1
|
Fang D, Zhou L, Zheng B. Research Progress on the Immunological Correlation Between Papillary Thyroid Carcinoma and Hashimoto's Thyroiditis. J Immunol Res 2025; 2025:7192808. [PMID: 40313970 PMCID: PMC12043394 DOI: 10.1155/jimr/7192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
In recent years, a growing body of evidence has suggested a correlation between Hashimoto's thyroiditis (HT) and the onset and progression of papillary thyroid carcinoma (PTC). However, the mechanism underlying the relationship between HT and PTC remains incompletely understood. This review discusses the literature on the correlation between PTC and HT and summarizes the research concerning the immunological interplay between these two conditions. It also delves into tumor-associated cells (such as CD8+ T cells), tumor-associated macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs), alongside other tumor-associated factors, including interleukins (ILs), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and hypoxia-inducible factor-1 (HIF-1), highlighting their roles in the interaction between PTC and HT. We also explore the strategic direction of immunotherapy in thyroid malignancies, particularly PTC with HT, and propose novel targeted immunotherapies for advanced thyroid cancer.
Collapse
Affiliation(s)
- Digui Fang
- Department of Thyroid and Parathyroid Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Limei Zhou
- Department of Thyroid and Parathyroid Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Biao Zheng
- Department of Thyroid and Parathyroid Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Xue X, Wu D, Yao H, Wang K, Liu Z, Qu H. Mechanisms underlying the promotion of papillary thyroid carcinoma occurrence and progression by Hashimoto's thyroiditis. Front Endocrinol (Lausanne) 2025; 16:1551271. [PMID: 40230479 PMCID: PMC11994412 DOI: 10.3389/fendo.2025.1551271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) co-occurrence raises significant questions regarding the immune microenvironment and molecular mechanisms in thyroid tumor development. This review synthesizes recent literature to explore the immune microenvironment and molecular characteristics of PTC patients with HT, and to analyze how these characteristics influence disease onset, progression, and treatment. We focused on the immunological and molecular biological mechanisms underlying the interaction between HT and PTC, particularly the recruitment and activation of immune cells and alterations in key signaling pathways. Studies indicate that PTC with HT exhibits distinctive immune microenvironmental features, such as the role of regulatory T cells (Tregs), activation of the IFN-γ-mediated CXCR3A-CXCL10 signaling axis, and NF-κB pathway activation. Additionally, thyroid-stimulating hormone (TSH) stimulation, RET/PTC gene rearrangements, and changes in STAT6 and DMBT1 gene expression levels also play significant roles in PTC development. Notably, while HT may increase the risk of PTC, patients with concurrent HT tend to have better prognoses. Future research should further elucidate the complex interplay between these two diseases to prevent the transformation of HT into PTC and offer more personalized treatment plans for PTC patients, including considerations for preoperative thyroidectomy and lymph node dissection strategies, as well as postoperative TSH suppression therapy risk assessment. This review underscores the importance of a deeper understanding of HT and PTC interactions and offers new perspectives for future research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaohui Xue
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Deqi Wu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangyu Yao
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kainan Wang
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijiang Qu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
3
|
Chen Y, Liu J, Ren B, Zhou Z, He Y, Li F, Jin M, Liu L, Wang X, Shen H. Validation of DNA methylation and transcriptional characteristics in CCL5 and CXCL8 genes in autoimmune thyroiditis with varying iodine levels. Sci Rep 2025; 15:6006. [PMID: 39972165 PMCID: PMC11840062 DOI: 10.1038/s41598-025-90499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
AIT (autoimmune thyroiditis) is a complex disease influenced by genetic and environmental factors as well as immune dysregulation. Epigenetics has unveiled potential connections among environmental factors, gene expression and thyroid autoimmunity. Among epigenetic modifications, DNA methylation is the first discovered and the most extensively-studied. Investigations both domestically and internationally indicate that iodine supplementation in areas with either excessive or insufficient iodine levels increases the incidence of AIT. Chemokines also play a crucial role in the pathogenesis of AIT. Therefore, does iodine influence the DNA methylation of chemokine genes of patients with AIT, and what are the potential mechanisms involved?. Healthy controls and patients with AIT were matched at the ratio of 1:1 according to age, sex, BMI and residential address, and a total of 176 patients with AIT together with 176 controls were included from regions with varying iodine levels. DNA methylation and mRNA expression levels were analyzed in whole blood using MethylTarget and qRT-PCR methods. At the same time, the GSE138198 and GSE54958 datasets were downloaded from GEO to obtain transcriptional datasets of thyroid tissues from patients with AIT. AIT patients had lower DNA methylation levels in CCL5_2 and CXCL8_1 target regions than controls, while the mRNA expression of CCL5 and CXCL8 genes was significantly higher. A negative correlation was found between the DNA methylation of CCL5_2 and its CpG sites as well as CCL5 gene expression. Higher CCL5 mRNA expression was validated in the thyroid tissues of patients with AIT using GSE datasets. DNA methylation differences at different iodine levels were mainly observed in CCL5_1, CCL5_2, CXCL8_1 and CXCR5_1. CXCL8_1 showed a positive correlation with UIC (urinary iodine concentration). This study demonstrates an association between the DNA methylation status of CCL5 and CXCL8 genes and AIT. The DNA methylation level of the CCL5 gene can serve as an epigenetic marker and biological indicator for AIT. Additionally, long-term iodine deficiency supplementation has a more pronounced impact on the DNA methylation levels of CCL5 and CXCL8 genes.
Collapse
Affiliation(s)
- Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Fan Li
- Control Infection Department, Xi'an First Hospital, Xi'an, People's Republic of China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Xuebing Wang
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Coperchini F, Greco A, Petrosino E, Croce L, Teliti M, Marchesi N, Pascale A, Calì B, Pignatti P, Magri F, Uddin M, Rotondi M. Selective anti-CXCR2 receptor blockade by AZD5069 inhibits CXCL8-mediated pro-tumorigenic activity in human thyroid cancer cells in vitro. J Endocrinol Invest 2025; 48:53-65. [PMID: 38900374 PMCID: PMC11729135 DOI: 10.1007/s40618-024-02410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Thyroid cancer is the most common endocrine malignancy. Current therapies are successful, however some patients progress to therapeutically refractive disease. The immunotherapeutic potential of the CXCL8-chemokine/CXCR2-chemokine-receptor system is currently being explored in numerous human cancers. This study aimed to evaluate if the targeting of CXCR2 by its selective antagonist, AZD5069, could modulate CXCL8-mediated pro-tumorigenic effects in thyroid-cancer (TC) cells in vitro. METHODS Normal human primary thyroid cells (NHT) and TC cell lines TPC-1 (RET/PTC), BCPAP, 8505C and 8305C (BRAFV600e) were treated with AZD5069 (100 pM-10 µM) over a time-course. Viability and proliferation were assessed by WST-1 and crystal violet assays. CXCL8 and CXCR2 mRNA were evaluated by RT-PCR. CXCL8-protein concentrations were measured in cell culture supernatants by ELISA. CXCR2 on cell surface was evaluated by flow-cytometry. Cell-migration was assessed by trans-well-migration chamber-system. RESULTS AZD5069 exerted negligible effects on cell proliferation or viability. AZD5069 significantly reduced CXCR2, (but not CXCL8) mRNAs in all cell types. CXCR2 was reduced on the membrane of some TC cell lines. A significant reduction of the CXCL8 secretion was found in TPC-1 cells (basal-secretion) and NHT (TNFα-induced secretion). AZD5069 significantly reduced basal and CXCL8-induced migration in NHT and different TC cells. CONCLUSIONS Our findings confirm the involvement of the CXCL8/CXCR2-axis in promoting pro-tumorigenic effects in TC cells, further demonstrating its immunotherapeutic significance in human cancer.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - E Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - L Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - N Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - A Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - B Calì
- Department of General and Minimally Invasive Surgery, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia (PV), Italy
| | - P Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - F Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Coperchini F, Greco A, Teliti M, Denegri M, Croce L, Calì B, Gallo M, Arpa G, Chytiris S, Magri F, Rotondi M. In vitro study of the UV-filter homosalate effects on rat and human thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125063. [PMID: 39366447 DOI: 10.1016/j.envpol.2024.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Homosalate is a UV-B filter, commonly used in sunscreens and personal-care products. Homosalate was shown to exert estrogenic and anti-androgenic effects in animal models, while few data are available on the effects of Homosalate on thyroid cells. The aim of this study was to evaluate if Homosalate exposure could exert adverse effect on thyroid cells in vitro. FRTL-5 and NHT were treated with increasing concentration of Homosalate for 24-48-72 h. Cell viability was assessed by WST-1. Cell proliferation was evaluated by cristal violet. Micronucleus staining was performed to assess genotoxicity. mRNA levels of thyroid-related genes (TSHR, TPO, TG, NIS, and PAX8) were evaluated by RT-PCR. Changes in ROS production by FRTL-5 and NHT were assessed with H2DCFDA. Homosalate significantly reduced cell viability after 72 h in FRTL-5 starting from the concentration 250 μM, while in NHT, Homosalate exposure significantly reduced cell viability after 48 and 72 h only at highest concentration (2000 μM). Cell proliferation was not modified by Homosalate at any concentration and time-point. Homosalate significantly up-regulated mRNA expression levels of TPO and Tg genes in FRTL-5, while a significant increase only in Tg mRNA expression was observed in NHT. No changes in ROS production was found in both cell types. The present study suggest that the effects of Homosalate exposure may differ according to the type of cell tested. The in vitro exposure of thyroid cells to Homosalate produces: i) cytotoxicity at high concentrations or after long time of incubation, ii) genotoxicity only in rat thyroid cells at the highest concentration, iii) upregulation of Tg mRNA in both thyroid cell types and of TPO mRNA in rat thyroid cells, iv) no changes in cell proliferation or oxidative stress. Further studies on the effects of Homosalate on thyroid cells should be encouraged.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Benedetto Calì
- Istituti Clinici Scientifici Maugeri IRCCS, Department of General and Minimally Invasive Surgery, Pavia (PV), 27100, Italy
| | - Maria Gallo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Giovanni Arpa
- Unit of Anatomic Pathology, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Feng J, Xu X, Cai W, Yang X, Niu R, Han Z, Tian L. Inhibiting Soluble Epoxide Hydrolase Suppresses NF-κB p65 Signaling and Reduces CXCL10 Expression as a Potential Therapeutic Target in Hashimoto's Thyroiditis. J Clin Endocrinol Metab 2024; 109:2579-2588. [PMID: 38478377 DOI: 10.1210/clinem/dgae163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 09/17/2024]
Abstract
BACKGROUND Although Hashimoto's thyroiditis (HT) is one of most common autoimmune thyroid diseases, its treatment remains focused on symptom relief. The soluble epoxide hydrolase (sEH) shows potential functions as a drug target in alleviating some autoimmune diseases; however, we seldom know its role in HT. METHODS The protein expression of sEH and related downstream molecules were evaluated by immunohistochemistry, Western blotting, ELISA, or immunofluorescence staining. RNA sequencing of tissue samples was performed to analyze differential genes and dysregulated pathways in HT and controls. The thyroid follicular epithelial cells (TFECs) and rat HT model were used to verify the biological function of sEH and the inhibition role of adamantyl-ureido-dodecanoic acid (AUDA) in HT. RESULTS The sEH was significantly upregulated in HT patients compared with healthy individuals. Transcriptome sequencing showed cytokine-related pathways and chemokine expression; especially chemokine CXCL10 and its receptor CXCR3 were aberrant in HT patients. In TFECs and a rat HT model, blocking sEH by AUDA inhibitor could effectively inhibit the autoantibody, proinflammatory nuclear kappa factor B (NF-κB) signaling, chemokine CXCL10/CXCR3 expression, and type-1 helper CD4+ T cells. CONCLUSION Our findings suggest that sEH/NF-κB p65/CXCL10-CXCR3 might be promising therapeutic targets for HT.
Collapse
Affiliation(s)
- Jing Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730099, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Xianghong Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Wei Cai
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Xingwen Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Ruilan Niu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730099, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
| |
Collapse
|
7
|
Coperchini F, Greco A, Croce L, Teliti M, Calì B, Chytiris S, Magri F, Rotondi M. Do PFCAs drive the establishment of thyroid cancer microenvironment? Effects of C6O4, PFOA and PFHxA exposure in two models of human thyroid cells in primary culture. ENVIRONMENT INTERNATIONAL 2024; 187:108717. [PMID: 38728818 DOI: 10.1016/j.envint.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Benedetto Calì
- Istituti Clinici Scientifici Maugeri IRCCS, Department of General and Minimally Invasive Surgery, Pavia, (PV) 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Song M, Sun W, Liu Q, Wang Z, Zhang H. Global scientific trends on thyroid disease in early 21st century: a bibliometric and visualized analysis. Front Endocrinol (Lausanne) 2024; 14:1306232. [PMID: 38298184 PMCID: PMC10829784 DOI: 10.3389/fendo.2023.1306232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Bibliometrics has been used to analyze the literature in the field of thyroid disease studies in the early 21st century, indicating the changes in current international study trends. Methods In this study, a bibliometric analysis of data retrieved from the Web of Science (WoS) database was conducted, and the publication trends and thematic evolution in the field of thyroid disease research from January 1, 2000, to November 16, 2022, were analyzed. A total of 69283 articles related to thyroid diseases were evaluated for their characteristics, including annual publication volume, countries, journals, institutions, authors, keywords, and references. VOSviewer was utilized to perform the analysis of co-authorship, co-citation, co-occurrence and descriptive. Results The annual publication volume of thyroid disease research literature showed a fluctuating upward trend from 2000 to 2021, exceeding 5,000 articles for the first time in 2021. The United States (16120 counts, 678255 cities) ranks first in terms of publication volume and citation. Thyroid (n=3201) and Journal of Clinical Endocrinology&Metabolism (n=140399) are the most prolific and cited journals, respectively. The organization with the highest publication volume and citation frequency is Harvard University (1011 counts, 59429 cities), Miyauchi Akira (n=422), Schlumberger, and Martin (n=24839) possess the highest publication volume and citation frequency, respectively. Co-occurrence analysis of 307 keywords with frequencies of more than 20 resulted in 6 clusters (1): Thyroid dysfunction and diseases (2); mechanism of occurrence and development of thyroid cancer (3); autoimmune thyroiditis (4); scope and postoperative management of thyroid surgery (5); fine needle aspiration of thyroid nodules (6); radioactive iodine therapy for thyroid cancer. Active monitoring, thermal ablation, Lenvatinib, and long noncoding RNA refer to the latest keywords. Discussing the six clusters helps scholars to determine the scope and direction of studies. Conclusion Over the past two decades, the literature related to thyroid diseases has increased year by year, with closer collaboration between countries, institutions, and authors. In this study, the global trends, research hotspots, emerging subjects, and basic knowledge of literature related to thyroid diseases were respectively elucidated, which will facilitate researchers in this field to seek better development.
Collapse
Affiliation(s)
- Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Coperchini F, Greco A, Croce L, Pignatti P, Muzza M, Petrosino E, Teliti M, Magri F, Rotondi M. Canagliflozin reduces thyroid cancer cells migration in vitro by inhibiting CXCL8 and CCL2: An additional anti-tumor effect of the drug. Biomed Pharmacother 2024; 170:115974. [PMID: 38056240 DOI: 10.1016/j.biopha.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Canagliflozin exert anti-cancer effects in several types of cancer including thyroid cancer (TC). However, whether it could modulate chemokines secreted in TC microenvironment is still unknown. The aim of the present study is to evaluate whether Canagliflozin could inhibit pro-tumorigenic chemokines CXCL8 and CCL2 and/or the TC cell migration induced by them. EXPERIMENTAL DESIGN TC cell lines, TPC-1 and 8505C, HUVEC and normal thyroid cells NHT were treated with increasing concentrations of Canagliflozin. Viability was assessed by WST-1 and colony formation/proliferation by cristal violet. Chemokines were measured in cell supernatants by ELISA. mRNAs were evaluated by RT-PCR. TC migration (trans-well) and HUVEC proliferation (cristal violet) were assessed by treating cells with Canagliflozin alone or in combination with CXCL8 or CCL2. RESULTS Canagliflozin reduced TC, HUVEC and NHT cells viability. The ability to form colonies of TC and the HUVEC proliferation (basal and CXCL8 or CCL2-induced) was also inhibited. mRNA and the secretion of CXCL8 was reduced in all cell types. The secretion of CCL2 was reduced by Canagliflozin in all cell types whereas its mRNA levels were reduced only in TPC-1. IL-6 was reduced in all cell types, while CXCL10 increased. More interestingly the CXCL8 and CCL2-induced TC cell migration as well as HUVEC proliferation was inhibited by Canagliflozin in both cell types. CONCLUSION Canagliflozin exerts anti-cancer effects not only by reducing TC viability or colonies formation, but also by modulating two pro-tumorigenic chemokines resulting in reduced TC cells migration. These results expand the spectrum of canagliflozin-promoted anti-cancer effects.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Marina Muzza
- Department of Endocrine and Metabolic Diseases, Endocrine Oncology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elena Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Mohammadi B, Dua K, Saghafi M, Singh SK, Heydarifard Z, Zandi M. COVID-19-induced autoimmune thyroiditis: Exploring molecular mechanisms. J Med Virol 2023; 95:e29001. [PMID: 37515444 DOI: 10.1002/jmv.29001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) damages multiple organs, including the thyroid, by direct invasion and cell entry via angiotensin-converting enzyme 2 or indirectly by promoting excessive inflammation in the body. The immune system is a critical factor in antiviral immunity and disease progression. In the context of SARS-CoV-2 infection, the immune system may become overly activated, resulting in a shift from regulatory to effector responses, which may subsequently promote the development and progression of autoimmune diseases. The incidence of autoimmune thyroid diseases, such as subacute thyroiditis, Graves' disease, and Hashimoto's thyroiditis, increases in individuals with COVID-19 infection. This phenomenon may be attributed to aberrant responses of T-cell subtypes, the presence of autoantibodies, impaired regulatory cell function, and excessive production of inflammatory cytokines, namely interleukin (IL)-6, IL-1β, interferon-γ, and tumor necrosis factor-α. Therefore, insights into the immune responses involved in the development of autoimmune thyroid disease according to COVID-19 can help identify potential therapeutic approaches and guide the development of effective interventions to alleviate patients' symptoms.
Collapse
Affiliation(s)
- Bita Mohammadi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammadreza Saghafi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- School of Medicine, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Coperchini F, De Marco G, Croce L, Denegri M, Greco A, Magri F, Tonacchera M, Imbriani M, Rotondi M, Chiovato L. PFOA, PFHxA and C6O4 differently modulate the expression of CXCL8 in normal thyroid cells and in thyroid cancer cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63522-63534. [PMID: 37052835 DOI: 10.1007/s11356-023-26797-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
Industrial chemical PFAS are persistent pollutants. Long chain PFAS were taken out of production due to their risk for human health, however, new congeners PFAS have been introduced. The in vitro effects of the long-chain PFOA, the short-chain PFHxA and the new-generation C6O4 were evaluated in normal and in thyroid cancer cell lines in terms of cell viability and proliferation, and secretion of a pro-tumorigenic chemokine (CXCL8), both at the mRNA and at the protein level. The Nthy-ory 3-1 normal-thyroid cell line, the TPC-1 and the 8505C (RET/PTC rearranged and BRAFV600e mutated, respectively) thyroid-cancer cell lines were exposed to increasing concentrations of each PFAS in a time-course. We evaluated viability using WST-1 (confirmed by AnnexinV/PI) and proliferation using the cristal-violet test. To evaluate CXCL8 mRNA we used RT-PCR and measured CXCL8 in the supernatants by ELISA. The exposure to none PFAS did not affect thyroid cells viability (except for a reduction of 8505C cells viability after 144 h) or proliferation. Individual PFAS differently modulated CXCL8 mRNA and protein level. PFOA increased CXCL8 both at mRNA and protein level in the three cell lines; PFHxA increased CXCL8 mRNA in the three cell lines, but increased the protein only in TPC-1 cells; C6O4 increased the CXCL8 mRNA only in thyroid cancer cell lines, but never increased the CXCL8 protein. The results of the present study indicate that the in vitro exposure to different PFAS may modulate both at the mRNA and secreted protein levels of CXCL8 in normal and cancer thyroid cells. Strikingly different effects emerged according to the specific cell type and to the targeted analyte (CXCL8 mRNA or protein).
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Marco Denegri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Molecular Cardiology, 27100, Pavia (PV), Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia (PV), Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy.
| |
Collapse
|
12
|
Rotondi M, Chiovato L. Preexisting or Concomitant Thyroiditis in Papillary Thyroid Cancer: Something More Than a Mere Issue of Timing? J Clin Endocrinol Metab 2022; 107:e3084-e3085. [PMID: 34928387 DOI: 10.1210/clinem/dgab906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, I-27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, I-27100 Pavia, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, I-27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
13
|
Wu F, Mao C, Mou X, Xu C, Zheng T, Bu L, Luo X, Lu Q, Wang X. Decreased β-catenin expression contributes to IFNγ-induced chemokine secretion and lymphocyte infiltration in Hashimoto's thyroiditis. Endocr Connect 2022; 11:EC-21-0451.R1. [PMID: 35107084 PMCID: PMC8942314 DOI: 10.1530/ec-21-0451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Hashimoto's thyroiditis (HT) is a very common organ-specific autoimmune disease characterized by lymphocyte infiltration and the destruction of thyroid follicular cells (TFCs), in which IFN-γ and chemokines play pivotal roles. Moreover, β-catenin has been implicated in the regulation of T cell infiltration. However, whether β-catenin is involved in Hashimoto's thyroiditis is unknown. Here, we examined β-catenin expression in thyroid tissues and investigated its role in the pathogenesis of HT. The results showed that β-catenin expression was markedly reduced in the thyroid tissues of HT patients; more importantly, IFN-γ treatment markedly reduced the expression of β-catenin and was accompanied by the secretion of chemokines such as CCL5, CXCL16, GRO-β, and GRO-γ in TFCs in vitro, which was attributed to GSK-3β/β-catenin signaling pathway activation. Collectively, the decreased expression of β-catenin might contribute to IFNγ-induced chemokine secretion and lymphocyte infiltration in the development of HT.
Collapse
Affiliation(s)
- Fei Wu
- Department of Nuclear Medicine, Yancheng City No. 1 People’s Hospital, Yancheng, China
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Correspondence should be addressed to C Mao:
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Bu
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qingyan Lu
- Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Coperchini F, Greco A, Croce L, Petrosino E, Grillini B, Magri F, Chiovato L, Rotondi M. Vitamin D Reduces Thyroid Cancer Cells Migration Independently From the Modulation of CCL2 and CXCL8 Chemokines Secretion. Front Endocrinol (Lausanne) 2022; 13:876397. [PMID: 35498406 PMCID: PMC9044905 DOI: 10.3389/fendo.2022.876397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin D3 is largely involved in the regulation of calcium homeostasis. More recently, it was demonstrated that vitamin D exerts several beneficial effects against cancer progression through several mechanisms, including the reduction of cancer cells proliferation and migration. CXCL8 and CCL2 are two chemokines secreted by thyroid tumor cells. In the thyroid tumor microenvironment, these chemokines exert several pro-tumorigenic effects including the one to increase the metastatic potential. The aim of the present study was to investigate if vitamin D could modulate both thyroid cancer cell migration and their ability to secrete CCL2 and CXCL8. METHODS TPC-1 (RET/PTC rearranged) and 8505C (BRAFV600e mutated) thyroid cancer cell lines were treated with increasing concentrations of 1,25-OH-vitamin D3 (0-1,000 nM). Cell viability was assessed by WST-1 assay, cell migration was evaluated by transwell-migration chamber system, and CCL2 and CXCL8 levels were measured in the cell culture supernatants by ELISA. RESULTS Vitamin D did not affect cell viability but reduced, in a dose-dependent and significant manner, thyroid cancer cell migration (ANOVAs p < 0.05 for both TPC-1 and 8505C). Vitamin D differently modulated the secretion of CCL2 and CXCL8, by significantly inhibiting the secretion of CCL2 in both thyroid cancer cell lines and inhibiting the secretion of CXCL8 only in TPC-1 (ANOVAs p < 0.05). CONCLUSIONS Vitamin D treatment of thyroid cancer cell lines reduces cell migration independently from the inhibition of the secretion of pro-tumorigenic chemokines. Future studies specifically designed at clarifying the pathways involved in the different inhibitory effects of vitamin D on CCL2 and CXCL8 in thyroid cancer cells appear worthwhile.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, PHD Course in Experimental Medicine, University of Pavia, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Elena Petrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Beatrice Grillini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Mario Rotondi,
| |
Collapse
|
15
|
Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, Yang C, Tai S, Chen X, Zhang L, Liang C. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol 2021; 12:706027. [PMID: 34659199 PMCID: PMC8511489 DOI: 10.3389/fimmu.2021.706027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is an inflammatory immune disease characterized by intraprostatic leukocyte infiltration and pelvic or perineal pain. Macrophages play vital roles in the pathogenesis of CP/CPPS. However, the mechanisms controlling the activation and chemotaxis of macrophages in CP/CPPS remain unclear. This study aimed to investigate the roles of the CXCL10/CXCR3 pathway in the activation and chemotaxis of macrophages in CP/CPPS patients. The serums of CP/CPPS patients and healthy volunteers were collected and measured. Results showed that CXCL10 expression was significantly elevated and correlated with the severity of CP/CPPS patients. The experimental autoimmune prostatitis (EAP) model was generated, and adeno-associated virus and CXCR3 inhibitors were used to treat EAP mice. Immunofluorescence, flow cytometry, and Western blotting were used to analyze the functional phenotype and regulation mechanism of macrophages. Results showed that CXCL10 deficiency ameliorates EAP severity by inhibiting infiltration of macrophages to prostate. Moreover, CXCL10 could induce macrophage migrations and secretions of proinflammatory mediators via CXCR3, which consequently activated the downstream Erk1/2 and p38 MAPK signaling pathways. We also showed that prostatic stromal cell is a potential source of CXCL10. Our results indicated CXCL10 as an important mediator involved in inflammatory infiltration and pain symptoms of prostatitis by promoting the migration of macrophages and secretion of inflammatory mediators via CXCR3-mediated ERK and p38 MAPK activation.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Fan Mo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jiong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
16
|
Ji X, Sun T, Xie S, Qian H, Song L, Wang L, Liu H, Feng Q. Upregulation of CPNE7 in mesenchymal stromal cells promotes oral squamous cell carcinoma metastasis through the NF-κB pathway. Cell Death Discov 2021; 7:294. [PMID: 34650058 PMCID: PMC8516970 DOI: 10.1038/s41420-021-00684-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A remarkable shift in Mesenchymal stromal cells (MSCs) plays an important role in cancer metastasis, but the molecular mechanism is still unclear. CPNE7, a calcium-dependent phospholipid-binding protein, mediates signal transduction and metastasis in many tumours. Here, we demonstrated that MSCs derived from OSCC (OSCC-MSCs) promoted the metastasis of OSCC cells by transwell assay and animal models through epithelial to mesenchymal transition (EMT) (p < 0.05). RNA-sequencing, ELISA, neutralizing antibody and CXCR2 inhibitor assay confirmed that CXCL8 secreted by OSCC-MSCs was associated with the upregulated expression of CPNE7 by immunohistochemical and western blotting (p < 0.05). This is mechanistically linked to the activation of CPNE7 to NF-κB pathway-induced metastasis, including phosphorylated p65 and IκBa. CPNE7 silencing inhibited metastatic abilities and the expression of CXCL8, phosphorylated p65, IκBa, and p65 nuclear translocation by western blotting and immunofluorescence, while CPNE7 overexpression markedly promoted these events (p < 0.05). We also identified that Nucleolin could be bind CPNE7 and IκBa by co-immunoprecipitation. Together, our results suggest that upregulation of CPNE7 in MSCs interacted with surface receptor -Nucleolin and then combined with IκBa to promoted phosphorylated IκBa and p65 nuclear translocation to active NF-κB pathway, and then regulates CXCL8 secretion to promote the metastasis of OSCC cells. Therefore, CPNE7 in MSCs could be promising therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Stomatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, 250013, Shandong, China. .,Department of Oral Mucosal Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China
| | - Hua Qian
- Department of Stomatology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan, 250033, China
| | - Lixiang Song
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Lihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian, Beijing, 100081, China.
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,NHC Key Laboratory of Otorhinolaryngology (Shandong University), No.44-1 Wenhua Road West, Jinan, Shandong, China, 250012.
| |
Collapse
|
17
|
Bruscolini A, Segatto M, Marenco M, Lambiase A, Sacchetti M. Alteration of CXCL8 pathway in the ocular surface of patients with Graves' orbitopathy. Clin Exp Rheumatol 2020; 19:102682. [PMID: 33131690 DOI: 10.1016/j.autrev.2020.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Alice Bruscolini
- Department of Sense Organs, "Sapienza" University of Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Italy
| | - Marco Marenco
- Department of Sense Organs, "Sapienza" University of Rome, Italy
| | | | - Marta Sacchetti
- Department of Sense Organs, "Sapienza" University of Rome, Italy
| |
Collapse
|
18
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
19
|
Ramadan RA, Ragab W, Assaad RS, Shaaban AE, Fayad AI. Identification of serum biomarker panel to differentiate malignant from benign thyroid nodules using multiplex bead assay. J Egypt Natl Canc Inst 2020; 32:35. [PMID: 32885338 DOI: 10.1186/s43046-020-00046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The challenging target in the workup of thyroid nodule(s) is to exclude or diagnose thyroid cancer efficiently prior to surgical intervention. The present work studied a panel of eight serum biomarkers to differentiate benign from malignant thyroid nodules, aiming at reducing unnecessary thyroidectomy performed for inconclusive preoperative fine needle aspiration cytology. Serum interleukin-5 (IL-5), interleukin-8 (IL-8), hepatocyte growth factor (HGF), epidermal growth factor (EGF), angiopietin (Ang1), nonokine induced by interferon gamma (MIG), galectin (Gal-3), and vitamin D-binding protein (VDRP) were quantified by multiplex bead assay using Luminex xMAP technology. The study was conducted on 60 subjects of three groups (20 each; healthy controls, benign thyroid nodule, and malignant thyroid nodule). RESULTS Significant increase of the following biomarkers in the malignant group compared to the benign group was found; IL-8: 29.7 vs 8.75 pg/ml, p < 0.001, EGF: 128.7 vs 6.72 pg/ml, p < 0.001, HGF: 173.2 vs 112.2 pg/ml, p = 0.012, MIG: 776.7 vs 438 pg/ml, p = 0.023, and Ang-1: 95016 vs 33327.5 pg/ml, p = 0.014. No significant differences were detected for IL-5, Gal-3, and VDBP. Serum IL-8 and EGF showed the highest diagnostic performance individually with area under the curve (AUC) 0.849 and 0.848, respectively. The combined biomarker panels of IL-8 and EGF and IL-8, EGF, and MIG have reached a sensitivity and specificity of 95% and 65%, respectively, with a negative predictive value of 92.9%. CONCLUSIONS Serum IL-8 and EGF individually or the combined biomarker panel of IL-8, EGF, and MIG are promising tests that can help to exclude malignancy in thyroid nodule workup.
Collapse
Affiliation(s)
- Ragaa Abdelkader Ramadan
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Wafaa Ragab
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ramy Samir Assaad
- Chemical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Elsayed Shaaban
- Department of Experimental and Clinical Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amira Ibrahim Fayad
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Paparo SR, Antonelli A. Thyroid autoimmune disorders and cancer. Semin Cancer Biol 2020; 64:135-146. [DOI: 10.1016/j.semcancer.2019.05.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
|
21
|
Subhi O, Schulten HJ, Bagatian N, Al-Dayini R, Karim S, Bakhashab S, Alotibi R, Al-Ahmadi A, Ata M, Elaimi A, Al-Muhayawi S, Mansouri M, Al-Ghamdi K, Hamour OA, Jamal A, Al-Maghrabi J, Al-Qahtani MH. Genetic relationship between Hashimoto`s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto`s thyroiditis. PLoS One 2020; 15:e0234566. [PMID: 32603365 PMCID: PMC7326236 DOI: 10.1371/journal.pone.0234566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is present in the background of around 30% of papillary thyroid carcinomas (PTCs). The genetic predisposition effect of this autoimmune condition is not thoroughly understood. We analyzed the microarray expression profiles of 13 HT, eight PTCs with (w/) coexisting HT, six PTCs without (w/o) coexisting HT, six micro PTCs (mPTCs), and three normal thyroid (TN) samples. Based on a false discovery rate (FDR)-adjusted p-value ≤ 0.05 and a fold change (FC) > 2, four comparison groups were defined, which were HT vs. TN; PTC w/ HT vs. TN; PTC w/o HT vs. TN; and mPTC vs. TN. A Venn diagram displayed 15 different intersecting and non-intersecting differentially expressed gene (DEG) sets, of which a set of 71 DEGs, shared between the two comparison groups HT vs. TN ∩ PTC w/ HT vs. TN, harbored the relatively largest number of genes related to immune and inflammatory functions; oxidative stress and reactive oxygen species (ROS); DNA damage and DNA repair; cell cycle; and apoptosis. The majority of the 71 DEGs were upregulated and the most upregulated DEGs included a number of immunoglobulin kappa variable genes, and other immune-related genes, e.g., CD86 molecule (CD86), interleukin 2 receptor gamma (IL2RG), and interferon, alpha-inducible protein 6 (IFI6). Upregulated genes preferentially associated with other gene ontologies (GO) were, e.g., STAT1, MMP9, TOP2A, and BRCA2. Biofunctional analysis revealed pathways related to immunogenic functions. Further data analysis focused on the set of non-intersecting 358 DEGs derived from the comparison group of HT vs. TN, and on the set of 950 DEGs from the intersection of all four comparison groups. In conclusion, this study indicates that, besides immune/inflammation-related genes, also genes associated with oxidative stress, ROS, DNA damage, DNA repair, cell cycle, and apoptosis are comparably more deregulated in a data set shared between HT and PTC w/ HT. These findings are compatible with the conception of a genetic sequence where chronic inflammatory response is accompanied by deregulation of genes and biofunctions associated with oncogenic transformation. The generated data set may serve as a source for identifying candidate genes and biomarkers that are practical for clinical application.
Collapse
Affiliation(s)
- Ohoud Subhi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia Bagatian
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roa'a Al-Dayini
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotibi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Al-Ahmadi
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar Ata
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Center of Innovation in Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad Al-Muhayawi
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Mansouri
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Al-Ghamdi
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman Abdel Hamour
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Awatif Jamal
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed Hussain Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Croce L, Coperchini F, Magri F, Chiovato L, Rotondi M. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget 2019; 10:6623-6640. [PMID: 31762942 PMCID: PMC6859927 DOI: 10.18632/oncotarget.27304] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/19/2019] [Indexed: 12/26/2022] Open
Abstract
The BRAF gene is commonly involved in normal processes of cell growth and differentiation. The BRAF (V600E) mutation is found in several human cancer, causing an increase of cell proliferation due to a modification of the ERK/MAPK-signal cascade. In particular, BRAFV600E mutation is found in those melanoma or thyroid cancer refractory to the common therapy and with a more aggressive phenotype. BRAF V600E was found to influence the composition of the so-called tumour microenvironment modulating both solid (immune-cell infiltration) and soluble (chemokines) mediators, which balance characterize the ultimate behaviour of the tumour, making it more or less aggressive. In particular, the presence of BRAFV600E mutation would be associated with a change of this balance to a more aggressive phenotype of the tumour and a worse prognosis. The investigation of the possible modulation of those components of tumour microenvironment is nowadays object of several studies as a new potential target therapy in those more complicated cases. At present several clinical trials both in melanoma and thyroid cancer are using BRAF-inhibitors with encouraging results, which are derived also from numerous in vitro pre-clinical studies aimed at evaluate the possible modulation of immune-cell density and of specific pro-tumorigenic chemokine secretion (CXCL8 and CCL2) by several BRAF-inhibitors in the context of melanoma and thyroid cancer. This review will encompass in vitro and in vivo studies which investigated the modulation of the tumour microenvironment by BRAF-inhibitors, highlighting also the most recent clinical trials with a specific focus on melanoma and thyroid cancer.
Collapse
Affiliation(s)
- Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- PHD course in Experimental Medicine, University of Pavia, Pavia, Italy
| | - Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes. Oncotarget 2019; 10:6432-6443. [PMID: 31741708 PMCID: PMC6849649 DOI: 10.18632/oncotarget.27266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Phenformin is a biguanide drug which, besides the original anti-diabetic effect, also exerts anti-cancer effects. The aim of this study was to further characterize these latter in terms of both cell-viability and modulation of the secretion of the pro-tumorigenic chemokine CXCL8. Normal human thyrocytes in primary cultures (NHT) and thyroid cancer cell lines, TPC-1 and 8505C (RET/PTC and BRAFV600E mutated, respectively) were treated with increasing concentrations of phenformin at different times. Cell-viability was assessed by WST-1 and further characterized by AnnexinV/PI staining and cell proliferation colony-assay. CXCL8 levels were measured in cell supernatants. Phenformin reduced cell-viability in TPC-1 and 8505C and their ability to form colonies. In NHT cells, phenformin affected cell-viability only at the maximal dose but interestingly it inhibited CXCL8 secretion at all the concentrations not affecting cell-viability. Phenformin had no effect on CXCL8 secretion in thyroid cancer cell lines. Thus, phenformin exerts anti-cancer effects on both cancer cells (cell death induction) and surrounding normal cells (inhibition of CXCL8 secretion). These results highlight that the anti-cancer effects of phenformin are multifaceted and effective on both solid and soluble components of the tumor-microenvironment.
Collapse
|
24
|
Ferrari SM, Ragusa F, Paparo SR, Nasini F, Nardi M, Franceschini SS, Fallahi P, Antonelli A. Differential modulation of CXCL8 versus CXCL10, by cytokines, PPAR-gamma, or PPAR-alpha agonists, in primary cells from Graves' disease and ophthalmopathy. Autoimmun Rev 2019; 18:673-678. [PMID: 31059842 DOI: 10.1016/j.autrev.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Thyrocytes secrete CXC chemokines, particularly (C-X-C motif) ligand (CXCL)8 and CXCL10; its physiopathological significance remains unclear. This study investigates the modulation of the secretion of CXCL8 vs. CXCL10, in human primary cells cultures of thyroid follicular cells (TFC) in Graves' disease (GD), and fibroblasts (OF) or preadipocytes (OP) from Graves' ophthalmopathy (GO). METHODS Cells were initially incubated with different concentrations of tumor necrosis factor (TNF)α (1, 5, 10 ng/mL). Then, CXCL8 and CXCL10 were measured in the supernatants of TFC, OF or OP cells basally and after 24 h of treatment with interferon (IFN)γ (1000 IU/mL) and/or TNFα (10 ng/mL), in presence/absence of the peroxisome proliferator activated receptor (PPAR)γ agonist pioglitazone (0, 0.1, 1, 5, 10, 20 μM), or the PPARα agonist fenofibrate (5, 10, 50, 100 μM). RESULTS CXCL8, not CXCL10, was detected in basal conditions in TFC, OF and OP. CXCL8 secretion increased dose-dependently with increasing concentrations of TNFα. CXCL10 secretion was significantly stimulated by IFNγ (P < 0.01) and not by TNFα, whereas CXCL8 was induced by TNFα (P < 0.01), and inhibited by IFNγ (P < 0.01) in TFC, OF and OP. Combining TNFα and IFNγ, the IFNγ-induced CXCL10 secretion was synergistically increased (P < 0.01) while the TNFα-induced CXCL8 secretion (P < 0.01) was reversed in all cell types. Pioglitazone had no significant effect on the secretion of CXCL8 stimulated by TNFα, while inhibited CXCL10. Fenofibrate, in presence of IFNγ plus TNFα, dose-dependently inhibited both CXCL10 and CXCL8 release. CONCLUSION We first show that TFC, OF, and OP secrete CXCL8 and CXCL10 differentially, sustained by specific proinflammatory cytokines or their combination. This could reflect a different role of the two chemokines in the course of the disease, as CXCL10 could be associated with the initial phase of the disease when IFNγ is preponderant, while CXCL8 could be associated with a later chronic phase of the disease, when TNFα prevails.
Collapse
Affiliation(s)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Francesco Nasini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Marco Nardi
- Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Stefano Sellari Franceschini
- Department of Surgical, Medical and Molecular Pathology, ENT Unit I, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
25
|
The BRAF-inhibitor PLX4720 inhibits CXCL8 secretion in BRAFV600E mutated and normal thyroid cells: a further anti-cancer effect of BRAF-inhibitors. Sci Rep 2019; 9:4390. [PMID: 30867499 PMCID: PMC6416278 DOI: 10.1038/s41598-019-40818-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
CXCL8 is a chemokine secreted by normal and thyroid cancer cells with proven tumor-promoting effects. The presence of BRAFV600E mutation is associated with a more aggressive clinical behavior and increased ability to secrete CXCL8 by papillary-thyroid-cancer cells. Aim of this study was to test the effect of the BRAF-inhibitor (PLX4720) on the basal and TNF-α-induced CXCL8 secretions in BRAFV600E mutated (BCPAP, 8305C, 8505C), in RET/PTC rearranged (TPC-1) thyroid-cancer-cell-lines and in normal-human-thyrocytes (NHT). Cells were incubated with increasing concentrations of PLX4720 alone or in combination with TNF-α for 24-hours. CXCL8 concentrations were measured in the cell supernatants. PLX4720 dose-dependently inhibited the basal and the TNF-α-induced CXCL8 secretions in BCPAP (F: 14.3, p < 0.0001 for basal and F: 12.29 p < 0.0001 for TNF-α), 8305C (F: 407.9 p < 0.0001 for basal and F: 5.76 p < 0.0001 for TNF-α) and 8505C (F:55.24 p < 0.0001 for basal and F: 42.85 p < 0.0001 for TNF-α). No effect was found in TPC-1 (F: 1.8, p = 0.134 for basal; F: 1.6, p = 0.178 for TNF-α). In NHT an inhibitory effect was found only at the highest concentration of PLX4720 (F: 13.13 p < 0.001 for basal and F: 2.5 p < 0.01 for TNF-α). Cell migration assays showed that PLX4720 reduced both basal and CXCL8-induced cell migration in BCPAP, 8305C, 8505C and NHT but not in TPC-1 cells. These results constitutes the first demonstration that PLX4720 is able to inhibit the secretion of CXCL8 in BRAFV600E mutated thyroid cancer cells indicating that, at least some, of the anti-tumor activities of PLX4720 could be exerted through a lowering of CXCL8 in the thyroid-cancer-microenvironment.
Collapse
|
26
|
Cheng J, Li Y, Liu S, Jiang Y, Ma J, Wan L, Li Q, Pang T. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. FASEB J 2018; 33:4755-4764. [DOI: 10.1096/fj.201801931r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jingying Cheng
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Ying Li
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Shiqi Liu
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Yajing Jiang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Jiao Ma
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Li Wan
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Qinghua Li
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Tianxiang Pang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| |
Collapse
|
27
|
Awwad O, Coperchini F, Pignatti P, Denegri M, Massara S, Croce L, Di Buduo CA, Abbonante V, Balduini A, Chiovato L, Rotondi M. The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. J Endocrinol Invest 2018; 41:1275-1282. [PMID: 29546654 DOI: 10.1007/s40618-018-0862-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The AMPK-activator AICAR recently raised great interest for its anti-cancer properties. With specific regard to thyroid cancer, AICAR reduces cancer cell growth, invasion and metastasis. CXCL8, a chemokine with several recognized tumorigenic effects, is abundantly secreted in thyroid cancer microenvironment. The aim of this study was to investigate if AICAR could inhibit the basal and the TNFα-induced CXCL8 secretion in normal human thyroid cells (NHT) and in thyroid cancer cell lines TPC-1 and BCPAP (RET/PTC and BRAFV600e mutated, respectively). METHODS The effect of AICAR on basal and CXCL8-induced cell migration was assessed. Cells were incubated with AICAR (0.05, 0.5, 1, 2 mM) alone or in combination with TNF-α (10 ng/ml) for 24 h. CXCL8 concentrations were measured in cell supernatants. Transwell migration assays were performed in NHT, TPC-1 and BCPAP, basally and after treatment with AICAR (2 mM) and rh-CXCL8 (50 ng/ml) alone or in combination. RESULTS AICAR dose dependently inhibited the basal secretion of CXCL8 in TPC-1 (F = 4.26; p < 0.007) and BCPAP (F = 6.75; p < 0.0001) but not in NHT. TNFα-induced CXCL8 secretion was dose dependently reduced by AICAR in NHT (F = 9.99; p < 0.0001), TPC-1 (F = 9.25; p < 0.0001) and BCPAP (F = 6.82; p < 0.0001). AICAR significantly reduced the basal migration of TPC-1 and BCPAP but not of NHT. CONCLUSIONS CXCL8-induced cell migration was inhibited in NHT, TPC-1 and BCPAP. This is the first demonstration of the inhibition of CXCL8 secretion exerted by AICAR in TPC-1 and BCPAP indicating that the anti-cancer properties of AICAR are, at least in part, mediated by its ability to reduce the pro-tumorigenic effects of CXCL8.
Collapse
Affiliation(s)
- O Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, 11937, Jordan
| | - F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - P Pignatti
- Allergy and Immunology Unit, ICS Maugeri I.R.C.C.S, 27100, Pavia, Italy
| | - M Denegri
- Molecular Cardiology, ICS-Maugeri, Via Maugeri 10/10°, 27100, Pavia, Italy
| | - S Massara
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - C A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - V Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy.
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
28
|
Song YS, Kim MJ, Sun HJ, Kim HH, Shin HS, Kim YA, Oh BC, Cho SW, Park YJ. Aberrant Thyroid-Stimulating Hormone Receptor Signaling Increases VEGF-A and CXCL8 Secretion of Thyroid Cancer Cells, Contributing to Angiogenesis and Tumor Growth. Clin Cancer Res 2018; 25:414-425. [DOI: 10.1158/1078-0432.ccr-18-0663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
|
29
|
Fallahi P, Foddis R, Elia G, Ragusa F, Patrizio A, Benvenga S, Cristaudo A, Antonelli A, Ferrari SM. CXCL8 and CXCL11 chemokine secretion in dermal fibroblasts is differentially modulated by vanadium pentoxide. Mol Med Rep 2018; 18:1798-1803. [PMID: 29901202 DOI: 10.3892/mmr.2018.9121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
An increase in skin rashes or atopic dermatitis has been observed in individuals working with vanadium. However, to the best of our knowledge no in vivo or in vitro studies have evaluated the effect of exposure to vanadium in dermal fibroblasts. Cells viability and proliferation were assessed by WST‑1 assay, cells were treated with increasing concentrations of V2O5 (1, 10 and 100 nM). CXCL8 and CXCL11 concentrations were measured in the supernatants using an ELISA assay. V2O5 was not observed as having a significant effect on dermal fibroblast's viability and proliferation. However, it was revealed that V2O5 was able to induce the secretion of CXCL8 and CXCL11 chemokines into dermal fibroblasts. V2O5 synergistically increased the effect of interferon (IFN)γ on CXCL11 secretion. In addition, V2O5 synergistically increased the effect of the tumor necrosis factor α on CXCL8 secretion and abolished the inhibitory effect of IFNγ. V2O5 induction of CXCL8 and CXCL11 chemokines may lead to the appearance and perpetuation of an inflammatory reaction into the dermal tissue. Further studies are required to evaluate dermal integrity and manifestations in subjects occupationally exposed, or living in polluted areas.
Collapse
Affiliation(s)
- P Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - R Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - G Elia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - F Ragusa
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - A Patrizio
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - S Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - A Cristaudo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - A Antonelli
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - S M Ferrari
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, I‑56126 Pisa, Italy
| |
Collapse
|
30
|
Pilli T, Toti P, Occhini R, Castagna MG, Cantara S, Caselli M, Cardinale S, Barbagli L, Pacini F. Chronic lymphocytic thyroiditis (CLT) has a positive prognostic value in papillary thyroid cancer (PTC) patients: the potential key role of Foxp3+ T lymphocytes. J Endocrinol Invest 2018; 41:703-709. [PMID: 29230715 DOI: 10.1007/s40618-017-0794-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND An impact of chronic lymphocytic thyroiditis (CLT) on papillary thyroid cancer (PTC) outcome has long been advocated but it is still controversial. PURPOSE The aim of this study was to evaluate the prognostic value of CLT in a retrospective cohort of PTC patients and to characterize the lymphocytic subpopulations and infiltrate (LI). MATERIALS AND METHODS We assessed 375 PTC patients, aged 45.2 ± 16.4 years, and treated with thyroidectomy and radioiodine remnant ablation, with a mean follow-up of 6.28 ± 3.86 years. In a subgroup of patients (n = 81) tissue sections were reviewed for the presence of CLT or lymphocytes associated with tumor in absence of background thyroiditis (TAL); cytotoxic CD8+/regulatory Foxp3+ T lymphocyte (CD8+/Foxp3+) ratio was characterized by immunohistochemistry: a low ratio is suggestive of a less effective anti tumor immune response. RESULTS Seventy-five/375 patients (20%) had a histological diagnosis of CLT and showed at the last follow-up a significantly better outcome compared to those with no CLT (cure rate: 91.8 versus 76.3%, p = 0.003). LI was characterized in 81 PTC patients (24 with CLT and 57 with TAL): the peri-tumoral CD8+/Foxp3+ ratio was lower in patients not cured at the final evaluation. CONCLUSIONS Our data suggest that concurrent CLT has a protective effect on PTC outcome and that the imbalance between cytotoxic and regulatory T lymphocytes in the peri-tumoral TAL may affect the tumor-specific immune response favoring a more aggressive behavior of cancer.
Collapse
Affiliation(s)
- T Pilli
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy.
| | - P Toti
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - R Occhini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - M G Castagna
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - S Cantara
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - M Caselli
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - S Cardinale
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - L Barbagli
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - F Pacini
- Section of Endocrinology, Department of Medical Surgical and Neurological Sciences, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| |
Collapse
|
31
|
Luo X, Zheng T, Mao C, Dong X, Mou X, Xu C, Lu Q, Liu B, Wang S, Xiao Y. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto's thyroiditis. Endocr Connect 2018; 7:850-858. [PMID: 29764904 PMCID: PMC6000753 DOI: 10.1530/ec-18-0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023]
Abstract
Myeloid-related protein 14 (MRP14) is responsible for inflammatory reactions. However, the correlation between MRP14 and Hashimoto's thyroiditis (HT) is still not clear. In this study, we examined the status of MRP14 in thyroid tissues and sera of HT patients and explored the mechanism of IL-1β-mediated regulation of MRP14 expression, as well as the effects of MRP14 on pro-inflammatory chemokine secretion in thyroid follicular cells (TFCs), to elucidate the role of MRP14 in HT development. Our results showed dramatically increased MRP14 expression in thyroid tissues and sera from HT patients. In addition, IL-1β significantly promoted the expression of MRP14 in TFCs, which was mediated by activation of the MAPK/NF-κB signalling pathway. More importantly, IL-1β induced the secretion of the chemokines GRO-2, CXCL9 and CCL22, which was dependent on the regulation of MRP14 in TFCs. Therefore, these findings suggested that under pro-inflammatory conditions, TFCs secreted chemokines with the help of MRP14 regulation, which might suggest a potential pathological mechanism of lymphocyte infiltration into the thyroid gland in HT.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Zheng
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of OncologyThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xin Dong
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Mou
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Baocui Liu
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory ImmunologyJiangsu University School of Medicine, Zhenjiang, China
| | - Yichuan Xiao
- Key Laboratory of Stem Cell BiologyInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Fallahi P, Foddis R, Elia G, Ragusa F, Patrizio A, Frenzilli G, Benvenga S, Cristaudo A, Antonelli A, Ferrari SM. Differential modulation by vanadium pentoxide of the secretion of CXCL8 and CXCL11 chemokines in thyroid cells. Mol Med Rep 2018; 17:7415-7420. [PMID: 29568907 DOI: 10.3892/mmr.2018.8764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/06/2018] [Indexed: 11/06/2022] Open
Abstract
Recently it has been hypothesized that vanadium serves a carcinogenic role in the thyroid. However, to date, no in vivo or in vitro studies have evaluated thyroid disruption in humans and/or animals following exposure to vanadium. The present study evaluated the effect of vanadium pentoxide (V2O5) on cell viability and proliferation, and chemokine (C‑X‑C motif) ligand (CXCL)8 and CXCL11 secretion in normal thyrocytes. The results demonstrated that V2O5 had no effect on thyroid follicular cell viability and proliferation. However, V2O5 was able to induce the secretion of CXCL8 and CXCL11 chemokines from thyrocytes. Notably, V2O5 synergistically increased the effect of the interferon (IFN)‑γ on CXCL11 secretion. In addition, V2O5 synergistically increased the effect of tumor necrosis factor‑α on CXCL8 secretion, and abolished the inhibitory effect of IFN‑γ. Overall this induction of CXCL8 and CXCL11 secretion may lead to the induction and perpetuation of an inflammatory reaction in the thyroid. Further studies are now required to evaluate thyroid function and nodule development in subjects who are occupationally exposed, or living in polluted areas.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Messina, I‑98125 Messina, Italy
| | - Alfonso Cristaudo
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| |
Collapse
|
33
|
Rotondi M, Coperchini F, Latrofa F, Chiovato L. Role of Chemokines in Thyroid Cancer Microenvironment: Is CXCL8 the Main Player? Front Endocrinol (Lausanne) 2018; 9:314. [PMID: 29977225 PMCID: PMC6021500 DOI: 10.3389/fendo.2018.00314] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Tumor-related inflammation does influence the biological behavior of neoplastic cells and ultimately the patient's outcome. With specific regard to thyroid cancer, the issue of tumor-associated inflammation has been extensively studied and recently reviewed. However, the role of chemokines, which play a crucial role in determining the immuno-phenotype of tumor-related inflammation, was not addressed in previous reviews on the topic. Experimental evidence shows that thyroid cancer cells actively secrete a wide spectrum of chemokines and, at least for some of them, solid scientific data support a role for these immune-active molecules in the aggressive behavior of the tumor. Our proposal for a review article on chemokines and thyroid cancer stems from the notion that chemokines, besides having the ability to attract and maintain immune cells at the tumor site, also produce several pro-tumorigenic actions, which include proangiogenetic, cytoproliferative, and pro-metastatic effects. Studies taking into account the role of CCL15, C-X-C motif ligand 12, CXCL16, CXCL1, CCL20, and CCL2 in the context of thyroid cancer will be reviewed with particular emphasis on CXCL8. The reason for focusing on CXCL8 is that this chemokine is the most studied one in human malignancies, displaying multifaceted pro-tumorigenic effects. These include enhancement of tumor cells growth, metastatization, and angiogenesis overall contributing to the progression of several cancers including thyroid cancer. We aim at reviewing current knowledge on the (i) ability of both normal and tumor thyroid cells to secrete CXCL8; (ii) direct/indirect pro-tumorigenic effects of CXCL8 demonstrated by in vitro and in vivo studies specifically performed on thyroid cancer cells; and (iii) pharmacologic strategies proven to be effective for lowering CXCL8 secretion and/or its effects on thyroid cancer cells.
Collapse
Affiliation(s)
- Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesca Coperchini
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Francesco Latrofa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|
34
|
Urra S, Fischer MC, Martínez JR, Véliz L, Orellana P, Solar A, Bohmwald K, Kalergis A, Riedel C, Corvalán AH, Roa JC, Fuentealba R, Cáceres CJ, López-Lastra M, León A, Droppelmann N, González HE. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis? Oncotarget 2017; 9:2445-2467. [PMID: 29416784 PMCID: PMC5788652 DOI: 10.18632/oncotarget.23502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies.
Collapse
Affiliation(s)
- Soledad Urra
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin C Fischer
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Martínez
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Orellana
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonieta Solar
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Riedel
- Millennium Institute of Immunology and Immunotherapy, Department of Cell Biology, Faculty of Biological Science and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fuentealba
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - C Joaquin Cáceres
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Augusto León
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Droppelmann
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hernán E González
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
35
|
Hammerstad SS, Stefan M, Blackard J, Owen RP, Lee HJ, Concepcion E, Yi Z, Zhang W, Tomer Y. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells. J Clin Endocrinol Metab 2017; 102:689-697. [PMID: 27860532 PMCID: PMC5413166 DOI: 10.1210/jc.2016-3403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022]
Abstract
CONTEXT Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. SETTING Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. RESULTS HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. CONCLUSION Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms.
Collapse
Affiliation(s)
- Sara Salehi Hammerstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, 0586 Oslo, Norway;
- Department of Pediatrics, Oslo University Hospital, Ullevål, 0450 Oslo, Norway;
| | - Mihaela Stefan
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| | - Jason Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267;
| | | | - Hanna J. Lee
- Department of Medicine, Division of Endocrinology, and
| | - Erlinda Concepcion
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Mount Sinai Hospital, Icahn School of Medicine, New York, New York 10029
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Mount Sinai Hospital, Icahn School of Medicine, New York, New York 10029
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461;
| |
Collapse
|
36
|
Esposito D, Rotondi M, Accardo G, Vallone G, Conzo G, Docimo G, Selvaggi F, Cappelli C, Chiovato L, Giugliano D, Pasquali D. Influence of short-term selenium supplementation on the natural course of Hashimoto's thyroiditis: clinical results of a blinded placebo-controlled randomized prospective trial. J Endocrinol Invest 2017; 40:83-89. [PMID: 27572248 DOI: 10.1007/s40618-016-0535-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The real efficacy of selenium supplementation in Hashimoto's thyroiditis (HT) is still an unresolved issue. OBJECTIVES We studied the short-term effect of L-selenomethionine on the thyroid function in euthyroid patients with HT. Our primary outcome measures were TSH, thyroid hormones, thyroid peroxidase antibody (TPOAb), thyroglobulin antibody (TGAb) levels and thyroid echogenicity after 6 months of L-selenomethionine treatment. The secondary outcome measure was serum CXCL10 levels. METHODS In a placebo-controlled randomized prospective study, we have enrolled untreated euthyroid patients with HT. Seventy-six patients were randomly assigned to receive L-selenomethionine 166 µg/die (SE n = 38) or placebo (controls n = 38) for 6 months. TSH, free T4 (FT4), free T3 (FT3), TPOAb and CXCL10 serum levels were assayed at time 0, after 3 and 6 months. An ultrasound examination of the left and right thyroid lobe in transverse and longitudinal sections was performed. A rectangular region, the region of interest, was selected for analysis. RESULTS TSH, FT4, FT3, TPOAb, thyroid echogenicity and CXCL10 were not statistically different between SE and control groups at time 0, after 3 and 6 months. In the SE group, FT4 levels were significantly decreased (P < 0.03) after 3 months, while FT3 increased (P < 0.04) after 3 and 6 months versus baseline values. In the control group, the FT3 decreased after 3 and 6 months (P < 0.02) compared to baseline. CONCLUSION The short-term L-selenomethionine supplementation has a limited impact on the natural course in euthyroid HT. Our results tip the balance toward the ineffectiveness of short-term L-selenomethionine supplementation in HT.
Collapse
Affiliation(s)
- D Esposito
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - G Accardo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy
| | - G Vallone
- Department of Pediatric Radiology, University Hospital Federico II, Naples, Italy
| | - G Conzo
- Division of General and Oncologic Surgery, Department of Anesthesiology, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - G Docimo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy
| | - F Selvaggi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy
| | - C Cappelli
- Endocrine and Metabolic Unit, Department of Medical and Surgical Sciences, Clinica Medica, 2nd Medicina, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - D Giugliano
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy
| | - D Pasquali
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia n 2, 80100, Naples, Italy.
| |
Collapse
|
37
|
Coperchini F, Pignatti P, Leporati P, Carbone A, Croce L, Magri F, Chiovato L, Rotondi M. Normal human thyroid cells, BCPAP, and TPC-1 thyroid tumor cell lines display different profile in both basal and TNF-α-induced CXCL8 secretion. Endocrine 2016; 54:123-128. [PMID: 26450713 DOI: 10.1007/s12020-015-0764-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
CXCL8 is secreted by both normal human thyrocytes (NHT) and thyroid cancer cell lines. CXCL8 displays several tumor-promoting effects and recent evidences indicate that its concentrations within the tumor microenvironment can impact the clinical course of the malignancy. Aim of this study was to compare the basal secretion of CXCL8 among NHT and thyroid cancer cell lines (TPC-1 and BCPAP), and to assess the specific cell response to TNF-α in terms of CXCL8 secretion. NHT primary cultures, TPC-1 and BCPAP cell lines were cultured with or without TNF-α (0, 0.1, 1, 10, and 100 ng/ml). CXCL8 levels were measured in the cell supernatants after 24 h. In basal condition, significant differences in the mean levels of CXCL8 were observed among the three cell types: NHT (110.5 ± 56.2 pg/ml), TPC1 (467.4 ± 43.2 pg/ml), and BCPAP (1731.8 ± 493.3 pg/ml), (F = 35.06; p < 0.0001). TNF-α significantly and in a dose-response manner induced CXCL8 secretion in NHT (F = 25.53; p < 0.00001), TPC-1 (F = 13.38; p < 0.0001), and BCPAP (F = 9.88; p < 0.001) cells. The magnitude of the TNF-α effect (fold-increase vs. basal level of CXCL8) differed significantly among the three cell types (F = 10.47; p < 0.0001). BCPAP were identified as the cells showing the highest basal secretion of CXCL8 and the less responsive to TNF-α. NHT, TPC-1, and BCPAP display significant differences in the secretion of both basal and TNF-α-induced CXCL8 secretion. These results indicate that the mechanisms regulating the secretion of CXCL8 differ in tumor cells harboring different genetic alterations suggesting that specific strategies aimed at inhibiting CXCL8 secretion will be required.
Collapse
Affiliation(s)
- Francesca Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Fondazione Salvatore Maugeri I.R.C.C.S., Via Maugeri 10, 27100, Pavia, Italy
| | - Paola Leporati
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Andrea Carbone
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Laura Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Flavia Magri
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - Luca Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy.
| | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione Salvatore Maugeri I.R.C.C.S., University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
38
|
Effect of Interferon-γ on the Basal and the TNFα-Stimulated Secretion of CXCL8 in Thyroid Cancer Cell Lines Bearing Either the RET/PTC Rearrangement Or the BRAF V600e Mutation. Mediators Inflamm 2016; 2016:8512417. [PMID: 27555670 PMCID: PMC4983361 DOI: 10.1155/2016/8512417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/01/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022] Open
Abstract
CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line.
Collapse
|
39
|
Massolt ET, Effraimidis G, Korevaar TIM, Wiersinga WM, Visser WE, Peeters RP, Drexhage HA. Aberrant Levels of Hematopoietic/Neuronal Growth and Differentiation Factors in Euthyroid Women at Risk for Autoimmune Thyroid Disease. PLoS One 2016; 11:e0153892. [PMID: 27092550 PMCID: PMC4836766 DOI: 10.1371/journal.pone.0153892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/05/2016] [Indexed: 01/14/2023] Open
Abstract
Background Subjects at risk for major mood disorders have a higher risk to develop autoimmune thyroid disease (AITD) and vice-versa, implying a shared pathogenesis. In mood disorder patients, an abnormal profile of hematopoietic/neuronal growth factors is observed, suggesting that growth/differentiation abnormalities of these cell lineages may predispose to mood disorders. The first objective of our study was to investigate whether an aberrant profile of these hematopoietic/neuronal growth factors is also detectable in subjects at risk for AITD. A second objective was to study the inter relationship of these factors with previously determined and published growth factors/cytokines in the same subjects. Methods We studied 64 TPO-Ab-negative females with at least 1 first- or second-degree relative with AITD, 32 of whom did and 32 who did not seroconvert to TPO-Ab positivity in 5-year follow-up. Subjects were compared with 32 healthy controls (HCs). We measured serum levels of brain-derived neurotrophic factor (BDNF), Stem Cell Factor (SCF), Insulin-like Growth Factor-Binding Protein 2 (IGFBP-2), Epidermal Growth Factor (EGF) and IL-7 at baseline. Results BDNF was significantly lower (8.2 vs 18.9 ng/ml, P<0.001), while EGF (506.9 vs 307.6 pg/ml, P = 0.003) and IGFBP-2 (388.3 vs 188.5 ng/ml, P = 0.028) were significantly higher in relatives than in HCs. Relatives who seroconverted in the next 5 years had significantly higher levels of SCF than non-seroconverters (26.5 vs 16.7 pg/ml, P = 0.017). In a cluster analysis with the previously published growth factors/cytokines SCF clustered together with IL-1β, IL-6 and CCL-3, of which high levels also preceded seroconversion. Conclusion Relatives of AITD patients show aberrant serum levels of 4 hematopoietic/neuronal growth factors similar to the aberrancies found in mood disorder patients, suggesting that shared growth and differentiation defects in both the hematopoietic and neuronal system may underlie thyroid autoimmunity and mood disorders. A distinct pattern of four inter correlating immune factors in the relatives preceded TPO-Ab seroconversion in the next 5 years.
Collapse
Affiliation(s)
- Elske T. Massolt
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- * E-mail:
| | - Grigoris Effraimidis
- Internal Medicine Department, Endocrinology Section, Nykøbing Falster Hospital, Fjordvej 15, 4800, Nykøbing Falster, Denmark
| | - Tim I. M. Korevaar
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Wilmar M. Wiersinga
- Academical Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - W. Edward Visser
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Görar S, Ademoğlu E, Çarlıoğlu A, Alioğlu B, Bekdemir H, Sağlam B, Candan Z, Üçler R, Culha C, Aral Y. Low levels of circulating platelet factor 4 (PF4, CXCL4) in subclinically hypothyroid autoimmune thyroiditis. J Endocrinol Invest 2016; 39:185-9. [PMID: 26142741 DOI: 10.1007/s40618-015-0348-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/22/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE Chemokines play an important role in the pathogenesis of autoimmune thyroid diseases. Platelet factor 4 (PF4, CXCL4) released from activated platelets is a chemokine. However, its clinical importance in autoimmune thyroiditis remains unknown. This study is intended to determine circulating levels of PF4 levels in patients with autoimmune thyroiditis (AIT). METHODS Circulating levels of PF4 were measured in 34 consecutive patients with newly diagnosed AIT and 18 euthyroid controls. Among AIT group, 16 patients were euthyroid and 18 had subclinic hypothyroidism. Controls and individuals with AIT were similar in terms of age. RESULTS Serum levels of PF4 were comparable in patients with AIT and in controls. Among patients with AIT, PF4 was significantly lower in those with subclinical hypothyroidism than in euthyroid individuals (p = 0.001). In correlation analysis, PF4 was negatively correlated with TSH (r = -0.663, p = 0.000) and positively correlated with free T4 (r = 0.428, p = 0.012). There was not any significant correlation between PF4 and AbTPO, AbTg. CONCLUSION The present study demonstrated for the first time that circulating PF4 levels are decreased in subclinically hypothyroid AIT. This result draws attention to the circulating PF4 levels in subclinically hypothyroid AIT and may shed light on further researches at this topic.
Collapse
Affiliation(s)
- S Görar
- Department of Endocrinology and Metabolism, Antalya Training and Research Hospital, Antalya, Turkey.
| | - E Ademoğlu
- Department of Endocrinology and Metabolism, Ankara Training and Research Hospital, Ankara, Turkey
| | - A Çarlıoğlu
- Department of Internal Medicine, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - B Alioğlu
- Director of Hematology Laboratories, Department of Pediatric Hematology, Ankara Training and Research Hospital, Ankara, Turkey
| | - H Bekdemir
- Department of Endocrinology and Metabolism, Ankara Training and Research Hospital, Ankara, Turkey
| | - B Sağlam
- Hematology Laboratories, Ankara Training and Research Hospital, Ankara, Turkey
| | - Z Candan
- Department of Endocrinology and Metabolism, Ankara Training and Research Hospital, Ankara, Turkey
| | - R Üçler
- Department of Endocrinology and Metabolism, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - C Culha
- Department of Endocrinology and Metabolism, Ankara Training and Research Hospital, Ankara, Turkey
| | - Y Aral
- Department of Endocrinology and Metabolism, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
41
|
Landriscina M, Natalicchio MI, Lamacchia O, Conserva A, Piscazzi A, Ciampolillo A, Zingrillo M, Pennella A, Bufo P, Vita G, Antonetti R, Maiorano E, Giorgino F, Cignarelli M. RAS/ BRAF mutational status in familial non-medullary thyroid carcinomas: A retrospective study. Oncol Lett 2015; 10:1875-1881. [PMID: 26622768 DOI: 10.3892/ol.2015.3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
There are contrasting views on whether familial non-medullary thyroid carcinomas (FNMTCs) are characterized by aggressive behavior, and limited evidence exists on the prognostic value of BRAF and RAS mutations in these tumors. Thus, in the present study, clinicopathological features were analyzed in 386 non-medullary thyroid carcinomas (NMTCs), subdivided in 82 familial and 304 sporadic cases. Furthermore, the RAS and BRAF mutational statuses were investigated in a subgroup of 34 FNMTCs to address their clinical and biological significance. The results demonstrated that, compared with sporadic NMTCs, FNMTCs are characterized by significantly higher rates of multicentricity and bilaterality and are more frequently associated with chronic autoimmune thyroiditis. Notably, a statistically significant difference in the rates of multicentricity was observed by subgrouping familial tumors according to the number of relatives involved; those with ≥3 affected relatives were more likely to be multicentric. Furthermore, the FNMTC cohort exhibited higher rates of tumors >4 cm in size with extrathyroidal or lymph node involvement. However, no significant difference was observed. Similarly, no differences were observed with respect to the age of onset or the patient outcome. The mutational profiling exhibited a rate of 58.8% for BRAF V600E mutations in familial tumors, which is at the upper limit of the mutational frequency observed in historical series of sporadic thyroid cancer. A high rate of NRAS mutations (17.6%) was also observed, mostly in the follicular variant histotype. Notably, compared with BRAF/RAS-wild type FNMTCs, the familial carcinomas bearing BRAF or NRAS mutations exhibited slightly higher rates of bilaterality and multicentricity, in addition to increased frequency of locally advanced stage or lymph node involvement. The present data support the theory that FNMTCs are characterized by clinicopathological features that resemble a more aggressive phenotype and suggest that RAS/BRAF mutational analysis deserves to be further evaluated as a tool for the identification of FNMTCs with a potentially unfavorable prognosis.
Collapse
Affiliation(s)
- Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Foggia I-71100, Italy
| | | | - Olga Lamacchia
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Foggia I-71100, Italy
| | - Antonella Conserva
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Foggia I-71100, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Foggia I-71100, Italy
| | - Anna Ciampolillo
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Bari I-70124, Italy
| | | | - Antonio Pennella
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Foggia I-71100, Italy
| | - Pantaleo Bufo
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Foggia I-71100, Italy
| | - Giulia Vita
- Pathology Unit, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza I-85028, Italy
| | - Raffaele Antonetti
- Molecular Biology Laboratory, Riuniti Hospital, Foggia, Foggia I-71100, Italy
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Bari I-70124, Italy
| | - Francesco Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Bari I-70124, Italy
| | - Mauro Cignarelli
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Foggia I-71100, Italy
| |
Collapse
|
42
|
TNF-α increases the membrane expression of the chemokine receptor CCR6 in thyroid tumor cells, but not in normal thyrocytes: potential role in the metastatic spread of thyroid cancer. Tumour Biol 2015; 37:5569-75. [PMID: 26577851 DOI: 10.1007/s13277-015-4418-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine receptor CCR6, selectively bound by CCL20, is involved in the metastatic spread of cancer cells. Tumor necrosis factor-α (TNF-α) displays a complex pro-tumorigenic actions, but it is unknown whether this cytokine could modulate the expression of chemokine receptors in thyroid tumors. The membrane expression of CCR6 was assessed by flow cytometry and immunofluorescence, in primary cultures of normal human thyroid (NHT) cells and in thyroid cancer cell lines (TPC-1 and BCPAP), both in basal conditions and after stimulation with TNF-α. In basal conditions, CCR6+ cells were virtually absent in NHT cells (0.4 ± 0.4 %), while they were detected in TPC-1 (23.6 ± 6.6 %) and in BCPAP (12.9 ± 9.4 %) tumor cells (ANOVA F: 10.534; p < 0.005). The incubation with TNF-α significantly increased the percentage of CCR6+ cells in TPC-1 (23.6 ± 6.6 % vs. 33.1 ± 8.7; p < 0.033) and in BCPAP (12.9 ± 9.4 % vs. 18.1 ± 11.5; p < 0.030), but not in NHT (0.4 ± 0.4 % vs. 0.2 ± 0.3; NS) cells. The magnitude of the TNF-α effect was similar for TPC-1 and BCPAP (∼40 % vs. baseline) cells. TPC-1 cells were characterized by a greater amount of CCR6 per cell as compared with BCPAP cells, both in basal conditions (148.3 ± 33.7 fluorescence intensity vs. 102.5 ± 22.1 p < 0.016) and after TNF-α stimulation (147.8 ± 46.3 fluorescence intensity vs. 95.3 ± 18.5; p < 0.025). Cell migration assays showed that TNF-α treatment significantly increased the rate of migrated cells in those cells in which it also increased the membrane expression of CCR6 (TPC-1 and BCPAP) as compared to basal condition (p < 0.05 for both TPC-1 and BCPAP cells). No effect was observed in NHT cells in which TNF-α stimulation had no effect in terms of CCR6 expression. We first report that TNF-α enhances the expression of CCR6 in thyroid tumor cells, thus providing evidence that TNF-α increases the metastatic potential of thyroid tumors.
Collapse
|
43
|
Visciano C, Prevete N, Liotti F, Marone G. Tumor-Associated Mast Cells in Thyroid Cancer. Int J Endocrinol 2015; 2015:705169. [PMID: 26379707 PMCID: PMC4563106 DOI: 10.1155/2015/705169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
There is compelling evidence that the tumor microenvironment plays a major role in mediating aggressive features of cancer cells, including invasive capacity and resistance to conventional and novel therapies. Among the different cell populations that infiltrate cancer stroma, mast cells (MCs) can influence several aspects of tumor biology, including tumor development and progression, angiogenesis, lymphangiogenesis, and tissue remodelling. Thyroid cancer (TC), the most frequent neoplasia of the endocrine system, is characterized by a MC infiltrate, whose density correlates with extrathyroidal extension and invasiveness. Recent evidence suggests the occurrence of epithelial-to-mesenchymal transition (EMT) and stemness in human TC. The precise role of immune cells and their mediators responsible for these features in TC remains unknown. Here, we review the relevance of MC-derived mediators (e.g., the chemokines CXCL1/GRO-α, CXCL10/IP-10, and CXCL8/IL-8) in the context of TC. CXCL1/GRO-α and CXCL10/IP-10 appear to be involved in the stimulation of cell proliferation, while CXCL8/IL-8 participates in the acquisition of TC malignant traits through its ability to induce/enhance the EMT and stem-like features of TC cells. The inhibition of chemokine signaling may offer novel therapeutic approaches for the treatment of refractory forms of TC.
Collapse
Affiliation(s)
- Carla Visciano
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
44
|
Rotondi M, Coperchini F, Pignatti P, Magri F, Chiovato L. Metformin reverts the secretion of CXCL8 induced by TNF-α in primary cultures of human thyroid cells: an additional indirect anti-tumor effect of the drug. J Clin Endocrinol Metab 2015; 100:E427-32. [PMID: 25590211 DOI: 10.1210/jc.2014-3045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Metformin displays both direct and indirect anti-tumor effects. CXCL8 is a crucial downstream mediator of Nuclear-Factor-κB signaling related to the growth and progression of thyroid cancers. Targeting CXCL8 results in prolonged survival and reduced metastatic spread in in-vivo animal models of thyroid tumors. OBJECTIVE This study aimed to evaluate whether metformin inhibits the secretion of CXCL8 induced by Tumor-Necrosis-Factor-α (TNF-α) in primary cultures of normal and tumor human thyroid cells as well as in thyroid cancer cell lines. METHODS Normal human thyrocytes, papillary thyroid cancer cells, and thyroid cancer cell lines (TPC-1 and BCPAP) were stimulated with TNF-α (10 ng/mL) alone or in combination with metformin (0.01, 0.1, 1, 2.5, 5, and 10mM). CXCL8 levels were measured in the cell supernatants after 24 hours. RESULTS Metformin significantly and dose-dependently inhibited the TNF-α-induced CXCL8 secretion in both normal thyrocytes (ANOVA: F = 42.04; P < .0001) and papillary thyroid cancer cells (ANOVA: F = 21.691; P < .0001) but not in TPC-1 and BCPAP cell lines. CONCLUSION Metformin inhibits the TNF-α-induced CXCL8 secretion in primary cultures of normal thyroid cells and differentiated thyroid cancer cells at least of the most frequent poorly aggressive phenotype. The recruitment of neutrophils within the thyroid gland is a crucial metastasis-promoting factor, and it depends on the amount of CXCL8 produced by both tumor cells and by the more abundant normal thyroid cells exposed to TNF-α. Thus, the here-reported inhibiting effect of metformin on TNF-α-induced CXCL8 secretion could be considered as a further indirect anticancer property of the drug.
Collapse
Affiliation(s)
- Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors (M.R., F.C., F.M., L.C.), and Allergy and Immunology Unit (P.P.), Fondazione Salvatore Maugeri I.R.C.C.S., 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
45
|
Ehlers M, Schott M. Hashimoto's thyroiditis and papillary thyroid cancer: are they immunologically linked? Trends Endocrinol Metab 2014; 25:656-64. [PMID: 25306886 DOI: 10.1016/j.tem.2014.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/14/2023]
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease in humans frequently leading to hypothyroidism. HT is characterized by a cellular immune response with lymphatic infiltration of the thyroid gland by T and B cells, as well as by a humoral immune response leading to specific antibody production. The synchronous appearance of HT and papillary thyroid cancer (PTC) indicates an immunological link between the two entities. Three different pathomechanisms may be postulated, including preexisting autoimmunity leading to malignancy due to inflammation, immunity towards preexisiting tumor cells leading to specific autoimmunity, and immune tolerance leading to malignancy despite (auto)immunity. In this article we review data describing these potential mechanisms that might lead to the synchronous appearance of HT and PTC.
Collapse
Affiliation(s)
- Margret Ehlers
- Division for Specific Endocrinology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany.
| | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
46
|
Abstract
Immune responses against thyroid carcinomas have long been demonstrated and associations between inflammatory microenvironment and thyroid carcinomas repeatedly reported. This scenario has prompted scientists throughout the world to unveil how the inflammatory microenvironment is established in thyroid tumors and what is its influence on the outcome of patients with thyroid carcinoma. Many studies have reported the role of evasion from the immune system in tumor progression and reinforced the weakness of the innate immune response toward thyroid cancer spread in advanced stages. Translational studies have provided evidence that an increased density of tumor-associated macrophages in poorly differentiated thyroid carcinoma (DTC) is associated with an aggressive phenotype at diagnosis and decreased cancer-related survival, whereas well-DTC microenvironment enriched with macrophages is correlated with improved disease-free survival. It is possible that these different results are related to different microenvironments. Several studies have provided evidence that patients whose tumors are not infiltrated by lymphocytes present a high recurrence rate, suggesting that the presence of lymphocytes in the tumor microenvironment may favor the prognosis of patients with thyroid carcinoma. However, the effect of lymphocytes and other immune cells on patient outcome seems to result from complex interactions between the tumor and immune system, and the molecular pattern of cytokines and chemokines helps to explain the involvement of the immune system in thyroid tumor progression. The inflammatory microenvironment may help to characterize aggressive tumors and to identify patients who would benefit from a more invasive approach, probably sparing the vast majority of patients with an indolent disease from unnecessary procedures.
Collapse
Affiliation(s)
- Lucas Leite Cunha
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Fang W, Ye L, Shen L, Cai J, Huang F, Wei Q, Fei X, Chen X, Guan H, Wang W, Li X, Ning G. Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis 2014; 35:1780-7. [DOI: 10.1093/carcin/bgu060] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 2013; 13:272-80. [PMID: 24189283 DOI: 10.1016/j.autrev.2013.10.010] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
(C-X-C motif) ligand (CXCL)10 (CXCL10) belongs to the ELR(-) CXC subfamily chemokine. CXCL10 exerts its function through binding to chemokine (C-X-C motif) receptor 3 (CXCR3), a seven trans-membrane receptor coupled to G proteins. CXCL10 and its receptor, CXCR3, appear to contribute to the pathogenesis of many autoimmune diseases, organ specific (such as type 1 diabetes, autoimmune thyroiditis, Graves' disease and ophthalmopathy), or systemic (such as rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, mixed cryoglobulinemia, Sjögren syndrome, or systemic sclerosis). The secretion of CXCL10 by cluster of differentiation (CD)4+, CD8+, natural killer (NK) and NK-T cells is dependent on interferon (IFN)-γ, which is itself mediated by the interleukin-12 cytokine family. Under the influence of IFN-γ, CXCL10 is secreted by several cell types including endothelial cells, fibroblasts, keratinocytes, thyrocytes, preadipocytes, etc. Determination of high level of CXCL10 in peripheral fluids is therefore a marker of host immune response, especially T helper (Th)1 orientated T-cells. In tissues, recruited Th1 lymphocytes may be responsible for enhanced IFN-γ and tumor necrosis factor-α production, which in turn stimulates CXCL10 secretion from a variety of cells, therefore creating an amplification feedback loop, and perpetuating the autoimmune process. Further studies are needed to investigate interactions between chemokines and cytokines in the pathogenesis of autoimmune diseases and to evaluate whether CXCL10 is a novel therapeutic target in various autoimmune diseases.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Dilia Giuggioli
- Department of Medical, Surgical, Maternal, Pediatric and Adult Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41100 Modena, Italy.
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| | - Clodoveo Ferri
- Department of Medical, Surgical, Maternal, Pediatric and Adult Sciences, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41100 Modena, Italy.
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126 Pisa, Italy.
| |
Collapse
|
49
|
Itoh M. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Educational lecture: 1. Pathophysiology and treatment for autoimmune thyroid disease]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2355-2362. [PMID: 24228427 DOI: 10.2169/naika.102.2355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Mitsuyasu Itoh
- Department of Endocrinology and Metabolism, Fujita Health University, School of Medicine, Japan
| |
Collapse
|
50
|
Rotondi M, Coperchini F, Chiovato L. CXCL8 in thyroid disease: from basic notions to potential applications in clinical practice. Cytokine Growth Factor Rev 2013; 24:539-46. [PMID: 24011840 DOI: 10.1016/j.cytogfr.2013.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 01/14/2023]
Abstract
CXCL8 was the first chemokine shown to be secreted by thyrocytes. Experimental data suggest that CXCL8 plays a role in thyroid homeostasis but its role in thyroid diseases remains poorly investigated. Clinical studies measuring the serum levels of CXCL8 in patients with autoimmune-thyroid-diseases reported conflicting results. Solid evidences support a role of CXCL8 as a tumor-promoting agent in several human cancers. Studies in thyroid cancer are still in their initial stage, but promising. Several evidences indicate that thyroid cancer may share with other human malignancies some of the effects of CXCL8 and highlight the possibility of using CXCL8 as a marker of aggressiveness. Basic and clinical evidences in favor or against a role for CXCL8 in thyroid diseases are discussed.
Collapse
Affiliation(s)
- Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Fondazione Salvatore Maugeri I.R.C.C.S., Laboratory for Endocrine Disruptors and Chair of Endocrinology University of Pavia, Italy.
| | | | | |
Collapse
|