1
|
Nikolova D, Kamenov Z. New Markers for the Assessment of Microvascular Complications in Patients with Metabolic Syndrome. Metabolites 2025; 15:184. [PMID: 40137149 PMCID: PMC11943473 DOI: 10.3390/metabo15030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Metabolic syndrome is a complex disorder characterized by the coexistence of multiple risk factors, including dysglycemia, hypertension, dyslipidemia, and visceral obesity. Both metabolic syndrome and diabetes mellitus are closely associated with the onset of microvascular complications such as retinopathy, polyneuropathy, and nephropathy. Methods: This narrative review analyzed 137 studies published up to 2025, retrieved from PubMed and Crossref databases. The objective was to identify and evaluate potential biomarkers that could facilitate the early detection of microvascular complications in patients with metabolic syndrome. Results: Several biomarkers demonstrated a strong correlation with microvascular complications in individuals with metabolic syndrome. These findings suggest their potential role in early diagnosis and risk assessment. Conclusions: The identification of reliable biomarkers may enhance early detection and targeted interventions for microvascular complications in metabolic syndrome. Further research is essential to validate these markers and establish their clinical applicability in routine medical practice.
Collapse
Affiliation(s)
| | - Zdravko Kamenov
- Department of Internal Medicine, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| |
Collapse
|
2
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Lei S, Li X, Zuo A, Ruan S, Guo Y. CTRP9 alleviates diet induced obesity through increasing lipolysis mediated by enhancing autophagy-initiation complex formation. J Nutr Biochem 2024; 131:109694. [PMID: 38906337 DOI: 10.1016/j.jnutbio.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Recently, emerging evidence has suggested that obesity become a prevalent health threat worldwide. Reportedly, CTRP9 can ameliorate HFD induced obesity. However, the molecular mechanism underlying the role of CTRP9 in obesity remains elusive. In this study, we reported its major function in the regulation of lipolysis. First, we found that the expression of CTRP9 was decreased in mature adipocytes and white adipose tissue of obese mice. Then, we showed that overexpression adipose tissue CTRP9 alleviated diet-induced obesity and adipocytes hypertrophy, improved glucose intolerance and raised energy expenditure. Moreover, CTRP9 increased the lipolysis in vitro and vivo. Additionally, we determined that CTRP9 enhanced autophagy flux in adipocytes. Intriguingly, knock down Beclin1 by SiRNA abolished the effect of CTRP9 on lipolysis. Mechanically, CTRP9 enhanced the expression of SNX26. We demonstrated that SNX26 was a component of the ATG14L-Beclin1-VPS34 complex and enhanced the assembly of the autophagy-initiation complex. Collectively, our results suggested that CTRP9 alleviated diet induced obesity through enhancing lipolysis mediated by autophagy-initiation complex formation.
Collapse
Affiliation(s)
- Shengyun Lei
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Anju Zuo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Shiyan Ruan
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China
| | - Yuan Guo
- Department of General Medicine, Qilu Hospital of Shandong University,107 Wenhuaxi Road, 250012, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012,Jinan,Shandong, China.
| |
Collapse
|
4
|
The Effects of 12 Weeks of Concurrent and Combined Training on Inflammatory Markers, Muscular Performance, and Body Composition in Middle-Aged Overweight and Obese Males. Nutrients 2023; 15:nu15061482. [PMID: 36986212 PMCID: PMC10056532 DOI: 10.3390/nu15061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Aim: Previous studies have focused on the order of endurance and resistance training when performing concurrent training (CT). However, no study has compared the effects of combined training with CT orders on inflammatory markers, muscular performance, and body composition in overweight and obese males. Therefore, the purpose of the current study was to compare the effects of 12 weeks of CT and combined training on the aforementioned markers in overweight and obese males. Methods: Sixty middle-aged overweight and obese males (age 51 ± 4 years) were randomly assigned into one of four groups: endurance followed by resistance training (ER; n = 15), resistance followed by endurance training (RE; n = 15), combined resistance and endurance training (COM), or control (CON; n = 15). Anthropometric, body composition, inflammatory marker, and muscular performance measurements were collected at baseline and after 12 weeks. Results: FFM remained unchanged in all three intervention groups (p > 0.05). Reductions in FM in the RE group were significantly greater than in CON (p = 0.038). The increases in serum concentrations of adiponectin in the RE group were significantly greater than in all other groups (p < 0.05). Increased serum concentrations of CTRP3 in all intervention groups were significantly greater than the CON group (p < 0.05); moreover, the increases in the RE group were significantly greater than CON (p < 0.001). Regarding CTRP5, the increase in RE was significantly greater than COM (p = 0.014). The RE group experienced significantly greater increases in CTRP9 than all other groups (p < 0.05), and the decreases in serum concentrations of CRP and TNF-α were significantly greater in the RE group compared to CON and ER (p < 0.05). Vo2max in the ER group was significantly greater than COM (p = 0.009), and all interventions resulted in higher gains compared to CON (p < 0.05). The increases in leg press strength, chest press strength, lower-body power, and upper-body power in the RE group were significantly greater than in the COM group (p < 0.05). In addition, the increases in chest press strength in the ER group were significantly greater than COM (p = 0.023). Conclusions: Regardless of training order, CT improved inflammatory markers, body composition, power, and VO2max. Notably, our analysis indicated significantly greater improvements in adiponectin, CTRP5, CTRP9, CRP, and TNF-α levels when RT preceded ET in CT sessions compared to other exercise training sequences. These findings suggested that the order of exercise training may have a significant impact on the effectiveness of CT on inflammatory markers, which has potential implications for exercise prescription and optimization of health-related training outcomes.
Collapse
|
5
|
Saeidi A, Nouri-Habashi A, Razi O, Ataeinosrat A, Rahmani H, Mollabashi SS, Bagherzadeh-Rahmani B, Aghdam SM, Khalajzadeh L, Al Kiyumi MH, Hackney AC, Laher I, Heinrich KM, Zouhal H. Astaxanthin Supplemented with High-Intensity Functional Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity. Nutrients 2023; 15:nu15020286. [PMID: 36678157 PMCID: PMC9866205 DOI: 10.3390/nu15020286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of 12 weeks of high-intensity training with astaxanthin supplementation on adipokine levels, insulin resistance and lipid profiles in males with obesity. Sixty-eight males with obesity were randomly stratified into four groups of seventeen subjects each: control group (CG), supplement group (SG), training group (TG), and training plus supplement group (TSG). Participants underwent 12 weeks of treatment with astaxanthin or placebo (20 mg/d capsule daily). The training protocol consisted of 36 sessions of high-intensity functional training (HIFT), 60 min/sessions, and three sessions/week. Metabolic profiles, body composition, anthropometrical measurements, cardio-respiratory indices and adipokine [Cq1/TNF-related protein 9 and 2 (CTRP9 and CTRP2) levels, and growth differentiation factors 8 and 15 (GDF8 and GDF15)] were measured. There were significant differences for all indicators between the groups (p < 0.05). Post-hoc analysis indicated that the levels of CTRP9, CTRP2, and GDF8 were different from CG (p < 0.05), although levels of GDF15 were similar to CG (p > 0.05). Levels of GDF8 were similar in the SG and TG groups (p > 0.05), with reductions of GDF15 levels in both training groups (p < 0.05). A total of 12 weeks of astaxanthin supplementation and exercise training decreased adipokines levels, body composition (weight, %fat), anthropometrical factors (BMI), and improved lipid and metabolic profiles. These benefits were greater for men with obesity in the TSG group.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Akbar Nouri-Habashi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sport Sciences, Urmia University, Urmia 57561-51818, Iran
- Correspondence: (A.N.-H.); (M.H.A.K.)
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 94Q5+6G3, Iran
| | - Ali Ataeinosrat
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Hiwa Rahmani
- Faculty of Physical Education and Sports Science, Alzahra University, Tehran 19938 93973, Iran
| | | | - Behnam Bagherzadeh-Rahmani
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar M3J+373, Iran
| | - Shahin Mahmoudi Aghdam
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Leila Khalajzadeh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Maisa Hamed Al Kiyumi
- Department of Family Medicine and Public Health, Sultan Qaboos University Hospital, Muscat H5QC+36M, Oman
- Correspondence: (A.N.-H.); (M.H.A.K.)
| | - Anthony C. Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katie M. Heinrich
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, M2S—EA 1274, 35000 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
6
|
Fadaei R, Azadi SM, Laher I, Khazaie H. Increased Levels of ANGPTL3 and CTRP9 in Patients With Obstructive Sleep Apnea and Their Relation to Insulin Resistance and Lipid Metabolism and Markers of Endothelial Dysfunction. Lab Med 2023; 54:83-89. [PMID: 35976955 DOI: 10.1093/labmed/lmac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) has a close relation with obesity and perturbation in adipokines and hepatokines, which are linked to OSA consequences such as insulin resistance, dyslipidemia, and endothelial dysfunction. This study aimed to assess the relation of C1q/TNF-related protein 9 (CTRP9) and angiopoietin-like protein 3 (ANGPTL3) with OSA and biochemical measurements. METHODS Serum levels of ANGPTL3, CTRP9, adiponectin, leptin, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion protein 1 (VCAM-1) were determined in 74 OSA patients and 27 controls using enzyme-linked immunosorbent assay kits. RESULTS Levels of ANGPTL3, CTRP9, leptin, ICAM-1, and VCAM-1 were increased in the patients compared to the controls, whereas adiponectin levels decreased. ANGPTL3 had a positive correlation with total cholesterol, triglyceride, low-density lipoprotein cholesterol, ICAM-1, and VCAM-1 and was inversely correlated with leptin. CTRP9 showed a positive correlation with body mass index, insulin resistance, ICAM-1, and VCAM-1. CONCLUSION The results indicated the relation of ANGLTP3 and CTRP9 with OSA and its complications, which suggested a possible role for these factors in the consequences of OSA.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, Faculty of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise. BIOLOGY 2022; 11:biology11111667. [DOI: 10.3390/biology11111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
C1q-TNF-related protein-9 (CTRP9) increases endothelial nitric oxide synthase and reduces vasoconstrictors. There is limited information regarding exercise-mediated CTRP9 in obesity. The purpose of this study was to compare high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CME) on the CTRP9 response and an indicator of endothelial function (FMD) in obese participants. Sixteen young male participants (9 obese and 7 normal-weight) participated in a counterbalanced and caloric equated experiment: HIIE (30 min, 4 intervals of 4 min at 80–90% of VO2 max with 3 min rest between intervals) and CME (38 min at 50–60% VO2 max). Serum CTRP9 and FMD were measured prior to, immediately following exercise, and 1 h and 2 h into recovery. CTRP9 was significantly increased immediately following acute HIIE and CME in both groups (p = 0.003). There was a greater CME-induced FMD response at 2 h into recovery in obese participants (p = 0.009). A positive correlation between CTRP9 and FMD percent change was observed in response to acute CME when combined with both obese and normal-weight participants (r = 0.589, p = 0.016). The novel results from this study provide a foundation for additional examination of the mechanisms of exercise-mediated CTRP9 on endothelial function in individuals with obesity.
Collapse
|
8
|
Erbaş İM, Paketçi A, Turan S, Şişman AR, Demir K, Böber E, Abacı A. Low Complement C1q/TNF-related Protein-13 Levels are Associated with Childhood Obesity But not Binge Eating Disorder. J Clin Res Pediatr Endocrinol 2022; 14:179-187. [PMID: 35014243 PMCID: PMC9176081 DOI: 10.4274/jcrpe.galenos.2021.2021-11-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE C1q/tumor necrosis factor-related proteins (CTRPs) are recently described members of the adipokine family. CTRP-13, a new member of this family, has been shown to increase insulin sensitivity and had an anorexigenic effect on food intake in experimental studies. The aim was to investigate serum CTRP-13 levels in children with obesity, and its relationship with other adipokines, metabolic parameters, or binge eating disorder (BED). METHODS A cross-sectional study was conducted with 105 pubertal children attending a single center. Clinical (metabolic syndrome, BED) and biochemical (glucose, insulin, lipids, leptin, adiponectin, CTRP-13 levels) parameters were assessed. RESULTS Sixty children with obesity [24 males (40%); median age 14.7 (13.0-16.4) years] and 45 healthy controls [15 males (33.3%); median age 15.2 (14.1-16.5) years] were included. Serum adiponectin and CTRP-13 levels were significantly lower in children with obesity than controls (7.1 vs 20.1 μg/mL, p<0.001; 64.7 vs 103.8 ng/mL, p<0.001, respectively). CTRP-13 levels correlated negatively with body mass index (Spearman rho=-0.230, p=0.018) and positively with high-density lipoprotein-cholesterol levels (Spearman rho=0.218, p=0.026). There was no significant difference in serum CTRP-13 concentrations in terms of the presence of metabolic syndrome or BED. CONCLUSION Childhood obesity seems to be causing dysregulation in adipokine production and function, including the down-regulation of CTRP-13. The positive correlation between CTRP-13 and HDL-C levels suggested a possible effect of this adipokine on lipid metabolism. Thus CTRP-13 may be a novel biomarker for dyslipidemia in childhood obesity.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ahu Paketçi
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Serkan Turan
- Bursa Uludağ University Faculty of Medicine, Department of Child and Adolescent Psychiatry, Bursa, Turkey
| | - Ali Rıza Şişman
- Dokuz Eylül University Faculty of Medicine, Department of Biochemistry, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ece Böber
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ayhan Abacı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| |
Collapse
|
9
|
Sarver DC, Xu C, Aja S, Wong GW. CTRP14 inactivation alters physical activity and food intake response to fasting and refeeding. Am J Physiol Endocrinol Metab 2022; 322:E480-E493. [PMID: 35403439 PMCID: PMC9126218 DOI: 10.1152/ajpendo.00002.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secreted proteins of the C1q/TNF-related protein (CTRP) family play diverse functions in different organ systems. In the brain, CTRP14/C1QL1 is required for the proper establishment and maintenance of synapses between climbing fibers and cerebellar Purkinje cells. Beyond the central nervous system, the function of CTRP14 is largely unknown. A recent genome-wide association study has implicated CTRP14/C1QL1 as a candidate gene associated with total body fat mass. Here, we explored the potential metabolic roles of CTRP14. We show that Ctrp14 expression in peripheral tissues is dynamically regulated by fasting-refeeding and high-fat feeding. In the chow-fed basal state, Ctrp14 deletion modestly reduces glucose tolerance in knockout (KO) male mice and affects physical activity in a sex- and nutritional state-dependent manner. In the ad libitum fed state, Ctrp14 KO male mice have lower physical activity. In contrast, female KO mice have increased physical activity in the fasted and refed states. In response to an obesogenic diet, CTRP14-deficient mice of either sex gained similar weight and are indistinguishable from wild-type littermates in body composition, lipid profiles, and insulin sensitivity. Ambulatory activity, however, is reduced in Ctrp14 KO male mice. Food intake is also reduced in Ctrp14 KO male mice in the refed period following food deprivation. Meal pattern analyses indicate that decreased caloric intake from fasting to refeeding is due, in part, to smaller meal size. We conclude that CTRP14 is largely dispensable for metabolic homeostasis, but highlight context-dependent and sexually dimorphic metabolic responses of Ctrp14 deletion affecting physical activity and ingestive behaviors.NEW & NOTEWORTHY CTRP14 is a secreted protein whose function in the peripheral tissues is largely unknown. We show that the expression of Ctrp14 in peripheral tissues is regulated by metabolic and nutritional state. We generated mice lacking CTRP14 and show that CTRP14 deficiency alters physical activity and food intake in response to fasting and refeeding. Our data has provided new and valuable information on the physiological function of CTRP14.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Guan H, Wang Y, Li X, Xiang A, Guo F, Fan J, Yu Q. C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials. Front Physiol 2022; 13:816218. [PMID: 35370782 PMCID: PMC8971810 DOI: 10.3389/fphys.2022.816218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is a newly discovered adipokine that is the closest paralog of adiponectin. Proteolytic cleavage of CTRP9 leads to the release of the globular domain (gCTRP9), which serves as the major circulating subtype. After binding with adiponectin receptor 1 (AdipoR1) and N-cadherin, CTRP9 activates various signaling pathways to regulate glucose and lipid metabolism, vasodilation and cell differentiation. Throughout human development and adult life, CTRP9 controls many biological phenomena. simultaneously, abnormal gene or protein expression of CTRP9 is accompanied by a wide range of human pathological phenomena. In this review, we briefly introduce CTRP9 and its associated signaling pathways and physiological functions, which may be helpful in the understanding of the occurrence of diseases. Moreover, we summarize the broader research prospects of CTRP9 and advances in therapeutic intervention. In recent years, CTRP9 has attracted extensive attention due to its role in the pathogenesis of various diseases, providing further avenues for its exploitation as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yanli Wang
- Department of Pathology, Xi’an Medical University, Xi’an, China
| | - Xiangyu Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianglin Fan
- Department of Pathology, Xi’an Medical University, Xi’an, China
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan
- *Correspondence: Jianglin Fan,
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Qi Yu,
| |
Collapse
|
11
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
12
|
Tang X, Cao Y, Arora G, Hwang J, Sajid A, Brown CL, Mehta S, Marín-López A, Chuang YM, Wu MJ, Ma H, Pal U, Narasimhan S, Fikrig E. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. eLife 2021; 10:e72568. [PMID: 34783654 PMCID: PMC8639152 DOI: 10.7554/elife.72568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin, suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection, suggesting that ISARL signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yongguo Cao
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Clinical Veterinary Medicine, and Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchunChina
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Jesse Hwang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Courtney L Brown
- Yale Combined Program in the Biological and Biomedical Sciences, Yale UniversityNew HavenUnited States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Hongwei Ma
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical UniversityShaanxiChina
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College ParkCollege ParkUnited States
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
13
|
Association Between Serum C1q Tumor Necrosis Factor-Related Protein 9 and the Clinical Characteristics and Prognosis of Ischemic Stroke. Neurol Ther 2021; 11:87-101. [PMID: 34727346 PMCID: PMC8857345 DOI: 10.1007/s40120-021-00296-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction C1q tumor necrosis factor (TNF)-related protein 9 (CTRP9) is a novel member of the C1q/TNF superfamily. According to our previous review, CTRP9 plays a vital role in the process of cardiovascular diseases, including regulating energy metabolism, modulating vasomotion, protecting endothelial cells, inhibiting platelet activation, inhibiting pathological vascular remodeling, stabilizing atherosclerotic plaques, and protecting the heart. We proposed that CTRP9 could play multiple positive and beneficial roles in vascular lesions in ischemic stroke (IS). Here, we aimed to study the relationship between serum CTRP9 and the etiology, severity, and prognosis of IS patients. Methods A total of 302 patients with IS and 173 non-stroke controls were selected from the same hospital, and all patients with IS were followed up 12 months after stroke onset. Stroke etiology was classified according to the Trial of ORG 10172 in Acute Stroke Treatment classification. Symptomatic severity was determined using the National Institutes of Health Stroke Scale score. The lesion volume of acute cerebral ischemia was measured using magnetic resonance imaging (MRI). The unfavorable functional outcome was a combination of death or major disability 12 months after stroke onset. Receiver operating characteristic (ROC) curves and integrated discrimination improvement (IDI) and net reclassification improvement (NRI) statistics were applied in the statistical analysis. Results We found that serum CTRP9 levels and the ratios of CTRP9/total cholesterol (TC), CTRP9/triglyceride (TG), CTRP9/low-density lipoprotein cholesterol (LDL-C), and CTRP9/high-density lipoprotein cholesterol (HDL-C) were associated with the presence of IS. Moreover, the serum CTRP9 concentration was positively associated with the severity of IS. Incorporation of CTRP9/LDL-C levels into a fully adjusted model for IS-cardioembolic (CE) improved discrimination and calibration, and significantly improved reclassification. In addition, CTRP9 was a predictor of unfavorable functional outcomes. Conclusions All the findings indicated that serum CTRP9 could be a promising blood-derived biomarker for the early evaluation and prognosis assessment of IS. Trial Registration Chinese Clinical Trial Registry, ChiCTR1800020330. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-021-00296-7.
Collapse
|
14
|
Wolf RM, Jaffe AE, Rodriguez S, Lei X, Sarver DC, Straub AT, Wong GW, Magge SN. Altered adipokines in obese adolescents: a cross-sectional and longitudinal analysis across the spectrum of glycemia. Am J Physiol Endocrinol Metab 2021; 320:E1044-E1052. [PMID: 33900848 PMCID: PMC8285597 DOI: 10.1152/ajpendo.00626.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity and type 2 diabetes are rapidly increasing in the adolescent population. We sought to determine whether adipokines, specifically leptin, C1q/TNF-related proteins 1 (CTRP1) and CTRP9, and the hepatokine fibroblast growth factor 21 (FGF21), are associated with obesity and hyperglycemia in a cohort of lean and obese adolescents, across the spectrum of glycemia. In an observational, longitudinal study of lean and obese adolescents, we measured fasting laboratory tests, oral glucose tolerance tests, and adipokines including leptin, CTRP1, CTRP9, and FGF21. Participants completed baseline and 2-year follow-up study visits and were categorized as lean (LC, lean control; n = 30), obese normoglycemic (ONG; n = 61), and obese hyperglycemic (OHG; n = 31) adolescents at baseline and lean (n = 8), ONG (n = 18), and OHG (n = 4) at follow-up. Groups were compared using ANOVA and regression analysis, and linear mixed effects modeling was used to test for differences in adipokine levels across baseline and follow-up visits. Results showed that at baseline, leptin was higher in all obese groups (P < 0.001) compared with LC. FGF21 was higher in OHG participants compared with LC (P < 0.001) and ONG (P < 0.001) and positively associated with fasting glucose (P < 0.001), fasting insulin (P < 0.001), Homeostasis Model Assessment-Insulin Resistance Index (HOMA-IR; P < 0.001), and hemoglobin A1c (HbA1c; P = 0.01). CTRP1 was higher in OHG compared with ONG (P = 0.03). CTRP9 was not associated with obesity or hyperglycemia in this pediatric cohort. At 2 years, leptin decreased in ONG (P = 0.003) and FGF21 increased in OHG (P = 0.02), relative to lean controls. Altered adipokine levels are associated with the inflammatory milieu in obese youth with and without hyperglycemia. In adolescence, the novel adipokine CTRP1 was elevated with hyperglycemia, whereas CTRP9 was unchanged in this cohort.NEW & NOTEWORTHY Leptin is higher in obese adolescents and FGF21 is higher in obese hyperglycemic adolescents. The novel adipokine CTRP1 is higher in obese hyperglycemic adolescents, whereas CTRP9 was unchanged in this adolescent cohort.
Collapse
Affiliation(s)
- Risa M Wolf
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Human Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Susana Rodriguez
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry, Oklahoma State University, Stillwater, Oklahoma
- Department of Molecular Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Dylan C Sarver
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander T Straub
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- University of Maryland, College Park, Maryland
| | - G William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sheela N Magge
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Jerobin J, Ramanjaneya M, Bettahi I, Parammal R, Siveen KS, Alkasem M, Aye M, Sathyapalan T, Skarulis M, Atkin SL, Abou-Samra AB. Regulation of circulating CTRP-2/CTRP-9 and GDF-8/GDF-15 by intralipids and insulin in healthy control and polycystic ovary syndrome women following chronic exercise training. Lipids Health Dis 2021; 20:34. [PMID: 33874963 PMCID: PMC8054421 DOI: 10.1186/s12944-021-01463-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is associated with obesity, diabetes, and insulin resistance. The circulating C1Q/TNF-related proteins (CTRP-2, CTRP-9) and growth differentiation factors (GDF-8, GDF-15) contribute to glucose and lipid homeostasis. The effects of intralipids and insulin infusion on CTRP-2, CTRP-9, GDF-8 and GDF-15 in PCOS and control subjects before and after chronic exercise training were examined. Methods Ten PCOS and nine healthy subjects were studied at baseline status and after moderate-intensity chronic exercise training (1 h exercise, 3 times per week, 8 weeks). All participants were infused with 1.5 mL/min of saline or intralipids (20%) for 5 h, and during the last 2 h of saline or intralipids infusion hyperinsulinemic-euglycemic clamp (HIEC) was performed. CTRP-2, CTRP-9, GDF-8 and GDF-15 levels were measured at 0, 3 and 5 h. Results Intralipids dramatically increased CTRP-2 levels in PCOS (P = 0.02) and control (P = 0.004) subjects, which was not affected by insulin infusion or by exercise. Intralipids alone had no effects on CTRP-9, GDF-8, or GDF-15. Insulin increased the levels of GDF-15 in control subjects (P = 0.05) during the saline study and in PCOS subjects (P = 0.04) during the intralipid infusion. Insulin suppressed CTRP9 levels during the intralipid study in both PCOS (P = 0.04) and control (P = 0.01) subjects. Exercise significantly reduced fasting GDF-8 levels in PCOS (P = 0.03) and control (P = 0.04) subjects; however, intralipids infusion after chronic exercise training increased GDF-8 levels in both PCOS (P = 0.003) and control (P = 0.05) subjects and insulin infusion during intralipid infusion reduced the rise of GDF-8 levels. Conclusion This study showed that exogenous lipids modulate CTRP-2, which might have a physiological role in lipid metabolism. Since chronic exercise training reduced fasting GDF-8 levels; GDF-8 might have a role in humoral adaptation to exercise. GDF-15 and CTRP-9 levels are responsive to insulin, and thus they may play a role in insulin responses.
Collapse
Affiliation(s)
- Jayakumar Jerobin
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ilham Bettahi
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Raihanath Parammal
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Meis Alkasem
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Myint Aye
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | - Monica Skarulis
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Abdul Badi Abou-Samra
- Qatar Metabolic Institute, Department of Medicine and Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
16
|
周 鹏, 刘 丽, 高 卫. [Association between serum CTRP9 levels and diabetic retinopathy in patients with type 2 diabetes mellitus]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:459-463. [PMID: 33849840 PMCID: PMC8075780 DOI: 10.12122/j.issn.1673-4254.2021.03.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the relationship between serum C1q tumor necrosis factor-related protein 9 (CTRP9) level and the risk of diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE A total of 291 patients with T2DM underwent fundus examination, and their serum levels of CTRP9, insulin and adiponectin were measured using enzyme- linked immunosorbent assay. According to results of fundus examination, the patients were divided into DR group and non-DR (NDR) group, and logistic regression was used to analyze the relationship between serum CTRP9 levels and DR in T2DM patients. OBJECTIVE Compared with those in NDR group, the patients with DR showed significantly increased serum CTRP9 level (P < 0.001) and decreased serum adiponectin level (P < 0.001). Pearson correlation analysis showed that in patients with T2DM complicated by DR, serum CTRP9 levels had a significant positive correlation with DR stage (P < 0.05) and a negative correlation with serum adiponectin level (P < 0.001). Multivariate logistic regression analysis showed that with the increase of serum CTRP9 level, the risk of DR is significantly increased in patients with T2DM. OBJECTIVE In patients with T2DM complicated by DR, an increased serum CTRP9 level suggests a compensatory response to DR.
Collapse
Affiliation(s)
- 鹏鹏 周
- 南京中医药大学附属昆山市中医医院,江苏 昆山 215300Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
- 南京中医药大学,江苏 南京 210029Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - 丽燕 刘
- 南京中医药大学附属昆山市中医医院,江苏 昆山 215300Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan 215300, China
| | - 卫萍 高
- 南京中医药大学,江苏 南京 210029Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
17
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
18
|
Masoodian SM, Toolabi K, Omidifar A, Zabihi H, Rahimipour A, Shanaki M. Increased mRNA Expression of CTRP3 and CTRP9 in Adipose Tissue from Obese Women: Is it Linked to Obesity-Related Parameters and mRNA Expression of Inflammatory Cytokines? Rep Biochem Mol Biol 2020; 9:71-81. [PMID: 32821754 DOI: 10.29252/rbmb.9.1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Obesity, a medical condition with impaired adipokine secretion and function, has a detrimental effect on insulin and glucose metabolism. CTRP3 and CTRP9 are adipokines with possible roles in energy homeostasis regulation. We sought to compare CTRP3, CTRP9, and inflammatory gene expression in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from obese women who underwent bariatric surgery and non-obese women as controls. Methods For this study, the investigators recruited 20 morbidly obese women (BMI> 35) who qualified for bariatric surgery and 20 normal-weight women (BMI< 25) who underwent elective surgeries. Real-time PCR was performed to investigate mRNA expression of CTRP3, CTRP9, and the inflammatory genes IL1-β, IL-6, MCP-1, and TNF-α in SAT and VAT from both obese patients and controls. Results We observed that CTRP3 mRNA levels were significantly greater in VAT from obese patients than from controls (P< 0.0003). Also, patient group had higher levels of CTRP9 that control group (P< 0.0026). Inflammatory cytokines were markedly increased in SAT of obese patients compared to controls (P< 0.05). In addition, our results revealed a positive correlation of CTRP9 with HOMA-IR and waist circumference in VAT and CTRP3 with IL-1β, MCP-1, and TNF-α in SAT. Conclusion Both CTRP3 and CTRP9 expression were significantly higher in VAT from obese patients than from controls, and CTRP3 expression positively correlated with inflammatory parameters. Our findings indicate that CTRP3 and CTRP9 might be important in regulating glucose metabolism and obesity-related conditions such as inflammation.
Collapse
Affiliation(s)
- Seyed Mohammad Masoodian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karamollah Toolabi
- Department Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi
- Sina Hospital, Department of Surgery, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimipour
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
CTRP9: An emerging potential anti-aging molecule in brain. Cell Signal 2020; 73:109694. [PMID: 32540339 DOI: 10.1016/j.cellsig.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) particularly CTRP9, have been established to be as adiponectin (APN) highly conserved paralogs which assemble several APN regulatory functions. Recently, growing body of evidences drawn significant attention to evaluate metabolic and cardiovascular effect of CTRP9. However, the potential role of CTRP9 in brain tissue has not yet fully illustrated. Here, we aimed to uncover latest advances regarding the CTRP9 related signaling pathways and during brain aging process.
Collapse
|
20
|
Huang H, Wang Y, Wang X, Lei Y. Association of CYP4F2 and CTRP9 polymorphisms and serum selenium levels with coronary artery disease. Medicine (Baltimore) 2020; 99:e20494. [PMID: 32481463 DOI: 10.1097/md.0000000000020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aims to explore the interaction between serum selenium level and CYP4F2 and CTRP9 gene polymorphisms in the development of coronary artery disease (CAD).A total of 200 cases of CAD were selected from the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, China, and 200 healthy subjects cases were served as controls. The polymorphism of CYP4F2 and CTRP9 gene was detected by Sanger sequencing, and the serum selenium level was measured by hydride generation atomic fluorescence spectrometry.The serum selenium level in the CAD group was significantly lower than that in the control group. The risk of CAD was decreased in the patients carrying the AA genotype in CYP4F2 rs3093135, while the frequency of the CC genotype of CTRP9 rs9553238 in CAD patients was higher than that in control subjects. Low serum selenium level and CTRP9 rs9553238 CC genotype play a positive role in the occurrence of CAD.The serum selenium level is negatively correlated with CAD. The polymorphism of the CYP4F2 rs3093135 and CTRP9 rs9553238 was significantly related to the susceptibility of CAD, and there is a synergistic effect between the serum selenium level and the CTRP9 rs9553238 CC genotype, which significantly increases the risk of CAD.
Collapse
Affiliation(s)
- Hao Huang
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | | | | | | |
Collapse
|
21
|
Kasher Meron M, Xu S, Glesby MJ, Qi Q, Hanna DB, Anastos K, Kaplan RC, Kizer JR. C1q/TNF-Related Proteins, HIV and HIV-Associated Factors, and Cardiometabolic Phenotypes in Middle-Aged Women. AIDS Res Hum Retroviruses 2019; 35:1054-1064. [PMID: 31359766 DOI: 10.1089/aid.2019.0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) have been linked to energy homeostasis and vascular health. People with HIV are susceptible to cardiometabolic disease, but the contributions of different CTRPs are unknown. We investigated the associations of HIV and related factors with serum CTRPs, and CTRPs' relationships with cardiometabolic phenotypes. This involved a cross-sectional analysis of participants in the Women's Interagency HIV Study aged ≥35 with (n = 209) and without (n = 92) HIV who underwent carotid ultrasound in 2004-2005 and had stored serum available for measurement of total adiponectin and CTRPs 1, 3, 5, and 9. The Benjamini/Hochberg procedure was used to control the study-wide false-positive rate. HIV-positive women had significantly higher adiponectin than HIV-negative women after adjustment for sociodemographic, behavioral, and clinical variables [beta = 0.29 (95% confidence interval 0.11-0.47)]. Among HIV-positive women, lower CD4 count was associated with higher adiponectin and history of AIDS with higher CTRP9, but these were only nominally significant. There was no relationship between HIV status and CTRP 1, 3, or 5, nor was antiretroviral therapy or viral load associated with any CTRP. In the entire cohort, higher adiponectin was associated with significantly lower fasting glucose and insulin resistance, while higher CTRP5 [beta = -0.02 (-0.033 to -0.007)]-and, at a nominal level, CTRPs 1 and 3-was associated with significantly lower carotid intima-media thickness. In conclusion, in this sample of middle-aged women, HIV serostatus was positively associated with adiponectin, but not CTRPs. In turn, serum adiponectin was inversely associated with glucose dysregulation, whereas CTRP5 was inversely associated with carotid intima-media thickness. Further research is needed to determine CTRPs' role in atherosclerosis.
Collapse
Affiliation(s)
- Michal Kasher Meron
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Shuo Xu
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Marshall J. Glesby
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - David B. Hanna
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn Anastos
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jorge R. Kizer
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
- Section of Cardiology, San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
22
|
Yang H, Liu CN, Wolf RM, Ralle M, Dev S, Pierson H, Askin F, Steele KE, Magnuson TH, Schweitzer MA, Wong GW, Lutsenko S. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019; 11:1363-1371. [PMID: 31249997 DOI: 10.1039/c9mt00148d] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper misbalance has been linked to fat accumulation in animals and experimental systems; however, information about copper homeostasis in human obesity is limited. In this study, the copper status of obese individuals was evaluated by measuring their levels of copper and cuproproteins in serum, adipose and hepatic tissues. The analysis of serum trace elements showed significant positive and element-specific correlation between copper and BMI after controlling for gender, age, and ethnicity. Serum copper also positively correlated with leptin, insulin, and the leptin/BMI ratio. When compared to lean controls, obese patients had elevated circulating cuproproteins, such as semucarbazide-sensitive amine oxidase (SSAO) and ceruloplasmin, and higher SSAO activity and copper levels in visceral fat. Although hepatic steatosis reduces copper levels in the liver, obese patients with no or mild steatosis have higher copper content in the liver compared to lean controls. In conclusion, obese patients evaluated in this study had altered copper status. Strong positive correlations of copper levels with BMI and leptin suggest that copper and/or cuproproteins may be functionally linked to fat accumulation.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chin-Nung Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Frederic Askin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Gao C, Zhao S, Lian K, Mi B, Si R, Tan Z, Fu F, Wang S, Wang R, Ma X, Tao L. C1q/TNF-related protein 3 (CTRP3) and 9 (CTRP9) concentrations are decreased in patients with heart failure and are associated with increased morbidity and mortality. BMC Cardiovasc Disord 2019; 19:139. [PMID: 31182031 PMCID: PMC6558754 DOI: 10.1186/s12872-019-1117-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Biochemical marker has revolutionized the approach to the diagnosis of heart failure. However, it remains difficult to assess stability of the patient. As such, novel means of stratifying disease severity are needed. C1q/TNF-Related Protein 3 (CTRP3) and C1q/TNF-Related Protein 9 (CTRP9) are novel adipokines that contribute to energy homeostasis with additional anti-inflammatory and anti-ischemic properties. The aim of our study is to evaluate concentrations of CTRP3 and CTRP9 in patients with HFrEF (heart failure with reduced ejection fraction) and whether associated with mortality. METHODS Clinical data and plasma were obtained from 176 healthy controls and 168 patients with HFrEF. CTRP3 and CTRP9 levels were evaluated by enzyme-linked immunosorbent assay. RESULTS Both CTRP3 and CTRP9 concentrations were significantly decreased in the HFrEF group compared to the control group (p < 0.001). Moreover, patients with higher New York Heart Association class had significantly lower CTRP3 or CTRP9 concentrations. Correlation analysis revealed that CTRP3 and CTRP9 levels were positively related with LVEF% (CTRP3, r = 0.556, p < 0.001; CTRP9, r = 0.526, p < 0.001) and negatively related with NT-proBNP levels (CTRP3, r = - 0.454, p < 0.001; CTRP9, r = - 0.483, p < 0.001). After a follow up for 36 months, after adjusted for age, LVEF and NT-proBNP, we observed that CTRP3 or CTRP9 levels below the 25th percentile was a predictor of total mortality (CTRP3,HR:1.93,95%CI1.03~3.62,P = 0.042;CTRP9,HR:1.98,95%CI:1.02~3.85,P = 0.044) and hospitalizations (CTRP3,HR:2.34,95% CI:1.43~3.82,P = 0.001;CTRP9,HR:2.67,95%CI:1.58~4.50,P < 0.001). CONCLUSIONS CTRP3 and CTRP9 are decreased in patients with HFrEF, proportionate to disease severity, and each is associated with increased morbidity and mortality. TRIAL REGISTRATION NCT01372800 . Registered May 2011.
Collapse
Affiliation(s)
- Chao Gao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Shasha Zhao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Baibing Mi
- Department of Epidemiology and Biostatistic, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, China
| | - Rui Si
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Zhijun Tan
- Department of Statistics, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Shuai Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China
| | - Xinliang Ma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
24
|
Wolf RM, Jaffe AE, Steele KE, Schweitzer MA, Magnuson TH, Wolfe A, Wong GW. Cytokine, Chemokine, and Cytokine Receptor Changes Are Associated With Metabolic Improvements After Bariatric Surgery. J Clin Endocrinol Metab 2019; 104:947-956. [PMID: 30544212 PMCID: PMC6364507 DOI: 10.1210/jc.2018-02245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Context Altered cytokine levels and chronic low-grade inflammation contribute to metabolic dysfunction in obesity. The extent of cytokine changes and their impact on metabolic improvements after bariatric surgery have not been fully explored. Objective To compare 76 circulating cytokines, chemokines, and secreted cytokine receptors in subjects with obesity and lean subjects and determine how these cytokines are altered by bariatric surgery. Design, Setting, and Participants A total of 37 patients with obesity and 37 lean patients in a cross-sectional study at an academic medical center. We also investigated cytokine changes in 25 patients with obesity after bariatric surgery. Intervention Bariatric surgery (Roux-en-Y gastric bypass and vertical sleeve gastrectomy). Main Outcome Measures Quantification of 76 circulating cytokines, chemokines, and secreted cytokine receptors. Results A total of 13 cytokines were significantly higher, and 4 lower, in patients with obesity relative to lean controls. Soluble vascular endothelial growth factor receptor 2 (sVEGFR2), soluble TNF receptor (sTNFR) 1, and sTNFR2 were positively correlated, and soluble receptor for advanced glycation end-products was inversely correlated, with weight and body mass index. sTNFR2 was positively correlated with fasting glucose, homeostatic model assessment of insulin resistance, and hemoglobin A1c. After bariatric surgery, adiponectin increased, and leptin decreased. Elevated sVEGFR2 levels in patients with obesity were decreased (P = 0.01), whereas reduced chemokine (C-X-C motif) ligand (CXCL) 12 levels in patients with obesity increased (P = 0.03) after surgery. Patients with higher soluble interleukin receptor (sIL) 1R2 and sIL-6R levels before surgery had greater weight loss after surgery (P < 0.05). Conclusions We demonstrate that chemokine (C-C motif) ligand (CCL) 14, sVEGFR2, and platelet-derived growth factor BB are elevated in obesity, and CXCL12, CCL11, and CCL27 are lower in obesity. We found clinically concordant directionality between lean and patients with obesity and before vs after surgery for six cytokines, suggesting that bariatric surgery shifted the cytokine profiles of patients with obesity toward that of lean controls.
Collapse
Affiliation(s)
- Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Yang C, Fan F, Sawmiller D, Tan J, Wang Q, Xiang Y. C1q/TNF‐related protein 9: A novel therapeutic target in ischemic stroke? J Neurosci Res 2018; 97:128-136. [PMID: 30378715 DOI: 10.1002/jnr.24353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Cui Yang
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Fan Fan
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Darrell Sawmiller
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Jun Tan
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Qingsong Wang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Yang Xiang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| |
Collapse
|
26
|
Serum C1q/TNF-related protein 9 is not related to nonalcoholic fatty liver disease. Cytokine 2018; 110:52-57. [DOI: 10.1016/j.cyto.2018.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
|
27
|
Yang G, Song Q, Sun C, Qin J, Jia J, Yuan X, Zhang Y, Li W. Ctrp9 and adiponectin receptors in Nile tilapia (Oreochromis niloticus): Molecular cloning, tissue distribution and effects on reproductive genes. Gen Comp Endocrinol 2018; 265:160-173. [PMID: 29864417 DOI: 10.1016/j.ygcen.2018.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/13/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
As the close paralog of adiponectin, C1q/TNF-Related Protein 9 (CTRP9) has been reported to be involved in the regulation of glucose and fat metabolism, immunization and endothelial cell functions. However, information regarding the actions of Ctrp9 on reproduction is extremely limited in fish. As a first step, Ctrp9, adiponectin receptor 1 (Adipor1) and Adipor2 were identified from Nile tilapia. The open reading frame (ORF) of ctrp9 was 1020 bp which encoded a 339 amino acids. Moreover, the ORFs of adipor1 and adipor2 were 1131 bp and 1134 bp encoding 376 and 377 amino acids, respectively. Tissue distribution showed that ctrp9 mRNA levels were highest in the kidney in both sexes. And, the expression of adipor1 and adipor2 were widely distributed in all tissues examined, exhibiting high levels in the brain, gonad, gut and stomach. In addition, intraperitoneal (i.p.) injection of gCtrp9 (globular Ctrp9) suppressed the hypothalamic expression of gnrh2 (gonadotropin-releasing hormone 2) and gnrh3, as well as gthα (gonadotropic hormone α), fshβ (follicle-stimulating hormone β), lhβ (luteinizing hormone β), lhr (LH receptor) and fshr (FSH receptor) mRNA levels in the pituitary. The mRNA levels of adipor1, but not adipor2, in the gonads were also inhibited after injection. Moreover, the levels of serum E2 (estrogen) in female and T (testosterone) in male were significantly decreased after injection of gCtrp9. Overall, our data provides novel data indicating, for the first time, a regulatory effect of CTRP9 on teleost reproduction.
Collapse
Affiliation(s)
- Guokun Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinqin Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yazhou Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
C1q tumor necrosis factor-related protein 9 in atherosclerosis: Mechanistic insights and therapeutic potential. Atherosclerosis 2018; 276:109-116. [PMID: 30056359 DOI: 10.1016/j.atherosclerosis.2018.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
|
29
|
Spurná J, Karásek D, Kubíčková V, Goldmannová D, Krystyník O, Schovánek J, Zadražil J. Relationship of Selected Adipokines with Markers of Vascular Damage in Patients with Type 2 Diabetes. Metab Syndr Relat Disord 2018; 16:246-253. [PMID: 29717906 DOI: 10.1089/met.2017.0179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study we compared levels of selected adipokines between patients with type 2 diabetes (T2D) and healthy individuals and we determined their relationship with early vascular damage markers. METHODS Seventy-seven subjects: 56 patients with T2D (34 men and 22 women) and 21 healthy controls (8 men and 13 women) were examined in this cross-sectional study. Selected adipokines [adiponectin, adipocyte fatty acid-binding protein (A-FABP), fibroblast growth factor 21 (FGF-21), C1q/TNF-related protein 9 (CTRP-9), and allograft inflammatory factor-1 (AIF-1)] with possible cardiovascular impact were measured in all participants. To identify markers of vascular damage von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1) and arterial stiffness parameters were examined in all the subjects. RESULTS When compared with healthy controls, T2D had significantly higher levels of A-FABP [50.0 (38.1-68.6) vs. 28.6 (23.6-32.9) ng/mL, P < 0.0001] and lower levels of adiponectin [5.9 (4.3-9.0) vs. 11.3 (8.7-14.8) μg/mL, P < 0.0001]. Differences in other adipokines were not statistically significant. Adiponectin level correlated negatively with vWF levels (ρ = -0.29, P < 0.05) and PAI-1 (ρ = -0.36, P < 0.05) and A-FABP positively with vWF (ρ = 0.61, P < 0.05) and PAI-1 (ρ = 0.47, P < 0.05) and augmentation index (ρ = 0.26, P < 0.05). Multivariate regression analysis showed independent association between A-FABP and vWF (b = 0.24, P < 0.05). CONCLUSIONS Patients with T2D have significantly higher levels of A-FABP and lower levels of adiponectin. These adipokines correlate with indicators of vascular damage and could contribute to cardiovascular risk in patients with T2D. A-FABP may participate in direct endothelium damage.
Collapse
Affiliation(s)
- Jaromíra Spurná
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| | - David Karásek
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| | - Veronika Kubíčková
- 2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic .,3 Department of Clinical Biochemistry University Hospital Olomouc , Olomouc, Czech Republic
| | - Dominika Goldmannová
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| | - Ondřej Krystyník
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| | - Jan Schovánek
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| | - Josef Zadražil
- 1 Department of Internal Medicine III-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc , Olomouc, Czech Republic .,2 Faculty of Medicine and Dentistry, Palacky University Olomouc , Olomouc, Czech Republic
| |
Collapse
|
30
|
Moradi N, Fadaei R, Emamgholipour S, Kazemian E, Panahi G, Vahedi S, Saed L, Fallah S. Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PLoS One 2018; 13:e0192159. [PMID: 29381773 PMCID: PMC5790264 DOI: 10.1371/journal.pone.0192159] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
C1q/TNF-related protein 9 (CTRP9) is a paralogue of adiponectin with known favorable effects on lipid and glucose metabolism. A potential role of CTRP9 for regulation of endothelium function has been suggested by previous studies. However, no studies have examined the relation between serum CTRP9 levels and adhesion molecules in patients with type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD). The present study was conducted on 337 subjects who underwent coronary angiography and were categorized into four groups according to the presence of CAD and T2DM (control, CAD, T2DM and CAD+T2DM). Serum levels of CTRP9, adiponectin, sICAM-1, sVCAM-1, sE-Selectin, IL-6 and TNF-α were measured. It was found that the circulating CTRP9 levels were independently associated with increased risk of CAD and T2DM in addition to elevated levels of serum CTRP9 in CAD, T2DM and CAD+T2DM groups. A significant association of serum CTRP9 levels with adhesion molecules in CAD and T2DM patients as well as serum TNF-α levels in CAD individuals was noted. A significant relation between the circulating levels of CTRP9 and HOMA-IR in T2DM subjects was also observed. The results revealed increased circulating levels of CTRP9 in T2DM and CAD individuals which suggests a compensatory response to insulin resistance, inflammatory milieu and endothelial dysfunction; however, more studies are needed to confirm this.
Collapse
Affiliation(s)
- Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemian
- Department of Basic Sciences and Cellular and Molecular Nutrition, Faculty of Nutrition Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Vahedi
- Department of Cardiology, Faculty of medicine. Kurdistan University of Medical Science, Sanandaj, Iran
| | - Lotfolah Saed
- Department of Internal Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research center of Pediatric Infectious Disease, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
31
|
Jia Y, Luo X, Ji Y, Xie J, Jiang H, Fu M, Li X. Circulating CTRP9 levels are increased in patients with newly diagnosed type 2 diabetes and correlated with insulin resistance. Diabetes Res Clin Pract 2017; 131:116-123. [PMID: 28743061 DOI: 10.1016/j.diabres.2017.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
Abstract
AIMS C1q/TNF-related protein-9 (CTRP9) is a novel adipokine that has been shown to promote lipid metabolism, enhance insulin sensitivity and protect against cardiovascular disease. However, previous studies in humans have produced controversial results regarding the association between CTRP9 and insulin resistance. The objective of this study was to evaluate the relationships between CTRP9 and insulin resistance in Chinese population. METHODS Subjects with normal glucose tolerance (NGT, n=108), impaired glucose tolerance (IGT, n=92), and newly diagnosed type 2 diabetes mellitus (nT2DM, n=106) were recruited to determining the circulating CTRP9 and adiponectin levels by enzyme linked immunosorbent assay. Anthropometric and biochemical measurements related to insulin resistance, adiposity and lipid profile were examined for all participants. Oral glucose tolerance test was performed in healthy subjects (17 male and 17 female). RESULTS Circulating CTRP9 level was significantly higher in both IGT and nT2DM than in individuals with NGT. Overweight/obese subjects had much higher CTRP9 levels than lean individuals, and in all subjects, females also had higher CTRP9 levels than males. In addition, circulating CTRP9 level was positively correlated with markers of obesity and insulin resistance, including body mass index, fasting blood glucose, insulin, HbA1c, homeostasis model assessment of insulin resistance and low-density lipoprotein-cholesterol, while was inversely correlated with high-density lipoprotein-cholesterol and adiponectin. Moreover, hyperglycemia during an oral glucose challenge increased circulating CTRP9 concentrations. CONCLUSIONS We conclude that CTRP9 was strongly associated with insulin resistance, suggesting that CTRP9 might be important in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Yanjun Jia
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xiaohe Luo
- Department of Laboratory Medicine, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Ying Ji
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jingwen Xie
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Han Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mao Fu
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoqiang Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
32
|
Bai B, Ban B, Liu Z, Zhang MM, Tan BK, Chen J. Circulating C1q complement/TNF-related protein (CTRP) 1, CTRP9, CTRP12 and CTRP13 concentrations in Type 2 diabetes mellitus: In vivo regulation by glucose. PLoS One 2017; 12:e0172271. [PMID: 28207876 PMCID: PMC5313218 DOI: 10.1371/journal.pone.0172271] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/18/2017] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES The C1q complement/TNF-related protein (CTRP) superfamily, which includes the adipokine adiponectin, has been shown in animal models to have positive metabolic and cardiovascular effects. We sought to investigate circulating CTRP1, CTRP9, CTRP12 and CTRP13 concentrations in persons with type 2 diabetes mellitus (T2DM), with age and BMI matched controls, and to examine the effects of a 2 hour 75g oral glucose tolerance test (OGTT) on serum CTRP1, CTRP9, CTRP12 and CTRP13 levels in persons with T2DM. DESIGN Cross-sectional study [newly diagnosed T2DM (n = 124) and control (n = 139) participants]. Serum CTRP1, CTRP9, CTRP12 and CTRP13 were measured by ELISA. RESULTS Systolic and diastolic blood pressure, total cholesterol (TCH), Low-density lipoprotein (LDL)-cholesterol, triglycerides, TCH/High-density lipoprotein (HDL) ratio, triglycerides/HDL ratio, glucose, insulin, homeostatic model assessment-insulin resistance (HOMA-IR), C-reactive protein and endothelial lipase were significantly higher, whereas leptin and adiponectin were significantly lower in T2DM participants. Serum CTRP1 were significantly higher and CTRP12 significantly lower in T2DM participants. Age, diastolic blood pressure, glucose and CTRP12 were predictive of serum CTRP1; leptin was predictive of serum CTRP9; glucose and CTRP1 were predictive of serum CTRP12; endothelial lipase was predictive of serum CTRP13. Finally, serum CTRP1 were significantly higher and CTRP12 significantly lower in T2DM participants after a 2 hour 75g OGTT. CONCLUSIONS Our data supports CTRP1 and CTRP12 as potential novel biomarkers for the prediction and early diagnosis of T2DM. Furthermore, pharmacological agents that target CTRP1 and CTRP12 could represent a new strategy in the treatment of T2DM.
Collapse
Affiliation(s)
- Bo Bai
- Neurobiology Institute, Jining Medical University, Jinin, China
| | - Bo Ban
- Department of Endocrine and Metabolic diseases, Jining Medical College Affiliated Hospital, Jining Medical University, Jining, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Man Man Zhang
- Department of Endocrine and Metabolic diseases, Jining Medical College Affiliated Hospital, Jining Medical University, Jining, China
| | - Bee Kang Tan
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Obstetrics and Gynaecology, Birmingham Heartlands and Solihull Hospitals, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
- * E-mail: (BKT); (JC)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jinin, China
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail: (BKT); (JC)
| |
Collapse
|
33
|
Ouchi N, Ohashi K, Shibata R, Murohara T. Protective Roles of Adipocytokines and Myokines in Cardiovascular Disease. Circ J 2016; 80:2073-80. [DOI: 10.1253/circj.cj-16-0663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine
| | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| |
Collapse
|
34
|
Asada M, Morioka T, Yamazaki Y, Kakutani Y, Kawarabayashi R, Motoyama K, Mori K, Fukumoto S, Shioi A, Shoji T, Emoto M, Inaba M. Plasma C1q/TNF-Related Protein-9 Levels Are Associated with Atherosclerosis in Patients with Type 2 Diabetes without Renal Dysfunction. J Diabetes Res 2016; 2016:8624313. [PMID: 28070523 PMCID: PMC5192323 DOI: 10.1155/2016/8624313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Aim. C1q/tumor necrosis factor-related protein-9 (CTRP9), a paralog of adiponectin, is expressed in adipose tissue. CTRP9 exerts protective effects against obesity and atherosclerosis in rodents. We investigated the association between plasma CTRP9 levels and atherosclerosis in patients with type 2 diabetes. Methods. We included 419 patients with type 2 diabetes, 161 of whom had chronic kidney disease (CKD). Fasting plasma CTRP9 and total adiponectin levels were measured with enzyme-linked immunosorbent assay. The intima-media thickness (IMT) of the common carotid artery was measured with ultrasonography. Results. Plasma CTRP9 levels were higher in the CKD group than in the non-CKD group. Plasma CTRP9 levels were positively correlated with carotid IMT in the non-CKD group. Multivariate analyses revealed that plasma CTRP9 levels were positively associated with carotid IMT in the non-CKD group, independent of age, sex, body mass index, adiponectin, and other cardiovascular risk factors. However, plasma CTRP9 levels were not associated with carotid IMT in the CKD group. Conclusion. Plasma CTRP9 levels are associated with atherosclerosis in diabetic patients without CKD, independently of obesity, adiponectin, and traditional cardiovascular risk factors. This study indicates a potential role of CTRP9 in atherosclerosis progression in human type 2 diabetes.
Collapse
Affiliation(s)
- Mariko Asada
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- *Tomoaki Morioka:
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Reina Kawarabayashi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Koka Motoyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Katsuhito Mori
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Atsushi Shioi
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|