone (T) supplementation and efferent duct-ligated (EDL) rats using light microscope immunocytochemistry with an anti-Yb(1)-GST antibody. The intensely reactive ciliated cells of the efferent ducts and principal cells of the epididymis showing a checkerboard staining pattern were unaltered in their expression of Yb(1)-GST after all experimental procedures, suggesting their regulation by factors other than of testicular origin. On the other hand, the intense reaction of narrow/apical cells and moderate reaction of basal cells of the proximal initial segment of control animals became negligible in O rats and was not restored with T supplementation. As staining was also absent after EDL, the data suggest that a luminal testicular factor(s), other than androgens, regulates expression of Yb(1)-GST in narrow/apical and basal cells of the proximal initial segment. Although basal cells of the caput and cauda epididymidis were unreactive after all experimental protocols, as also noted in controls, the intensely reactive basal cells of the corpus epididymidis of control animals became unreactive in O animals. However, Yb(1)-GST expression was restored to these cells with T supplementation, and as there was no effect on Yb(1)-GST expression after EDL, the data suggest that circulating testosterone or one of its metabolites regulates expression of Yb(1)-GST in basal cells of the corpus region. Taken together, these data indicate a differential regulation with respect to the expression of Yb(1)-GST in the various cell types and regions of the epididymis.
Collapse
Affiliation(s)
- Sero Andonian
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
23
|
Abstract
The epididymis is the site for the transport, maturation, and storage of spermatozoa. Regulation of epididymal structure and function is highly dependent on the ipsilateral testis. At the molecular level, however, few studies have been undertaken to determine which genes are expressed in the epididymis under testicular regulation. The goal of this study was to identify genes for which expression is regulated after orchidectomy, both throughout the epididymis and in a segment-specific manner. Microarrays spotted with 474 rat cDNAs were used to examine gene expression changes over the first 7 d post orchidectomy in the initial segment, caput, corpus, and cauda epididymidis of the adult Brown Norway rat. Using k-means cluster analysis, we show that four patterns of gene expression are activated in each epididymal segment over the first week following orchidectomy. Transient up-regulation of gene expression in the epididymis after orchidectomy is described for the first time. Potential androgen-repressed genes, including Gpx-1, show increased expression in the epididymis after orchidectomy. Several glutathione-S-transferases and calcium-binding proteins decline throughout the epididymis after orchidectomy, indicating that these may be novel androgen-regulated epididymal genes. Other genes coding for metabolism-associated proteins, transporters, and alpha-1 acid glycoprotein show segment-specific regulation in the epididymis after orchidectomy. Finally, we describe the expression of the previously uncharacterized heat shock proteins, and apoptosis-associated genes in the epididymis after orchidectomy. Thus, gene expression in the epididymis is differentially affected over time after orchidectomy. These results provide novel insight into androgen-dependent and segment-specific epididymal function.
Collapse
Affiliation(s)
- Nadine Ezer
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|
24
|
Suzuki K, Araki Y, Zhu MY, Lareyre JJ, Matusik RJ, Orgebin-Crist MC. The 5'-flanking region of the murine epididymal protein of 17 kilodaltons gene targets transgene expression in the epididymis. Endocrinology 2003; 144:877-86. [PMID: 12586764 DOI: 10.1210/en.2002-220757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A murine epididymal retinoic-acid-binding protein (mE-RABP) is specifically expressed in the mid/distal caput epididymidis and is androgen regulated. The murine epididymal protein of 17 kDa (mEP17) gene, a novel gene homologous to mE-RABP, is located within 5 kb of the 5'-flanking region of the mE-RABP gene. In contrast, expression of the mEP17 gene is restricted to the initial segment and regulated by factor(s) contained in testicular fluid. To identify cis-DNA regulatory element(s) involved in the tissue- and region-specific expression of the mEP17 gene in transgenic mice, we have studied the expression of a transgene containing 5.3 kb of the 5'-flanking region of the mEP17 gene (5.3mEP17) linked to chloramphenicol acetyltransferase (CAT) reporter gene. Significant caput epididymidis-specific CAT activity was detected in transgenic mouse lines; and CAT gene expression is restricted to the initial segment, as is the expression of the endogenous mEP17 gene. Ontogenic expression and testicular factor dependency also mimic that of endogenous mEP17 gene. These results suggest that the 5.3mEP17 fragment contains all the information required for spatial and temporal expression in the mouse epididymis. The 5.3mEP17 fragment will be useful to express a foreign gene of interest in the epididymis in an initial segment-specific manner.
Collapse
Affiliation(s)
- Kichiya Suzuki
- Center for Reproductive Biology Research and Department of Obstetrics and Gynecology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2633, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Fouchécourt S, Chaurand P, DaGue BB, Lareyre JJ, Matusik RJ, Caprioli RM, Orgebin-Crist MC. Epididymal lipocalin-type prostaglandin D2 synthase: identification using mass spectrometry, messenger RNA localization, and immunodetection in mouse, rat, hamster, and monkey. Biol Reprod 2002; 66:524-33. [PMID: 11804971 DOI: 10.1095/biolreprod66.2.524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study identified prostaglandin D2 synthase (PGDS) in murine epididymal fluid using a proteomic approach combining two-dimensional (2D) gel electrophoresis and mass spectrometry (MS). The caudal epididymal fluid was collected by retroperfusion, and proteins were separated by 2D gel electrophoresis followed by matrix-assisted laser desorption ionization MS analyses after trypsin digestion. The identification was based on the protein-specific peptide map as well as on sequence information generated by nano-electrospray ionization MS/MS. By in situ hybridization, the mRNA was detected in caput, corpus, and cauda, but it was not detected in the initial segment. The PGDS protein was mostly detected in the corpus and cauda by Western blot analysis and immunohistochemistry using a specific polyclonal antibody. In caudal fluid, PGDS was distributed among several isoforms (pI range, 6.5-8.8), suggesting that this protein undergoes posttranslational modification of its primary sequence. After N-glycanase digestion, the molecular mass decreased from 20-25 to 18.5 kDa, its theoretical mass. The PGDS was also detected in the epididymis of rat, hamster, and cynomolgus monkey from the caput to the cauda. In conclusion, MS is a powerful and accurate technique that allows unambiguous identification of the murine epididymal PGDS. The protein is 1) present throughout the epididymis, except in the initial segment, with an increasing luminal concentration from distal caput to cauda; 2) a major protein in caudal fluid; 3) an N-glycosylated, highly polymorphic protein; and 4) conserved during evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cloning, Molecular
- Cricetinae
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Epididymis/anatomy & histology
- Epididymis/metabolism
- Glycoside Hydrolases/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Indicators and Reagents
- Intramolecular Oxidoreductases/analysis
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/metabolism
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Lipocalins
- Macaca fascicularis
- Male
- Mesocricetus
- Mice
- Molecular Sequence Data
- Proteome/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Species Specificity
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Sophie Fouchécourt
- Department of Obstetrics and Gynecology, Biochemistry, Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hsia N, Cornwall GA. CCAAT/enhancer binding protein beta regulates expression of the cystatin-related epididymal spermatogenic (Cres) gene. Biol Reprod 2001; 65:1452-61. [PMID: 11673262 DOI: 10.1095/biolreprod65.5.1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The CRES protein is a member of the cystatin superfamily of cysteine protease inhibitors with restricted expression in stage-specific germ cells, proximal caput epididymidis, and anterior pituitary gonadotroph cells. To elucidate the molecular mechanisms regulating the highly restricted expression of the cres gene, we have sequenced 1.6 kilobases of mouse cres 5' flanking sequence and performed studies to examine the cres gene promoter. Two putative CCAAT/enhancer binding protein (C/EBP) transcription factor binding motifs exist within the first 135 base pairs of cres promoter. Furthermore, our studies demonstrate that cres mRNA levels are dramatically reduced in the epididymides of C/EBP beta-deficient mice. These data suggest that the C/EBP family of transcription factors, in particular C/EBP beta, plays a role in the regulation of cres gene expression. In support of this finding, Northern blot analysis showed that C/EBP beta is the predominant C/EBP family member expressed in the L beta T2 gonadotroph cell line and the proximal caput epididymidis. Also, gel shift and supershift assays demonstrated that C/EBP beta protein in nuclear extracts from L beta T2 gonadotroph cells and epididymal cells bound to the two C/EBP sites in the cres promoter. Finally, to test the in vivo function of the C/EBP sites in cres gene expression, transfection studies were performed in L beta T2 gonadotroph cells and two heterologous cell systems. These experiments showed a significant reduction of cres transactivation when either C/EBP sites were mutated, and no transC/EBP activation of the cres promoter when both C/EBP sites were mutated. Taken together, these studies demonstrate that the C/EBP beta transcription factor is necessary for high levels of cres gene expression in the proximal caput epididymidis and anterior pituitary gonadotroph cells.
Collapse
Affiliation(s)
- N Hsia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | |
Collapse
|
27
|
Liu Q, Hamil KG, Sivashanmugam P, Grossman G, Soundararajan R, Rao AJ, Richardson RT, Zhang YL, O'Rand MG, Petrusz P, French FS, Hall SH. Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human. Endocrinology 2001; 142:4529-39. [PMID: 11564719 DOI: 10.1210/endo.142.10.8422] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epididymal secreted proteins promote sperm maturation and fertilizing capacity by interacting with sperm during passage through the epididymis. Here we investigate the molecular basis of sperm maturation by isolating cDNA clones for novel epididymis-specific expressed sequences. Thirty-six novel cDNAs were isolated and sequenced from a subtracted Macaca mulatta epididymis library. The clones encode proteins with a range of motifs characteristic of protein-modifying enzymes, protease inhibitors, hydrophobic ligand-binding and transport proteins, extracellular matrix-interacting proteins, and transcription regulatory factors. The full length coding sequences were obtained for 11 clones representing a range of abundance levels. Expression of each is regionally localized and androgen regulated. The most abundant, ESC42, contains a cysteine-rich region similar to the signature binding domain of the trefoil family of motogenic wound repair proteins. The monkey and human proteins are nearly 90% identical. Immunohistochemical staining revealed that the protein is most abundant in the epithelium of the caput and is also present in the lumen and bound to sperm. The ESC42 gene, located on chromosome 20q11, contains two exons encoding two nearly identical predicted signal peptides and a third exon encoding the rest of the protein.
Collapse
Affiliation(s)
- Q Liu
- Departments of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|