1
|
Li Y, Yu H, Lopes-Virella MF, Huang Y. GPR40/GPR120 Agonist GW9508 Improves Metabolic Syndrome-Exacerbated Periodontitis in Mice. Int J Mol Sci 2024; 25:9622. [PMID: 39273569 PMCID: PMC11394899 DOI: 10.3390/ijms25179622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
G protein-coupled receptor (GPR)40 and GPR120 are receptors for medium- and long-chain free fatty acids. It has been well documented that GPR40 and GPR120 activation improves metabolic syndrome (MetS) and exerts anti-inflammatory effects. Since chronic periodontitis is a common oral inflammatory disease initiated by periodontal pathogens and exacerbated by MetS, we determined if GPR40 and GPR120 activation with agonists improves MetS-associated periodontitis in animal models in this study. We induced MetS and periodontitis by high-fat diet feeding and periodontal injection of lipopolysaccharide, respectively, and treated mice with GW9508, a synthetic GPR40 and GPR120 dual agonist. We determined alveolar bone loss, osteoclast formation, and periodontal inflammation using micro-computed tomography, osteoclast staining, and histology. To understand the underlying mechanisms, we further performed studies to determine the effects of GW9508 on osteoclastogenesis and proinflammatory gene expression in vitro. Results showed that GW9508 improved metabolic parameters, including glucose, lipids, and insulin resistance. Results also showed that GW9508 improves periodontitis by reducing alveolar bone loss, osteoclastogenesis, and periodontal inflammation. Finally, in vitro studies showed that GW9508 inhibited osteoclast formation and proinflammatory gene secretion from macrophages. In conclusion, this study demonstrated for the first time that GPR40/GPR120 agonist GW9508 reduced alveolar bone loss and alleviated periodontal inflammation in mice with MetS-exacerbated periodontitis, suggesting that activating GPR40/GPR120 with agonist GW9508 is a potential anti-inflammatory approach for the treatment of MetS-associated periodontitis.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Biomedical & Community Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Rohmann N, Stürmer P, Geisler C, Schlicht K, Knappe C, Hartmann K, Türk K, Hollstein T, Beckmann A, Seoudy AK, Becker U, Wietzke-Braun P, Settgast U, Tran F, Rosenstiel P, Beckmann JH, von Schönfels W, Seifert S, Heyckendorf J, Franke A, Schreiber S, Schulte DM, Laudes M. Effects of lifestyle and associated diseases on serum CC16 suggest complex interactions among metabolism, heart and lungs. J Adv Res 2024; 59:161-171. [PMID: 37330047 PMCID: PMC11081936 DOI: 10.1016/j.jare.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION Clara cell 16-kDa protein (CC16) is an anti-inflammatory, immunomodulatory secreted pulmonary protein with reduced serum concentrations in obesity according to recent data. OBJECTIVE Studies focused solely on bodyweight, which does not properly reflect obesity-associated implications of the metabolic and reno-cardio-vascular system. The purpose of this study was therefore to examine CC16 in a broad physiological context considering cardio-metabolic comorbidities of primary pulmonary diseases. METHODS CC16 was quantified in serum samples in a subset of the FoCus (N = 497) and two weight loss intervention cohorts (N = 99) using ELISA. Correlation and general linear regression analyses were applied to assess CC16 effects of lifestyle, gut microbiota, disease occurrence and treatment strategies. Importance and intercorrelation of determinants were validated using random forest algorithms. RESULTS CC16 A38G gene mutation, smoking and low microbial diversity significantly decreased CC16. Pre-menopausal female displayed lower CC16 compared to post-menopausal female and male participants. Biological age and uricosuric medications increased CC16 (all p < 0.01). Adjusted linear regression revealed CC16 lowering effects of high waist-to-hip ratio (est. -11.19 [-19.4; -2.97], p = 7.99 × 10-3), severe obesity (est. -2.58 [-4.33; -0.82], p = 4.14 × 10-3) and hypertension (est. -4.31 [-7.5; -1.12], p = 8.48 × 10-3). ACEi/ARB medication (p = 2.5 × 10-2) and chronic heart failure (est. 4.69 [1.37; 8.02], p = 5.91 × 10-3) presented increasing effects on CC16. Mild associations of CC16 were observed with blood pressure, HOMA-IR and NT-proBNP, but not manifest hyperlipidemia, type 2 diabetes, diet quality and dietary weight loss intervention. CONCLUSION A role of metabolic and cardiovascular abnormalities in the regulation of CC16 and its modifiability by behavioral and pharmacological interventions is indicated. Alterations by ACEi/ARB and uricosurics could point towards regulatory axes comprising the renin-angiotensin-aldosterone system and purine metabolism. Findings altogether strengthen the importance of interactions among metabolism, heart and lungs.
Collapse
Affiliation(s)
- Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Paula Stürmer
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Carina Knappe
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kathrin Türk
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alexia Beckmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anna K Seoudy
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ulla Becker
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Perdita Wietzke-Braun
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ute Settgast
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany; Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan H Beckmann
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Witigo von Schönfels
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Seifert
- Institute of Food Chemistry, University of Hamburg, Hamburg School of Food Science, Hamburg, Germany
| | - Jan Heyckendorf
- Division of Pneumology, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Dominik M Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany; Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany; Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
4
|
Yadav R, Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int J Biol Macromol 2024; 261:129634. [PMID: 38272413 DOI: 10.1016/j.ijbiomac.2024.129634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major worldwide chronic disease and can lead to serious diabetic complications. Despite the availability of many anti-diabetic agents in the market, they are unable to meet the long-term treatment goals. Also, they cause many side effects which justify the need for novel class of anti-diabetic drugs with newer mechanism of action. Wnt signaling is one of such novel target pathways which can be explored for metabolic disorders. Many key components of the Wnt signaling are involved in the regulation of glucose homeostasis. Polymorphism in the Transcription factor 7-like 2 (TCF7L2) gene, and mutations in the LRP5 (LDL Receptor Related Protein 5) gene lead to disturbed glucose metabolism and obesity. Despite of several years of research in this field, there is no concrete proof of concept available on whether Wnt activation or Wnt inhibition is the beneficial approach for the treatment of T2DM. Here, we have summarized the conclusions of relevant published research studies to give structured insights into possibilities to explore Wnt modulation as a novel target pathway for the treatment of T2DM. The review also highlights the present challenges and future opportunities towards the development of anti-diabetic small molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
5
|
Liu XK, Qiu QQ, Yu TP, Wang LY, Shi L, Wang B, Sang YQ, Geng HF, Zhang Y, Zhang X, Li L, Li Q, Liang J, Xu W. Effect of metformin on Wnt5a in individuals new-onset type 2 diabetes with different body mass indexes: The evidences from the real word research. J Diabetes Metab Disord 2023; 22:1561-1570. [PMID: 37975126 PMCID: PMC10638164 DOI: 10.1007/s40200-023-01286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 11/19/2023]
Abstract
Aim Metformin is a first-line therapy for the treatment of Type 2 diabetes mellitus (T2DM), due to its inhibition of hepatic gluconeogenesis. Wingless family member 5a (Wnt5a) was significantly decreased in newly diagnosed T2DM patients and regulates secretion of β cells through the Wnt/calcium signalling cascades. This study aims to investigate how metformin works on glucose-lowering effects in diabetes and whether the mechanism underlying it is associated with Wnt5a. Methods A total of 144 participants were enrolled in this study. Serum Wnt5a levels were measured by an enzyme-linked immunosorbent assay (ELISA). The demographic and clinical parameters were evaluated in normal weight, overweight and obese new-onset T2DM subjects grouped. Results Wnt5a was increased in overweight T2DM patients and obese T2DM patients compared with the levels in normal Body Mass Index (BMI) T2DM. The level of Wnt5a gradually increased after 3 and 6 months of metformin treatment. Among the three groups, the most significant improvement in blood glucose was observed in the obese type 2 diabetic patients, and the improvement showed a significant correlation with Wnt5a protein after patients received metformin treatment. Pearson correlation showed that there was a significant relationship between △2hOGTT and Wnt5a. After further adjusting for sex and age, a significant association existed only between Wnt5a and 2-h oral glucose tolerance test(2hOGTT), and this association was negative. Conclusion Our results indicate that Wnt5a may play a role in the mechanism by which metformin improves blood glucose in patients with type 2 diabetes.
Collapse
Affiliation(s)
- X. K. Liu
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Q. Q. Qiu
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - T. P. Yu
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - L. Y. Wang
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Li Shi
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Ben Wang
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Y. Q. Sang
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - H. F. Geng
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Yan Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xia Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Lin Li
- Bengbu Medical College, Bengbu, Anhui China
| | - Qing Li
- Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Jun Liang
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| | - Wei Xu
- Department of Endocrinology, Affiliated Hospital of Medical School of Southeast University, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
6
|
Ma J, Wang J, Ma C, Cai Q, Wu S, Hu W, Yang J, Xue J, Chen J, Liu X. Wnt5a/Ca 2+ signaling regulates silica-induced ferroptosis in mouse macrophages by altering ER stress-mediated redox balance. Toxicology 2023; 490:153514. [PMID: 37075931 DOI: 10.1016/j.tox.2023.153514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Silicosis is a chronic pulmonary disease characterized by diffuse fibrosis of lung caused by the deposition of silica dust (SiO2). The inhaled silica-induced oxidative stress, ROS production and macrophage ferroptosis are key drivers of the pathological process of silicosis. However, mechanisms that involved in the silica-induced macrophage ferroptosis and its contributions to pathogenesis of silicosis remain elusive. In the present study, we showed that silica induced murine macrophage ferroptosis, accompanied by elevation of inflammatory responses, Wnt5a/Ca2+ signaling activation, and concurrent increase of endoplasmic reticulum (ER) stress and mitochondrial redox imbalance in vitro and vivo. Mechanistic study further demonstrated that Wnt5a/Ca2+ signaling played a key role in silica-induced macrophage ferroptosis by modulating ER stress and mitochondrial redox balance. The presence of Wnt5a/Ca2+ signaling ligand Wnt5a protein increased the silica-induced macrophage ferroptosis by activating ER-mediated immunoglobulin heavy chain binding protein (Bip)-C/EBP homology protein (Chop) signaling cascade, reducing the expression of negative regulators of ferroptosis, glutathione peroxidase 4 (Gpx4) and solute carrier family 7 member 11 (Slc7a11), subsequentially increasing lipid peroxidation. The pharmacologic inhibition of Wnt5a signaling or block of calcium flow exhibited an opposite effect to Wnt5a, resulted in the reduction of ferroptosis and the expression of Bip-Chop signaling molecules. These findings were further corroborated by the addition of ferroptosis activator Erastin or inhibitor ferrostatin-1. These results provide a mechanism by which silica activates Wnt5a/Ca2+ signaling and ER stress, sequentially leads to redox imbalance and ferroptosis in mouse macrophage cells.
Collapse
Affiliation(s)
- Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Jiaqi Wang
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Juan Chen
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| |
Collapse
|
7
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
8
|
Sharma A, Junge O, Szymczak S, Rühlemann MC, Enderle J, Schreiber S, Laudes M, Franke A, Lieb W, Krawczak M, Dempfle A. Network-based quantitative trait linkage analysis of microbiome composition in inflammatory bowel disease families. Front Genet 2023; 14:1048312. [PMID: 36755569 PMCID: PMC9901208 DOI: 10.3389/fgene.2023.1048312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by a dysbiosis of the gut microbiome that results from the interaction of the constituting taxa with one another, and with the host. At the same time, host genetic variation is associated with both IBD risk and microbiome composition. Methods: In the present study, we defined quantitative traits (QTs) from modules identified in microbial co-occurrence networks to measure the inter-individual consistency of microbial abundance and subjected these QTs to a genome-wide quantitative trait locus (QTL) linkage analysis. Results: Four microbial network modules were consistently identified in two cohorts of healthy individuals, but three of the corresponding QTs differed significantly between IBD patients and unaffected individuals. The QTL linkage analysis was performed in a sub-sample of the Kiel IBD family cohort (IBD-KC), an ongoing study of 256 German families comprising 455 IBD patients and 575 first- and second-degree, non-affected relatives. The analysis revealed five chromosomal regions linked to one of three microbial module QTs, namely on chromosomes 3 (spanning 10.79 cM) and 11 (6.69 cM) for the first module, chr9 (0.13 cM) and chr16 (1.20 cM) for the second module, and chr13 (19.98 cM) for the third module. None of these loci have been implicated in a microbial phenotype before. Discussion: Our study illustrates the benefit of combining network and family-based linkage analysis to identify novel genetic drivers of microbiome composition in a specific disease context.
Collapse
Affiliation(s)
- Arunabh Sharma
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Malte Christoph Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Janna Enderle
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetology and Clinical Metabolic Research, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany,*Correspondence: Astrid Dempfle,
| |
Collapse
|
9
|
Yadav SS, Hussain S, Dwivedi P, Khattri S, Sawlani KK, Usman K. Assesement of serum Sfrp5/Wnt-5a level and its utility in the risk stratification of treatment naïve patients with metabolic syndrome. J Immunoassay Immunochem 2023; 44:1-12. [PMID: 35880703 DOI: 10.1080/15321819.2022.2104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our study focused on investigating the clinical significance of serum Sfrp5/Wnt-5a levels as a risk marker in metabolic syndrome (MetS). The study involved a total of 107 treatment-naive MetS cases and 100 controls with similar age and sex belonging to northern India. The profiling of clinical, biochemical, and anthropometric variables was done. ELISA methods were employed for serum cytokine estimation. Serum Sfrp5 was inversely correlated with BMI, WC, SBP, DBP, FPG, TG, fasting insulin level, and HOMA-IR in both males and females. The best cutoff value for Sfrp5 to predict MetS in males was ≤40.48 ng/ml (sensitivity 53.70% and specificity 90.48%), while in female, it was ≤66.67 ng/ml (sensitivity 98.11% and specificity 34.48%). MetS occurrence decreased with increasing concentration of Sfrp5 with an odds ratio (OR) of 0.95 (95% CI = 0.92-0.98, P < .001) in male and 0.93 (95% CI = 0.91-0.97, P < .001) in female. Quartile analysis revealed that odds of MetS significantly decreased in quartile 4 vs. 1, 0.06 (95% CI = 0.01-0.25), P = .001 and 0.13 (95% CI = 0.04-0.44), P = .001, respectively, in male and female. The inverse association of serum concentration of Sfrp5 with MetS might have a useful addition to the available risk marker as well as a therapeutic target for MetS.
Collapse
Affiliation(s)
- Suraj Singh Yadav
- Department of Pharmacology and Therapeutics, King George's Medical University,Lucknow, India
| | - Sartaj Hussain
- Department of Pharmacology and Therapeutics, King George's Medical University,Lucknow, India.,ICMR-RMRC, Gorakhpur, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjay Khattri
- Department of Pharmacology and Therapeutics, King George's Medical University,Lucknow, India
| | | | - Kauser Usman
- Department of Medicine, King George's Medical University, Lucknow, India
| |
Collapse
|
10
|
Cohort profile: the Food Chain Plus (FoCus) cohort. Eur J Epidemiol 2022; 37:1087-1105. [PMID: 36245062 PMCID: PMC9630232 DOI: 10.1007/s10654-022-00924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Abstract
The Food Chain Plus (FoCus) cohort was launched in 2011 for population-based research related to metabolic inflammation. To characterize this novel pathology in a comprehensive manner, data collection included multiple omics layers such as phenomics, microbiomics, metabolomics, genomics, and metagenomics as well as nutrition profiling, taste perception phenotyping and social network analysis. The cohort was set-up to represent a Northern German population of the Kiel region. Two-step recruitment included the randomised enrolment of participants via residents’ registration offices and via the Obesity Outpatient Centre of the University Medical Center Schleswig–Holstein (UKSH). Hence, both a population- and metabolic inflammation- based cohort was created. In total, 1795 individuals were analysed at baseline. Baseline data collection took place between 2011 and 2014, including 63% females and 37% males with an age range of 18–83 years. The median age of all participants was 52.0 years [IQR: 42.5; 63.0 years] and the median baseline BMI in the study population was 27.7 kg/m2 [IQR: 23.7; 35.9 kg/m2]. In the baseline cohort, 14.1% of participants had type 2 diabetes mellitus, which was more prevalent in the subjects of the metabolic inflammation group (MIG; 31.8%). Follow-up for the assessment of disease progression, as well as the onset of new diseases with changes in subject’s phenotype, diet or lifestyle factors is planned every 5 years. The first follow-up period was finished in 2020 and included 820 subjects.
Collapse
|
11
|
Intercontinental Gut Microbiome Variances in IBD. Int J Mol Sci 2022; 23:ijms231810868. [PMID: 36142786 PMCID: PMC9506019 DOI: 10.3390/ijms231810868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of biomarkers for inflammatory bowel disease (IBD) diagnosis would be relevant in a generalized context. However, intercontinental investigation on these microbial biomarkers remains scarce. We examined taxonomic microbiome variations in IBD using published DNA shotgun metagenomic data. For this purpose, we used sequenced data from our previous Spanish Crohn’s disease (CD) and ulcerative colitis (UC) cohort, downloaded sequence data from a Chinese CD cohort, and downloaded taxonomic and functional profiling tables from a USA CD and UC cohort. At the global level, geographical location and disease phenotype were the main explanatory covariates of microbiome variations. In healthy controls (HC) and UC, geography turned out to be the most important factor, while disease intestinal location was the most important one in CD. Disease severity correlated with lower alpha-diversity in UC but not in CD. Across geography, alpha-diversity was significantly different independently of health status, except for CD. Despite recruitment from different countries and with different disease severity scores, CD patients may harbor a very similar microbial taxonomic profile. Our study pointed out that geographic location, disease activity status, and other environmental factors are important contributing factors in microbiota changes in IBD. We therefore strongly recommend taking these factors into consideration for future IBD studies to obtain globally valid and reproducible biomarkers.
Collapse
|
12
|
Brandes J, Zobel I, Rohmann N, Schlicht K, Geisler C, Hartmann K, Türk K, von Schönfels W, Beckmann J, Tran F, Laudes M. Dipeptidylpeptidase (DPP)-4 inhibitor therapy increases circulating levels of anti-inflammatory soluble frizzle receptor protein (sFRP)-5 which is decreased in severe COVID-19 disease. Sci Rep 2022; 12:14935. [PMID: 36056109 PMCID: PMC9437412 DOI: 10.1038/s41598-022-18354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity and type 2 diabetes (T2D) show an increased risk for a severe COVID-19 disease. Treatment with DPP4 inhibitor (DPP4i) results in reduced mortality and better clinical outcome. Here, we aimed to identify potential mechanisms for the observed DPP4i effect in COVID-19. Comparing T2D subjects with and without DPP4i treatment, we identified a significant increase of the anti-inflammatory adipokine sFRP5 in relation to DPP4 inhibition. sFRP5 is a specific antagonist to Wnt5a, a glycopeptide secreted by adipose tissue macrophages acting pro-inflammatory in various diseases. We therefore examined sFRP5 levels in patients hospitalised for severe COVID-19 and found significant lower levels compared to healthy controls. Since sFRP5 might consequently be a molecular link for the beneficial effects of DPP4i in COVID-19, we further aimed to identify the exact source of sFRP5 in adipose tissue on cellular level. We therefore isolated pre-adipocytes, mature adipocytes and macrophages from adipose tissue biopsies and performed western-blotting. Results showed a sFRP5 expression specifically in mature adipocytes of subcutaneous and omental adipose tissue. In summary, our data suggest that DPP4i increase serum levels of anti-inflammatory sFRP5 which might be beneficial in COVID-19, reflecting a state of sFRP5 deficiency.
Collapse
Affiliation(s)
- Juliane Brandes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Isabelle Zobel
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Kathrin Türk
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany
| | - Witigo von Schönfels
- Department of General and Abdominal Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Jan Beckmann
- Department of General and Abdominal Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel; Düsternbrooker Weg, 17, 24105, Kiel, Germany.
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
13
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Antoun E, Lillycrop KA, Calder PC. Dysregulation of Subcutaneous White Adipose Tissue Inflammatory Environment Modelling in Non-Insulin Resistant Obesity and Responses to Omega-3 Fatty Acids – A Double Blind, Randomised Clinical Trial. Front Immunol 2022; 13:922654. [PMID: 35958557 PMCID: PMC9358040 DOI: 10.3389/fimmu.2022.922654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance. Therefore, these lipids may have positive actions on obesity associated scWAT hypertrophy and inflammation. Methods To evaluate obesity-associated tissue remodelling and responses to LC n-3 PUFAs, abdominal scWAT biopsies were collected from normal weight individuals and those living with obesity prior to and following 12-week intervention with marine LC n-3 PUFAs (1.1 g EPA + 0.8 g DHA daily). RNA sequencing, qRT-PCR, and histochemical staining were used to assess remodelling- and inflammatory-associated gene expression, tissue morphology and macrophage infiltration. Results Obesity was associated with scWAT hypertrophy (P < 0.001), hypoxia, remodelling, and inflammatory macrophage infiltration (P = 0.023). Furthermore, we highlight the novel dysregulation of Wnt signalling in scWAT in non-insulin resistant obesity. LC n-3 PUFAs beneficially modulated the scWAT environment through downregulating the expression of genes associated with inflammatory and remodelling pathways (P <0.001), but there were altered outcomes in individuals living with obesity in comparison to normal weight individuals. Conclusion Our data identify dysregulation of Wnt signalling, hypoxia, and hypertrophy, and enhanced macrophage infiltration in scWAT in non-insulin resistant obesity. LC n-3 PUFAs modulate some of these processes, especially in normal weight individuals which may be preventative and limit the development of restrictive and inflammatory scWAT in the development of obesity. We conclude that a higher dose or longer duration of LC n-3 PUFA intervention may be needed to reduce obesity-associated scWAT inflammation and promote tissue homeostasis. Clinical Trial Registration www.isrctn.com, identifier ISRCTN96712688.
Collapse
Affiliation(s)
- Helena L Fisk
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Caroline E Childs
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Ayres
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Paul S Noakes
- School of Medicine, The University of Notre Dame Australia, Freemantle, WA, Australia
| | | | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Sanabria-de la Torre R, García-Fontana C, González-Salvatierra S, Andújar-Vera F, Martínez-Heredia L, García-Fontana B, Muñoz-Torres M. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:6995. [PMID: 35805996 PMCID: PMC9266892 DOI: 10.3390/ijms23136995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila González-Salvatierra
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, 18016 Granada, Spain; (R.S.-d.l.T.); (S.G.-S.); (L.M.-H.); (M.M.-T.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Wang F, Hou W, Li X, Lu L, Huang T, Zhu M, Miao C. SETD8 cooperates with MZF1 to participate in hyperglycemia-induced endothelial inflammation via elevation of WNT5A levels in diabetic nephropathy. Cell Mol Biol Lett 2022; 27:30. [PMID: 35350980 PMCID: PMC8962284 DOI: 10.1186/s11658-022-00328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/22/2023] Open
Abstract
Objective Diabetic nephropathy (DN) is regarded as the main vascular complication of diabetes mellitus, directly affecting the outcome of diabetic patients. Inflammatory factors were reported to participate in the progress of DN. Wingless-type family member 5 (WNT5A), myeloid zinc finger 1 (MZF1), and lysine methyltransferase 8 (SETD8) have also been reported to elevate inflammatory factor levels and activate the nuclear factor kappa B (NF-κB) pathway to induce endothelial dysfunction. In the current study, it was assumed that MZF1 associates with SETD8 to regulate WNT5A transcription, thus resulting in hyperglycemia-induced glomerular endothelial inflammation in DN. Methods The present study recruited 25 diagnosed DN patients (type 2 diabetes) and 25 control participants (nondiabetic renal cancer patients with normal renal function, stage I–II) consecutively. Moreover, a DN rat and cellular model was constructed in the present study. Immunohistochemistry, Western blot, and quantitative polymerase chain reaction (qPCR) were implemented to determine protein and messenger RNA (mRNA) levels. Coimmunoprecipitation (CoIP) and immunofluorescence were implemented in human glomerular endothelial cells (HGECs). Chromatin immunoprecipitation assays and dual luciferase assays were implemented to determine transcriptional activity. Results The results of this study indicated that levels of WNT5A expression, p65 phosphorylation (p-p65), and inflammatory factors were all elevated in DN patients and rats. In vitro, levels of p-p65 and inflammatory factors increased along with the increase of WNT5A expression in hyperglycemic HGECs. Moreover, high glucose increased MZF1 expression and decreased SETD8 expression. MZF1 and SETD8 inhibit each other under the stimulus of high glucose, but cooperate to regulate WNT5A expression, thus influencing p-p65 and endothelial inflammatory factors levels. Overexpression of MZF1 and silencing of SETD8 induced endothelial p-p65 and inflammatory factors levels, which can be reversed by si-WNT5A. Mechanistic research indicated that MZF1, SETD8, and its downstream target histone H4 lysine 20 methylation (H4K20me1) all occupied the WNT5A promoter region. sh-SETD8 expanded the enrichment of MZF1 on WNT5A promoter. Our in vivo study proved that SETD8 overexpression inhibited levels of WNT5A, p-p65 expression, and inflammatory factors in DN rats. Conclusions MZF1 links with SETD8 to regulate WNT5A expression in HGECs, thus elevating levels of hyperglycemia-mediated inflammatory factors in glomerular endothelium of DN patients and rats. Trial registration ChiCTR, ChiCTR2000029425. 2020/1/31, http://www.chictr.org.cn/showproj.aspx?proj=48548 Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00328-6.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Ren J, Ning X, Zhang D, Zhang Y. Increased Level of Serum Wingless-Type Mouse Mammary Tumor Virus Integration Site Family Member 5a in Patients with Cutaneous Lichen Planus. J Inflamm Res 2022; 15:235-239. [PMID: 35046697 PMCID: PMC8761001 DOI: 10.2147/jir.s341908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Jianwen Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
| | - Yanfei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi Province, People’s Republic of China
- Correspondence: Yanfei Zhang Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xi Wu Road, Xi’an, 710004, Shaanxi Province, People’s Republic of ChinaTel/Fax +86-29-87679301 Email
| |
Collapse
|
17
|
BMI, Alcohol Consumption and Gut Microbiome Species Richness Are Related to Structural and Functional Neurological Abnormalities. Nutrients 2021; 13:nu13113743. [PMID: 34835999 PMCID: PMC8618843 DOI: 10.3390/nu13113743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The incidence of neurological diseases is increasing throughout the world. The aim of the present study was to identify nutrition and microbiome factors related to structural and functional neurological abnormalities to optimize future preventive strategies. Methods: Two hundred thirty-eight patients suffering from (1) structural (neurodegeneration) or (2) functional (epilepsy) neurological abnormalities or (3) chronic pain (migraine) and 612 healthy control subjects were analyzed by validated 12-month food frequency questionnaire (FFQ) and 16S rRNA microbiome sequencing (from stool samples). A binomial logistic regression model was applied for risk calculation and functional pathway analysis to show which functional pathway could discriminate cases and healthy controls. Results: Detailed analysis of more than 60 macro- and micronutrients revealed no distinct significant difference between cases and controls, whereas BMI, insulin resistance and metabolic inflammation in addition to alcohol consumption were major drivers of an overall neurological disease risk. The gut microbiome analysis showed decreased alpha diversity (Shannon index: p = 9.1× 10−7) and species richness (p = 1.2 × 10−8) in the case group as well as significant differences in beta diversity between cases and controls (Bray–Curtis: p = 9.99 × 10−4; Jaccard: p = 9.99 × 10−4). The Shannon index showed a beneficial effect (OR = 0.59 (95%-CI (0.40, 0.87); p = 8 × 10−3). Cases were clearly discriminated from healthy controls by environmental information processing, signal transduction, two component system and membrane transport as significantly different functional pathways. Conclusions: In conclusion, our data indicate that an overall healthy lifestyle, in contrast to supplementation of single micro- or macronutrients, is most likely to reduce overall neurological abnormality risk and that the gut microbiome is an interesting target to develop novel preventive strategies.
Collapse
|
18
|
Koutaki D, Michos A, Bacopoulou F, Charmandari E. The Emerging Role of Sfrp5 and Wnt5a in the Pathogenesis of Obesity: Implications for a Healthy Diet and Lifestyle. Nutrients 2021; 13:nu13072459. [PMID: 34371968 PMCID: PMC8308727 DOI: 10.3390/nu13072459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
In recent decades, the prevalence of obesity has risen dramatically worldwide among all age groups. Obesity is characterized by excess fat accumulation and chronic low-grade inflammation. The adipose tissue functions as a metabolically active endocrine organ secreting adipokines. A novel duo of adipokines, the anti-inflammatory secreted frizzled-related protein 5 (Sfrp5) and the proinflammatory wingless type mouse mammary tumor virus (MMTV) integration site family member 5A (Wnt5a), signal via the non-canonical Wnt pathway. Recent evidence suggests that Sfpr5 and Wnt5a play a key role in the pathogenesis of obesity and its metabolic complications. This review summarizes the current knowledge on the novel regulatory system of anti-inflammatory Sfrp5 and pro-inflammatory Wnt5a, and their relation to obesity and obesity-related complications. Future studies are required to investigate the potential role of Sfrp5 and Wnt5a as biomarkers for monitoring the response to lifestyle interventions and for predicting the development of cardiometabolic risk factors. These adipokines may also serve as novel therapeutic targets for obesity-related disorders.
Collapse
Affiliation(s)
- Diamanto Koutaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Athanasios Michos
- Division of Infectious Diseases, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
19
|
Zhang G, Liu M, Chen H, Wu Z, Gao Y, Ma Z, He X, Kang X. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2021; 54:e13057. [PMID: 34028920 PMCID: PMC8249791 DOI: 10.1111/cpr.13057] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common clinical degenerative disease of the spine. A series of factors, such as inflammation, oxidative stress and mechanical stress, promote degradation of the extracellular matrix (ECM) of the intervertebral discs (IVD), leading to dysfunction and structural destruction of the IVD. Nuclear factor-κB (NF-κB) transcription factor has long been regarded as a pathogenic factor of IDD. Therefore, NF-κB may be an ideal therapeutic target for IDD. As NF-κB is a multifunctional functional transcription factor with roles in a variety of biological processes, a comprehensive understanding of the function and regulatory mechanism of NF-κB in IDD pathology will be useful for the development of targeted therapeutic strategies for IDD, which can prevent the progression of IDD and reduce potential risks. This review discusses the role of the NF-κB signalling pathway in the nucleus pulposus (NP) in the process of IDD to understand pathological NP degeneration further and provide potential therapeutic targets that may interfere with NF-κB signalling for IDD therapy.
Collapse
Affiliation(s)
- Guang‐Zhi Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Ming‐Qiang Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Hai‐Wei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zuo‐Long Wu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Yi‐Cheng Gao
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zhan‐Jun Ma
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Gang He
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Wen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal DisordersLanzhouChina
| |
Collapse
|
20
|
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25:6479-6495. [PMID: 34042263 PMCID: PMC8278111 DOI: 10.1111/jcmm.16663] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the major chronic diseases, whose prevalence is increasing dramatically worldwide and can lead to a range of serious complications. Wnt ligands (Wnts) and their activating Wnt signalling pathways are closely involved in the regulation of various processes that are important for the occurrence and progression of T2DM and related complications. However, our understanding of their roles in these diseases is quite rudimentary due to the numerous family members of Wnts and conflicting effects via activating the canonical and/or non-canonical Wnt signalling pathways. In this review, we summarize the current findings on the expression pattern and exact role of each human Wnt in T2DM and related complications, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11 and Wnt16. Moreover, the role of main antagonists (sFRPs and WIF-1) and coreceptor (LRP6) of Wnts in T2DM and related complications and main challenges in designing Wnt-based therapeutic approaches for these diseases are discussed. We hope a deep understanding of the mechanistic links between Wnt signalling pathways and diabetic-related diseases will ultimately result in a better management of these diseases.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
21
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Rohmann N, Schlicht K, Geisler C, Hollstein T, Knappe C, Krause L, Hagen S, Beckmann A, Seoudy AK, Wietzke-Braun P, Hartmann K, Schulte D, Türk K, Beckmann J, von Schönfels W, Hägele FA, Bosy-Westphal A, Franke A, Schreiber S, Laudes M. Circulating sDPP-4 is Increased in Obesity and Insulin Resistance but Is Not Related to Systemic Metabolic Inflammation. J Clin Endocrinol Metab 2021; 106:e592-e601. [PMID: 33084870 DOI: 10.1210/clinem/dgaa758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Dipeptidylpeptidase (DPP)-4 is a key regulator of the incretin system. It exists in a membrane-bound form and a soluble form (sDPP-4). Initial human studies suggested sDPP-4 to be an adipokine involved in metabolic inflammation. However, recent mechanistic data in genetically modified mice has questioned these findings. OBJECTIVES We examined circulating sDPP-4 in a cohort of n = 451 humans with different metabolic phenotypes and during 3 different weight loss interventions (n = 101) to further clarify its role in human physiology and metabolic diseases. DESIGN sDPP-4 serum concentrations were measured by enzyme-linked immunosorbent assay and related to several phenotyping data including gut microbiome analysis. RESULTS sDPP-4 increased with age and body weight and was positively associated with insulin resistance and hypertriglyceridemia but was reduced in manifest type 2 diabetes. In addition, we found reduced serum concentrations of sDPP-4 in subjects with arterial hypertension. In contrast to earlier reports, we did not identify an association with systemic markers of inflammation. Impaired kidney and liver functions significantly altered sDPP-4 concentrations while no relation to biomarkers for heart failure was observed. Having found increased levels of sDPP-4 in obesity, we studied surgical (gastric bypass and sleeve gastrectomy) and nonsurgical interventions, revealing a significant association of sDPP-4 with improvement of liver function tests but not with changes in body weight. CONCLUSIONS Our data suggest that sDPP-4 is related to hepatic abnormalities in obesity rather than primarily functioning as an adipokine and that sDPP-4 is implicated both in glucose and in lipid metabolism, but not fundamentally in systemic inflammation.
Collapse
Affiliation(s)
- Nathalie Rohmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Carina Knappe
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Laura Krause
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Stefanie Hagen
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Alexia Beckmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Anna Katharina Seoudy
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Perdita Wietzke-Braun
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Dominik Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Jan Beckmann
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University of Kiel, Kiel, Germany
| | - Witigo von Schönfels
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University of Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institut of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institut of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
- Institut of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| |
Collapse
|
23
|
Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling. Cell Death Dis 2021; 12:92. [PMID: 33462195 PMCID: PMC7814016 DOI: 10.1038/s41419-020-03377-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Immune and inflammatory factors have emerged as key pathophysiological mechanisms in the progression of diabetic renal injury. Noncanonical Wnt5a signaling plays an essential role in obesity- or diabetes-induced metabolic dysfunction and inflammation, but its explicit molecular mechanisms and biological function in diabetic nephropathy (DN) remain unknown. In this study, we found that the expression of Wnt5a and CD146 in the kidney and the level of soluble form of CD146 (sCD146) in serum and urine samples were upregulated in DN patients compared to controls, and this alteration was correlated with the inflammatory process and progression of renal impairment. Blocking the activation of Wnt5a signaling with the Wnt5a antagonist Box5 prevented JNK phosphorylation and high glucose-induced inflammatory responses in db/db mice and high glucose-treated HK-2 cells. Similar effects were observed by silencing Wnt5a with small-interfering RNA (siRNA) in cultured HK-2 cells. Knockdown of CD146 blocked Wnt5a-induced expression of proinflammatory cytokines and activation of JNK, which suggests that CD146 is essential for the activation of the Wnt5a pathway. Finally, we confirmed that Wnt5a directly interacted with CD146 to activate noncanonical Wnt signaling in HK-2 cells. Taken together, our findings suggest that by directly binding to CD146, Wnt5a-induced noncanonical signaling is a contributing mechanism for renal tubular inflammation in diabetic nephropathy. The concentration of sCD146 in serum and urine could be a potential biomarker to predict renal outcomes in DN patients.
Collapse
|
24
|
Lu Z, Li Y, Syn WK, Li AJ, Ritter WS, Wank SA, Lopes-Virella MF, Huang Y. GPR40 deficiency is associated with hepatic FAT/CD36 upregulation, steatosis, inflammation, and cell injury in C57BL/6 mice. Am J Physiol Endocrinol Metab 2021; 320:E30-E42. [PMID: 33103454 PMCID: PMC8436599 DOI: 10.1152/ajpendo.00257.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor 40 (GPR40) is highly expressed in pancreatic islets, and its activation increases glucose-stimulated insulin secretion from pancreas. Therefore, GPR40 is considered as a target for type 2 diabetes mellitus (T2DM). Since nonalcoholic fatty liver disease (NAFLD) is associated with T2DM and GPR40 is also expressed by hepatocytes and macrophages, it is important to understand the role of GPR40 in NAFLD. However, the role of GPR40 in NAFLD in animal models has not been well defined. In this study, we fed wild-type or GPR40 knockout C57BL/6 mice a high-fat diet (HFD) for 20 wk and then assessed the effect of GPR40 deficiency on HFD-induced NAFLD. Assays on metabolic parameters showed that an HFD increased body weight, glucose, insulin, insulin resistance, cholesterol, and alanine aminotransferase (ALT), and GPR40 deficiency did not mitigate the HFD-induced metabolic abnormalities. In contrast, we found that GPR40 deficiency was associated with increased body weight, insulin, insulin resistance, cholesterol, and ALT in control mice fed a low-fat diet (LFD). Surprisingly, histology and Oil Red O staining showed that GPR40 deficiency in LFD-fed mice was associated with steatosis. Immunohistochemical analysis showed that GPR40 deficiency also increased F4/80, a macrophage biomarker, in LFD-fed mice. Furthermore, results showed that GPR40 deficiency led to a robust upregulation of hepatic fatty acid translocase (FAT)/CD36 expression. Finally, our in vitro studies showed that GPR40 knockdown by siRNA or a GPR40 antagonist increased palmitic acid-induced FAT/CD36 mRNA in hepatocytes. Taken together, this study indicates that GPR40 plays an important role in homeostasis of hepatic metabolism and inflammation and inhibits nonalcoholic steatohepatitis by possible modulation of FAT/CD36 expression.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yanchun Li
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| | - Wing-Kin Syn
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Ai-Jun Li
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - W Sue Ritter
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Stephen A Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
- Division of Endocrinology, Diabetes, and Medical Genetics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Schlicht K, Rohmann N, Geisler C, Hollstein T, Knappe C, Hartmann K, Schwarz J, Tran F, Schunk D, Junker R, Bahmer T, Rosenstiel P, Schulte D, Türk K, Franke A, Schreiber S, Laudes M. Circulating levels of soluble Dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int J Obes (Lond) 2020; 44:2335-2338. [PMID: 32958905 PMCID: PMC7503441 DOI: 10.1038/s41366-020-00689-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Dipeptidylpeptidase (DPP)-4 is a key regulator of the incretin system. For several years DPP-4 inhibitors in addition to GLP-1 analogues are of major importance in the clinical management of obesity and type 2 diabetes. DPP-4 is also known as CD26 and represents a membrane bound protease on the surface of several eukaryotic cell types. Of interest, DPP-4, like ACE2, has been shown to serve as a binding partner for corona-like viruses to enter host immune cells. Since metabolic diseases are major risk factors for the present COVID-19 pandemic, we examined circulating soluble DPP-4 serum concentrations in patients suffering from severe COVID-19 infection and in healthy human subjects in a case control design. In this analysis sDPP-4 levels were significantly lower in COVID-19 patients compared to controls (242.70 ± 202.12 ng/mL versus 497.70 ± 188.13 ng/mL, p = 0.02). We also examined sDPP-4 serum concentrations in patients suffering from sepsis not due to corona-like viruses. In these subjects, sDPP-4 levels were not different compared to healthy case controls (p = 0.14), which might suggest the decrease of sDPP-4 to be specific for corona-like virus infections. Currently, most data point towards membrane bound ACE2 in contrast to DPP-4 as the major binding partner for COVID-19 internalization into host immune cells. However, the finding that the circulating soluble form of DPP-4 is reduced in hospitalized patients might suggest a regulatory role for both, ACE and DPP-4, in COVID-19 infections, especially since obesity and type 2 diabetes are major risk factor for a severe course of the disease
Collapse
Affiliation(s)
- Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Nathalie Rohmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Carina Knappe
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Jeanette Schwarz
- Institute of Clinical Chemistry, University of Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany.,Division of Pneumology, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Domagoj Schunk
- Interdisciplinary Emergency Center, University of Kiel, Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University of Kiel, Kiel, Germany
| | - Thomas Bahmer
- Division of Pneumology, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Dominik Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany.
| |
Collapse
|
27
|
Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host Microbe 2020; 28:258-272.e6. [PMID: 32619440 DOI: 10.1016/j.chom.2020.06.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases.
Collapse
|
28
|
Fangmann D, Geisler C, Schlicht K, Hartmann K, Köpke J, Tiede A, Settgast U, Türk K, Schulte DM, Altmann K, Clawin-Rädecker I, Lorenzen PC, Schreiber S, Schwarz K, Laudes M. Differential effects of protein intake versus intake of a defined oligopeptide on FGF-21 in obese human subjects in vivo. Clin Nutr 2020; 40:600-607. [PMID: 32600859 DOI: 10.1016/j.clnu.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND FGF-21 is described as a powerful metabolic regulator with beneficial effects including glucose-lowering and improvement of insulin sensitivity without hypoglycaemia. On the other hand, FGF-21 is activated when muscle and other tissues are stressed by external effects or internal cellular pathogens that lead to shortcomings in metabolic balance. Previous results suggested that FGF-21 could be a promising target to develop future metabolic therapeutics. PURPOSE The present study was performed to gain deeper insight into the regulation of FGF-21 by protein metabolism in obese human subjects. METHODS FGF-21 serum concentrations were measured in a cohort of n = 246 obese humans ± type 2 diabetes mellitus (T2DM) (median age 53.0 [46.0; 60.0] years and BMI 40.43 [35.11; 47.24] kg/m2) and related to the nutritional protein intake. In addition, the effect of a novel oligopeptide purified from a β-casein hydrolysate on FGF-21 was examined in vitro in liver cells and in vivo in a human intervention study with the main focus on metabolic inflammation including 40 mainly obese subjects (mean age 41.08 ± 9.76 years, mean BMI 38.29 ± 9.4 kg/m2) in a randomized 20 weeks double-blind cross-over design. MAIN FINDINGS In the cohort analysis, FGF-21 serum concentrations were significant lower with higher protein intake in obese subjects without T2DM but not in obese subjects with T2DM. Furthermore, relative methionine intake was inversely related to FGF-21. While global protein intake in obesity was inversely associated with FGF-21, incubation of HepG2 cells with a β-casein oligopeptide increased FGF-21 expression in vitro. This stimulatory effect was also present in vivo, since in the clinical intervention study treatment of obese subjects with the β-casein oligopeptide for 8 weeks significantly increased FGF-21 serum levels from W0 = 23.86 pg/mL to W8 = 30.54 pg/mL (p < 0.001), while no increase was found for placebo. CONCLUSION While the total nutritional protein intake is inversely associated with FGF-21 serum levels, a purified and well characterised oligopeptide is able to induce FGF-21 serum levels in humans. These findings suggest a differential role of various components of protein metabolism on FGF-21, rather than this factor being solely a sensor of total nutritional protein intake.
Collapse
Affiliation(s)
- Daniela Fangmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Jana Köpke
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Anika Tiede
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Ute Settgast
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Dominik M Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Karina Altmann
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Ingrid Clawin-Rädecker
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Peter Ch Lorenzen
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany; Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24118, Germany
| | - Karin Schwarz
- University of Kiel, Department of Food Technology, University of Kiel, Kiel, 24118, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany.
| |
Collapse
|
29
|
Tong S, Du Y, Ji Q, Dong R, Cao J, Wang Z, Li W, Zeng M, Chen H, Zhu X, Zhou Y. Expression of Sfrp5/Wnt5a in human epicardial adipose tissue and their relationship with coronary artery disease. Life Sci 2020; 245:117338. [PMID: 31981630 DOI: 10.1016/j.lfs.2020.117338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/03/2020] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
Abstract
Secreted frizzled-related protein 5 (Sfrp5) primarily acts in combination with wingless-type family member 5a (Wnt5a), to inhibits chronic inflammation and repress atherosclerosis and other metabolic disorders. Epicardial adipose tissue (EAT), surrounding the heart and coronary arteries, has been found to be highly related to the progression of coronary artery disease through adipokines production. However, little is known about EAT-derived Sfrp5 and Wnt5a in humans. We aimed to investigate whether the EAT-derived Sfrp5/Wnt5a levels are altered in patients with CAD. Fifty-eight patients with CAD and 29 patients without CAD who underwent cardiac surgery were enrolled. Serum samples and paired adipose biopsies from EAT and subcutaneous adipose tissue (SAT) were collected, and Sfrp5 and Wnt5a levels were detected. Correlation and multivariate regression analyses were performed to determine the relationship between Sfrp5/Wnt5a expression and CAD and other clinical risk factors. According to the results, the CAD group had lower Sfrp5 and higher Wnt5a levels in EAT and serum (all p < 0.05). Serum Sfrp5 levels were significantly lower in CAD patients with impaired myocardial function. EAT Sfrp5 mRNA levels and serum Sfrp5 levels were both negatively associated with the presence of CAD, after adjustment for known biomarkers, EAT mRNA and serum Wnt5a levels correlated positively with the presence of CAD. Thus, we concluded that low Sfrp5 and high Wnt5a levels are associated with the presence of CAD, independent of other conventional risk factors.
Collapse
Affiliation(s)
- Shan Tong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing 100029, China; Center of Geriatrics, Hainan General Hospital, Hainan 580000, China
| | - Yu Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing 100029, China
| | - Qingwei Ji
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ran Dong
- Department of Cardiac Surgery Center, 11th ward, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jian Cao
- Department of Cardiac Surgery Center, 11th ward, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing 100029, China
| | - Wei Li
- Center of Geriatrics, Hainan General Hospital, Hainan 580000, China
| | - Min Zeng
- Center of Geriatrics, Hainan General Hospital, Hainan 580000, China
| | - Hongying Chen
- The Jackson Clinics, Physical Therapy, Middleburg, VA 20117, USA
| | - Xiaogang Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
30
|
Fu JL, Yu Q, Li MD, Hu CM, Shi G. Deleterious cardiovascular effect of exosome in digitalis-treated decompensated congestive heart failure. J Biochem Mol Toxicol 2020; 34:e22462. [PMID: 32045083 DOI: 10.1002/jbt.22462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.
Collapse
Affiliation(s)
- Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiong Yu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meng-Di Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chun-Mei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|