1
|
Brooks JK, Height LM, Jimenez BA, Anyadike AC, Kvint JG, Price JB. Successful completion of orthodontic therapy in a patient with osteopetrosis: Case Report. J Orthod 2025; 52:105-114. [PMID: 39049616 DOI: 10.1177/14653125241264294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Orthodontic therapy in patients with osteopetrosis (OP) of the jaws has typically been contraindicated owing to the presence of poorly perfused and extremely compact bone, and the potential risk for infection and osteomyelitis. As such, completed orthodontic cases in association with OP, have rarely been published. PATIENT CONCERNS A patient aged 14 years 6 months, with no known diagnosis of OP, sought orthodontic assessment for anterior crowding. CLINICAL FINDINGS The patient exhibited a straight facial profile and increased mandibular facial height, competent lips, shallow mentolabial sulcus with mild mentalis strain, flat/reverse smile arc and wide buccal corridors on smiling.Primary diagnosis:The patient had a Class I incisor relationship on Class 1 skeletal bases with bilateral Class I molars and Class II canine relationships. This was complicated by a crossbite involving the lateral incisors and a Bolton discrepancy due to small maxillary lateral incisors. A radiologic assessment revealed polyostotic OP of the oromaxillofacial complex. INTERVENTIONS Treatment consisted of maxillary and mandibular fixed orthodontic therapy, bite turbos and elastics to level and align the dentition. Extractions of permanent teeth were not needed. OUTCOMES At the conclusion of treatment, there was a slight left Class II malocclusion, with incomplete intercuspation on the left side due to tooth size discrepancy, possibly attributed to inadequate elastics compliance and the presence of osteopetrotic bone. The treatment was completed in 3 years, 1 year longer than anticipated. CONCLUSION This report represents the second published account of a patient with OP successfully managed with comprehensive orthodontic care and without osseous complications. Obtaining cephalometric measurements on OP-affected patients may be imprecise owing to the presence of extremely dense bone and difficulty to identify bony landmarks. To reduce osteopetrotic sequelae, attending clinicians should consider reduced exertional orthodontic forces and closely monitor patients for adverse alveolar events.
Collapse
Affiliation(s)
- John K Brooks
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | | | | | - Joseph G Kvint
- University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jeffery B Price
- Director of Oral and Maxillofacial Radiology, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| |
Collapse
|
2
|
Turner RT, Wong CP, Philbrick KA, Keune JA, Labut EM, Menn SA, Branscum AJ, Iwaniec UT. Adoptive Transfer of Lepr + Bone Marrow Cells Attenuates the Osteopetrotic Phenotype of db/ db Mice. Int J Mol Sci 2025; 26:5120. [PMID: 40507931 PMCID: PMC12154546 DOI: 10.3390/ijms26115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Leptin-deficient (ob/ob) and leptin receptor (Lepr)-deficient db/db mice develop a mild form of osteoclast-rich osteopetrosis, most evident in long bone epiphyses, implying leptin is important for normal replacement of cartilage during skeletal maturation. However, it is unclear whether leptin acts as a permissive or regulatory factor and whether its actions are mediated via peripheral pathways. Here we show the osteopetrotic phenotype is not evident in ob/+ or db/+ mice, suggesting that leptin acts as a critical but permissive factor for skeletal maturation. The importance of leptin is further supported by our results showing that interventions known to increase bone resorption (mild cold stress, simulated microgravity, or particle-induced inflammation) did not advance skeletal maturation in ob/ob mice whereas long-duration hypothalamic leptin gene therapy was effective. Additionally, administration of leptin by subcutaneously implanted osmotic pumps (400 ng/h) for 2 weeks accelerated skeletal maturation in ob/ob mice. Because leptin has the potential to act on the skeleton through peripheral pathways, we interrogated osteoclast-lineage cells for the presence of Lepr and evaluated skeletal response to the introduction of bone marrow Lepr+ cells into db/db mice. We identified Lepr on marrow MCSFR+CD11b+ osteoclast precursors and on osteoclasts generated in vitro. We then adoptively transferred Lepr+ marrow cells from GFP mice or wildtype (WT) mice into Lepr-db/db mice. Following engraftment, most MCSFR+ CD11b+ cells in marrow expressed GFP. Whereas db/db→db/db had minimal influence on epiphyseal cartilage, WT→db/db decreased cartilage. These findings suggest peripheral leptin signaling is required for normal osteoclast-dependent replacement of cartilage by bone during skeletal maturation.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
| | - Jessica A. Keune
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
| | - Edwin M. Labut
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
| | - Scott A. Menn
- Radiation Center, Oregon State University, Corvallis, OR 97331, USA;
| | - Adam J. Branscum
- Biostatistics Program, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA;
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA (C.P.W.); (K.A.P.); (E.M.L.)
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Jiang A, Chen T, Wei N, Zhu C, Wang J, Liu H, Wang M. Identification of a novel mutation in the CLCN7 gene in pediatric osteopetrosis: case report. Front Pediatr 2025; 13:1549961. [PMID: 40276109 PMCID: PMC12020480 DOI: 10.3389/fped.2025.1549961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 04/26/2025] Open
Abstract
Osteopetrosis, also known as osteosclerosis and marble-bone disease, is a rare genetic metabolic bone disorder caused by the dysplasia or dysfunction of osteoclasts, usually caused by variants of chloride voltage-gated channel 7 (CLCN7) gene. We retrospectively analyzed the clinical data of two children with osteopetrosis and their families. Whole-exome sequencing (WES) was used for genetic analysis, and Sanger sequencing confirmed possible pathogenic variants. In family 1, the proband harbored a novel mutation c.2351G>C (p.R784T) in CLCN7 gene. The initial symptom of proband 1 was a post-traumatic fracture, and imaging features was "sandwich cake" -like changes. In family 2, the proband harbored previously reported compound heterozygous variants in CLCN7 gene: c.899C>T (p.A300V) and c.1534G>A (p.G512R). Among them, c.1534G>A (p.G512R) was only recorded in clinvar and no reports of protein function prediction. The initial symptom of proband 2 was cough, and imaging features was "sandwich vertebrae". Our study expands the mutation spectrum of the CLCN7 gene and provides new insights into the pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Hematology and Oncology, Anhui Provincial Children's Hospital (Anhui Hospital, Pediatric Hospital of Fudan University), Hefei Anhui, China
| |
Collapse
|
4
|
Aktekin EH, Görükmez O, Sulaimanov U, Demir Kekeç Ş, Erbay A, Yazıcı N. Rare Cause of Bone Marrow Failure: Osteopetrosis, Case Series. Pediatr Dev Pathol 2025:10935266251330174. [PMID: 40162617 DOI: 10.1177/10935266251330174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Osteopetrosis is a rare metabolic bone disease that can lead to progressive bone marrow failure if left untreated. Resulting cytopenia and extramedullary hematopoiesis are frequently encountered in autosomal recessive form of the disease (ARO) and may result in death. Recurrent bone fractures and skeletal deformities are mostly seen in autosomal dominant form osteopetrosis (ADO) and cause significant morbidity. In this report, clinical, laboratory, and radiological findings of 5 patients with osteopetrosis were presented. Three had cytopenias, typical peripheral smear, and bone marrow aspiration findings regarding bone marrow failure as well as extensively increased bone density which was a classical radiological appearance. Two of them had TCIRG1 mutations associated with ARO, died because of severe infections. One with certain findings of ARO without genetic analysis is alive after hematopoietic stem cell transplantation. Two siblings had novel variants of CLCN7 (NM_001114331) p.Val755Serfs*4 (c.2263del) heterozygocity, associated with ADO and severe skeletal problems. One had been followed up also for nephrotic syndrome. Detection of genetic abnormalities is important as well as typical physical examination findings and, presence of hematological or radiological indicators in definitive diagnosis of the disease. Although osteopetrosis is rare, it is a potentially fatal disease that should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- Elif Habibe Aktekin
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baskent University, Adana, Turkey
| | - Orhan Görükmez
- Department of Medical Genetic, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | | | | | - Ayşe Erbay
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baskent University, Adana, Turkey
| | - Nalan Yazıcı
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baskent University, Adana, Turkey
| |
Collapse
|
5
|
Polgreen LE, Villa-Lopez E, Chen L, Liu Z, Katz A, Parks-Schenck C, Hart M, Imel EA, Econs MJ. Patient-Reported Outcomes in Autosomal Dominant Osteopetrosis: Findings From the Osteopetrosis Registry Study. J Clin Endocrinol Metab 2025; 110:e607-e614. [PMID: 38661205 PMCID: PMC11834703 DOI: 10.1210/clinem/dgae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT Autosomal dominant osteopetrosis (ADO) is a rare sclerotic bone disease characterized by impaired osteoclast activity, resulting in high bone mineral density and skeletal fragility. The full phenotype and disease burden on patients' daily lives has not been systematically measured. OBJECTIVE We developed an online registry to ascertain population-based data on the spectrum and rate of progression of disease and to identify relevant patient-centered outcomes that could be used to measure treatment effects and guide the design of future clinical trials. METHODS Cross-sectional data from participants with osteopetrosis were collected using an online REDCap-based database. Thirty-four participants with a confirmed diagnosis of ADO, aged 4-84 years were included. Participants aged 18 years and older completed the PROMIS 57, participants aged 8-17 years completed the PROMIS Pediatric 49, and parents of participants aged <18 years completed the PROMIS Parent Proxy 49. RESULTS Based on the PROMIS 57, relative to the general population, adults with ADO reported low physical function and low ability to participate in social roles and activities, and high levels of anxiety, fatigue, sleep problems, and pain interference. Daily pain medications were reported by 24% of the adult population. In contrast, neither pediatric participants nor their parent proxy reported a negative impact on health-related quality of life. CONCLUSION Data from this registry demonstrate the broad spectrum of ADO disease severity and high impact on health-related quality of life in adults with ADO.
Collapse
Affiliation(s)
- Lynda E Polgreen
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Eva Villa-Lopez
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Liz Chen
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ziyue Liu
- Department of Biostatistics and Data Science, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| | - Amy Katz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| | - Corinne Parks-Schenck
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| | - Marian Hart
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| | - Erik A Imel
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IA 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IA 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IA 46202, USA
| |
Collapse
|
6
|
Chen X, Wang Z, Fu W, Wei Z, Gu J, Wang C, Zhang Z, Yu X, Hu W. Metabolomics study of osteopetrosis caused by CLCN7 mutation reveals novel pathway and potential biomarkers. Front Endocrinol (Lausanne) 2025; 15:1418932. [PMID: 40018371 PMCID: PMC11865745 DOI: 10.3389/fendo.2024.1418932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 03/01/2025] Open
Abstract
Objective CLCN7 mutation caused abnormal osteoclasts, resulting in osteopetrosis. Depending on the type of mutation, CLCN7 mutations can lead to severe or relatively benign forms of osteopetrosis. However, the serum metabolic alterations in osteopetrosis caused by CLCN7 mutation are still unknown. We aimed to investigate the differences in the metabolome of osteopetrosis patients caused by CLCN7 mutation versus healthy controls (HC), uncovering potential subtype diagnosis biomarkers. Methods 19 osteopetrosis patients caused by CLCN7 mutation and 19 HC were recruited for liquid chromatography-tandem mass spectrometry analysis. The screened pathway was validated in the myeloid cell specific Clcn7G763R mutant mouse model by quantitative real-time PCR analysis. Results Three metabolic pathways were significantly enriched, including glycerophospholipid metabolism (P=0.036948), arachidonic acid metabolism (P=0.0058585) and linoleic acid metabolism (P=0.032035). Ten differential expressed metabolites were located in these three pathways and classified ability with areas under the curve over 0.7 in receiver operating characteristic analysis, suggesting a certain accuracy for being the potential biological markers. Especially, we found that the proteins in glycerophospholipid metabolism were predicted to interact with ClC-7 and further verified that the expression of coding genes were significantly up-regulated in myeloid cell specific Clcn7G763R mutant mouse. Conclusion This study provides data on serum metabolomics in osteopetrosis caused by CLCN7 mutation and provides new potential metabolic markers and pathways for diagnosis and pathogenesis of osteopetrosis.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyuan Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhen Fu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wei
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtian Yu
- Clinical Research Center, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ishihama Y, Ikeda T, Iemura S, Toriumi K, Goto K. Spontaneous Anterior Arch Fracture of the Atlas Following C1 Laminectomy in a Patient With Osteopetrosis: A Case With Five Years of Follow-Up. Cureus 2025; 17:e79471. [PMID: 40130126 PMCID: PMC11932743 DOI: 10.7759/cureus.79471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
Osteopetrosis is a rare group of genetic disorders characterized by excessive bone density due to impaired osteoclast function and can lead to various complications, including fractures and immune dysfunction. We describe the case of a 63-year-old man with osteopetrosis who presented with cervical discomfort and was diagnosed with an anterior arch fracture of the atlas, a rare spontaneous fracture following C1 laminectomy. Initially, no neurological abnormalities were observed, and imaging confirmed the continuity of the transverse ligament. Thus, the decision was made to follow the natural course in the absence of instability. Conservative treatment with a cervical collar was initiated, and the fracture gap began to fill by three years postoperatively, though nonunion persisted at five years. The patient remained asymptomatic and did not require further surgical intervention. This case highlights that stress concentrated on the anterior arch of the atlas due to the unique bone quality in osteopetrosis, and the subsequent natural course of the fracture did not require additional surgical treatment. Careful follow-up is essential to monitor for any pathological changes.
Collapse
Affiliation(s)
| | - Terumasa Ikeda
- Orthopedic Surgery, Kindai University Hospital, Osakasayama, JPN
| | - Shunki Iemura
- Orthopedics, Kindai University Hospital, Osakasayama, JPN
| | - Kensuke Toriumi
- Orthopedic Surgery, Kindai University Hospital, Osakasayama, JPN
| | - Koji Goto
- Orthopedic Surgery, Kindai University Hospital, Osakasayama, JPN
| |
Collapse
|
8
|
Valenti GG, Greenberg H, Savaşan S, Taub JW. The G.O.A.T. Diagnosis: A Rare and Uncommon Diagnosis of Macrocytic Anemia. Clin Pediatr (Phila) 2025; 64:284-289. [PMID: 38840508 DOI: 10.1177/00099228241257097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Gianna G Valenti
- Division of Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hannah Greenberg
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Süreyya Savaşan
- Division of Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
- Discipline of Pediatrics, College of Medicine, Central Michigan University, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology Oncology, Children's Hospital of Michigan, Detroit, MI, USA
- Discipline of Pediatrics, College of Medicine, Central Michigan University, Detroit, MI, USA
- School of Medicine Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Amirfiroozy A, Naghinejad M, Rezamand A, Farhangi H, Golchehre Z, Jalali H, Taheri M, Keramatipour M. A comprehensive report of the clinical and mutational profiles of 30 Iranian malignant infantile osteopetrosis patients. Mol Cell Probes 2025; 79:102014. [PMID: 39875016 DOI: 10.1016/j.mcp.2025.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Osteopetrosis is a group of genetically and clinically diverse inherited disorders characterized by an increase in bone density. The main known cause is an abnormality in the development or function of osteoclasts. Hence, the process of bone resorption is impaired, resulting in: 1- a reduction in bone marrow volume and, subsequently, a decrement in the hematopoietic capacity of bone marrow, which leads to anemia and compromised immunological function; 2- improper bone development, which leads to pressure on peripheral nerves, causing auditory, visual, and movement impairments; and 3- disturbance in the formation of bone microstructure that leads to susceptibility to bone fracture. This study aimed to evaluate the clinical symptoms and genetic causes of 30 patients (probands) who suffered from malignant infantile osteopetrosis, a subtype of this disorder. The Sanger sequencing technique was used to sequence four common genes (TCIRG1, CLCN7, SNX10, and OSTM1) in osteopetrosis. Subsequently, the selected variants were subjected to segregation analysis between the probands and their parents. Consequently, the sequencing of these four genes in probands revealed 16 pathogenic and likely pathogenic mutations, five of which had never been reported before. The TCIRG1 gene has three novel splice site variations and one frameshift variant. The CLCN7 gene had a novel missense variant. Also, a total of five variants of uncertain significance (VUSs) were identified in the analyzed sequences, of which three haven't been reported to date, and two were observed in osteopetrosis patients. Therefore, by documenting these novel likely pathogenic variants and VUS in known genes associated with this disease in patients, specialists can conduct more accurate genetic analysis and counseling when encountering these variants. Additionally, this documentation will facilitate the reclassification of these variants.
Collapse
Affiliation(s)
- Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azim Rezamand
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Farhangi
- Department of Pediatrics Hematology and Oncology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Jalali
- Thalassemia Research Center, Hemoglobinopathies Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Alsarraf F, Ali DS, Brandi ML. The Use of Bone Biomarkers, Imaging Tools, and Genetic Tests in the Diagnosis of Rare Bone Disorders. Calcif Tissue Int 2025; 116:32. [PMID: 39841287 DOI: 10.1007/s00223-024-01323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/29/2024] [Indexed: 01/23/2025]
Abstract
Rare bone diseases are clinically and genetically heterogenous. Despite those differences, the underlying pathophysiology is not infrequently different. Several of these diseases are characterized by abnormal bone metabolism and turnover with subsequent abnormalities in markers of bone turnover, rendering them useful adjuncts in the diagnostic process. As most rare bone diseases are inherited, genetic testing for implicated pathogenic variants, where known, is another relevant tool that can aid in diagnosis. While some skeletal disorders can be localized or monostotic, others can involve multiple skeletal sites and warrant imaging tools to localize them and determine the severity of disease and/or presence of complications as well as to assess bone quality and the potential risk of fractures. Rare bone disorders pose a great challenge in their diagnosis, ultimately resulting in delayed diagnosis, higher risk of complications and a poor quality of life in affected individuals. In this review we discuss the biochemical and radiological tools that can be utilized to diagnose selected orphan bone disorders, the clinical utility and limitations of these diagnostic tools, and areas where future research is warranted.
Collapse
Affiliation(s)
- Farah Alsarraf
- Department of Endocrinology, Mubarak Alkabeer University Hospital, Kuwait City, Kuwait.
| | - Dalal S Ali
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, ON, Canada
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
- Donatello Bone Clinic, Villa Donatello Hospital, Florence, Italy
| |
Collapse
|
11
|
Liu Z, Mao Y, Yang K, Wang S, Zou F. A trend of osteocalcin in diabetes mellitus research: bibliometric and visualization analysis. Front Endocrinol (Lausanne) 2025; 15:1475214. [PMID: 39872315 PMCID: PMC11769813 DOI: 10.3389/fendo.2024.1475214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Osteocalcin has attracted attention for its potential role in diabetes management. However, there has been no bibliometric assessment of scientific progress in this field. Methods We analysed 1680 articles retrieved from the Web of Science Core Collection (WoSCC) between 1 January 1986 and 10 May 2024 using various online tools. Result These papers accumulated 42,714 citations,with an average of 25.43 citations per paper. Publication output increased sharply from 1991 onwards. The United States and China are at the forefront of this research area. Discussion The keywords were grouped into four clusters: 'Differential and functional osteocalcin genes', 'Differential expression of osteocalcin genes in relation to diabetes mellitus', 'Role of osteocalcin in the assessment of osteoporosis and diabetes mellitus', and 'Indirect involvement of osteocalcin in metabolic processes'. Analysis using the VoS viewer suggests a shift in research focus towards the correlation between osteocalcin levels and diabetic complications, the clinical efficacy of therapeutic agents or vitamins in the treatment of osteoporosis in diabetic patients, and the mechanisms by which osteocalcin modulates insulin action. The proposed focus areas are "osteocalcin genes", "insulin regulation and osteoporosis ", "different populations", "diabetes-related complications" and "type 2 diabetes mellitus","effect of osteocalcin expression on insulin sensitivity as well as secretion","osteocalcin expression in different populations of diabetic patients and treatment-related studies".
Collapse
Affiliation(s)
- Zixu Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yuchen Mao
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Shukai Wang
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Alle P, Thakar S. Teaching NeuroImage: Basal Encephaloceles With CSF Rhinorrhea in a Patient With Osteopetrosis. Neurology 2024; 103:e210066. [PMID: 39536280 DOI: 10.1212/wnl.0000000000210066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Prashanth Alle
- From the Sri Sathya Sai Institute of Higher Medical Sciences, Bangalore, India
| | - Sumit Thakar
- From the Sri Sathya Sai Institute of Higher Medical Sciences, Bangalore, India
| |
Collapse
|
13
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
14
|
Erradi M, Sediki S, Chaouki S, Hida M. Unusual presentation of chronic headaches revealing osteopetrosis: A case report. Radiol Case Rep 2024; 19:5863-5866. [PMID: 39314659 PMCID: PMC11418099 DOI: 10.1016/j.radcr.2024.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Osteopetrosis, also known as the disease of marbled bones, refers to a group of constitutional bone diseases resulting from a defect in bone metabolism. This condition is characterized by its manifestation, most often at a young age, and is typically revealed by its complications, primarily fractures. Diagnosis is currently confirmed through genetics but also relies on imaging such as standard radiography and computed tomography. We report the case of a child, aged 13 years, presenting with osteopetrosis revealed by atypical symptoms, confirmed by computed tomography imaging mainly in our country in Morocco where access to care is sometimes difficult for some patients.
Collapse
Affiliation(s)
- Mariam Erradi
- Pediatric Department, Mother-Child Hospital, HASSAN II CHU of Fez
- Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Mother-Child Hospital, HASSAN II University Hospital of Fez, Fez 30070, Morocco
| | - Soukaina Sediki
- Pediatric Department, Mother-Child Hospital, HASSAN II CHU of Fez
- Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Mother-Child Hospital, HASSAN II University Hospital of Fez, Fez 30070, Morocco
| | - Sana Chaouki
- Pediatric Department, Mother-Child Hospital, HASSAN II CHU of Fez
- Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Mother-Child Hospital, HASSAN II University Hospital of Fez, Fez 30070, Morocco
| | - Moustapha Hida
- Pediatric Department, Mother-Child Hospital, HASSAN II CHU of Fez
- Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Mother-Child Hospital, HASSAN II University Hospital of Fez, Fez 30070, Morocco
| |
Collapse
|
15
|
Sun S, Liu Y, Sun J, Zan B, Cui Y, Jin A, Xu H, Huang X, Zhu Y, Yang Y, Gao X, Lu T, Wang X, Liu J, Mei L, Shen L, Dai Q, Jiang L. Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice. Bone Res 2024; 12:61. [PMID: 39419968 PMCID: PMC11487257 DOI: 10.1038/s41413-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024] Open
Abstract
Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands Pdgfd and Sema4d. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.
Collapse
Affiliation(s)
- Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiping Sun
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxin Zan
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Cui
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinggang Dai
- The 2nd Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Stomatology, Zhang Zhiyuan Academician Work Station, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
17
|
Penna S, Zecchillo A, Di Verniere M, Fontana E, Iannello V, Palagano E, Mantero S, Cappelleri A, Rizzoli E, Santi L, Crisafulli L, Filibian M, Forlino A, Basso-Ricci L, Scala S, Scanziani E, Schinke T, Ficara F, Sobacchi C, Villa A, Capo V. Correction of osteopetrosis in the neonate oc/oc murine model after lentiviral vector gene therapy and non-genotoxic conditioning. Front Endocrinol (Lausanne) 2024; 15:1450349. [PMID: 39314524 PMCID: PMC11416974 DOI: 10.3389/fendo.2024.1450349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Autosomal recessive osteopetrosis (ARO) is a rare genetic disease, characterized by increased bone density due to defective osteoclast function. Most of the cases are due to TCIRG1 gene mutation, leading to severe bone phenotype and death in the first years of life. The standard therapy is the hematopoietic stem cell transplantation (HSCT), but its success is limited by several constraints. Conversely, gene therapy (GT) could minimize the immune-mediated complications of allogeneic HSCT and offer a prompt treatment to these patients. Methods The Tcirg1-defective oc/oc mouse model displays a short lifespan and high bone density, closely mirroring the human condition. In this work, we exploited the oc/oc neonate mice to optimize the critical steps for a successful therapy. Results First, we showed that lentiviral vector GT can revert the osteopetrotic bone phenotype, allowing long-term survival and reducing extramedullary haematopoiesis. Then, we demonstrated that plerixafor-induced mobilization can further increase the high number of HSPCs circulating in peripheral blood, facilitating the collection of adequate numbers of cells for therapeutic purposes. Finally, pre-transplant non-genotoxic conditioning allowed the stable engraftment of HSPCs, albeit at lower level than conventional total body irradiation, and led to long-term survival and correction of bone phenotype, in the absence of acute toxicity. Conclusion These results will pave the way to the implementation of an effective GT protocol, reducing the transplant-related complication risks in the very young and severely affected ARO patients.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano Bicocca, Milan, Italy
| | - Martina Di Verniere
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Valeria Iannello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eleonora Palagano
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
- Florence Unit, Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Elena Rizzoli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Crisafulli
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Marta Filibian
- Biomedical Imaging Laboratory, Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Cristina Sobacchi
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
18
|
Prithvi A, Kodethoor D, K S, Lewin S. Infantile osteopetrosis with delayed development, organomegaly and wandering eyes: case report. Paediatr Int Child Health 2024; 44:52-54. [PMID: 38577960 DOI: 10.1080/20469047.2024.2335423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Osteopetrosis encompasses rare inherited metabolic bone disorders with defect in the osteoclast activity. Severe forms of presentation such as malignant infantile osteopetrosis are seen in infants and milder forms in older children. The clinical presentation includes failure to thrive, severe pallor, optic atrophy and hepatosplenomegaly. The disorder is characterised by dense bone on radiography, hence the name marble bone disease. A 10-month-old boy who presented with developmental delay, failure to thrive, nystagmus (which the mother described as wandering eye movements), splenomegaly of 16 cm and hepatomegaly of 8 cm. Investigations demonstrated severe anaemia (5.7 g/dL) and thrombocytopenia (34 x 109/L). Radiological signs which help in the diagnosis include diffuse sclerosis, bone within bone appearance, sandwich vertebrae and Erlenmeyer flask deformity. Plain radiography is an easily available and cost effective tool which can aid in the diagnosis of osteopetrosis.
Collapse
Affiliation(s)
- Ashwini Prithvi
- Department of Paediatrics, St John's Medical College Hospital, Bangalore, India
| | - Dhrithi Kodethoor
- Department of Paediatrics, St John's Medical College Hospital, Bangalore, India
| | - Sushma K
- Department of Paediatrics, St John's Medical College Hospital, Bangalore, India
| | - Sanjiv Lewin
- Department of Paediatrics, St John's Medical College Hospital, Bangalore, India
| |
Collapse
|
19
|
Saffie-Siebert S, Alam I, Sutera FM, Dehsorkhi A, Torabi-Pour N, Baran-Rachwalska P, Iamartino L, Teti A, Maurizi A, Gerard-O'Riley RL, Acton D, Econs MJ. Effect of Allele-Specific Clcn7 G213R siRNA Delivered Via a Novel Nanocarrier on Bone Phenotypes in ADO2 Mice on 129S Background. Calcif Tissue Int 2024; 115:85-96. [PMID: 38733412 DOI: 10.1007/s00223-024-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Autosomal dominant osteopetrosis type 2 (ADO2) is a rare inherited bone disorder characterised by dense but brittle bones. It displays striking phenotypic variability, with the most severe symptoms, including blindness and bone marrow failure. Disease management largely relies on symptomatic treatment since there is no safe and effective treatment. Most ADO2 cases are caused by heterozygous loss-of-function mutations in the CLCN7 gene, which encodes an essential Cl-/H+ antiporter for proper bone resorption by osteoclasts. Thus, siRNA-mediated silencing of the mutant allele is a promising therapeutic approach, but targeting bone for first-in-human translation remains challenging. Here, we demonstrate the utility of silicon-stabilised hybrid lipid nanoparticles (sshLNPs) as a next-generation nucleic acid nanocarrier capable of delivering allele-specific siRNA to bone. Using a Clcn7G213R knock-in mouse model recapitulating one of the most common human ADO2 mutations and based on the 129S genetic background (which produces the most severe disease phenotype amongst current models), we show substantial knockdown of the mutant allele in femur when siRNA targeting the pathogenic variant is delivered by sshLNPs. We observed lower areal bone mineral density in femur and reduced trabecular thickness in femur and tibia, when siRNA-loaded sshLNPs were administered subcutaneously (representing the most relevant administration route for clinical adoption and patient adherence). Importantly, sshLNPs have improved stability over conventional LNPs and enable 'post hoc loading' for point-of-care formulation. The treatment was well tolerated, suggesting that sshLNP-enabled gene therapy might allow successful clinical translation of essential new treatments for ADO2 and potentially other rare genetic bone diseases.
Collapse
Affiliation(s)
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | | | | | | | | | | | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Rita L Gerard-O'Riley
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Arunachalam AK, Aboobacker FN, Sampath E, Devasia AJ, Korula A, George B, Edison ES. Molecular Heterogeneity of Osteopetrosis in India: Report of 17 Novel Variants. Indian J Hematol Blood Transfus 2024; 40:494-503. [PMID: 39011244 PMCID: PMC11246401 DOI: 10.1007/s12288-023-01732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Osteopetrosis is a clinically and genetically heterogeneous group of inherited bone disorders that is caused by defects in osteoclast formation or function. Treatment options vary with the disease severity and an accurate molecular diagnosis helps in prognostication and treatment decisions. We investigated the genetic causes of osteopetrosis in 31 unrelated patients of Indian origin. Screening for the genetic variants was done by Sanger sequencing or next generation sequencing in 48 samples that included 31 samples from index patients, 16 from parents' and 1 chorionic villus sample. A total of 30 variants, including 29 unique variants, were identified in 26 of the 31 patients in the study. TCIRG1 was the most involved gene (n = 14) followed by TNFRSF11A (n = 4) and CLCN7 (n = 3). A total of 17 novel variants were identified. Prenatal diagnosis was done in one family and the foetus showed homozygous c.807 + 2T > G variant in TCIRG1. Molecular diagnosis of osteopetrosis aids in therapeutic decisions including the need for a stem cell transplantation and gives a possible option of performing prenatal diagnosis in affected families. Further studies would help in understanding the genetic etiology in patients where no variants were identified. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01732-4.
Collapse
Affiliation(s)
| | - Fouzia N. Aboobacker
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Eswari Sampath
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anup J. Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | | |
Collapse
|
21
|
Chiu KY, Lin YY, Liu YL, Lee NC, Tsai TH. Genetic testing confirmed osteopetrosis with initial presentation of nystagmus. Taiwan J Ophthalmol 2024; 14:437-440. [PMID: 39430360 PMCID: PMC11488795 DOI: 10.4103/tjo.tjo-d-22-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/19/2023] [Indexed: 10/22/2024] Open
Abstract
Osteopetrosis (OS) is a rare heritable disorder characterized by osteoclast dysfunction and increased bone density on radiography. Optic nerve osseous compression is the most frequent ocular complication of OS, with nystagmus, strabismus, ptosis, proptosis, and lagophthalmos occurring less frequently. However, it is uncommon for patients to have neurological or ocular symptoms at initial presentation. Herein, we present the case of a 3-year-old girl with the initial presentation of ocular symptoms who was confirmed to have OS through genetic testing. She was born full-term and found to have nystagmus since the age of 1 year. Her best-corrected visual acuity was 1.2/60 for both eyes. Exotropia of the left eye and bilateral small-amplitude pendular nystagmus were also noted. Color fundoscopy revealed a tessellated fundus and pale discs with cup-to-disc ratios of 0.5-0.6. Magnetic resonance imaging revealed bilateral optic canal stenosis and optic nerve atrophy. Whole-exome sequencing revealed a biallelic chloride voltage-gated channel 7 mutation, c.2297T > C (p.Leu766Pro) and c.1577G > A (p.Arg526Gln), and autosomal recessive OS was diagnosed. The patient is currently being evaluated for possible hematopoietic stem cell transplantation. We suggest that OS should be considered a differential diagnosis for unexplained nystagmus and optic nerve atrophy.
Collapse
Affiliation(s)
- Kai-Yen Chiu
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yu-Yang Lin
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
McLuckey MN, Imel EA, Forbes-Amrhein MM. Osteopetrosis in the pediatric patient: what the radiologist needs to know. Pediatr Radiol 2024; 54:1105-1115. [PMID: 38483591 PMCID: PMC11905148 DOI: 10.1007/s00247-024-05899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
Osteopetrosis describes several types of rare sclerosing bone dysplasias of varying clinical and radiographic severity. The classic autosomal dominant subtype emerges most often in adolescence but can present from infancy through adulthood. The autosomal recessive osteopetrosis, or "malignant infantile osteopetrosis," presents in infancy with a grimmer prognosis, though the autosomal dominant forms (often mislabeled as "benign") actually can have life-threatening consequences as well. Often osteopetrosis is detected due to skeletal findings on radiographs performed to evaluate injury or as an incidental finding during evaluation for illness. Given the varied phenotypic severity and presentations at different ages, radiologists play an integral role in the care of these patients both in diagnosis and in clinical evaluation and monitoring. A deeper understanding of the underlying genetic basis of the disease can aid in the radiologist in diagnosis and in anticipation of unique complications. An overview of current clinical management is also discussed.
Collapse
Affiliation(s)
- Morgan N McLuckey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Boulevard, Room 0063, Indianapolis, IN, 46202, USA.
| | - Erik A Imel
- Department of Medicine and Pediatrics, Indiana University School of Medicine, 1120 W. Michigan Street, Room 380, Indianapolis, IN, 46202, USA
| | - Monica M Forbes-Amrhein
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Room 1053, Indianapolis, IN, 46202, USA
| |
Collapse
|
23
|
Funck-Brentano T, Zillikens MC, Clunie G, Siggelkow H, Appelman-Dijkstra NM, Cohen-Solal M. Osteopetrosis and related osteoclast disorders in adults: A review and knowledge gaps On behalf of the European calcified tissue society and ERN BOND. Eur J Med Genet 2024; 69:104936. [PMID: 38593953 DOI: 10.1016/j.ejmg.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Osteopetrosis refers to a group of related rare bone diseases characterized by a high bone mass due to impaired bone resorption by osteoclasts. Despite the high bone mass, skeletal strength is compromised and the risk of fracture is high, particularly in the long bones. Osteopetrosis was classically categorized by inheritance pattern into autosomal recessive forms (ARO), which are severe and diagnosed within the first years of life, an intermediate form and an autosomal dominant (ADO) form; the latter with variable clinical severity and typically diagnosed during adolescence or in young adulthood. Subsequently, the AD form was shown to be a result of mutations in the gene CLCN7 encoding for the ClC-7 chloride channel). Traditionally, the diagnosis of osteopetrosis was made on radiograph appearance alone, but recent molecular and genetic advances have enabled a greater fidelity in classification of osteopetrosis subtypes. In the more severe ARO forms (e.g., malignant infantile osteopetrosis MIOP) typical clinical features have severe consequences and often result in death in early childhood. Major complications of ADO are atypical fractures with delay or failure of repair and challenge in orthopedic management. Bone marrow failure, dental abscess, deafness and visual loss are often underestimated and neglected in relation with lack of awareness and expertise. Accordingly, the care of adult patients with osteopetrosis requires a multidisciplinary approach ideally in specialized centers. Apart from hematopoietic stem cell transplantation in certain infantile forms, the treatment of patients with osteopetrosis, has not been standardized and remains supportive. Further clinical studies are needed to improve our knowledge of the natural history, optimum management and impact of osteopetrosis on the lives of patients living with the disorder.
Collapse
Affiliation(s)
- Thomas Funck-Brentano
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine. Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gavin Clunie
- Metabolic Bone Physician, Cambridge University Hospitals, Box 204, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Heide Siggelkow
- MVZ Endokrinologikum, Göttingen, Germany; Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, 37075, Göttingen, Germany
| | - Natasha M Appelman-Dijkstra
- Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine Cohen-Solal
- Reference Center for Rare Bone Diseases and Department of Rheumatology, Hôpital Lariboisière, APHP, Université Paris Cité, Paris, France; INSERM UMR1132 BIOSCAR, Paris, France.
| |
Collapse
|
24
|
Almutairi M, Alharbi A, Almutairi H, Shemis MF, Almutairi MS, Almutairi F. Management of Osteomyelitis in Autosomal Dominant Osteopetrosis: A Rare Case Report. Cureus 2024; 16:e62660. [PMID: 39036270 PMCID: PMC11258530 DOI: 10.7759/cureus.62660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Albers-Schönberg disease, also known as osteopetrosis or marble bone disease, is a rare genetic disorder characterised by increased cortical bone mass due to dysfunctional osteoclast cells. This case report presents a 34-year-old male with autosomal dominant osteopetrosis (ADO), who was referred for evaluation and treatment of a chronic mandibular abscess with associated osteomyelitis and fistula. The patient's medical history included multiple fractures necessitating open reduction and internal fixation. Radiological examinations revealed the presence of chronic osteomyelitis in the mandible, marked by an increase in bone density and obliteration of medullary spaces. The treatment approach included surgical debridement, extraction of adjacent teeth, sequestrectomy, and antibiotic therapy. Notably, Enterobacter cloacae bacteria were identified through culture, leading to a tailored antibiotic regimen. Follow-up assessments, including clinical photographs and postoperative CT scans, were conducted to monitor the patient's progress. Histopathological examination confirmed osteomyelitis showing both viable and non-viable bone, surrounded by significant inflammatory infiltrate. This case underscores the complexity of managing osteomyelitis in patients with osteopetrosis and highlights the importance of early diagnosis, particularly before dental extractions, to prevent disease exacerbation. The rarity of this condition emphasises the need for further research and awareness among healthcare providers for optimal patient care.
Collapse
Affiliation(s)
| | | | | | - Mohamed F Shemis
- Oral and Maxillofacial Surgery, Qassim University, Buraydah, SAU
| | | | - Faris Almutairi
- Oral and Maxillofacial Surgery, Qassim University, Buraydah, SAU
| |
Collapse
|
25
|
Shamsian BS, Momtazmanesh N, Saneifard H, Tabatabaei SMTH, Jafari M, Pour ZK, Al-Hussieni KJMR, Jamee M, Kamfar S. Allogenic hematopoietic stem cell transplantation in an Iranian patient with osteopetrosis caused by carbonic anhydrase II deficiency: A case report. Pediatr Transplant 2024; 28:e14689. [PMID: 38655726 DOI: 10.1111/petr.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 04/26/2024]
Abstract
BACKGROUND Osteopetrosis is a group of geneticall heterogeneous disorders resulting from impaired osteoclast function and bone resorption. The identification of specific genetic mutations can yield important prognostic and therapeutic implications. Herein, we present the diagnosis and successful application of hematopoietic stem cell transplantation (HSCT) in a patient with osteopetrosis caused by carbonic anhydrase II deficiency (Intermediate osteopetrosis). CASE PRESENTATION Herein, we describe a 2.5-year-old male patient born to consanguineous parents who presented at 8-month-old with hydrocephaly, brain shunt, and developmental delay. Later at 9 months old, he was found to have eye disorder such as nystagmus, fracture of the elbow, abnormal skeletal survey, normal cell blood count (CBC), and severe hypocellularity in the bone marrow. Further evaluation showed renal tubular acidosis type 2. Whole-exome sequencing revealed a pathogenic homozygous variant in intron 2 of the carbonic anhydrase 2 gene (CA2) gene (c.232 + 1 G>T). The diagnosis of intermediate autosomal recessive osteopetrosis was established, and allogenic HSCT from his mother, a full-matched related donor (MRD), was planned. The conditioning regimen included Busulfan, Fludarabine, and Rabbit anti-thymocyte globulin. Cyclosporine and Mycophenolate Mofetil were used for graft-versus-host-disease prophylaxis. He Engrafted on day +13, and 95% chimerism was achieved. He is currently doing well without immunosuppressive therapy, now 12 months post HSCT, with normal calcium level and improving visual quality and FISH analysis revealed complete donor chimerism. DISCUSSION HSCT could be a promising curative treatment for intermediate osteopetrosis and can provide long-term survival. Ongoing challenges in various aspects of HSCT remain to be addressed.
Collapse
Affiliation(s)
- Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Momtazmanesh
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedyeh Saneifard
- Pediatric Endocrinology and Metabolism Department, Faculty of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Jafari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Khafaf Pour
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Vanderniet JA, Szymczuk V, Högler W, Beck-Nielsen SS, Uday S, Merchant N, Crane JL, Ward LM, Boyce AM, Munns CF. Management of RANKL-mediated Disorders With Denosumab in Children and Adolescents: A Global Expert Guidance Document. J Clin Endocrinol Metab 2024; 109:1371-1382. [PMID: 38041865 PMCID: PMC11031248 DOI: 10.1210/clinem/dgad657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
CONTEXT Denosumab is an effective treatment for many receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated disorders but there are potential safety considerations and limited data to guide its use in children and adolescents. OBJECTIVE This document seeks to summarize the evidence and provide expert opinion on safe and appropriate use of denosumab in pediatric RANKL-mediated disorders. PARTICIPANTS Ten experts in pediatric bone and mineral medicine from 6 countries with experience in the use of denosumab participated in the creation of this document. EVIDENCE Data were sourced from the published literature, primarily consisting of case reports/series and review articles because of the lack of higher level evidence. Expert opinion of the authors was used substantially when no published data were available. CONCLUSION Denosumab is an effective treatment for RANKL-mediated disorders in children and adolescents but is often not curative and, in some cases, is best used in conjunction with surgical or other medical treatments. Careful multidisciplinary planning is required to define the goals of treatment and expert oversight needed to manage the risk of mineral abnormalities. Substantive, collaborative research efforts are needed to determine optimal treatment regimens and minimize risks.
Collapse
Affiliation(s)
- Joel A Vanderniet
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney and Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Vivian Szymczuk
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Signe S Beck-Nielsen
- Centre for Rare Diseases, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus N DK-8200, Denmark
| | - Suma Uday
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TG, UK
| | - Nadia Merchant
- Division of Endocrinology and Diabetes, Children's National Hospital, Washington, DC 20010, USA
| | - Janet L Crane
- Department of Pediatrics and Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Leanne M Ward
- Department of Pediatrics, University of Ottawa and Division of Endocrinology, Children's Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Craig F Munns
- Child Health Research Centre and Mayne Academy of Paediatrics, University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
27
|
Behr G, Kuhn M, Oved JH, Sulis ML. Osteopetrorickets: two contradictory patterns-one unifying diagnosis. Skeletal Radiol 2024; 53:817-820. [PMID: 37672091 PMCID: PMC11376466 DOI: 10.1007/s00256-023-04443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
A 5-month-old infant with bone findings on x-ray presented an apparent contradiction including findings of both diffusely dense bones and rickets in the context of a history and laboratory investigation that suggested leukemia. Next generation gene panel sequencing revealed a TCIRG1 mutation which is consistent with autosomal recessive osteopetrosis. The paradoxical x-ray findings underscore a recently elucidated mechanism for the pathogenesis of a TCIRG mutation. This case highlights the importance of recognizing this radiographic, seeming contradictory, association in the context of a confusing clinical presentation. Failure to recognize this pattern promptly may lead to a delay in diagnosis, thus potentially permanent organ failure.
Collapse
Affiliation(s)
- Gerald Behr
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, 10065, USA.
| | - Marlena Kuhn
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY, 10065, USA
| | - Joseph H Oved
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY, USA
| | - Maria Luisa Sulis
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY, USA
| |
Collapse
|
28
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
29
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Colares Neto GDP, Alves CDAD. Demystifying Skeletal Dysplasias: A Practical Approach for the Pediatric Endocrinologist. Horm Res Paediatr 2024; 98:214-225. [PMID: 38310868 DOI: 10.1159/000536564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Skeletal dysplasias encompass a group of genetic conditions associated with cartilaginous and bone tissue abnormalities, exhibiting a variable phenotype depending on the involved genes and mechanisms. Differential diagnosis is challenging as there are many skeletal dysplasias with similar phenotypes. SUMMARY In this review, we describe the physiology of skeletal development and the classification of skeletal dysplasias, followed by a practical approach to the workup of a child with suspected skeletal dysplasia. Diagnosis requires clinical, laboratory, and radiological evaluation to differentiate potential conditions in the patient. Genotyping has emerged as a confirmatory tool in many cases, enabling personalized treatment through a multidisciplinary approach and assessment of associated comorbidities. KEY MESSAGES As skeletal dysplasias often present with short stature, proportionate or disproportionate, the pediatric endocrinologist plays a crucial role in initial investigative and diagnostic guidance. Identifying the critical clinical manifestations, conducting appropriate initial screening tests, and referring for multidisciplinary follow-up contribute to expeditious diagnosis and family support.
Collapse
|
31
|
Nojiri S, Kayamoto A, Terai C, Osawa Y, Takegami Y. Early Recovery of Physical Function After Total Hip Arthroplasty in a Patient With Osteopetrosis: A Case Report. Cureus 2024; 16:e52293. [PMID: 38357069 PMCID: PMC10865148 DOI: 10.7759/cureus.52293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Osteopetrosis is an uncommon and inherited disorder. Some disease-specific characteristics, such as diffuse osteosclerosis and a high incidence of fractures, may potentially affect postoperative rehabilitation. This report presents a case of successful rehabilitation early after total hip arthroplasty for osteopetrosis. A 56-year-old Japanese man, who was diagnosed with osteopetrosis at the age of 11, underwent total hip arthroplasty in the right hip. Full weight-bearing was allowed on the day after the operation; the postoperative rehabilitation program was proceeded based on a standard program as done after total hip arthroplasty for osteoarthritis. A shoe lift in the left leg was used in supervised walking training to correct the imbalanced alignment due to leg length discrepancy. The patient could walk independently with a cane 17 days after the operation. Three weeks after the operation, the patient demonstrated comfortable and maximal walking speed of 1.11 and 1.34 m/s, respectively, and maximal hip abductor muscle strength of 3.96 kgf・m, both of which were better than those before the operation. There were no adverse events during the postoperative rehabilitation course. These findings suggest the safety and efficacy of standard rehabilitation programs after total hip arthroplasty even in individuals with osteopetrosis. In addition, it may be important to consider the whole-body condition in the rehabilitation of individuals with osteopetrosis.
Collapse
Affiliation(s)
- Shusuke Nojiri
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, JPN
| | - Azusa Kayamoto
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, JPN
| | - Chiaki Terai
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, JPN
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, JPN
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, JPN
| |
Collapse
|
32
|
Bingöl O, Yaşar NE, Özdemir G, Bekmez Ş, Söylemez MS, Dumlupinar E, Ayvali MO, Ata N, Ülgü MM, Birinci Ş, Bingöl İ. Fracture Patterns and Mortality in Osteopetrosis: A 7-year Retrospective Analysis from Türkiye's National Registry. J Pediatr Orthop 2024; 44:e69-e72. [PMID: 37728079 DOI: 10.1097/bpo.0000000000002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The aim of this study is to determine the demographic data, fracture treatment methods, and medical treatments of patients diagnosed with osteopetrosis in the national registry. METHODS Patients with International Classification of Diseases (ICD)-10 code Q78.2 for osteopetrosis between January 1, 2016 and April 11, 2023 were retrospectively reviewed. Data on sex, age at time of diagnosis, fracture history, mortality, and use of medications were evaluated for all patients. In addition, open reduction and internal fixation, closed reduction and internal fixation, closed reduction and casting, and conservative treatment methods were noted. The number of patients requiring deformity surgery was determined. The incidence and prevalence of osteopetrosis were also calculated in this cross-sectional study. RESULTS A total of 476 patients diagnosed with osteopetrosis were identified. The mean age at time of diagnosis of these patients was 5.79 ± 5.43 years. A total of 101 patients died. As the age at diagnosis decreased, the mortality rate of the patients increased with statistical significance ( P <0.001). A total of 192 fractures were seen in 121 osteopetrosis patients in this study. Femur fractures were most common among these patients with osteopetrosis. A history of fracture was statistically significantly less common in patients using a combination of vitamin D + calcium compared with patients not using such medication ( P <0.001). In this 7-year cross-sectional study, the incidence was found to be 1 in 416,000 and the prevalence was 0.00199% in the population under 18 years of age. CONCLUSION Younger age at diagnosis is associated with higher mortality in patients with osteopetrosis. In addition, the combination of vitamin D and calcium were associated with lower fracture incidence. LEVEL OF EVIDENCE Prognostic Level II.
Collapse
Affiliation(s)
- Olgun Bingöl
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Niyazi Erdem Yaşar
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Güzelali Özdemir
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Şenol Bekmez
- Department of Orthopedics and Traumatology, Health Sciences University, Ankara Bilkent City Hospital
| | - Mehmet Salih Söylemez
- Associate Professor, MD, Department of Orthopedics and Traumatology, Umraniye Research and Training Hospital, Istanbul, Türkiye
| | - Ebru Dumlupinar
- Department of Biostatistics, Faculty of Medicine, Ankara University
| | | | - Naim Ata
- Ministry of Health, General Directorate of Health Information Systems
| | - M Mahir Ülgü
- Ministry of Health, General Directorate of Health Information Systems
| | | | - İzzet Bingöl
- Department of Orthopedics and Traumatology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara
| |
Collapse
|
33
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
34
|
Keum BR, Kim HJ, Kim GH, Chang DG. Osteobiologies for Spinal Fusion from Biological Mechanisms to Clinical Applications: A Narrative Review. Int J Mol Sci 2023; 24:17365. [PMID: 38139194 PMCID: PMC10743675 DOI: 10.3390/ijms242417365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Degenerative lumbar spinal disease (DLSD), including spondylolisthesis and spinal stenosis, is increasing due to the aging population. Along with the disease severity, lumbar interbody fusion (LIF) is a mainstay of surgical treatment through decompression, the restoration of intervertebral heights, and the stabilization of motion segments. Currently, pseudoarthrosis after LIF is an important and unsolved issue, which is closely related to osteobiologies. Of the many signaling pathways, the bone morphogenetic protein (BMP) signaling pathway contributes to osteoblast differentiation, which is generally regulated by SMAD proteins as common in the TGF-β superfamily. BMP-2 and -4 are also inter-connected with Wnt/β-catenin, Notch, and FGF signaling pathways. With the potent potential for osteoinduction in BMP-2 and -4, the combination of allogenous bone and recombinant human BMPs (rhBMPs) is currently an ideal fusion material, which has equalized or improved fusion rates compared to traditional materials. However, safety issues in the dosage of BMP remain, so overcoming current limitations will provide significant advancement in spine surgery. In the future, translational research and the application of clinical study will be important to overcome the current limitations of spinal surgery.
Collapse
Affiliation(s)
- Byeong-Rak Keum
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea;
| | - Hong Jin Kim
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul 01757, Republic of Korea;
| | - Gun-Hwa Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea;
| | - Dong-Gune Chang
- Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul 01757, Republic of Korea;
| |
Collapse
|
35
|
Soto Barros J, Braddock D, Carpenter TO. Hypophosphatemic rickets: An unexplained early feature of craniometaphyseal dysplasia. Bone Rep 2023; 19:101707. [PMID: 37654679 PMCID: PMC10466911 DOI: 10.1016/j.bonr.2023.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Craniometaphyseal dysplasia (CMD) is an infrequently occurring skeletal dysplasia often caused by a mutation in ANKH. The most common features are early and progressive hyperostosis of craniofacial bones, which may cause obstruction of cranial nerves, and metaphyseal flaring of long bones. Rarely, rickets has been associated with CMD, occurring early in the course of the disease. We report an infant with CMD who presented with elevated serum alkaline phosphatase activity and low serum phosphorus at age 1 month and radiographic changes of rickets at 3 months of age. Further biochemical investigations revealed a high tubular reabsorption of phosphate and suppressed FGF23 level congruent with a deficit of phosphorus availability. Therapy with phosphorus was started at 4 months of age; calcitriol was subsequently added upon emergence of secondary hyperparathyroidism. A heterozygous pathogenic variant in ANKH c.1124_1126del (p.Ser375del) was identified. At 19 months of age therapy was discontinued in view of the corrected biochemical profile and radiographic improvement of rickets. ©The Authors. All rights reserved.
Collapse
Affiliation(s)
- Julio Soto Barros
- Department of Pediatrics, Faculty of Medicine, University of Concepcion, Chacabuco esquina Janequeo S/N, 4070106 Concepcion, Chile
- Las Higueras Hospital, Alto Horno 777, 4270918 Talcahuano, Chile
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| | - Demetrios Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
36
|
Tüysüz B, Usluer E, Uludağ Alkaya D, Ocak S, Saygılı S, Şeker A, Apak H. The molecular spectrum of Turkish osteopetrosis and related osteoclast disorders with natural history, including a candidate gene, CCDC120. Bone 2023; 177:116897. [PMID: 37704070 DOI: 10.1016/j.bone.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Osteopetrosis and related osteoclastic disorders are a heterogeneous group of inherited diseases characterized by increased bone density. The aim of this study is to investigate the molecular spectrum and natural history of the clinical and radiological features of these disorders. METHODS 28 patients from 20 families were enrolled in the study; 20 of them were followed for a period of 1-16 years. Targeted gene analysis and whole-exome sequencing (WES) were performed. RESULTS Biallelic mutations in CLCN7 and TCIRG1 were detected in three families each, in TNFRSF11A and CA2 in two families each, and in SNX10 in one family in the osteopetrosis group. A heterozygous variant in CLCN7 was also found in one family. In the osteopetrosis and related osteoclast disorders group, three different variants in CTSK were detected in five families with pycnodysostosis and a SLC29A3 variant causing dysosteosclerosis was detected in one family. In autosomal recessive osteopetrosis (ARO), a malignant infantile form, four patients died during follow-up, two of whom had undergone hematopoietic stem cell transplantation. Interestingly, all patients had osteopetrorickets of the long bone metaphyses in infancy, typical skeletal features such as Erlenmeyer flask deformity and bone-in-bone appearance that developed toward the end of early childhood. Two siblings with a biallelic missense mutation in CLCN7 and one patient with the compound heterozygous novel splicing variants in intron 15 and 17 in TCIRG1 corresponded to the intermediate form of ARO (IARO); there was intrafamilial clinical heterogeneity in the family with the CLCN7 variant. One of two patients with IARO and distal tubular acidosis was found to have a large deletion in CA2. In one family, two siblings with a heterozygous mutation in CLCN7 were affected, whereas the father with the same mutation was asymptomatic. In WES analysis of three brothers from a family without mutations in osteopetrosis genes, a hemizygous missense variant in CCDC120, a novel gene, was found to be associated with high bone mass. CONCLUSION This study extended the natural history of the different types of osteopetrosis and also introduced a candidate gene, CCDC120, potentially causing osteopetrosis.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey.
| | - Esra Usluer
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Süheyla Ocak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| | - Seha Saygılı
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Nephrology, Istanbul, Turkey
| | - Ali Şeker
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| | - Hilmi Apak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| |
Collapse
|
37
|
Kurniawan A, Amin BF, Canintika AF. Surgical outcome of distal tibia Salter Harris II fracture in osteopetrosis patient. Int J Surg Case Rep 2023; 113:109090. [PMID: 38007865 PMCID: PMC10746852 DOI: 10.1016/j.ijscr.2023.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
INTRODUCTION Osteopetrosis is a rare genetic disorder characterized by increased bone density. This condition is clinically manifested with a brittle intramedullary structure and reduced bone toughness, increasing the risk of fracture. A limited case has been reported on the management of physeal fracture in patients with osteopetrosis. The objective of this study is to report a rare osteopetrosis patient who sustains Salter-Harris II at the distal tibia with its long-term follow-up along with its literature review. PRESENTATION OF CASE We report a case of a four-year-old boy with an established a diagnosis of osteopetrosis brought by the parents to the emergency department after sustaining a fall while playing in the playground. Radiological examination revealed a Salter-Harris type II distal tibial fracture. The patient underwent closed reduction and fixation using the cannulated screw. 18-month postoperative patients have an uneventful healing. DISCUSSION Osteopetrosis is caused by impaired osteoclast function and differentiation, leading to impaired in remodelling. Salter-Harris type II distal tibial fracture can be treated by either closed reduction or open reduction. A closed reduction was performed successfully with cannulated screw in his patient. CONCLUSION There is a delayed union of fracture in osteopetrosis patient. This will increase the risk of displacement which will eventually resulted in growth disturbance. Delayed weight bearing and stable fixation is highly recommended.
Collapse
Affiliation(s)
- Aryadi Kurniawan
- Department of Orthopaedics & Traumatology, Ciptomangunkusumo General Hospital and Faculty of Medicine, Universitas Indonesia, Jalan Diponegoro No. 71, Salemba Jakarta Pusat, Jakarta 10430, Indonesia.
| | - Bany Faris Amin
- Faculty of Medicine, Universitas Indonesia, Jalan Diponegoro No. 71, Salemba Jakarta Pusat, Jakarta 10430, Indonesia
| | - Anissa Feby Canintika
- Department of Orthopaedics & Traumatology, Ciptomangunkusumo General Hospital and Faculty of Medicine, Universitas Indonesia, Jalan Diponegoro No. 71, Salemba Jakarta Pusat, Jakarta 10430, Indonesia
| |
Collapse
|
38
|
Pieridou C, Sabir A, Lancashire J, Liang Y, McMillan K, Shaw N, Uday S. Case Report: Osteosclerotic metaphyseal dysplasia with optic nerve involvement and progressive osteonecrosis of the jaw due to a novel LRRK1 mutation. Front Endocrinol (Lausanne) 2023; 14:1258340. [PMID: 37920250 PMCID: PMC10619726 DOI: 10.3389/fendo.2023.1258340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Background Osteosclerotic metaphyseal dysplasia (OSMD, OMIM 615198) is an extremely rare autosomal recessive osteopetrosis disorder resulting in a distinctive pattern of osteosclerosis of the metaphyseal margins of long tubular bones. To date, only thirteen cases have been reported (eight molecularly confirmed). Five homozygous sequence variants in the leucine-rich repeat kinase 1 (LRRK1) gene have been identified to cause OSMD. We present two male siblings with OSMD with a novel LRRK1 variant. Cases The index case, now aged 6 years, was referred aged 9 months when diffuse sclerosis of the ribs and vertebral bodies, suggestive of osteopetrosis, was incidentally identified on a chest radiograph for suspected lower respiratory tract infection. Parents were consanguineous and of Pakistani origin. Further evaluation revealed developmental delay, nystagmus with bilateral optic nerve hypoplasia and severe visual impairment. Skeletal survey confirmed typical changes of OSMD, with widespread diffuse sclerosis and Erlenmeyer flask deformity of long bones. His older sibling, now aged 12 years, was 7 years at the time of referral and had similar clinical course and skeletal findings. Additionally, he had a chronic progressive osteonecrosis of the left mandible that required debridement, debulking and long-term antibiotics. Skeletal survey revealed findings similar to his sibling. Neither sibling had significant skeletal fractures or seizures. Unlike most previous reports suggesting sparing of the skull and lack of visual impairment, our patients had evidence of osteosclerosis of the cranium. Genetic screening for the common autosomal recessive and dominant pathogenic variants of osteopetrosis was negative. Whole Exome Sequencing (WES) followed by Sanger sequencing, identified a novel homozygous LRRK1 c.2506C>T p. (Gln836Ter) nonsense variant predicted to result in premature truncation of LRRK1 transcript. Conclusion Our cases confirm the autosomal recessive inheritance and expand the spectrum of genotype and phenotype of OSMD reported in the literature. Increasing reports of LRRK1 variants in this phenotype raise the question of whether LRRK1 should be included in targeted osteopetrosis panels. Bone histology in previous cases has shown this to be an osteoclast rich form of osteopetrosis raising the possibility that haematopoietic stem cell transplantation may be an appropriate treatment modality.
Collapse
Affiliation(s)
- Chariklia Pieridou
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Ataf Sabir
- Department of Clinical Genetics, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Jonathan Lancashire
- Department of Hematology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Yifan Liang
- Department of Paediatric Palliative Medicine, Birmingham Women’s and Children’s and Community Healthcare Trusts, Birmingham, United Kingdom
| | - Kevin McMillan
- Department of Oral and Maxillofacial Surgery, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Nick Shaw
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Suma Uday
- Department of Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Ogawa S, Ogiwara H. Cranial distraction osteogenesis for craniosynostosis associated with osteopetrosis: A case report. Surg Neurol Int 2023; 14:368. [PMID: 37941624 PMCID: PMC10629297 DOI: 10.25259/sni_623_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Background Osteopetrosis is a rare disease characterized by systemic osteosclerosis and hematopoietic disturbances. Childhood-onset cases are often accompanied by hydrocephalus and craniosynostosis; however, there have been no established treatments. We performed cranial distraction in a child with osteopetrosis who presented with craniosynostosis and intracranial hypertension. Case Description The patient was a 4-year-1-month-old boy. His pregnancy and birth were normal, but at 4 months of age, he was diagnosed with osteopetrosis based on generalized osteosclerosis and family history. A computed tomography scan of the head revealed early sagittal suture fusion and ventricular enlargement. A ventriculoperitoneal shunt was placed for intracranial hypertension; however, slit ventricle syndrome ensued and pansynostosis developed. To improve uncontrolled high intracranial pressure, cranial distraction was performed for intracranial volume expansion. No perioperative hemorrhagic or infectious complications were observed. After the start of distraction, the intracranial pressure gradually decreased, and clinical findings such as disturbance of consciousness and bradycardia disappeared. Bone regeneration in the defect site was good, and the extension device was removed 6 months after the operation. Conclusion For osteopetrosis with poorly controlled intracranial hypertension, cranial distraction was considered to be an effective treatment.
Collapse
Affiliation(s)
- Shotaro Ogawa
- Department of Neurosurgery, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
40
|
Willimann R, Chougar C, Wolfe LC, Blanc L, Lipton JM. Defects in Bone and Bone Marrow in Inherited Anemias: the Chicken or the Egg. Curr Osteoporos Rep 2023; 21:527-539. [PMID: 37436584 DOI: 10.1007/s11914-023-00809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Recently, there has been an increasing number of studies on the crosstalk between the bone and the bone marrow and how it pertains to anemia. Here, we discuss four heritable clinical syndromes contrasting those in which anemia affects bone growth and development, with those in which abnormal bone development results in anemia, highlighting the multifaceted interactions between skeletal development and hematopoiesis. RECENT FINDINGS Anemia results from both inherited and acquired disorders caused by either impaired production or premature destruction of red blood cells or blood loss. The downstream effects on bone development and growth in patients with anemia often constitute an important part of their clinical condition. We will discuss the interdependence of abnormal bone development and growth and hematopoietic abnormalities, with a focus on the erythroid lineage. To illustrate those points, we selected four heritable anemias that arise from either defective hematopoiesis impacting the skeletal system (the hemoglobinopathies β-thalassemia and sickle cell disease) versus defective osteogenesis resulting in impaired hematopoiesis (osteopetrosis). Finally, we will discuss recent findings in Diamond Blackfan anemia, an intrinsic disorder of both the erythron and the bone. By focusing on four representative hereditary hematopoietic disorders, this complex relationship between bone and blood should lead to new areas of research in the field.
Collapse
Affiliation(s)
- Rachel Willimann
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christina Chougar
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Division of Pediatric Radiology, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lawrence C Wolfe
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lionel Blanc
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology Oncology and Cellular Therapy, Steven and Alexandra Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
41
|
Maurizi A, Patrizii P, Teti A, Sutera FM, Baran-Rachwalska P, Burns C, Nandi U, Welsh M, Torabi-Pour N, Dehsorkhi A, Saffie-Siebert S. Novel hybrid silicon-lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:925-937. [PMID: 37680985 PMCID: PMC10480457 DOI: 10.1016/j.omtn.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Rare skeletal diseases are still in need of proper clinically available transfection agents as the major challenge for first-in-human translation relates to intrinsic difficulty in targeting bone without exacerbating any inherent toxicity due to used vector. SiSaf's silicon stabilized hybrid lipid nanoparticles (sshLNPs) constitute next-generation non-viral vectors able to retain the integrity and stability of constructs and to accommodate considerable payloads of biologicals, without requiring cold-chain storage. sshLNP was complexed with a small interfering RNA (siRNA) specifically designed against the human CLCN7G215R mRNA. When tested via single intraperitoneal injection in pre-puberal autosomal dominant osteopetrosis type 2 (ADO2) mice, carrying a heterozygous mutation of the Clcn7 gene (Clcn7G213R), sshLNP, this significantly downregulated the Clcn7G213R related mRNA levels in femurs at 48 h. Confirmatory results were observed at 2 weeks and 4 weeks after treatments (3 intraperitoneal injections/week), with rescue of the bone phenotype and demonstrating safety. The pre-clinical results will enable advanced preclinical development of RNA-based therapy for orphan and genetic skeletal disorders by safely and effectively delivering biologicals of interest to cure human systemic conditions.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Piergiorgio Patrizii
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alkhayal Z, Shinwari Z, Gaafar A, Alaiya A. Fluconazole-Induced Protein Changes in Osteogenic and Immune Metabolic Pathways of Dental Pulp Mesenchymal Stem Cells of Osteopetrosis Patients. Int J Mol Sci 2023; 24:13841. [PMID: 37762144 PMCID: PMC10531073 DOI: 10.3390/ijms241813841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Osteopetrosis is a rare inherited disease caused by osteoclast failure, resulting in increasing bone density in humans. Patients with osteopetrosis possess several dental and cranial complications. Since carbonic anhydrase II (CA-II) deficiency is a major cause of osteopetrosis, CA-II activators might be an attractive potential treatment option for osteopetrosis patients. We conducted comprehensive label-free quantitative proteomics analysis on Fluconazole-treated Dental Pulp Mesenchymal Stem/Stromal Cells from CA-II-Deficient Osteopetrosis Patients. We identified 251 distinct differentially expressed proteins between healthy subjects, as well as untreated and azole-treated derived cells from osteopetrosis patients. Twenty-six (26) of these proteins were closely associated with osteogenesis and osteopetrosis disease. Among them are ATP1A2, CPOX, Ap2 alpha, RAP1B and some members of the RAB protein family. Others include AnnexinA1, 5, PYGL, OSTF1 and PGAM4, all interacting with OSTM1 in the catalytic reactions of HCO3 and the Cl- channel via CAII regulation. In addition, the pro-inflammatory/osteoclast regulatory proteins RACK1, MTSE, STING1, S100A13, ECE1 and TRIM10 are involved. We have identified proteins involved in osteogenic and immune metabolic pathways, including ERK 1/2, phosphatase and ATPase, which opens the door for some CA activators to be used as an alternative drug therapy for osteopetrosis patients. These findings propose that fluconazole might be a potential treatment agent for CAII- deficient OP patients. Altogether, our findings provide a basis for further work to elucidate the clinical utility of azole, a CA activator, as a therapeutic for OP.
Collapse
Affiliation(s)
- Zikra Alkhayal
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (Z.S.); (A.G.)
- Department of Dentistry, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Zakia Shinwari
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (Z.S.); (A.G.)
| | - Ameera Gaafar
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (Z.S.); (A.G.)
| | - Ayodele Alaiya
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (Z.S.); (A.G.)
| |
Collapse
|
43
|
Diamond TH, Bryant C, Quinn R, Mohanty ST, Bonar F, Baldock PA, McDonald MM. Increased Bone Formation and Accelerated Bone Mass Accrual in a Man Presenting with Diffuse Osteosclerosis/High Bone Mass Phenotype and Adenocarcinoma of Unknown Primary. JBMR Plus 2023; 7:e10734. [PMID: 37614304 PMCID: PMC10443075 DOI: 10.1002/jbm4.10734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
A 71-year-old man was referred for evaluation of incidental generalized osteosclerosis. He was found to have a high bone mass (HBM) with an elevated lumbar spine bone mineral density (BMD) Z-score of +5.3. Over an 18-month period, his lumbar spine BMD measured by dual energy X-ray absorptiometry (DXA) had increased by +64% from 1.09 to 1.79 g/cm2 and femoral neck by +21% from 0.83 to 1.01 g/cm2. Biochemical markers of bone turnover were markedly increased (serum propeptide of type 1 collagen and urine telopeptides greater than 10-times normal). The high bone formation and increased skeletal calcium acquisition resulted in profound hypocalcemia (low serum calcium 1.88 mmol/L) and hypocalciuria (low urinary calcium <0.2 mmol/day). Positron emission tomography (PET) with 2-deoxy-2-[fluorine-18] fluoro-D-glucose (FDG) confirmed diffuse osteosclerosis without focal areas of abnormal FDG uptake in the skeleton or elsewhere to suggest either an underlying primary malignancy or metastatic disease. Bone biopsy showed markedly sclerotic woven and lamellar bone. The marrow space was devoid of typical bone cells and adipocytes and instead was filled by fibromyxoid stroma, infiltrated by small clusters of tumor cells. Bone histomorphometry and micro-computed tomography demonstrated an elevated trabecular bone volume and trabecular plate thickness. The bone disorder in this case is unique and raises the possibility of a new yet undefined novel anabolic paracrine factor (or factors) secreted by an adenocarcinoma of unknown primary that resulted in dramatic increases in BMD, HBM, and radiological osteosclerosis. The differential diagnosis and potential mechanisms responsible for the HBM are discussed. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Terrence H. Diamond
- Department of EndocrinologySt George Hospital Campus, University of New South WalesSydneyAustralia
| | - Carl Bryant
- Department of RadiologySt George Private HospitalSydneyAustralia
| | - Richard Quinn
- Department of Nuclear MedicineSt George Private HospitalSydneyAustralia
| | - Sindhu T. Mohanty
- Skeletal Diseases ProgramThe Garvan Institute of Medical ResearchDarlinghurstAustralia
| | - Fiona Bonar
- Department of Anatomical PathologyDouglass Hanly Moir Pathology and Royal Prince Alfred HospitalSydneyAustralia
| | - Paul A. Baldock
- Skeletal Diseases ProgramThe Garvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent's Clinical CampusSchool of Clinical Medicine, University of New South WalesKensingtonAustralia
| | - Michelle M. McDonald
- Skeletal Diseases ProgramThe Garvan Institute of Medical ResearchDarlinghurstAustralia
- St Vincent's Clinical CampusSchool of Clinical Medicine, University of New South WalesKensingtonAustralia
- School of Medicine Science, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| |
Collapse
|
44
|
Doulgeraki A, Bani-Odeh L, Tramma D, Giataganas G, Kirvassilis F, Kollios K, Fotoulaki M. Severe hypophosphataemia can be an early sign of osteopetrorickets: a case report. J Pediatr Endocrinol Metab 2023:jpem-2023-0001. [PMID: 37141118 DOI: 10.1515/jpem-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Osteopetrorickets is a rare complication of autosomal recessive ("malignant") osteopetrosis. Its prompt diagnosis is essential, because early suspicion of infantile osteopetrosis enables treatment with human stem cell transplantation, depending on the gene involved. It is important to identify not only the characteristic radiological changes of rickets, but also the coexistence of increased bone density, so as not to miss this very rare entity. Herein, a brief case report is presented.
Collapse
Affiliation(s)
- Artemis Doulgeraki
- Department of Bone and Mineral Metabolism, Institute of Child Health, Athens, Greece
| | - Laura Bani-Odeh
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Tramma
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Giataganas
- Department of Radiology, Papageorgiou General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Fotis Kirvassilis
- 3rd Department of Paediatrics, Ippokratio General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kollios
- 3rd Department of Paediatrics, Ippokratio General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Fotoulaki
- 4th Department of Paediatrics, Papageorgiou General Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
45
|
Kuang H, Ma J, Chi X, Fu Q, Zhu Q, Cao W, Zhang P, Xie X. Integrated Osteoinductive Factors─Exosome@MicroRNA-26a Hydrogel Enhances Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22805-22816. [PMID: 37145861 DOI: 10.1021/acsami.2c21933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are a new therapeutic tool that can target multiple genes by inducing translation repression and target mRNA degradation. Although miRNAs have gained significant attention in oncology and in work on genetic disorders and autoimmune diseases, their application in tissue regeneration remains hindered by several challenges, such as miRNA degradation. Here, we reported Exosome@MicroRNA-26a (Exo@miR-26a), an osteoinductive factor that can be substituted for routinely used growth factors, which was constructed using bone marrow stem cell (BMSC)-derived exosomes and microRNA-26a (miR-26a). Exo@miR-26a-integrated hydrogels significantly promoted bone regeneration when implanted into defect sites; as the exosome stimulated angiogenesis, miR-26a promoted osteogenesis while the hydrogel enabled a site-directed release. Moreover, BMSC-derived exosomes further facilitated healthy bone regeneration by repressing osteoclast differentiation-related genes rather than damaging osteoclasts. Taken together, our findings demonstrate the promising potential of Exo@miR-26a for bone regeneration and provide a new strategy for the application of miRNA therapy in tissue engineering.
Collapse
Affiliation(s)
- Haizhu Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Xinyu Chi
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qichen Fu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qianzhe Zhu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xin Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Polgreen LE, Imel EA, Econs MJ. Autosomal dominant osteopetrosis. Bone 2023; 170:116723. [PMID: 36863500 PMCID: PMC10042314 DOI: 10.1016/j.bone.2023.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Autosomal dominant osteopetrosis (ADO) is the most common form of osteopetrosis. ADO is characterized by generalized osteosclerosis along with characteristic radiographic features such as a "bone-in-bone" appearance of long bones and sclerosis of the superior and inferior vertebral body endplates. Generalized osteosclerosis in ADO typically results from abnormalities in osteoclast function, due most commonly to mutations in the chloride channel 7 (CLCN7) gene. A variety of debilitating complications can occur over time due to bone fragility, impingement of cranial nerves, encroachment of osteopetrotic bone in the marrow space, and poor bone vascularity. There is a wide spectrum of disease phenotype, even within the same family. Currently, there is no disease specific treatment for ADO, so clinical care focuses on monitoring for disease complications and symptomatic treatment. This review describes the history of ADO, the wide disease phenotype, and potential new therapies.
Collapse
Affiliation(s)
- Lynda E Polgreen
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | - Erik A Imel
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Departments of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Econs
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
47
|
Rama TA, Henriques AF, Matito A, Jara-Acevedo M, Caldas C, Mayado A, Muñoz-González JI, Moreira A, Cavaleiro-Rufo J, García-Montero A, Órfão A, Sanchez-Muñoz L, Álvarez-Twose I. Bone and Cytokine Markers Associated With Bone Disease in Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1536-1547. [PMID: 36801493 DOI: 10.1016/j.jaip.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Mastocytosis encompasses a heterogeneous group of diseases characterized by tissue accumulation of clonal mast cells, which frequently includes bone involvement. Several cytokines have been shown to play a role in the pathogenesis of bone mass loss in systemic mastocytosis (SM), but their role in SM-associated osteosclerosis remains unknown. OBJECTIVE To investigate the potential association between cytokine and bone remodeling markers with bone disease in SM, aiming at identifying biomarker profiles associated with bone loss and/or osteosclerosis. METHODS A total of 120 adult patients with SM, divided into 3 age and sex-matched groups according to their bone status were studied: (1) healthy bone (n = 46), (2) significant bone loss (n = 47), and (3) diffuse bone sclerosis (n = 27). Plasma levels of cytokines and serum baseline tryptase and bone turnover marker levels were measured at diagnosis. RESULTS Bone loss was associated with significantly higher levels of serum baseline tryptase (P = .01), IFN-γ (P = .05), IL-1β (P = .05), and IL-6 (P = .05) versus those found in patients with healthy bone. In contrast, patients with diffuse bone sclerosis showed significantly higher levels of serum baseline tryptase (P < .001), C-terminal telopeptide (P < .001), amino-terminal propeptide of type I procollagen (P < .001), osteocalcin (P < .001), bone alkaline phosphatase (P < .001), osteopontin (P < .01), and the C-C Motif Chemokine Ligand 5/RANTES chemokine (P = .01), together with lower IFN-γ (P = .03) and RANK-ligand (P = .04) plasma levels versus healthy bone cases. CONCLUSIONS SM with bone mass loss is associated with a proinflammatory cytokine profile in plasma, whereas diffuse bone sclerosis shows increased serum/plasma levels of biomarkers related to bone formation and turnover, in association with an immunosuppressive cytokine secretion profile.
Collapse
Affiliation(s)
- Tiago Azenha Rama
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Ana Filipa Henriques
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Almudena Matito
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Maria Jara-Acevedo
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; DNA Sequencing Service (NUCLEUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Caldas
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; DNA Sequencing Service (NUCLEUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Mayado
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Javier I Muñoz-González
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - André Moreira
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - João Cavaleiro-Rufo
- EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Andrés García-Montero
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Alberto Órfão
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Laura Sanchez-Muñoz
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of Osteoclasts: Osteoclast Precursor Cells. J Bone Metab 2023; 30:127-140. [PMID: 37449346 PMCID: PMC10346003 DOI: 10.11005/jbm.2023.30.2.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.
Collapse
Affiliation(s)
- Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba,
Japan
| | - Andrew J. Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Richard Bockman
- Division of Endocrinology and Metabolism, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY,
USA
| |
Collapse
|
49
|
El-Kamah GY, Mehrez MI, Taher MB, El-Bassyouni HT, Gaber KR, Amr KS. Outlining the Clinical Profile of TCIRG1 14 Variants including 5 Novels with Overview of ARO Phenotype and Ethnic Impact in 20 Egyptian Families. Genes (Basel) 2023; 14:genes14040900. [PMID: 37107657 PMCID: PMC10137576 DOI: 10.3390/genes14040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
TCIRG1 gene mutations underlie osteopetrosis, a rare genetic disorder impacting osteoclast function with consequent brittle bones prone to fracture, in spite of being characterized by increased bone density. The disorder is known to exhibit marked genetic heterogeneity, has no treatment, and is lethal in most instances. There are reports of ethnic variations affecting bone mineral density and variants' expression as diverse phenotypes even within individuals descending from the same pedigree. We herein focus on one of osteopetrosis's three types: the autosomal recessive malignant form (MIM 259700) (ARO) that is almost always associated with severe clinical symptoms. We reviewed the results of about 1800 Egyptian exomes and we did not detect similar variants within our Egyptian dataset and secondary neurological deficit. We studied twenty Egyptian families: sixteen ARO patients, ten carrier parents with at least one ARO affected sib, and two fetuses. They were all subjected to thorough evaluation and TCIRG1 gene sequencing. Our results of twenty-eight individuals descending from twenty Egyptian pedigrees with at least one ARO patient, expand the phenotype as well as genotype spectrum of recessive mutations in the TCIRG1 gene by five novel pathogenic variants. Identifying TCIRG1 gene mutations in Egyptian patients with ARO allowed the provision of proper genetic counseling, carrier detection, and prenatal diagnosis starting with two families included herein. It also could pave the way to modern genomic therapeutic approaches.
Collapse
Affiliation(s)
- Ghada Y El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mennat I Mehrez
- Oro-Dental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mohamed B Taher
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khaled R Gaber
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
50
|
Case of osteopetrosis with multiple impacted primary and permanent teeth diagnosed at eight years old. PEDIATRIC DENTAL JOURNAL 2023. [DOI: 10.1016/j.pdj.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|