1
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Liu M, Hummitzsch K, Bastian NA, Hartanti MD, Irving-Rodgers HF, Anderson RA, Rodgers RJ. Expression of PCOS candidate genes in bovine fetal and adult ovarian somatic cells. REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0068. [PMID: 36346793 PMCID: PMC9782414 DOI: 10.1530/raf-22-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine metabolic disorder that appears to have a genetic predisposition and a fetal origin. The fetal ovary has two major somatic cell types shown previously to be of different cellular origins, different morphologies and to differentially express 15 genes. We isolated the somatic gonadal ridge epithelial-like (GREL) cells (n = 7) and ovarian fetal fibroblasts (n = 6) by clonal expansion. Using qRT-PCR, we compared the gene expression levels of PCOS candidate genes with previous data on the expression levels in whole fetal ovaries across gestation. We also compared these levels with those in bovine adult ovarian cells including fibroblasts (n = 4), granulosa cells (n = 5) and surface epithelial cells (n = 5). Adult cell types exhibited clear differences in the expression of most genes. In fetal ovarian cells, DENND1A and ERBB3 had significantly higher expression in GREL cells. HMGA2 and TGFB1I1 tended to have higher expression in fetal fibroblasts than GREL cells. Another 19 genes did not exhibit differences between GREL cells and fetal fibroblasts and FBN3, FSHB, LHCGR, FSHR and ZBTB16 were very lowly expressed in GREL cells and fibroblasts. The culture of fetal fibroblasts in EGF-containing medium resulted in lower expression of NEIL2, but higher expression of MAPRE1 compared to culture in the absence of EGF. Thus, the two fetal ovarian somatic cell types mostly lacked differential expression of PCOS candidate genes.
Collapse
Affiliation(s)
- Menghe Liu
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nicole A Bastian
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Monica D Hartanti
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Helen F Irving-Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, QLD, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Raymond J Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Genovesi ML, Torres B, Goldoni M, Salvo E, Cesario C, Majolo M, Mazza T, Piscopo C, Bernardini L. Case Report: A Novel Homozygous Missense Variant of FBN3 Supporting It Is a New Candidate Gene Causative of a Bardet–Biedl Syndrome–Like Phenotype. Front Genet 2022; 13:924362. [PMID: 35910214 PMCID: PMC9334770 DOI: 10.3389/fgene.2022.924362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Fibrillin proteins are extracellular matrix glycoproteins assembling into microfibrils. FBN1, FBN2, and FBN3 encode the human fibrillins and mutations in FBN1 and FBN2 cause connective tissue disorders called fibrillinopathies, affecting cardiovascular, dermal, skeletal, and ocular tissues. Recently, mutations of the less characterized fibrillin family member, FBN3, have been associated in a single family with Bardet–Biedl syndrome (BBS). Here, we report on a patient born from two first cousins and affected by developmental delay, cognitive impairment, obesity, dental and genital anomalies, and brachydactyly/syndactyly. His phenotype was very similar to that reported in the previous FBN3-mutated family and fulfilled BBS clinical diagnostic criteria, although lacking polydactyly, the most recurrent clinical feature, as the previous siblings described. A familial SNP-array and proband’s WES were performed prioritizing candidate variants on the sole patient’s runs of homozygosity. This analysis disclosed a novel homozygous missense variant in FBN3 (NM_032447:c.5434A>G; NP_115823:p.Ile1812Val; rs115948457), inherited from the heterozygous parents. This study further supports that FBN3 is a candidate gene for a BBS-like syndrome characterized by developmental delay, cognitive impairment, obesity, dental, genital, and skeletal anomalies. Anyway, additional studies are necessary to investigate the exact role of the gene and possible interactions between FBN3 and BBS proteins.
Collapse
Affiliation(s)
- Maria Luce Genovesi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Barbara Torres
- Medical Genetics Division, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, Italy
| | - Marina Goldoni
- Medical Genetics Division, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, Italy
| | - Eliana Salvo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Massimo Majolo
- Hospital Directorate, National Hospital A.O.R.N. “Antonio Cardarelli”, Naples, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, IRCCs Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, Italy
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, National Hospital A.O.R.N. “Antonio Cardarelli”, Naples, Italy
| | - Laura Bernardini
- Medical Genetics Division, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, Italy
- *Correspondence: Laura Bernardini,
| |
Collapse
|
4
|
Roosan D. The promise of digital health in healthcare equity and medication adherence in the disadvantaged dementia population. Pharmacogenomics 2022; 23:505-508. [PMID: 35698906 DOI: 10.2217/pgs-2022-0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract Pharmacogenomics cascade testing in a digital health solution can improve medication adherence in dementia care for disadvantaged populations.
Collapse
Affiliation(s)
- Don Roosan
- College of Pharmacy, Western University of Health Sciences, 309 E. 2nd Street, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Kalhor N, Kowsari A, Sheikholeslami A, Davoodi F, Fazaeli H. The Association of STR markers on 19p13.2 region and polycystic ovarian syndrome susceptibility in Iranian population. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Ren J, Tan G, Ren X, Lu W, Peng Q, Tang J, Wang Y, Xie B, Wang M. The PNA mouse may be the best animal model of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:950105. [PMID: 36004354 PMCID: PMC9393894 DOI: 10.3389/fendo.2022.950105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) exerts negative effects on females of childbearing age. It is important to identify more suitable models for fundamental research on PCOS. We evaluated animal models from a novel perspective with the aim of helping researchers select the best model for PCOS. RNA sequencing was performed to investigate the mRNA expression profiles in the ovarian tissues of mice with dehydroepiandrosterone (DHEA) plus high-fat diet (HFD)-induced PCOS. Meanwhile, 14 datasets were obtained from the Gene Expression Omnibus (GEO), including eight studies on humans, three on rats and three on mice, and genes associated with PCOS were obtained from the PCOSKB website. We compared the consistency of each animal model and human PCOS in terms of DEGs and pathway enrichment analysis results. There were 239 DEGs shared between prenatally androgenized (PNA) mice and PCOS patients. Moreover, 1113 genes associated with PCOS from the PCOSKB website were identified among the DEGs of PNA mice. A total of 134 GO and KEGG pathways were shared between PNA mice and PCOS patients. These findings suggest that the PNA mouse model is the best animal model to simulate PCOS.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- Department of Bioinformatics, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| | - Meijiao Wang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| |
Collapse
|
7
|
Irgam K, Reddy BS, Hari SG, Banapuram S, Reddy BM. The genetic susceptibility profile of type 2 diabetes and reflection of its possible role related to reproductive dysfunctions in the southern Indian population of Hyderabad. BMC Med Genomics 2021; 14:272. [PMID: 34784930 PMCID: PMC8597259 DOI: 10.1186/s12920-021-01129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The genetic association studies of type 2 diabetes mellitus (T2DM) hitherto undertaken among the Indian populations are grossly inadequate representation of the ethnic and geographic heterogeneity of the country. In view of this and due to the inconsistent nature of the results of genetic association studies, it would be prudent to undertake large scale studies in different regions of India considering wide spectrum of variants from the relevant pathophysiological pathways. Given the reproductive dysfunctions associated with T2DM, it would be also interesting to explore if some of the reproductive pathway genes are associated with T2DM. The present study is an attempt to examine these aspects in the southern Indian population of Hyderabad. METHODS A prioritized panel of 92 SNPs from a large number of metabolic and reproductive pathway genes was genotyped on 500 cases and 500 controls, matched for ethnicity, age and BMI, using AGENA MassARRAYiPLEX™ platform. RESULTS The allelic association results suggested 14 SNPs to be significantly associated with T2DM at P ≤ 0.05 and seven of those-rs2241766-G (ADIPOQ), rs6494730-T (FEM1B), rs1799817-A and rs2059806-T (INSR), rs11745088-C (FST), rs9939609-A and rs9940128-A (FTO)-remained highly significant even after correction for multiple testing. A great majority of the significant SNPs were risk in nature. The ROC analysis of the risk scores of the significant SNPs yielded an area under curve of 0.787, suggesting substantial power of our study to confer these genetic variants as predictors of risk for T2DM. CONCLUSIONS The associated SNPs of this study are known to be specifically related to insulin signaling, fatty acid metabolism and reproductive pathway genes and possibly suggesting the role of overlapping phenotypic features of insulin resistance, obesity and reproductive dysfunctions inherent in the development of diabetes. Large scale studies involving gender specific approach may be required in order to identify the precise nature of population and gender specific risk profiles for different populations, which might be somewhat distinct.
Collapse
Affiliation(s)
- Kumuda Irgam
- Department of Genetics and Biotechnology, Osmania University, Amberpet, Hyderabad, Telangana, 500007, India
| | - Battini Sriteja Reddy
- Dr Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, Andhra Pradesh, 521286, India
| | - Sai Gayathri Hari
- Department of Genetics and Biotechnology, Osmania University, Amberpet, Hyderabad, Telangana, 500007, India
| | - Swathi Banapuram
- Department of Genetics and Biotechnology, Osmania University, Amberpet, Hyderabad, Telangana, 500007, India
| | - Battini Mohan Reddy
- Department of Genetics and Biotechnology, Osmania University, Amberpet, Hyderabad, Telangana, 500007, India.
- Molecular Anthropology Laboratory, Indian Statistical Institute, Street No. 8, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
8
|
Castillo-Higuera T, Alarcón-Granados MC, Marin-Suarez J, Moreno-Ortiz H, Esteban-Pérez CI, Ferrebuz-Cardozo AJ, Forero-Castro M, Camargo-Vill Alba G. A Comprehensive Overview of Common Polymorphic Variants in Genes Related to Polycystic Ovary Syndrome. Reprod Sci 2020; 28:2399-2412. [PMID: 33174186 DOI: 10.1007/s43032-020-00375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age. It is characterized by an increase in the biosynthesis of androgens, anovulation, and infertility. PCOS has been reported as a polygenic entity in which multiple single nucleotide polymorphisms (SNPs) are associated with the clinical features of the pathology. Herein, we describe the common polymorphic variants in genes related to PCOS, their role in its pathogenesis, and etiology. Whole-genome association studies have been focused on women from Asian and European populations. The most common genes associated with PCOS are DENND1A, THADA, FSHR, and LHCGR. However, other genes have been associated with PCOS such as AMH, AMHR2, ADIPOQ, FTO, HNF1A, CYP19, YAP1, HMGA2, RAB5B, SUOX, INSR, and TOX3. Nevertheless, the relationship between the biological functions of these genes and the development of the pathology is unclear. Studies in each gene in different populations do not always comply with a general pattern, so researching these variants is essential for better understanding of this polygenic syndrome. Future population studies should be carried out to evaluate biological processes, incidence rates, allelic and genotypic frequencies, and genetic susceptibility factors that predispose PCOS.
Collapse
Affiliation(s)
- Tatiana Castillo-Higuera
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia.,Escuela de Ciencias Biológicas. Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, 150003, Colombia
| | - María Camila Alarcón-Granados
- Escuela de Ciencias Biológicas. Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, 150003, Colombia
| | - Johana Marin-Suarez
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, 150003, Colombia.,Escuela de Ciencias Biológicas. Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, 150003, Colombia
| | | | | | | | - Maribel Forero-Castro
- Escuela de Ciencias Biológicas. Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, 150003, Colombia.
| | | |
Collapse
|
9
|
Duan C, Pei T, Li Y, Cao Q, Chen H, Fu J. Androgen levels in the fetal cord blood of children born to women with polycystic ovary syndrome: a meta-analysis. Reprod Biol Endocrinol 2020; 18:81. [PMID: 32782029 PMCID: PMC7418394 DOI: 10.1186/s12958-020-00634-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. It is reported that intrauterine exposure to hyperandrogenism may induce the development of PCOS and associated complications in later life. To analyze the intrauterine androgen levels in infants born to PCOS mothers, we evaluated the androgen levels in fetal cord blood through a meta-analysis of observational studies. MATERIAL AND METHODS The following online databases were systematically searched: PubMed, EMBASE, Cochrane library databases and Web of Science up to December 2019. Human studies compared cord blood androgen levels, including testosterone (T) and androstenedione (ADION), in fetal cord blood of mothers with and without PCOS. Statistical analysis was performed in Review Manager, Version 5.3, with the inverse variance method based on a random-effects model. RESULTS A total of 7 articles were scrutinized and a total of 570 samples including 268 female and 222 male infants were qualified for review. In the mass spectrograph (MS) subgroup, PCOS mothers showed no signs of increased T concentration in umbilical cord blood at birth (4 studies; hazard ratio [HR] = - 0.05; 95% confidence interval [CI] = [- 0.33,0.24]; I2 = 7%; P = 0.75; fixed-effects model). ADION level tends to be lower in daughters' cord blood of PCOS mothers (3 studies; HR = -0.59; 95%CI = [- 1.00, - 0.19]; I2 = 0%; P = 0.004; fixed-effects model). CONCLUSIONS Fetal cord blood T level is not related to PCOS, while ADION levels tend to be lower in the cord blood of daughters born to mothers with PCOS.
Collapse
Affiliation(s)
- Changling Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yujing Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qi Cao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hanxiao Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
10
|
Liu M, Hummitzsch K, Hartanti MD, Rosario R, Bastian NA, Hatzirodos N, Bonner WM, Irving-Rodgers HF, Laven JSE, Anderson RA, Rodgers RJ. Analysis of expression of candidate genes for polycystic ovary syndrome in adult and fetal human and fetal bovine ovaries†. Biol Reprod 2020; 103:840-853. [PMID: 32678441 DOI: 10.1093/biolre/ioaa119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) appears to have a genetic predisposition and a fetal origin. We compared the expression levels of 25 PCOS candidate genes from adult control and PCOS human ovaries (n = 16) using microarrays. Only one gene was potentially statistically different. Using qRT-PCR, expression of PCOS candidate genes was examined in bovine fetal ovaries from early stages when they first developed stroma through to completion of development (n = 27; 60-270 days of gestation). The levels of ERBB3 mRNA negatively correlated with gestational age but positively with HMGA2, FBN3, TOX3, GATA4, and DENND1A.X1,2,3,4, previously identified as correlated with each other and expressed early. PLGRKT and ZBTB16, and less so IRF1, were also correlated with AMH, FSHR, AR, INSR, and TGFB1I1, previously identified as correlated with each other and expressed late. ARL14EP, FDFT1, NEIL2, and MAPRE1 were expressed across gestation and not correlated with gestational age as shown previously for THADA, ERBB4, RAD50, C8H9orf3, YAP1, RAB5B, SUOX, and KRR1. LHCGR, because of its unusual bimodal expression pattern, had some unusual correlations with other genes. In human ovaries (n = 15; <150 days of gestation), ERBB3.V1 and ERBB3.VS were expressed and correlated negatively with gestational age and positively with FBN3, HMGA2, DENND1A.V1,3,4, DENND1A.V1-7, GATA4, and FSHR, previously identified as correlated with each other and expressed early. Thus, the general lack of differential expression of candidate genes in adult ovaries contrasting with dynamic patterns of gene expression in fetal ovaries is consistent with a vulnerability to disturbance in the fetal ovary that may underpin development of PCOS.
Collapse
Affiliation(s)
- Menghe Liu
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Monica D Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Roseanne Rosario
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Nicole A Bastian
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Wendy M Bonner
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Helen F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,School of Medical Science, Griffith University, Gold Coast Campus, QLD, Australia
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Shi C, Lu Y, Zhai G, Huang J, Shang G, Lou Q, Li D, Jin X, He J, Du Z, Gui J, Yin Z. Hyperandrogenism in POMCa-deficient zebrafish enhances somatic growth without increasing adiposity. J Mol Cell Biol 2020; 12:291-304. [PMID: 31237951 PMCID: PMC7232124 DOI: 10.1093/jmcb/mjz053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 05/17/2019] [Indexed: 01/29/2023] Open
Abstract
The endocrine regulatory roles of the hypothalamic-pituitary-adrenocortical axis on anxiety-like behavior and metabolic status have been found throughout animal taxa. However, the precise effects of the balancing adrenal corticosteroid biosynthesis under the influence of adrenocorticotrophic hormone (ACTH), a pro-opiomelanocortin (POMC)-derived peptide, on animal energy expenditure and somatic growth remain unknown. POMC has also been identified as one of the candidate loci for polycystic ovary syndrome, which features hyperandrogenism and some prevalence of obesity in patients. Here we show that zebrafish lacking functional POMCa exhibit similar phenotypes of stress response and body weight gain but not obesity as observed in mammalian models. In contrast with the impaired anorexigenic signaling cascade of melanocyte-stimulating hormones and leptin, which are responsible for their obesity-prone weight gain observed in various pomc mutant mammals, analyses with our pomca mutant series indicate that ACTH is the key regulator for the phenotype with enhanced somatic growth without obesity in pomca-deficient zebrafish. Hypocortisolism associated with hyperandrogenism has been observed in the pomca-deficient zebrafish, with enhanced activation of mammalian target of rapamycin complex 1; reutilization of amino acids and fatty acid β-oxidation are observed in the muscle tissue of the pomca-deficient fish. After reducing hyperandrogenism by crossing our pomca mutant fish with a cyp17a1-deficient background, the phenotype of enhanced somatic growth in pomca-deficient fish was no longer observed. Thus, our work also demonstrated that the role of POMCa in stress response seems to be conserved in vertebrates, whereas its effect on adipostasis is unique to teleosts.
Collapse
Affiliation(s)
- Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianfei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Shang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongliang Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenyu Du
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
12
|
Monniaux D, Genêt C, Maillard V, Jarrier P, Adriaensen H, Hennequet-Antier C, Lainé AL, Laclie C, Papillier P, Plisson-Petit F, Estienne A, Cognié J, di Clemente N, Dalbies-Tran R, Fabre S. Prenatal programming by testosterone of follicular theca cell functions in ovary. Cell Mol Life Sci 2020; 77:1177-1196. [PMID: 31327046 PMCID: PMC11105072 DOI: 10.1007/s00018-019-03230-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.
Collapse
Affiliation(s)
- Danielle Monniaux
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Carine Genêt
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France
| | - Virginie Maillard
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Peggy Jarrier
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Hans Adriaensen
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Anne-Lyse Lainé
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Corinne Laclie
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascal Papillier
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Anthony Estienne
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Juliette Cognié
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Rozenn Dalbies-Tran
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France
| |
Collapse
|
13
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
14
|
dos Santos TB, de Paula HK, Balarin MAS, Silva-Grecco RL, Lima MFP, de Resende EAMR, Gomes MKO, Cintra MTR. Can the genetic polymorphisms of the folate metabolism have an influence in the polycystic ovary syndrome? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:501-508. [PMID: 31482954 PMCID: PMC10522273 DOI: 10.20945/2359-3997000000167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the association of the genetic variants of the folate metabolism genes (MTHFR C677T; MTHFR A1298C; MTR A2756G; MTRR A66G and RFC-1 A80G) with the development of polycystic ovary syndrome (PCOS). SUBJECTS AND METHODS This study included 203 women (99 women with PCOS and 104 controls). The genotyping was performed by PCR-RFLP. Chi-squared test and multiple logistic regression were used in the statistical analysis. Haplotype analysis was conducted using the SNPstat program. The results were presented in odds ratio (OR) and confidence interval of 95% (CI-95%), with a significance level of 5% (p ≤ 0.05). RESULTS The genotypic distribution of the RFC-1 A80G polymorphism showed significant difference between the two groups, showing that the heterozygous genotype (AG genotype) was most frequent in controls. The polymorphic homozygous (GG genotype) of MTRR A66G polymorphism were most frequent in controls. The T-C haplotype MTHFR C677T and A1298C polymorphisms were more frequent in the control group (OR = 0.19; CI 95% - 0.04 to 0.93 e p = 0.042). The multivariate analysis evidenced that family history of PCOS was more frequent in the PCOS group (OR = 3.29; CI 95% - 1.48 to 7.31; p = 0.003). CONCLUSION In our casuistry, the polymorphic homozygous of MTRR A66G polymorphism gene and heterozygous of RFC-1 A80G polymorphism gene, the haplotype T-C C677T and A1298C polymorphisms of MTHFR gene, can be associated with protective factors for the disease.
Collapse
Affiliation(s)
- Tayssia Beatriz dos Santos
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | - Helena Korres de Paula
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | - Marly Aparecida Spadotto Balarin
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | - Roseane Lopes Silva-Grecco
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | - Marco Fábio Prata Lima
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | | | - Mariana Kefalas Oliveira Gomes
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| | - Mariangela Torreglosa Ruiz Cintra
- Universidade Federal do Triângulo MineiroUniversidade Federal do Triângulo MineiroUberabaMGBrasilUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brasil
| |
Collapse
|
15
|
Bevilacqua A, Dragotto J, Giuliani A, Bizzarri M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol 2019; 234:9387-9398. [PMID: 30317628 DOI: 10.1002/jcp.27623] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Mice exposed to continuous light undergo functional and histological changes that mimic those of human Polycystic Ovary Syndrome (PCOS). We herein induced the syndrome by exposing 30-day-old females to 10 weeks of permanent light. Ovarian morphology and histology, as well as reproductive parameters (time of observed pregnancy/delivery) were investigated. Ovaries of PCOS-modeled mice showed lack of tertiary follicles and corpora lutea, altered ovarian architecture, and increased thickness of the theca layer. When mice were returned to a normal light-dark regimen for 10 days, a slight, spontaneous improvement occurred, whereas a quick and almost complete recovery from PCOS signs and symptoms was obtained by treating animals with a daily supplementation of 420 mg/kg myo-inositol and D-chiro-inositol (MyoIns/DCIns) in a 40:1 molar ratio. Namely, ovaries from mice treated by this protocol recovered normal histological features and a proper ratio of theca/granulosa cell layer thickness (TGR), suggesting that the androgenic phenotype was efficiently reversed. Indeed, we identified TGR as a useful index of PCOS, as its increase in PCOS-modeled mice correlated linearly with reduced reproductive capability ( r = 0.75, p < 0.0001). Mice treated with a 40:1 formula regained low TGR values and faster recovery of their fertility, with a physiological delivery time after mating. On the other hand, a higher D-chiro-inositol treatment formula, such as MyoIns versus DCIns 5:1, was ineffective or even had a negative effect on clinical-pathological outcomes.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome and Research Center in Neurobiology Daniel Bovet" (CRiN), Rome, Italy
| | - Jessica Dragotto
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, Rome, Italy
| |
Collapse
|
16
|
Papadakis G, Kandaraki EA, Tseniklidi E, Papalou O, Diamanti-Kandarakis E. Polycystic Ovary Syndrome and NC-CAH: Distinct Characteristics and Common Findings. A Systematic Review. Front Endocrinol (Lausanne) 2019; 10:388. [PMID: 31275245 PMCID: PMC6593353 DOI: 10.3389/fendo.2019.00388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Twenty-one-hydroxylase-deficient non-classic adrenal hyperplasia (NC-CAH) is a very common autosomal recessive syndrome with prevalence between 1:1,000 and 1:2,000 individuals and the frequency varies according to ethnicity. On the other hand, polycystic ovary syndrome has a familial basis and it is inherited under a complex hereditary trait. This syndrome affects 6 to 10% of women in reproductive age and it is the most common endocrine disorder in young women. Our aim was to investigate, through a systematic review, the distinct characteristics and common findings of these syndromes. Methods: The search period covered January 1970 to November 2018, using the scientific databases PubMed. Inclusion criteria were adult women patients with PCOS or NC-CAH. Search terms were "polycystic ovary syndrome," "PCOS," "non-classical adrenal hyperplasia," "NC-CAH," "21-hydroxylase deficiency." From an initial 16,255 titles, the evaluations led to the final inclusion of 97 papers. Results: The clinical features of NC-CAH are hirsutism and ovulatory and menstrual dysfunction therefore; differentiation between these two syndromes is difficult based on clinical grounds only. Additionally, NC-CAH and PCOS are both associated with obesity, insulin resistance, and dyslipidaemia. Reproductive abnormalities are also common between these hyperandrogenemic disorders since in patients with NC-CAH polycystic ovarian morphology and subfertility are present as they are in women with PCOS. The diagnosis of PCOS, is confirmed once other disorders that mimic PCOS have been excluded e.g., conditions that are related to oligoovulation or anovulation and/or hyperandrogenism, such as hyperprolactinaemia, thyroid disorders, non-classic congenital adrenal hyperplasia, and androgen-producing neoplasms. Conclusions: The screening tool to distinguish non-classic adrenal hyperplasia from PCOS is the measurement of 17-hydroxyprogesterone levels. The basal levels of 17-hydroxyprogesterone may overlap, but ACTH stimulation testing can distinguish the two entities. In this review these two common endocrine disorders are discussed in an effort to unveil their commonalities and to illuminate their shadowed distinctive characteristics.
Collapse
Affiliation(s)
| | - Eleni A. Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Ermioni Tseniklidi
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Athens, Greece
- *Correspondence: Evanthia Diamanti-Kandarakis
| |
Collapse
|
17
|
Seyam E, Hefzy E. Evaluation of the correlation between insulin like factor 3, polycystic ovary syndrome, and ovarian maldescent. Gynecol Endocrinol 2018; 34:481-488. [PMID: 29254383 DOI: 10.1080/09513590.2017.1416462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to investigate a proposed correlation between the incidentally discovered undescended ovaries and their confirmed diagnosis as a polycystic ovary disease (PCOD) for all cases included, and to evaluate the role of estimated insulin like factor 3 (INSL3) circulating level in the pathogenesis of both abnormal findings. The study group (A) comprised 35 women whose ovaries had been incidentally found to be undescended during the routine laparoscopy for infertility causes, and all had been diagnosed as PCOD. The control category included two subgroups; subgroup (B) included 35 women group, diagnosed as PCOD but with normally allocated ovaries in the true pelvis, and subgroup (C) included 35 healthy women with regular menses and no signs of hyperandrogenism. Correlations between the level of INSL3 and other PCOD relevant biochemical tests: [e.g. BMI, waist-to-hip ratio (WHR), LH, FSH, androstendione (A), total and free testosterone (T & Ft), DHEA-S, and SHBG] had been also investigated. INSL3 levels were significantly higher in PCOD groups (A) and (B) compared to the healthy fertile control subgroup (C) (80.5 ± 29.4, 65.11 ± 15.6, and 41.11 ± 10.2 pg/mL, respectively), and was highest in group (A). Moreover, we identified a strong correlation between INSL3 and androstenedione (r = 0.42, p = 0.0012), and free (r = 0.42, p = .0123) and total testosterone (r = 0.41, p = .004) in the PCOD (A) and (B) subgroup compared to the levels in subgroup (C). LH was significantly higher in all PCOD women in groups (A&B) (12. 3 ± 3.4, and 11.2 ± 1.4 mIU/L, respectively) compared to those in group (A) (5.7 ± 2.5 mIU/L), with a fair correlation with INSL3. However, there was no statistically significant correlation between INSL3 and FSH, DHEA-S, glucose, basal insulin concentration or HOMA-IR in all PCOD women. The strong positive correlation between INSL3, and high ovarian androgens levels in all PCOD women, which appeared clearly in undescended polycystic ovaries could support the proposed syndrome hypothesis between those abnormal findings.
Collapse
Affiliation(s)
- Emaduldin Seyam
- a Obstetrics and Gynecology Department , Minia University College of Medicine , Minia , Egypt
| | - Enas Hefzy
- b Microbiology and Immunology Department , Fayoum University College of Medicine , Fayoum , Egypt
| |
Collapse
|
18
|
Li H, Chang HM, Shi Z, Leung PCK. SNAIL Mediates TGF-β1-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa Cells. Endocrinology 2018; 159:1644-1657. [PMID: 29462303 PMCID: PMC5939639 DOI: 10.1210/en.2017-03127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/10/2018] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β (TGF-β) 1 plays a critical role in regulating follicular development, and its dysregulation has been shown to be involved in the pathogenesis of ovulation dysfunction. SNAIL is a well-known transcriptional repressor that mediates TGF-β1-induced cellular functions. Pentraxin 3 (PTX3) is a key enzyme for the assembly and stabilization of the cumulus oophorus extracellular matrix, which is essential for cumulus expansion during the periovulatory stage. The purpose of the present study was to investigate the roles of TGF-β1 and SNAIL in the regulation of PTX3 expression and to examine the underlying mechanism. An established immortalized human granulosa cell (GC) line (SVOG), a GC tumor cell line (KGN), and primary human granulosa-lutein cells were used as study models. We demonstrated that TGF-β1 treatment substantially decreased the messenger RNA and protein levels of PTX3. This suppressive effect was abolished by cotreatment with the soluble TGF-β type II receptor (TβRII) or the ALK4/5/7 inhibitor SB431542. Knockdown of ALK5, SMAD2/3, or SMAD4 reversed the effects of TGF-β1-induced SNAIL upregulation and PTX3 suppression. These results indicate that TGF-β1 upregulates SNAIL and downregulates PTX3 expression via a TβRII-ALK5-mediated SMAD-dependent signaling pathway in human GCs. Additionally, TGF-β1-induced PTX3 suppression was mediated by upregulation of the SNAIL transcription factor, as knockdown of SNAIL completely reversed the suppression of PTX3 in response to TGF-β1. These findings could inform the roles of TGF-β1 and SNAIL in the regulation of follicular function and might provide therapeutic targets for the treatment of ovulation dysfunction.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhendan Shi
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence: Peter C. K. Leung, PhD, FRSC, Department of Obstetrics and Gynaecology, Children Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada. E-mail:
| |
Collapse
|
19
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
20
|
Puttabyatappa M, Cardoso RC, Padmanabhan V. Effect of maternal PCOS and PCOS-like phenotype on the offspring's health. Mol Cell Endocrinol 2016; 435:29-39. [PMID: 26639019 PMCID: PMC4884168 DOI: 10.1016/j.mce.2015.11.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/02/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder with both reproductive and metabolic abnormalities affecting women of reproductive age. While the exact origin of PCOS is unknown, observations from clinical and animal studies suggest that maternal hyperandrogenism may be a contributing factor. Because women with PCOS manifest hyperandrogenism during pregnancy, changes in the gestational endocrine milieu may play a role in the vertical transmission of this syndrome. This review discusses the potential developmental origins of PCOS, the impact of maternal PCOS on the offspring's health and contributions of the postnatal environment, capitalizing on findings from animal models that exhibit a PCOS-like phenotype. In addition, this review highlights the scarcity of data at early gestational stages in humans and the importance of animal experimentation to better understand the cellular and molecular mechanisms involved in the programming of adult diseases, therefore, helping identify therapeutic targets for preventive and treatment strategies.
Collapse
Affiliation(s)
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
21
|
Roh EY, Yoon JH, Song EY, Kim JJ, Hwang KR, Seo SH, Shin S. Single nucleotide polymorphisms in the TGF-β1 gene are associated with polycystic ovary syndrome susceptibility and characteristics: a study in Korean women. J Assist Reprod Genet 2016; 34:139-147. [PMID: 27796807 DOI: 10.1007/s10815-016-0824-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/30/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Although many hypotheses regarding the pathogenesis of polycystic ovary syndrome (PCOS) have been generated, genetic studies have not identified specific genes that play a role in PCOS etiopathogenesis. This study aimed to investigate the relationship between TGF-β1 gene polymorphism and PCOS in Koreans. METHOD A total of 51 Korean women with PCOS and 69 healthy women were enrolled. We analyzed 4 single nucleotide polymorphisms (SNPs) of the TGF-β1 gene (rs11466313, rs1800469, rs2317130, and rs4803457). We also analyzed laboratory measurements, such as free testosterone, glucose, and cholesterol. RESULTS The frequencies of rs1800469T allele negativity, rs4803457T allele negativity, the rs1800469CC genotype, and the rs4803457CC genotype showed positive associations with PCOS (P = 0.003, P = 0.027, P = 0.009, and P=0.031, respectively), whereas the haplotypes rs1800469C-rs4803457T and rs1800469T-rs4803457T showed negative associations with PCOS. A strong protective effect of the "rs1800469CT-rs4803457TT" combination (OR = 0.09) and a strong risk effect of "rs1800469CC-rs4803457CC" (OR = 6.23) for PCOS were observed. The rs1800469C/T and rs2317130C/T SNPs exhibited associations with several laboratory measurements with various levels of significance. CONCLUSION The results demonstrated an association of TGF-β1 gene polymorphisms with the development and/or characteristics of PCOS in the Korean population.
Collapse
Affiliation(s)
- Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ju Kim
- Department of Obstetrics and Gynecology, Seoul National University Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Kyu Ri Hwang
- Departments of Obstetrics and Gynecology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea. .,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
23
|
Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril 2016; 106:25-32. [PMID: 27179787 DOI: 10.1016/j.fertnstert.2016.04.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
The field of the genetics of polycystic ovary syndrome (PCOS) has relatively recently moved into the era of genome-wide association studies. This has led to the discovery of 16 robust loci for PCOS. Some loci contain genes with clear roles in reproductive (LHCGR, FSHR, and FSHB) and metabolic (INSR and HMGA2) dysfunction in the syndrome. The next challenge facing the field is the identification of causal variants and genes and the role they play in PCOS pathophysiology. The potential for gene discovery to improve diagnosis and treatment of PCOS is promising, though there is much to be done in the field before the current findings can be translated to the clinic.
Collapse
|
24
|
Qi X, Pang Y, Qiao J. The role of anti-Müllerian hormone in the pathogenesis and pathophysiological characteristics of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2016; 199:82-7. [DOI: 10.1016/j.ejogrb.2016.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 02/01/2023]
|
25
|
Tian Y, Zhang W, Zhao S, Sun Y, Bian Y, Chen T, Du Y, Zhang J, Wang Z, Huang T, Peng Y, Yang P, Zhao H, Chen ZJ. FADS1-FADS2 gene cluster confers risk to polycystic ovary syndrome. Sci Rep 2016; 6:21195. [PMID: 26879377 PMCID: PMC4754766 DOI: 10.1038/srep21195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Dyslipidemia is common in polycystic ovary syndrome (PCOS). This study was aimed to investigate whether fatty acid desaturase genes (FADS), a dyslipidemia-related gene cluster, are associated with PCOS. We scanned variations of FADS genes using our previous data of genome-wide association study (GWAS) for PCOS and selected rs174570 for further study. The case-control study was conducted in an independent cohort of 1918 PCOS cases and 1889 age-matched controls and family-based study was conducted in a set of 243 core family trios with PCOS probands. Minor allele frequency (allele T) of rs174570 was significantly lower in PCOS cases than that in age-matched controls (P = 2.17E-03, OR = 0.85), even after adjustment of BMI and age. PCOS subjects carrying CC genotype had higher testosterone level and similar lipid/glucose level compared with those carrying TT or TC genotype. In trios, transmission disequilibrium test (TDT) analysis revealed risk allele C of rs174570 was significantly over-transmitted (P = 2.00E-04). Decreased expression of FADS2 was detected in PCOS cases and expression quantitative trait loci (eQTL) analysis revealed the risk allele C dosage was correlated with the decline of FADS2 expression (P = 0.002). Our results demonstrate that FADS1-FADS2 are susceptibility genes for PCOS.
Collapse
Affiliation(s)
- Ye Tian
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Wei Zhang
- Department of joint and bone oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yinhua Sun
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Tailai Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yingqian Peng
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Ping Yang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China; The Key laboratory for Reproductive Endocrinology of Ministry of Education, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| |
Collapse
|
26
|
Shaikh N, Dadachanji R, Meherji P, Shah N, Mukherjee S. Polymorphisms and haplotypes of insulin-like factor 3 gene are associated with risk of polycystic ovary syndrome in Indian women. Gene 2016; 577:180-6. [DOI: 10.1016/j.gene.2015.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/24/2023]
|
27
|
Ketefian A, Jones MR, Krauss RM, Chen YDI, Legro RS, Azziz R, Goodarzi MO. Association study of androgen signaling pathway genes in polycystic ovary syndrome. Fertil Steril 2016; 105:467-73.e4. [PMID: 26493122 PMCID: PMC4744098 DOI: 10.1016/j.fertnstert.2015.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate genes involved in androgen receptor (AR) signaling as candidate genes for polycystic ovary syndrome (PCOS). DESIGN Two groups of women with PCOS and control women (discovery and replication cohorts), were genotyped for single-nucleotide polymorphisms (SNPs) in eight genes for AR chaperones and co-chaperones: HSPA1A, HSPA8, ST13, STIP1, PTGES3, FKBP4, BAG1, and STUB1. Single-nucleotide polymorphisms were tested for association with PCOS status and with androgenic and metabolic parameters. SETTING Tertiary referral center. PATIENT(S) Discovery cohort: 354 women with PCOS and 161 control women. Replication cohort: 397 women with PCOS and 306 control women. INTERVENTION(S) Phenotypic and genotypic assessment. MAIN OUTCOME MEASURE(S) Single-nucleotide polymorphism genotypes, association with PCOS status, and androgenic and metabolic parameters. RESULT(S) In the discovery cohort, FKBP4 SNPs rs2968909 and rs4409904 were associated with lower odds of PCOS. This finding was not confirmed in the replication cohort analysis; however, when combining the two cohorts, rs4409904 was associated with lower odds of PCOS. In subjects with PCOS in the replication cohort as well as in the combined cohort, rs2968909 was associated with lower body mass index. CONCLUSION(S) Single-nucleotide polymorphisms in FKBP4, which codes for the AR co-chaperone FKBP52, may be associated with PCOS and body mass index in patients with PCOS. The remaining genes studied do not seem to be major contributors to the development of PCOS. These findings warrant confirmation in future studies, and genes encoding other androgen pathway components remain to be studied.
Collapse
Affiliation(s)
- Aline Ketefian
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Michelle R Jones
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Ricardo Azziz
- Departments of Obstetrics and Gynecology and Medicine, Georgia Regents University, Augusta, Georgia
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
28
|
Caanen MR, Kuijper EA, Hompes PG, Kushnir MM, Rockwood AL, Meikle WA, Homburg R, Lambalk CB. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur J Endocrinol 2016; 174:25-32. [PMID: 26586837 DOI: 10.1530/eje-15-0699] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Little is known about the aetiology of polycystic ovary syndrome (PCOS). Some suggest that elevated maternal androgens during gestation play a causative role. This implies placental passage of androgens during pregnancy. The aim of this study is to compare androgen and estrogen concentrations in maternal serum during pregnancy and in umbilical cord blood, between mothers with PCOS and their offspring compared to controls. DESIGN Prospective case-control study. METHODS Maternal blood samples were collected around 20 weeks of gestation and at delivery. Umbilical cord blood was also taken at delivery. Androgens (testosterone (T), androstenedione (ADION), dehydroepiandrostenedione (DHEA)) and estrogens (estrone (E1), estradiol (E2), estriol (E3)) were measured using the liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. RESULTS At 20 weeks of gestation: T (P=0.019) and ADION (P=0.034) were higher in the PCOS mothers (pregnant with a girl), whereas DHEA, E1, E2, and E3 were not different. Maternal concentration at birth: T (P=0.004) and ADION (P=0.009) were also higher in the subgroup of PCOS mothers that were pregnant with a girl compared to the girl pregnancy controls. DHEA, E1, E2 and E3 were not different. In umbilical cord blood, no differences were found for T, ADION, DHEA, E2, E3, and AMH between the PCOS mothers and the controls respectively. E1 was lower in girls from PCOS mothers (P=0.007). CONCLUSIONS Despite elevated maternal androgen concentrations during pregnancy in PCOS mothers, offspring showed no signs of elevated androgen concentrations in cord blood at birth using the latest highly specific LC-MS/MS methods.
Collapse
Affiliation(s)
- Mirte R Caanen
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Esther A Kuijper
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Peter G Hompes
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Mark M Kushnir
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Alan L Rockwood
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Wayne A Meikle
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Roy Homburg
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| | - Cornelis B Lambalk
- Division of Reproductive MedicineDepartment of Obstetrics and Gynaecology, VU University Medical Center (VUmc), Gebouw Zuid, Amstelveenseweg 601, 1081 JC Amsterdam, The NetherlandsARUP Institute for Clinical and Experimental PathologySalt Lake City, Utah, USADepartment of PathologyUniversity of Utah School of Medicine, Salt Lake City, USADepartment of MedicineUniversity of Utah School of Medicine, Salt Lake City, USAHomerton Fertility CentreHomerton University Hospital, London, UK
| |
Collapse
|
29
|
Ellakwa HE, Sanad ZF, Hamza HA, Emara MA, Elsayed MA. Predictors of patient responses to ovulation induction with clomiphene citrate in patients with polycystic ovary syndrome experiencing infertility. Int J Gynaecol Obstet 2015; 133:59-63. [DOI: 10.1016/j.ijgo.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/14/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
|
30
|
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev 2015; 36:487-525. [PMID: 26426951 PMCID: PMC4591526 DOI: 10.1210/er.2015-1018] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous and complex disorder that has both adverse reproductive and metabolic implications for affected women. However, there is generally poor understanding of its etiology. Varying expert-based diagnostic criteria utilize some combination of oligo-ovulation, hyperandrogenism, and the presence of polycystic ovaries. Criteria that require hyperandrogenism tend to identify a more severe reproductive and metabolic phenotype. The phenotype can vary by race and ethnicity, is difficult to define in the perimenarchal and perimenopausal period, and is exacerbated by obesity. The pathophysiology involves abnormal gonadotropin secretion from a reduced hypothalamic feedback response to circulating sex steroids, altered ovarian morphology and functional changes, and disordered insulin action in a variety of target tissues. PCOS clusters in families and both female and male relatives can show stigmata of the syndrome, including metabolic abnormalities. Genome-wide association studies have identified a number of candidate regions, although their role in contributing to PCOS is still largely unknown.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Sharon E Oberfield
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Elisabet Stener-Victorin
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - John C Marshall
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Joop S Laven
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Richard S Legro
- Department of Obstetrics and Gynecology (D.A.D.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Division of Pediatric Endocrinology (S.E.O.), Children's Hospital of New York-Presbyterian, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Physiology (E.S.-V.), Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Research in Reproduction and Division of Endocrinology (J.C.M.), Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22903; Division of Reproductive Medicine (J.S.L.), Department of Obstetrics and Gynecology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; and Department of Obstetrics and Gynecology (R.S.L.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
31
|
Selen ES, Bolandnazar Z, Tonelli M, Bütz DE, Haviland JA, Porter WP, Assadi-Porter FM. NMR Metabolomics Show Evidence for Mitochondrial Oxidative Stress in a Mouse Model of Polycystic Ovary Syndrome. J Proteome Res 2015; 14:3284-91. [PMID: 26076986 DOI: 10.1021/acs.jproteome.5b00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with metabolic and endocrine disorders in women of reproductive age. The etiology of PCOS is still unknown. Mice prenatally treated with glucocorticoids exhibit metabolic disturbances that are similar to those seen in women with PCOS. We used an untargeted nuclear magnetic resonance (NMR)-based metabolomics approach to understand the metabolic changes occurring in the plasma and kidney over time in female glucocorticoid-treated (GC-treated) mice. There are significant changes in plasma amino acid levels (valine, tyrosine, and proline) and their intermediates (2-hydroxybutyrate, 4-aminobutyrate, and taurine), whereas in kidneys, the TCA cycle metabolism (citrate, fumarate, and succinate) and the pentose phosphate (PP) pathway products (inosine and uracil) are significantly altered (p < 0.05) from 8 to 16 weeks of age. Levels of NADH, NAD(+), NAD(+)/NADH, and NADH redox in kidneys indicate increased mitochondrial oxidative stress from 8 to 16 weeks in GC-treated mice. These results indicate that altered metabolic substrates in the plasma and kidneys of treated mice are associated with altered amino acid metabolism, increased cytoplasmic PP, and increased mitochondrial activity, leading to a more oxidized state. This study identifies biomarkers associated with metabolic dysfunction in kidney mitochondria of a prenatal gluococorticoid-treated mouse model of PCOS that may be used as early predictive biomarkers of oxidative stress in the PCOS metabolic disorder in women.
Collapse
Affiliation(s)
- Ebru Selin Selen
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zeinab Bolandnazar
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marco Tonelli
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel E Bütz
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Julia A Haviland
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Warren P Porter
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Fariba M Assadi-Porter
- †Department of Zoology, ‡Magnetic Resonance Facility at Madison, and §Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Abstract
Half-sib daughters sired by a bull believed to be a carrier of a major gene for high ovulation rate were evaluated for ovulation rate and genotyped in an effort to both test the hypothesis of segregation of a major gene and to map the gene’s location. A total of 131 daughters were produced over four consecutive years at a University of Wisconsin-Madison research farm. All were evaluated for ovulation rate over an average of four estrous cycles using transrectal ultrasonography. The sire and all daughters were genotyped using a 3K SNP chip and the genotype and phenotype data were used in a linkage analysis. Subsequently, daughters recombinant within the QTL region and the sire were genotyped successively with 50K and 777K SNP chips to refine the location of the causative polymorphism. Positional candidate genes within the fine-mapped region were examined for polymorphism by Sanger sequencing of PCR amplicons encompassing coding and 5’ and 3’ flanking regions of the genes. Sire DNA was used as template in the PCR reactions. Strong evidence of a major gene for ovulation rate was observed (p<1x10-28) with the gene localized to bovine chromosome 10. Fine-mapping subsequently reduced the location to a 1.2 Mb region between 13.6 and 14.8 Mb on chromosome 10. The location identified does not correspond to that for any previously identified major gene for ovulation rate. This region contains three candidate genes, SMAD3, SMAD6 and IQCH. While candidate gene screening failed to identify the causative polymorphism, three polymorphisms were identified that can be used as a haplotype to track inheritance of the high ovulation rate allele in descendants of the carrier sire.
Collapse
Affiliation(s)
- Brian W. Kirkpatrick
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| | - Chris A. Morris
- AgResearch, Ruakura Research Centre, PB 3123, Hamilton, New Zealand
| |
Collapse
|
33
|
Li L, Ryoo JE, Lee KJ, Choi BC, Baek KH. Genetic variation in the Mcp-1 gene promoter associated with the risk of polycystic ovary syndrome. PLoS One 2015; 10:e0123045. [PMID: 25902044 PMCID: PMC4406762 DOI: 10.1371/journal.pone.0123045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a pivotal chemokine in the inflammatory response, which plays an important role in recruiting monocytes to sites of injury and infection. However, the exact mechanism of Mcp-1 associated with PCOS risk was unknown. In this study, we explored whether the Mcp-1 -2518G>A polymorphism increases the risk of PCOS. We performed a comparative study of -2518G>A polymorphism of the Mcp-1 gene with PCOS. In addition, luciferase reporter assay was performed to evaluate the Mcp-1 transcriptional activity. A strong association was observed between the -2518G>A polymorphism of Mcp-1 gene and PCOS (p-value = 0.016, odd ratio (OR) = 0.693). A p-value under 0.05 is considered statistically significant. The genotype and allelic frequencies were assumed to be in Hardy-Weinberg equilibrium (HWE). The luciferase assays in 2 cell lines showed that the Mcp-1 -2518G>A substitution can increase the expression of Mcp-1. MCP-1 levels in serum for PCOS group were significantly higher than those in serum for controls (p-value = 0.02). Furthermore, the patients carrying a genotype A/A had significantly increased levels of MCP-1 in serum compared with levels of the MCP-1 of the patients with genotypes G/G and G/A (p-value = 0.031). This is the first study on the genetic variation of the Mcp-1 gene and PCOS. This finding suggests that the Mcp-1 -2518G>A polymorphism is associated with PCOS risk by affecting transcriptional activity, leading to an increased expression level of Mcp-1.
Collapse
Affiliation(s)
- Lan Li
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Ryoo
- Hankuk Academy of Foreign Studies, Yongin, Republic of Korea
| | - Kyung-Ju Lee
- Department of Gynecology and Obstetrics, CHA University, CHA General Hospital, Seoul, Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women’s Hospital, Gwangju, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
ADAMTS proteases in fertility. Matrix Biol 2015; 44-46:54-63. [PMID: 25818315 DOI: 10.1016/j.matbio.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023]
Abstract
The reproductive organs are unique among adult organs in that they must undergo continual tissue remodelling as a key aspect of their normal function. The processes for persistent maturation and release of new gametes, as well as fertilisation, implantation, placentation, gestation and parturition involve cyclic development and regression of tissues that must continually regenerate to support fertility. The ADAMTS family of proteases has been shown to contribute to many aspects of the tissue morphogenesis required for development and function of each of the reproductive organs. Dysregulation or functional changes in ADAMTS family proteases have been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS) and premature ovarian failure (POF). Likewise, proteolytic substrates of ADAMTS enzymes have also been linked to reproductive function. New insight into the roles of ADAMTS proteases has yielded a deeper understanding of the molecular mechanisms behind fertility with clinical potential to generate therapeutic targets to resolve infertility, develop biomarkers that predict dysfunction of the reproductive organs and potentially offer targets for development of non-hormonal male and female contraceptives.
Collapse
|
35
|
Li L, Yun JH, Ryoo JE, Lee KJ, Choi BC, Baek KH. 54G/C polymorphism of SREBF-1 gene is associated with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2015; 188:95-9. [PMID: 25801724 DOI: 10.1016/j.ejogrb.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A sterol regulatory element-binding protein (SREBF-1) transcription factor is a major regulator of lipid metabolism, carbohydrate, and plays a key role in energy homeostasis. The 54(G/C) polymorphism of SREBF-1 gene was reported that it is related with metabolic diseases including obesity, type 2 diabetes, and dyslipidemia. Among these, polycystic ovary syndrome (PCOS) is known as a common metabolic-endocrine disorder of women in reproductive ages. STUDY DESIGN Here, we performed a comparative study of 54(G/C) polymorphism of SREBF-1 gene with PCOS. The 54(G/C) polymorphism of SREBF-1 gene was analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of total 286 PCOS patients and 149 matched controls of healthy women. Statistical analysis was performed using HapAnalyzer. A p-value under 0.05 was considered statistically significant. RESULTS There was a strong association between the 54(G/C) polymorphism of SREBF-1 gene and PCOS (OR: 0.65, 95% CI: 0.46-0.90, p: 0.0129). The genotype and allelic frequencies were in Hardy-Weinberg equilibrium (HWE). CONCLUSION This is the first study on the genetic variation of SREBF-1 gene and PCOS. We concluded that 54(G/C) polymorphism of SREBF-1 gene is associated with PCOS. Therefore, our results suggest that SREBF-1 gene may play a role in genetic predisposition to PCOS, which is helpful in understanding the etiology of PCOS.
Collapse
Affiliation(s)
- Lan Li
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji Eun Ryoo
- Hankuk Academy of Foreign Studies, Yongin 449-854, Gyeonggi-Do, Republic of Korea
| | - Kyung-Ju Lee
- Department of Gynecology and Obstetrics, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women's Hospital, Gwangju 502-800, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
36
|
Yang J, Zhong T, Xiao G, Chen Y, Liu J, Xia C, Du H, Kang X, Lin Y, Guan R, Yan P, Xiao J. Polymorphisms and haplotypes of the TGF-β1 gene are associated with risk of polycystic ovary syndrome in Chinese Han women. Eur J Obstet Gynecol Reprod Biol 2015; 186:1-7. [DOI: 10.1016/j.ejogrb.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/11/2014] [Indexed: 01/21/2023]
|
37
|
MANSOR F, ZAMRI L, HAMZAH SS. Electrophoretic Techniques for the Detection of Human Microsatellite D19S884. Malays J Med Sci 2015; 22:18-24. [PMID: 26023291 PMCID: PMC4438088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/24/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND The detection and analysis of microsatellites is very important for the mapping of genetic diseases because they are commonly used as genetic markers. Microsatellite marker D19S884 has been associated with polycystic ovary syndrome (PCOS), the most common reproductive endocrine disease of women in their childbearing years. It is responsible for an estimated 70% of cases of anovulatory infertility. In this work, we detected microsatellites in DNA extracted from the blood of PCOS patients. METHODS DNA microsatellites were amplified by polymerase chain reaction (PCR) using a pair of specific primers tagged with fluorescence to yield products of 160-200 base pairs in length. Alleles were separated on 4% low-melting agarose gels; stained with a safe gel staining, GelRed™, which is an alternative to ethidium bromide; and visualised by ultraviolet illumination. RESULTS Bands were observed, but their base-pairs differences were difficult to distinguish. To identify each allele clearly, the PCR products were also analysed using capillary gel electrophoresis for fragment analysis where it was possible to discriminate even in case of difference between two pairs of bases between the alleles. CONCLUSION In this article, we present a protocol that combines the use of gel electrophoresis and fragment analysis in the identification of genetic biomarkers for PCOS.
Collapse
Affiliation(s)
- Fazliana MANSOR
- Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Liyana ZAMRI
- Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Siti Sarah HAMZAH
- Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
McAllister JM, Legro RS, Modi BP, Strauss JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 2015; 26:118-24. [PMID: 25600292 PMCID: PMC4346470 DOI: 10.1016/j.tem.2014.12.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/24/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by increased ovarian androgen biosynthesis, anovulation, and infertility. PCOS has a strong heritable component based on familial clustering and twin studies. Genome-wide association studies (GWAS) identified several PCOS candidate loci including LHCGR, FSHR, ZNF217, YAP1, INSR, RAB5B, and C9orf3. We review the functional roles of strong PCOS candidate loci focusing on FSHR, LHCGR, INSR, and DENND1A. We propose that these candidates comprise a hierarchical signaling network by which DENND1A, LHCGR, INSR, RAB5B, adapter proteins, and associated downstream signaling cascades converge to regulate theca cell androgen biosynthesis. Future elucidation of the functional gene networks predicted by the PCOS GWAS will result in new diagnostic and therapeutic approaches for women with PCOS.
Collapse
Affiliation(s)
- Jan M McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA, USA; Department of Obstetrics and Gynecology, Penn State Hershey College of Medicine, Hershey, PA, USA.
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Bhavi P Modi
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
39
|
Abstract
Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology (A.J.W.H., Y.C.), Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317; Department of Obstetrics and Gynecology (K.K.), St. Mariana University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan; Department of Reproductive Medicine & Gynecology (B.C.J.M.F.), University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Ben-Shlomo I, Younis JS. Basic research in PCOS: are we reaching new frontiers? Reprod Biomed Online 2014; 28:669-83. [DOI: 10.1016/j.rbmo.2014.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/21/2013] [Accepted: 02/12/2014] [Indexed: 01/05/2023]
|
41
|
Abstract
The etiology of polycystic ovary syndrome (PCOS) has been difficult to determine because its features are heterogeneous, and its origin may also be heterogeneous. Twin studies suggest that its etiology is strongly heritable and genetic approaches are rapidly uncovering new regions of the genome that appear to confer risk for PCOS. Recent genome-wide association studies in Han Chinese women with PCOS demonstrate 11 genetic loci that are associated with PCOS. The variants identified are in regions that contain genes important for gonadotropin action, genes that are associated with risk for type 2 diabetes, and other genes in which the relationship to PCOS is not yet clear. Replication studies have demonstrated that variants at several of these loci also confer risk for PCOS in women of European ethnicity. The strongest loci in Europeans contain genes for DENND1A and THADA, with additional associations in loci containing the LHCGR and FSHR, YAP1 and RAB5/SUOX. The next steps in uncovering the pathophysiology borne out by these loci and variants will include mapping to determine the causal variant and gene, phenotype studies to determine whether these regions are associated with particular features of PCOS and functional studies of the causal variant to determine the direct cause of PCOS based on the underlying genetics. The next years will be very exciting times as groups from around the world come together to further elucidate the genetic origins of PCOS.
Collapse
Affiliation(s)
- Corrine K Welt
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica M Duran
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
42
|
Whigham LD, Butz DE, Dashti H, Tonelli M, Johnson LK, Cook ME, Porter WP, Eghbalnia HR, Markley JL, Lindheim SR, Schoeller DA, Abbott DH, Assadi-Porter FM. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. ACTA ACUST UNITED AC 2014; 2:269-278. [PMID: 24765590 DOI: 10.2174/2213235x01666131203230512] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain.
Collapse
Affiliation(s)
- Leah D Whigham
- Paso del Norte Institute for Healthy Living, 500 W. University Ave, El Paso, TX 79968, USA
| | - Daniel E Butz
- Animal Sciences Department, UW-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Hesam Dashti
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Luann K Johnson
- Paso del Norte Institute for Healthy Living, 500 W. University Ave, El Paso, TX 79968, USA
| | - Mark E Cook
- Animal Sciences Department, UW-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Warren P Porter
- Department of Zoology, UW-Madison, 1117 W. Johnson St. Madison, WI 53706, USA
| | - Hamid R Eghbalnia
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert B. Sabin Way, Cincinnati, OH 45267-0576, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Biochemistry, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Steven R Lindheim
- Arizona Reproductive Institute 1775 E Skyline Drive, Tucson, AZ 85718, USA
| | - Dale A Schoeller
- Department of Nutritional Sciences, UW-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, UW-Madison, 1223 Capitol Court, Madison, WI 53715, USA
| | - Fariba M Assadi-Porter
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Biochemistry, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Nutritional and Human Health Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA
| |
Collapse
|
43
|
Biberoglu EH, Biberoglu KO. Prevention of Endometriosis. ENDOMETRIOSIS 2014:277-310. [DOI: 10.1007/978-4-431-54421-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Zorrilla M, Yatsenko AN. The Genetics of Infertility: Current Status of the Field. CURRENT GENETIC MEDICINE REPORTS 2013; 1:10.1007/s40142-013-0027-1. [PMID: 24416713 PMCID: PMC3885174 DOI: 10.1007/s40142-013-0027-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infertility is a relatively common health condition, affecting nearly 7% of all couples. Clinically, it is a highly heterogeneous pathology with a complex etiology that includes environmental and genetic factors. It has been estimated that nearly 50% of infertility cases are due to genetic defects. Hundreds of studies with animal knockout models convincingly showed infertility to be caused by gene defects, single or multiple. However, despite enormous efforts, progress in translating basic research findings into clinical studies has been challenging. The genetic causes remain unexplained for the vast majority of male or female infertility patients. A particular difficulty is the huge number of candidate genes to be studied; there are more than 2,300 genes expressed in the testis alone, and hundreds of those genes influence reproductive function in humans and could contribute to male infertility. At present, there are only a handful of genes or genetic defects that have been shown to cause, or to be strongly associated with, primary infertility. Yet, with completion of the human genome and progress in personalized medicine, the situation is rapidly changing. Indeed, there are 10-15 new gene tests, on average, being added to the clinical genetic testing list annually.
Collapse
Affiliation(s)
- Michelle Zorrilla
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| | - Alexander N Yatsenko
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Pathology, School of Medicine, University of Pittsburgh
| |
Collapse
|
45
|
Calpain-10 genetic polymorphisms and polycystic ovary syndrome risk: A meta-analysis and meta-regression. Gene 2013; 531:426-34. [DOI: 10.1016/j.gene.2013.08.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/11/2013] [Accepted: 08/21/2013] [Indexed: 01/11/2023]
|
46
|
Abstract
Acne is the most common skin disorder. In the majority of cases, acne is a disease that changes its skin distribution and severity over time; moreover, it can be a physically (scar development) and psychologically damaging condition that lasts for years. According to its clinical characteristics, it can be defined as a chronic disease according to the World Health Organization criteria. Acne is also a cardinal component of many systemic diseases or syndromes, such as congenital adrenal hyperplasia, seborrhea-acne-hirsutism-androgenetic alopecia syndrome, polycystic ovarian syndrome, hyperandrogenism-insulin resistance-acanthosis nigricans syndrome, Apert syndrome, synovitis-acne-pustulosis-hyperostosis-osteitis syndrome, and pyogenic arthritis-pyoderma gangrenosum-acne syndrome. Recent studies on the Ache hunter gatherers of Paraguay detected the lack of acne in association with markedly lower rates of obesity, diabetes mellitus, hyperlipidemia, and cardiovascular diseases, a finding that indicates either a nutritional or a genetic background of this impressive concomitance.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany.
| |
Collapse
|
47
|
Dowling AR, Nedorezov LB, Qiu X, Marino JS, Hill JW. Genetic factors modulate the impact of pubertal androgen excess on insulin sensitivity and fertility. PLoS One 2013; 8:e79849. [PMID: 24278193 PMCID: PMC3835926 DOI: 10.1371/journal.pone.0079849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/25/2013] [Indexed: 01/31/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.
Collapse
Affiliation(s)
- Abigail R. Dowling
- University of Toledo Medical Center, Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Laura B. Nedorezov
- University of Toledo Medical Center, Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Xiaoliang Qiu
- University of Toledo Medical Center, Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Joseph S. Marino
- Department of Kinesiology, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Jennifer W. Hill
- University of Toledo Medical Center, Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo Medical Center, Toledo, Ohio, United States of America
- Dept. of Obstetrics-Gynecology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| |
Collapse
|
48
|
Gilder AS, Chen YB, Jackson RJ, Jiang J, Maher JF. Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1. Biochem Biophys Res Commun 2013; 440:431-6. [PMID: 24076122 DOI: 10.1016/j.bbrc.2013.09.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
The mammalian Fem1b gene encodes a homolog of FEM-1, a protein in the sex-determination pathway of the nematode Caenorhabditis elegans. Fem1b and FEM-1 proteins each contain a VHL-box motif that mediates their interaction with certain E3 ubiquitin ligase complexes. In C. elegans, FEM-1 negatively regulates the transcription factor TRA-1, and functions as an E3 ubiquitin ligase substrate recognition subunit to target TRA-1 for ubiquitylation. TRA-1 is homologous to the mammalian Gli1 protein, a transcription factor that mediates Hedgehog signaling as well as having Hedgehog-independent functions. Whether the interaction between nematode FEM-1 and TRA-1 proteins is conserved, between corresponding mammalian homologs, has not been reported. Herein, we show that Fem1b interacts with Gli1 within cells, and directly binds Gli1. Fem1b also promotes ubiquitylation of Gli1, suppresses transcriptional activation by Gli1, and attenuates an oncogenic Gli1 autoregulatory loop in cancer cells, all dependent on the VHL-box of Fem1b. These findings have implications for understanding the cellular functions of Fem1b, and the regulation of Gli1 oncoprotein activity.
Collapse
Affiliation(s)
- Andrew S Gilder
- Cancer Institute and Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | | | | | |
Collapse
|
49
|
Tal R, Seifer DB, Shohat-Tal A, Grazi RV, Malter HE. Transforming growth factor-β1 and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation. Fertil Steril 2013; 100:538-43. [DOI: 10.1016/j.fertnstert.2013.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 01/04/2023]
|
50
|
Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod 2013; 20:49-58. [DOI: 10.1093/molehr/gat051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|