1
|
Li WX, Xu LL, Liu CF, Dong BZ, Wang YY. Analysis of an adult diabetes mellitus caused by a rare mutation of the gene: A case report. World J Clin Cases 2024; 12:3942-3949. [PMID: 38994305 PMCID: PMC11235441 DOI: 10.12998/wjcc.v12.i19.3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND This study presents the clinical and genetic mutation characteristics of an unusual case of adult-onset diabetes mellitus occurring in adolescence, featuring a unique mutation in the peroxisome proliferator-activated receptor gamma (PPARG) gene. Data Access Statement: Research data supporting this publication are available from the NN repository at www.NNN.org/download/. CASE SUMMARY The methodology employed entailed meticulous collection of comprehensive clinical data from the probands and their respective family members. Additionally, high-throughput sequencing was conducted to analyze the PPARG genes of the patient, her siblings, and their offspring. The results of this investigation revealed that the patient initially exhibited elevated blood glucose levels during pregnancy, accompanied by insulin resistance and hypertriglyceridemia. Furthermore, these strains displayed increased susceptibility to diabetic kidney disease without any discernible aggregation patterns. The results from the gene detection process demonstrated a heterozygous mutation of guanine (G) at position 284 in the coding region of exon 2 of PPARG, which replaced the base adenine (A) (exon2c.284A>Gp.Tyr95Cys). This missense mutation resulted in the substitution of tyrosine with cysteine at the 95th position of the translated protein. Notably, both of her siblings harbored a nucleotide heterozygous variation at the same site, and both were diagnosed with diabetes. CONCLUSION The PPARG gene mutation, particularly the p.Tyr95Cys mutation, may represent a newly identified subtype of maturity-onset diabetes of the young. This subtype is characterized by insulin resistance and lipid metabolism disorders.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Li Xu
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chuan-Feng Liu
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Bing-Zi Dong
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yun-Yang Wang
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
2
|
Stalbow LA, Preuss MH, Smit RAJ, Chami N, Bjørkhaug L, Aukrust I, Gloyn AL, Loos RJF. The contribution of functional HNF1A variants and polygenic susceptibility to risk of type 2 diabetes in ancestrally diverse populations. Diabetologia 2023; 66:116-126. [PMID: 36216889 PMCID: PMC9729131 DOI: 10.1007/s00125-022-05806-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/26/2023]
Abstract
AIMS/HYPOTHESIS We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups. METHODS Using exome sequencing data of 160,615 individuals of the UK Biobank and 18,797 individuals of the BioMe Biobank, we identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes, and examined the association of HNF1A variants and PRS with risk of type 2 diabetes and age of diagnosis. We also tested whether the PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term. RESULTS Rare HNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR 1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry (OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino population (β=-5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains (β=-5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry β=-2.7 years, p=0.13; European ancestry β=-3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61-2.11, p<10-5) and an earlier age at diagnosis in individuals of African ancestry (β=-1.4 years, p=3.7 × 10-6) and Hispanic-Latino ancestry (β=-2.4 years, p<2 × 10-16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on type 2 diabetes in the European ancestry population (pinteraction=0.037). CONCLUSIONS/INTERPRETATION We show that rare functional HNF1A variants, in particular those located in the functional domains, increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within a gene and an individual's overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.
Collapse
Affiliation(s)
- Lauren A Stalbow
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lise Bjørkhaug
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Ingvild Aukrust
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
4
|
Bartolomé A. Stem Cell-Derived β Cells: A Versatile Research Platform to Interrogate the Genetic Basis of β Cell Dysfunction. Int J Mol Sci 2022; 23:501. [PMID: 35008927 PMCID: PMC8745644 DOI: 10.3390/ijms23010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β cell dysfunction is a central component of diabetes progression. During the last decades, the genetic basis of several monogenic forms of diabetes has been recognized. Genome-wide association studies (GWAS) have also facilitated the identification of common genetic variants associated with an increased risk of diabetes. These studies highlight the importance of impaired β cell function in all forms of diabetes. However, how most of these risk variants confer disease risk, remains unanswered. Understanding the specific contribution of genetic variants and the precise role of their molecular effectors is the next step toward developing treatments that target β cell dysfunction in the era of personalized medicine. Protocols that allow derivation of β cells from pluripotent stem cells, represent a powerful research tool that allows modeling of human development and versatile experimental designs that can be used to shed some light on diabetes pathophysiology. This article reviews different models to study the genetic basis of β cell dysfunction, focusing on the recent advances made possible by stem cell applications in the field of diabetes research.
Collapse
Affiliation(s)
- Alberto Bartolomé
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
5
|
Li LM, Jiang BG, Sun LL. HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:829565. [PMID: 35299962 PMCID: PMC8921476 DOI: 10.3389/fendo.2022.829565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), or other according to the etiology. The clinical manifestations are more or less similar among the different types of diabetes, and each type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing between various types of diabetes and defining their subtypes are major challenges hindering the precise treatment of the disease. T2D is the main type of diabetes in humans as well as the most heterogeneous. Fortunately, some studies have shown that variants of certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate personalized treatment of the disease by exploring the function of the signal genes involved. Hepatocyte nuclear factor 1 homeobox A (HNF1α) is widely expressed in pancreatic β cells, the liver, the intestines, and other organs. HNF1α is highly polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of the young type 3 (MODY3) while some others do not cause MODY3 but increase the susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also differ. MODY3 is among the most common types of MODY, which is a form of monogenic diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial diseases caused by both genetic and environmental factors. Different types of diabetes mellitus have different clinical phenotypes and treatments. This review focuses on HNF1α gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the related pathogenesis and treatment methods. We hope this review will provide a valuable reference for the precise and individualized treatment of diabetes caused by abnormal HNF1α by summarizing the clinical heterogeneity of blood glucose abnormalities caused by HNF1α mutation.
Collapse
Affiliation(s)
- Li-Mei Li
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei-Ge Jiang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| | - Liang-Liang Sun
- Department of Endocrinology and Metabolism, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| |
Collapse
|
6
|
Wedekind LE, Mitchell CM, Andersen CC, Knowler WC, Hanson RL. Epidemiology of Type 2 Diabetes in Indigenous Communities in the United States. Curr Diab Rep 2021; 21:47. [PMID: 34807308 PMCID: PMC8665733 DOI: 10.1007/s11892-021-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The present review focuses on the epidemiology of type 2 diabetes (T2D) in Indigenous communities in the continental United States (U.S.)-including disease prevention and management-and discusses special considerations in conducting research with Indigenous communities. RECENT FINDINGS Previous studies have reported the disparately high prevalence of diabetes, especially T2D, among Indigenous peoples in the U.S. The high prevalence and incidence of early-onset T2D in Indigenous youth relative to that of all youth in the U.S. population pose challenges to the prevention of complications of diabetes. Behavioral, dietary, lifestyle, and genetic factors associated with T2D in Indigenous communities are often investigated. More limited is the discussion of the historical and ongoing consequences of colonization and displacement that impact the aforementioned risk factors. Future research is necessary to assess community-specific needs with respect to diabetes prevention and management across the diversity of Indigenous communities in the U.S.
Collapse
Affiliation(s)
- Lauren E Wedekind
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Cassie M Mitchell
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Coley C Andersen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 East Indian School Road, Phoenix, AZ, 85014, USA.
| |
Collapse
|
7
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
8
|
Cyr M, Riediger N. (Re)claiming our bodies using a Two-Eyed Seeing approach: Health-At-Every-Size (HAES®) and Indigenous knowledge. Canadian Journal of Public Health 2021; 112:493-497. [PMID: 33410123 DOI: 10.17269/s41997-020-00445-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
We originally proposed a study to examine changes in disparities in "obesity" between Indigenous and non-Indigenous Canadian populations, as called for in the Truth and Reconciliation Commission, Article 19 (2015), which calls for ongoing monitoring of disparities in health outcomes. Instead, we questioned the importance of reducing the prevalence of "obesity" as a health goal for Indigenous peoples. This critical commentary provides an overview of Canadian Indigenous populations' weight, its relationship with health outcomes, and weight stigma and discrimination, using an Indigenous feminist lens. We introduce the applicability of a Two-Eyed Seeing approach utilizing a Health-At-Every-Size (HAES®) model and Indigenous ways of knowing, as a starting point, to understand weight, health, and our bodies. A new paradigm is needed to identify and close health gaps as noted in Article 19 of the Truth and Reconciliation Calls to Action (2015). We respectfully call upon health professionals and public health bodies to acknowledge the harm of weight stigma and discrimination in their practice and policies, and we encourage Indigenous peoples to (re)claim and (re)vitalize body sovereignty.
Collapse
Affiliation(s)
- Monica Cyr
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Natalie Riediger
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, 209 Human Ecology Building, Winnipeg, MB, R3T 2N2, Canada.,Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Gong S, Han X, Li M, Cai X, Liu W, Luo Y, Zhang SM, Zhou L, Ma Y, Huang X, Li Y, Zhou X, Zhu Y, Wang Q, Chen L, Ren Q, Zhang P, Ji L. Genetics and Clinical Characteristics of PPARγ Variant-Induced Diabetes in a Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:677130. [PMID: 34764936 PMCID: PMC8576343 DOI: 10.3389/fendo.2021.677130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES PPARγ variants cause lipodystrophy, insulin resistance, and diabetes. This study aimed to determine the relationship between PPARγ genotypes and phenotypes and to explore the pathogenesis of diabetes beyond this relationship. METHODS PPARγ2 exons in 1,002 Chinese patients with early-onset type 2 diabetes (diagnosed before 40 years of age) were sequenced. The functions of variants were evaluated by in vitro assays. Additionally, a review of the literature was performed to obtain all reported cases with rare PPARγ2 variants to evaluate the characteristics of variants in different functional domains. RESULTS Six (0.6%) patients had PPARγ2 variant-induced diabetes (PPARG-DM) in the early-onset type 2 diabetes group, including three with the p.Tyr95Cys variant in activation function 1 domain (AF1), of which five patients (83%) had diabetic kidney disease (DKD). Functional experiments showed that p.Tyr95Cys suppresses 3T3-L1 preadipocyte differentiation. A total of 64 cases with damaging rare variants were reported previously. Patients with rare PPARγ2 variants in AF1 of PPARγ2 had a lower risk of lipodystrophy and a higher rate of obesity than those with variants in other domains, as confirmed in patients identified in this study. CONCLUSION The prevalence of PPARG-DM is similar in Caucasian and Chinese populations, and DKD was often observed in these patients. Patients with variants in the AF1 of PPARγ2 had milder clinical phenotypes and lack typical lipodystrophy features than those with variants in other domains. Our findings emphasize the importance of screening such patients via genetic testing and suggest that thiazolidinediones might be a good choice for these patients.
Collapse
Affiliation(s)
- Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
- *Correspondence: Linong Ji, ; Xueyao Han,
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Si-min Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu District Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Qiuping Wang
- Department of Endocrinology, Beijing Liangxiang Hospital, Beijing, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Ping Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
- *Correspondence: Linong Ji, ; Xueyao Han,
| |
Collapse
|
10
|
Piko P, Werissa NA, Fiatal S, Sandor J, Adany R. Impact of Genetic Factors on the Age of Onset for Type 2 Diabetes Mellitus in Addition to the Conventional Risk Factors. J Pers Med 2020; 11:jpm11010006. [PMID: 33375163 PMCID: PMC7822179 DOI: 10.3390/jpm11010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that the early detection of type 2 diabetes mellitus (T2DM) is important to prevent the development of complications and comorbidities, as well as premature death. The onset of type 2 diabetes mellitus results from a complex interplay between genetic, environmental, and lifestyle risk factors. Our study aims to evaluate the joint effect of T2DM associated single nucleotide polymorphisms (SNPs) on the age of onset for T2DM in combination with conventional risk factors (such as sex, body mass index (BMI), and TG/HDL-C ratio) in the Hungarian population. This study includes 881 T2DM patients (Case population) and 1415 samples from the Hungarian general population (HG). Twenty-three SNPs were tested on how they are associated with the age of onset for T2DM in the Case population and 12 of them with a certified effect on the age of T2DM onset were chosen for an optimized genetic risk score (GRS) analysis. Testing the validity of the GRS model developed was carried out on the HG population. The GRS showed a significant association with the age of onset for T2DM (β = -0.454, p = 0.001) in the Case population, as well as among T2DM patients in the HG one (β = -0.999, p = 0.003) in the replication study. The higher the GRS, the earlier was the T2DM onset. Individuals with more than eight risk alleles will presumably be diabetic six and a half years earlier than those with less than four risk alleles. Our results suggest that there is a considerable genetic predisposition for the early onset of T2DM; therefore, in addition to conventional risk factors, GRS can be used as a tool for estimating the risk of the earlier onset of T2DM and stratifying populations at risk in order to define preventive interventions.
Collapse
Affiliation(s)
- Peter Piko
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
| | - Nardos Abebe Werissa
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Janos Sandor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Roza Adany
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
- Correspondence: ; Tel.: +36-5251-2764
| |
Collapse
|
11
|
Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes (Basel) 2020; 11:genes11111256. [PMID: 33113859 PMCID: PMC7693799 DOI: 10.3390/genes11111256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023] Open
Abstract
(1) Aims: Diabesity, defined as diabetes occurring in the context of obesity, is a serious health problem that is associated with an increased risk of premature heart attack, stroke, and death. To date, a key challenge has been to understand the molecular pathways that play significant roles in diabesity. In this study, we aimed to investigate the genetic links between diabetes and obesity in diabetic individuals and highlight the role(s) of shared genes in individuals with diabesity. (2) Methods: The interactions between the genes were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) tool after the compilation of obesity genes associated with type 1 diabetes (T1D), type 2 diabetes (T2D), and maturity-onset diabetes of the young (MODY). Cytoscape plugins were utilized for enrichment analysis. (3) Results: We identified 546 obesity genes that are associated with T1D, T2D, and MODY. The network backbone of the identified genes comprised 514 nodes and 4126 edges with an estimated clustering coefficient of 0.242. The Molecular Complex Detection (MCODE) generated three clusters with a score of 33.61, 16.788, and 6.783, each. The highest-scoring nodes of the clusters were AGT, FGB, and LDLR genes. The genes from cluster 1 were enriched in FOXO-mediated transcription of oxidative stress, renin secretion, and regulation of lipolysis in adipocytes. The cluster 2 genes enriched in Src homology 2 domain-containing (SHC)-related events triggered by IGF1R, regulation of lipolysis in adipocytes, and GRB2: SOS produce a link to mitogen-activated protein kinase (MAPK) signaling for integrins. The cluster 3 genes ere enriched in IGF1R signaling cascade and insulin signaling pathway. (4) Conclusion: This study presents a platform to discover potential targets for diabesity treatment and helps in understanding the molecular mechanism.
Collapse
|
12
|
Liju S, Chidambaram M, Mohan V, Radha V. Impact of type 2 diabetes variants identified through genome-wide association studies in early-onset type 2 diabetes from South Indian population. Genomics Inform 2020; 18:e27. [PMID: 33017871 PMCID: PMC7560451 DOI: 10.5808/gi.2020.18.3.e27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
The prevalence of early-onset type 2 diabetes (EOT2D) is increasing in Asian countries. Genome-wide association studies performed in European and various other populations have identified associations of numerous variants with type 2 diabetes in adults. However, the genetic component of EOT2D which is still unexplored could have similarities with late-onset type 2 diabetes. Here in the present study we aim to identify the association of variants with EOT2D in South Indian population. Twenty-five variants from 18 gene loci were genotyped in 1,188 EOT2D and 1,183 normal glucose tolerant subjects using the MassARRAY technology. We confirm the association of the HHEX variant rs1111875 with EOT2D in this South Indian population and also the association of CDKN2A/2B (rs7020996) and TCF7L2 (rs4506565) with EOT2D. Logistic regression analyses of the TCF7L2 variant rs4506565(A/T), showed that the heterozygous and homozygous carriers for allele ‘T’ have odds ratios of 1.47 (95% confidence interval [CI], 1.17 to 1.83; p = 0.001) and 1.65 (95% CI, 1.18 to 2.28; p = 0.006) respectively, relative to AA homozygote. For the HHEX variant rs1111875 (T/C), heterozygous and homozygous carriers for allele ‘C’ have odds ratios of 1.13 (95% CI, 0.91 to 1.42; p = 0.27) and 1.58 (95% CI, 1.17 to 2.12; p = 0.003) respectively, relative to the TT homozygote. For CDKN2A/2B variant rs7020996, the heterozygous and homozygous carriers of allele ‘C’ were protective with odds ratios of 0.65 (95% CI, 0.51 to 0.83; p = 0.0004) and 0.62 (95% CI, 0.27 to 1.39; p = 0.24) respectively, relative to TT homozygote. This is the first study to report on the association of HHEX variant rs1111875 with EOT2D in this population.
Collapse
Affiliation(s)
- Samuel Liju
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 600086, India
| | - Manickam Chidambaram
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 600086, India
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 600086, India.,Dr. Mohan's Diabetes Specialties Centre, ICMR Centre for Diabetes Advanced Research and WHO Collaborating Centre for Non-communicable Diseases Prevention and Control, Chennai 600086, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai 600086, India
| |
Collapse
|
13
|
Decker KM, Lambert P, Demers A, Kliewer EV, Musto G, Biswanger N, Elias B, Turner D. Examining the Impact of First Nations Status on the Relationship Between Diabetes and Cancer. Health Equity 2020; 4:211-217. [PMID: 32440618 PMCID: PMC7241056 DOI: 10.1089/heq.2019.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 11/12/2022] Open
Abstract
Purpose: This population-based study examined the relationship between diabetes and cancer and determined if this relationship was influenced by First Nations (FN) status. Methods: In a matched case–cohort study, individuals 30–74 years of age diagnosed with diabetes during 1984–2008 in the province of Manitoba, Canada, with no cancer diagnosis before their diabetes diagnosis were matched to one diabetes-free control by age, sex, FN status, and residence. Flexible competing risk and Royston–Parmar regression models were used to compare cancer rates. Results: Overall, 72,715 individuals diagnosed with diabetes were matched to controls. In all age groups, diabetes was related to an increased risk of cancer. The relationship between diabetes and any type of cancer was not influenced by FN status (i.e., there was no interaction between the diagnosis of diabetes and people's FN status for any age group). The only significant interaction between diabetes and FN status was for kidney cancer for individuals 60–74 years of age; diabetes increased the risk of kidney cancer for all other Manitobans (AOMs) but not for FN. Conclusions: Diabetes increased the risk of cancer. The association was not modified by FN status except for kidney cancer where diabetes increased the risk for AOMs but not for FN.
Collapse
Affiliation(s)
- Kathleen M Decker
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada.,Department of Epidemiology, CancerCare Manitoba, Winnipeg, Canada
| | - Pascal Lambert
- Department of Epidemiology, CancerCare Manitoba, Winnipeg, Canada
| | | | | | - Grace Musto
- Department of Epidemiology, CancerCare Manitoba, Winnipeg, Canada
| | | | - Brenda Elias
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Donna Turner
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Epidemiology, CancerCare Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Sariyar M, Schlünder I. Challenges and Legal Gaps of Genetic Profiling in the Era of Big Data. Front Big Data 2019; 2:40. [PMID: 33693363 PMCID: PMC7931923 DOI: 10.3389/fdata.2019.00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Profiling of individuals based on inborn, acquired, and assigned characteristics is central for decision making in health care. In the era of omics and big smart data, it becomes urgent to differentiate between different data governance affordances for different profiling activities. Typically, diagnostic profiling is in the focus of researchers and physicians, and other types are regarded as undesired side-effects; for example, in the connection of health care insurance risk calculations. Profiling in a legal sense is addressed, for example, by the EU data protection law. It is defined in the General Data Protection Regulation as automated decision making. This term does not correspond fully with profiling in biomedical research and healthcare, and the impact on privacy has hardly ever been examined. But profiling is also an issue concerning the fundamental right of non-discrimination, whenever profiles are used in a way that has a discriminatory effect on individuals. Here, we will focus on genetic profiling, define related notions as legal and subject-matter definitions frequently differ, and discuss the ethical and legal challenges.
Collapse
Affiliation(s)
- Murat Sariyar
- Institute of Medical Informatics, Bern University of Applied Sciences, Bienne, Switzerland
| | - Irene Schlünder
- TMF - Technologie- und Methodenplattform e.V., Berlin, Germany.,BBMRI-ERIC, Graz, Austria
| |
Collapse
|
15
|
Hay T. Commentary: The Invention of Aboriginal Diabetes: The Role of the Thrifty Gene Hypothesis in Canadian Health Care Provision. Ethn Dis 2018; 28:247-252. [PMID: 30116094 DOI: 10.18865/ed.28.s1.247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to analyze the extent to which the 'thrifty gene hypothesis' remains embedded within regimes of Canadian health care. The thrifty gene hypothesis, formulated by the American geneticist and travelling scientist James V. Neel in 1962, proposed that Indigenous peoples were genetically predisposed to Type 2 diabetes due to the foodways of their ancestors. The hypothesis was functionally racist and based on what biological anthropologists now call 'the myth of forager food insecurity.' Importantly, Neel reconsidered his own hypothesis in 1982 before he ultimately rejected it in 1999; nonetheless, in the mid-1990s, a team of Canadian scientists led by the endocrinologist Robert Hegele of Western University conducted a genetic study on the OjiCree community of Sandy Lake First Nation in northern Ontario. Thereafter, Hegele told the academic world and news media that he had discovered a thrifty gene in Sandy Lake. Like Neel, Hegele later came to reject his own study in 2011. Nonetheless, the 'thrifty gene hypothesis' and Hegele's Sandy Lake study continue to be cited, referenced, and reproduced in the current Clinical Guidelines of the Canadian Diabetes Association, as well as across state-related health literature more broadly. The purpose of this study, then, will be to apply the PHCRP to the thrifty gene hypothesis in a Canadian context.
Collapse
Affiliation(s)
- Travis Hay
- Department of Political Science and Indigenous Learning; Lakehead University; Thunder Bay, Ontario, CN
| |
Collapse
|
16
|
Agarwal G, Jiang Y, Rogers Van Katwyk S, Lemieux C, Orpana H, Mao Y, Hanley B, Davis K, Leuschen L, Morrison H. Effectiveness of the CANRISK tool in the identification of dysglycemia in First Nations and Métis in Canada. Health Promot Chronic Dis Prev Can 2018; 38:55-63. [PMID: 29443485 PMCID: PMC5833636 DOI: 10.24095/hpcdp.38.2.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION First Nations/Métis populations develop diabetes earlier and at higher rates than other Canadians. The Canadian diabetes risk questionnaire (CANRISK) was developed as a diabetes screening tool for Canadians aged 40 years or over. The primary aim of this paper is to assess the effectiveness of the existing CANRISK tool and risk scores in detecting dysglycemia in First Nations/Métis participants, including among those under the age of 40. A secondary aim was to determine whether alternative waist circumference (WC) and body mass index (BMI) cut-off points improved the predictive ability of logistic regression models using CANRISK variables to predict dysglycemia. METHODS Information from a self-administered CANRISK questionnaire, anthropometric measurements, and results of a standard oral glucose tolerance test (OGTT) were collected from First Nations and Métis participants (n = 1479). Sensitivity and specificity of CANRISK scores using published risk score cut-off points were calculated. Logistic regression was conducted with alternative ethnicity-specific BMI and WC cut-off points to predict dysglycemia using CANRISK variables. RESULTS Compared with OGTT results, using a CANRISK score cut-off point of 33, the sensitivity and specificity of CANRISK was 68% and 63% among individuals aged 40 or over; it was 27% and 87%, respectively among those under 40. Using a lower cut-off point of 21, the sensitivity for individuals under 40 improved to 77% with a specificity of 44%. Though specificity at this threshold was low, the higher level of sensitivity reflects the importance of the identification of high risk individuals in this population. Despite altered cut-off points of BMI and WC, logistic regression models demonstrated similar predictive ability. CONCLUSION CANRISK functioned well as a preliminary step for diabetes screening in a broad age range of First Nations and Métis in Canada, with an adjusted CANRISK cutoff point for individuals under 40, and with no incremental improvement from using alternative BMI/WC cut-off points.
Collapse
Affiliation(s)
- Gina Agarwal
- Departments of Family Medicine and Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Ying Jiang
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | | | - Chantal Lemieux
- Public Health Agency of Canada, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Heather Orpana
- Public Health Agency of Canada, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yang Mao
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Brandan Hanley
- Yukon Health and Social Services, Whitehorse, Yukon, Canada
| | - Karen Davis
- Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
17
|
Li S, Pasquin S, Eid HM, Gauchat JF, Saleem A, Haddad PS. Anti-apoptotic potential of several antidiabetic medicinal plants of the eastern James Bay Cree pharmacopeia in cultured kidney cells. Altern Ther Health Med 2018; 18:37. [PMID: 29378549 PMCID: PMC5789738 DOI: 10.1186/s12906-018-2104-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
Background Our team has identified 17 Boreal forest species from the traditional pharmacopeia of the Eastern James Bay Cree that presented promising in vitro and in vivo biological activities in the context of type 2 diabetes (T2D). We now screened the 17 plants extracts for potential anti-apoptotic activity in cultured kidney cells and investigated the underlying mechanisms. Methods MDCK (Madin-Darnby Canine Kidney) cell damage was induced by hypertonic medium (700 mOsm/L) in the presence or absence of maximal nontoxic concentrations of each of the 17 plant extracts. After 18 h’ treatment, cells were stained with Annexin V (AnnV) and Propidium iodide (PI) and subjected to flow cytometry to assess the cytoprotective (AnnV−/PI−) and anti-apoptotic (AnnV+/PI−) potential of the 17 plant extracts. We then selected a representative subset of species (most cytoprotective, moderately so or neutral) to measure the activity of caspases 3, 8 and 9. Results Gaultheria hispidula and Abies balsamea are amongst the most powerful cytoprotective and anti-apoptotic plants and appear to exert their modulatory effect primarily by inhibiting caspase 9 in the mitochondrial apoptotic signaling pathway. Conclusion We conclude that several Cree antidiabetic plants exert anti-apoptotic activity that may be relevant in the context of diabetic nephropathy (DN) that affects a significant proportion of Cree diabetics.
Collapse
|
18
|
Li YF, Altman RB. Systematic target function annotation of human transcription factors. BMC Biol 2018; 16:4. [PMID: 29325558 PMCID: PMC5795274 DOI: 10.1186/s12915-017-0469-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background Transcription factors (TFs), the key players in transcriptional regulation, have attracted great experimental attention, yet the functions of most human TFs remain poorly understood. Recent capabilities in genome-wide protein binding profiling have stimulated systematic studies of the hierarchical organization of human gene regulatory network and DNA-binding specificity of TFs, shedding light on combinatorial gene regulation. We show here that these data also enable a systematic annotation of the biological functions and functional diversity of TFs. Result We compiled a human gene regulatory network for 384 TFs covering the 146,096 TF–target gene (TF–TG) relationships, extracted from over 850 ChIP-seq experiments as well as the literature. By integrating this network of TF–TF and TF–TG relationships with 3715 functional concepts from six sources of gene function annotations, we obtained over 9000 confident functional annotations for 279 TFs. We observe extensive connectivity between TFs and Mendelian diseases, GWAS phenotypes, and pharmacogenetic pathways. Further, we show that TFs link apparently unrelated functions, even when the two functions do not share common genes. Finally, we analyze the pleiotropic functions of TFs and suggest that the increased number of upstream regulators contributes to the functional pleiotropy of TFs. Conclusion Our computational approach is complementary to focused experimental studies on TF functions, and the resulting knowledge can guide experimental design for the discovery of unknown roles of TFs in human disease and drug response. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0469-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Fuga Li
- Stanford Genome Technology Center, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Present address: Department of Bioinformatics, Illumina Inc., San Diego, CA, USA.
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, Topol EJ, Seufferlein T, Boehm BO. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 2017; 15:213. [PMID: 29207974 PMCID: PMC5717832 DOI: 10.1186/s12916-017-0977-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of diabetes for mutations in disease-associated genes. METHODS We utilized a targeted sequencing approach using the Illumina HiSeq to perform a case-control sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346 individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants identified from the sequence data and compared the frequencies of pathogenic variants (protein-truncating variants and missense variants) between the cases and controls. RESULTS A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group) were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCC8, and INS genes. In addition, heterozygous protein truncating mutations were detected in the GCK, HNF1A, and HNF1B genes in seven individuals with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was homozygous for a rare pathogenic missense variant in the WFS1 gene but did not have the additional phenotypes associated with Wolfram syndrome. CONCLUSION Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed, particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a specific diagnosis, inform disease prognosis and may help to better stratify treatment plans.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | | | - Tierney Phillips
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Glenn Oliveira
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Rebecca Harbaugh
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Nikki Villarasa
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Bernhard O Boehm
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Imperial College London, London, UK.
| |
Collapse
|
20
|
Sawatsky L, Halipchuk J, Wicklow B. Type 2 diabetes in a four-year-old child. CMAJ 2017; 189:E888-E890. [PMID: 28676579 DOI: 10.1503/cmaj.170259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lindsay Sawatsky
- Health Sciences Centre Winnipeg (Sawatsky, Halipchuk); Department of Pediatrics and Child Health (Wicklow), Rady Faculty of Health Sciences, University of Manitoba; The Children's Hospital Research Institute of Manitoba (Wicklow), Winnipeg, Man.
| | - Julie Halipchuk
- Health Sciences Centre Winnipeg (Sawatsky, Halipchuk); Department of Pediatrics and Child Health (Wicklow), Rady Faculty of Health Sciences, University of Manitoba; The Children's Hospital Research Institute of Manitoba (Wicklow), Winnipeg, Man
| | - Brandy Wicklow
- Health Sciences Centre Winnipeg (Sawatsky, Halipchuk); Department of Pediatrics and Child Health (Wicklow), Rady Faculty of Health Sciences, University of Manitoba; The Children's Hospital Research Institute of Manitoba (Wicklow), Winnipeg, Man
| |
Collapse
|
21
|
Najmi LA, Aukrust I, Flannick J, Molnes J, Burtt N, Molven A, Groop L, Altshuler D, Johansson S, Bjørkhaug L, Njølstad PR. Functional Investigations of HNF1A Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population. Diabetes 2017; 66:335-346. [PMID: 27899486 PMCID: PMC5860263 DOI: 10.2337/db16-0460] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73-5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99-12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population.
Collapse
Affiliation(s)
- Laeya Abdoli Najmi
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Noel Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Center, Lund University, Malmö, Sweden
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA
- Departments of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedical Laboratory Sciences, Bergen University College, Bergen, Norway
| | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Laver TW, Colclough K, Shepherd M, Patel K, Houghton JAL, Dusatkova P, Pruhova S, Morris AD, Palmer CN, McCarthy MI, Ellard S, Hattersley AT, Weedon MN. The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes 2016; 65:3212-7. [PMID: 27486234 PMCID: PMC5035684 DOI: 10.2337/db16-0628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
HNF4A mutations cause increased birth weight, transient neonatal hypoglycemia, and maturity onset diabetes of the young (MODY). The most frequently reported HNF4A mutation is p.R114W (previously p.R127W), but functional studies have shown inconsistent results; there is a lack of cosegregation in some pedigrees and an unexpectedly high frequency in public variant databases. We confirm that p.R114W is a pathogenic mutation with an odds ratio of 30.4 (95% CI 9.79-125, P = 2 × 10(-21)) for diabetes in our MODY cohort compared with control subjects. p.R114W heterozygotes did not have the increased birth weight of patients with other HNF4A mutations (3,476 g vs. 4,147 g, P = 0.0004), and fewer patients responded to sulfonylurea treatment (48% vs. 73%, P = 0.038). p.R114W has reduced penetrance; only 54% of heterozygotes developed diabetes by age 30 years compared with 71% for other HNF4A mutations. We redefine p.R114W as a pathogenic mutation that causes a distinct clinical subtype of HNF4A MODY with reduced penetrance, reduced sensitivity to sulfonylurea treatment, and no effect on birth weight. This has implications for diabetes treatment, management of pregnancy, and predictive testing of at-risk relatives. The increasing availability of large-scale sequence data is likely to reveal similar examples of rare, low-penetrance MODY mutations.
Collapse
Affiliation(s)
- Thomas W Laver
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Kevin Colclough
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Maggie Shepherd
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Kashyap Patel
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Jayne A L Houghton
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Petra Dusatkova
- Department of Paediatrics, Second Faculty of Medicine, Charles University
and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, Second Faculty of Medicine, Charles University
and University Hospital Motol, Prague, Czech Republic
| | - Andrew D Morris
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Colin N Palmer
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K. National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Sian Ellard
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K
| | - Michael N Weedon
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, U.K.
| |
Collapse
|
23
|
Flannick J, Johansson S, Njølstad PR. Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol 2016; 12:394-406. [PMID: 27080136 DOI: 10.1038/nrendo.2016.50] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insights into the genetic basis of type 2 diabetes mellitus (T2DM) have been difficult to discern, despite substantial research. More is known about rare forms of diabetes mellitus, several of which share clinical and genetic features with the common form of T2DM. In this Review, we discuss the extent to which the study of rare and low-frequency mutations in large populations has begun to bridge the gap between rare and common forms of diabetes mellitus. We hypothesize that the perceived division between these diseases might be due, in part, to the historical ascertainment bias of genetic studies, rather than a clear distinction between disease pathophysiologies. We also discuss possible implications of a new model for the genetic basis of diabetes mellitus subtypes, where the boundary between subtypes becomes blurred.
Collapse
Affiliation(s)
- Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA
- Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Stefan Johansson
- K.G. Jebsen Center for Diabetes Research, The Department of Clinical Science, University of Bergen, Jonas Lies veg 87, N-5020 Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Jonas Lies veg 65, N-5021 Bergen, Norway
| | - Pål R Njølstad
- K.G. Jebsen Center for Diabetes Research, The Department of Clinical Science, University of Bergen, Jonas Lies veg 87, N-5020 Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Jonas Lies veg 65, N-5021 Bergen, Norway
| |
Collapse
|
24
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
25
|
Nair AK, Baier LJ. Complex Genetics of Type 2 Diabetes and Effect Size: What have We Learned from Isolated Populations? Rev Diabet Stud 2016; 12:299-319. [PMID: 27111117 DOI: 10.1900/rds.2015.12.299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic studies in large outbred populations have documented a complex, highly polygenic basis for type 2 diabetes (T2D). Most of the variants currently known to be associated with T2D risk have been identified in large studies that included tens of thousands of individuals who are representative of a single major ethnic group such as European, Asian, or African. However, most of these variants have only modest effects on the risk for T2D; identification of definitive 'causal variant' or 'causative loci' is typically lacking. Studies in isolated populations offer several advantages over outbred populations despite being, on average, much smaller in sample size. For example, reduced genetic variability, enrichment of rare variants, and a more uniform environment and lifestyle, which are hallmarks of isolated populations, can reduce the complexity of identifying disease-associated genes. To date, studies in isolated populations have provided valuable insight into the genetic basis of T2D by providing both a deeper understanding of previously identified T2D-associated variants (e.g. demonstrating that variants in KCNQ1 have a strong parent-of-origin effect) or providing novel variants (e.g. ABCC8 in Pima Indians, TBC1D4 in the Greenlandic population, HNF1A in Canadian Oji-Cree). This review summarizes advancements in genetic studies of T2D in outbred and isolated populations, and provides information on whether the difference in the prevalence of T2D in different populations (Pima Indians vs. non-Hispanic Whites and non-Hispanic Whites vs. non-Hispanic Blacks) can be explained by the difference in risk allele frequencies of established T2D variants.
Collapse
Affiliation(s)
- Anup K Nair
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85004, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85004, USA
| |
Collapse
|
26
|
Leung L. Diabetes mellitus and the Aboriginal diabetic initiative in Canada: An update review. J Family Med Prim Care 2016; 5:259-265. [PMID: 27843824 PMCID: PMC5084544 DOI: 10.4103/2249-4863.192362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus is a chronic disease of major global health concern due to its increasing prevalence in both developing and developed counties, with a projection increase of 214% from the year 2000 to 2030. Among the Aboriginal population of Canada (which includes the First Nations, Inuit and Metis), diabetes mellitus contribute significantly to their higher morbidity and increased health disparity when compared to the non-Aboriginal Canadians. In view of this, the Federal Government of Canada had launched the Aboriginal Diabetes Initiative (ADI) in 1999 as part of the bigger Canadian Diabetes Strategy to provide a better framework for surveillance, public education and community-based management of diabetes. Originally, ADI was intended for a 5-year cycle, but it was renewed twice in 2005 and then 2010, with a total funding of C$523 million. Given its long history of operation and the massive amount of revenue being injected, it is worthwhile to review the background information and the relevant data that had fostered the ADI; and more importantly, to critically evaluate the benefits and impact of the ADI in terms of the actual health of the Aboriginals and their social inequalities.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre for Studies in Primary Care, Queen's University, Kingston, ON K7L 5E9, Canada; Department of Family Medicine, Queen's University, Kingston, ON K7L 5E9, Canada
| |
Collapse
|
27
|
McGavock J, Hatch GM. Stemming the tide of type 2 diabetes in youth: DREAMing big, one sandbag at a time. Biochem Cell Biol 2015; 93:423-4. [PMID: 26412452 DOI: 10.1139/bcb-2015-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jonathan McGavock
- a DREAM Theme, 513 JBRC, 715 McDermot Avenue, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.,b The Department of Pediatrics and Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba
| | - Grant M Hatch
- a DREAM Theme, 513 JBRC, 715 McDermot Avenue, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.,c Department of Pharmacology, College of Medicine, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|
28
|
Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, Li D, Neale RE, Olson SH, Scelo G, Amundadottir LT, Bamlet WR, Bijlsma MF, Blackford A, Borges M, Brennan P, Brenner H, Bueno-de-Mesquita HB, Canzian F, Capurso G, Cavestro GM, Chaffee KG, Chanock SJ, Cleary SP, Cotterchio M, Foretova L, Fuchs C, Funel N, Gazouli M, Hassan M, Herman JM, Holcatova I, Holly EA, Hoover RN, Hung RJ, Janout V, Key TJ, Kupcinskas J, Kurtz RC, Landi S, Lu L, Malecka-Panas E, Mambrini A, Mohelnikova-Duchonova B, Neoptolemos JP, Oberg AL, Orlow I, Pasquali C, Pezzilli R, Rizzato C, Saldia A, Scarpa A, Stolzenberg-Solomon RZ, Strobel O, Tavano F, Vashist YK, Vodicka P, Wolpin BM, Yu H, Petersen GM, Risch HA, Klein AP. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet 2015; 47:911-916. [PMID: 26098869 PMCID: PMC4520746 DOI: 10.1038/ng.3341] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.
Collapse
Affiliation(s)
- Erica J Childs
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniele Campa
- 1] Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2] Department of Biology, University of Pisa, Pisa, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Kelvin Grove,Queensland, Australia
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Laufey T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Amanda Blackford
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael Borges
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - H Bas Bueno-de-Mesquita
- 1] Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. [2] Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. [3] Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. [4] Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy
| | - Giulia M Cavestro
- Università Vita Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Sean P Cleary
- 1] Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. [2] Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Michelle Cotterchio
- 1] Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada. [2] Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and Medical Faculty Masaryk University, Brno, Czech Republic
| | - Charles Fuchs
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Niccola Funel
- Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy
| | - Maria Gazouli
- Department of Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - Manal Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph M Herman
- Department of Radiation Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ivana Holcatova
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Timothy J Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stefano Landi
- Department of Biology, Section of Genetics, University of Pisa, Pisa, Italy
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Andrea Mambrini
- Department of Oncology, Azienda USL 1 Massa Carrara, Massa Carrara, Italy
| | | | - John P Neoptolemos
- National Institute for Health Research (NIHR) Pancreas Biomedical Research Unit, Liverpool Clinical Trials Unit and Cancer Research UK Clinical Trials Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Claudio Pasquali
- Department of Surgery, Gastroenterology and Oncology, University of Padua, Padua, Italy
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Cosmeri Rizzato
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amethyst Saldia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Aldo Scarpa
- ARC-NET-Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Rachael Z Stolzenberg-Solomon
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Rockville, Maryland, USA
| | - Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Italy
| | - Yogesh K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic
| | - Brian M Wolpin
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Alison P Klein
- 1] Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. [2] Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Jonasson ME, Wicklow BA, Sellers EAC, Dolinsky VW, Doucette CA. Exploring the role of the HNF-1αG319S polymorphism in β cell failure and youth-onset type 2 diabetes: Lessons from MODY and Hnf-1α-deficient animal models. Biochem Cell Biol 2015; 93:487-94. [PMID: 26176428 DOI: 10.1139/bcb-2015-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The prevalence of youth-onset type 2 diabetes (T2D) is rapidly increasing worldwide, disproportionately affecting Indigenous youth with Oji-Cree heritage from central Canada. Candidate gene screening has uncovered a novel and private polymorphism in the Oji-Cree population in the hepatocyte nuclear factor-1 alpha (HNF-1α) gene, where a highly conserved glycine residue at position 319 is changed to a serine (termed HNF-1αG319S or simply G319S). Oji-Cree youth who carry one or two copies of the "S-allele" present at diagnosis with less obesity, reduced indicators of insulin resistance, and lower plasma insulin levels at diagnosis, suggestive of a primary defect in the insulin-secreting β cells. Few studies on the impact of the HNF-1αG319S variant on β cell function have been performed to date; however, much can be learned from other clinical phenotypes of HNF-1α-deficiency, including HNF-1α mutations that cause maturity-onset diabetes of the young 3 (MODY3). In addition, evaluation of Hnf-1α-deficient murine models reveals that HNF-1α plays a central role in the regulation of insulin secretion by regulating the expression of key genes involved in β cell glucose-sensing, mitochondrial function, and the maintenance of the β cell phenotype in differentiated β cells. The overall goal of this minireview is to explore the impact of HNF-1α-deficiency on the β cell to better inform future research into the mechanisms of β cell dysfunction in Oji-Cree youth with T2D.
Collapse
Affiliation(s)
- Michael E Jonasson
- d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Brandy A Wicklow
- b Department of Pediatrics and Child Health, University of Manitoba, CE-208 Childrens Hospital, 840 Sherbrook Street, Health Sciences Centre, Winnipeg, MB R3A 1S1, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Elizabeth A C Sellers
- b Department of Pediatrics and Child Health, University of Manitoba, CE-208 Childrens Hospital, 840 Sherbrook Street, Health Sciences Centre, Winnipeg, MB R3A 1S1, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- c Department of Pharmacology and Therapeutics, A203 Chown Bldg., 753 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Christine A Doucette
- a College of Medicine, Faculty of Health Sciences, Department of Physiology & Pathophysiology, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| |
Collapse
|
30
|
Estrada K, Aukrust I, Bjørkhaug L, Burtt NP, Mercader JM, García-Ortiz H, Huerta-Chagoya A, Moreno-Macías H, Walford G, Flannick J, Williams AL, Gómez-Vázquez MJ, Fernandez-Lopez JC, Martínez-Hernández A, Jiménez-Morales S, Centeno-Cruz F, Mendoza-Caamal E, Revilla-Monsalve C, Islas-Andrade S, Córdova EJ, Soberón X, González-Villalpando ME, Henderson E, Wilkens LR, Le Marchand L, Arellano-Campos O, Ordóñez-Sánchez ML, Rodríguez-Torres M, Rodríguez-Guillén R, Riba L, Najmi LA, Jacobs SBR, Fennell T, Gabriel S, Fontanillas P, Hanis CL, Lehman DM, Jenkinson CP, Abboud HE, Bell GI, Cortes ML, Boehnke M, González-Villalpando C, Orozco L, Haiman CA, Tusié-Luna T, Aguilar-Salinas CA, Altshuler D, Njølstad PR, Florez JC, MacArthur DG. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 2014; 311:2305-14. [PMID: 24915262 PMCID: PMC4425850 DOI: 10.1001/jama.2014.6511] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes worldwide. OBJECTIVES To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14,276 participants and characterized in experimental assays. MAIN OUTCOME AND MEASURES Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10(-7)) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.
Collapse
Affiliation(s)
| | - Karol Estrada
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts2Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway6Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway5Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Josep M Mercader
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston8Joint BSC-CRG-IRB Research Prog
| | | | - Alicia Huerta-Chagoya
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico
| | | | - Geoffrey Walford
- Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts13Department of Molecular Biology, Harvard Medical School, Boston, Massachusetts
| | - Amy L Williams
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts14Department of Biological Sciences, Columbia University, New York, New York
| | - María J Gómez-Vázquez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | | | | | | | | | | | - Cristina Revilla-Monsalve
- Unidad de Investigación Médica en Enfermedades Metabólicas, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City
| | - Sergio Islas-Andrade
- Unidad de Investigación Médica en Enfermedades Metabólicas, CMN SXXI, Instituto Mexicano del Seguro Social, Mexico City
| | - Emilio J Córdova
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - María E González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu
| | - Olimpia Arellano-Campos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Maria L Ordóñez-Sánchez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Laura Riba
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico
| | - Laeya A Najmi
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway23Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Suzanne B R Jacobs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Timothy Fennell
- The Genomics Platform, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Stacey Gabriel
- The Genomics Platform, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Pierre Fontanillas
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Craig L Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio
| | | | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center at San Antonio
| | - Graeme I Bell
- Department of Human Genetics, University of Chicago, Chicago, Illinois28Department of Medicine, University of Chicago, Chicago, Illinois
| | - Maria L Cortes
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Publica, Mexico City, Mexico
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Tlalpan, Mexico City, Mexico
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Teresa Tusié-Luna
- Instituto de Investigaciones Biomédicas, UNAM Unidad de Biología Molecular y Medicina Genómica, UNAM/INCMNSZ, Coyoacán, Mexico City, Mexico17Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Sección XVI, Tlalpan, Mexico City, Mexico
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit)
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway5Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts7Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit)
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926713. [PMID: 24864266 PMCID: PMC4016836 DOI: 10.1155/2014/926713] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/22/2014] [Indexed: 02/06/2023]
Abstract
With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) at a genome-wide significant level (P < 5 × 10−8). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D.
Collapse
|
32
|
Basile KJ, Johnson ME, Xia Q, Grant SFA. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies. Int J Endocrinol 2014; 2014:769671. [PMID: 24719615 PMCID: PMC3955626 DOI: 10.1155/2014/769671] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context.
Collapse
Affiliation(s)
- Kevin J. Basile
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Matthew E. Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Qianghua Xia
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Struan F. A. Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- 1216F Children's Hospital of Philadelphia Research Institute, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA
- *Struan F. A. Grant:
| |
Collapse
|
33
|
Bonatto N, Nogaroto V, Svidnicki PV, Milléo FQ, Grassiolli S, Almeida MC, Vicari MR, Artoni RF. Variants of the HNF1α gene: A molecular approach concerning diabetic patients from southern Brazil. Genet Mol Biol 2012; 35:737-40. [PMID: 23271932 PMCID: PMC3526079 DOI: 10.1590/s1415-47572012005000061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) presents monogenic inheritance and mutation factors which have already been identified in six different genes. Given the wide molecular variation present in the hepatocyte nuclear factor-1α gene (HNF1α) MODY3, the aim of this study was to amplify and sequence the coding regions of this gene in seven patients from the Campos Gerais region, Paraná State, Brazil, presenting clinical MODY3 features. Besides the synonymous variations, A15A, L17L, Q141Q, G288G and T515T, two missense mutations, I27L and A98V, were also detected. Clinical and laboratory data obtained from patients were compared with the molecular findings, including the I27L polymorphism that was revealed in some overweight/obese diabetic patients of this study, this corroborating with the literature. We found certain DNA variations that could explain the hyperglycemic phenotype of the patients.
Collapse
Affiliation(s)
- Naieli Bonatto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Viviane Nogaroto
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Paulo V. Svidnicki
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Fábio Q. Milléo
- Departamento de Cirurgia, Hospital Vicentino da Sociedade Beneficente São Camilo, Ponta Grossa, PR, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Mara C. Almeida
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Marcelo R. Vicari
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Roberto F. Artoni
- Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
34
|
Millar K, Dean HJ. Developmental origins of type 2 diabetes in aboriginal youth in Canada: it is more than diet and exercise. J Nutr Metab 2012; 2012:127452. [PMID: 22288007 PMCID: PMC3263630 DOI: 10.1155/2012/127452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is classically viewed as a disease of adults caused by poor nutrition, physical inactivity, and obesity. However, with increasing awareness of the heterogeneity of T2DM, new risk factors are being identified that add complexity. Some of these new risk factors have been identified in Canadian people with Aboriginal Oji-Cree heritage, a group that demonstrates one of the highest rates of T2DM in the world. This high prevalence may be due to the rapid change, over the past 50 years, away from their traditional way of life on the land. Another environmental change is the increased rate of pregnancies complicated by obesity, gestational diabetes, or T2DM, resulting in more children being exposed to an abnormal intrauterine environment. Furthermore, the Oji-Cree of central Canada possesses the unique HNF-1α G319S polymorphism associated with reduced insulin secretion. We propose that intrauterine exposure to maternal obesity and T2DM, associated with the HNF-1α G319S polymorphism, results in fetal programming that accelerates the progression of early-onset T2DM. This paper describes the evolution of T2DM in children with a focus on the Oji-Cree people over the past 25 years and the unique prenatal and postnatal gene-environment interaction causing early-onset T2DM.
Collapse
Affiliation(s)
- Kyle Millar
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E 0Z2
| | - Heather J. Dean
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E 0Z2
- Section of Endocrinology and Metabolism, Department of Pediatrics, University of Manitoba, Winnipeg, MB, Canada R3E 0Z2
| |
Collapse
|
35
|
Ley SH, Hegele RA, Harris SB, Mamakeesick M, Cao H, Connelly PW, Gittelsohn J, Retnakaran R, Zinman B, Hanley AJ. HNF1A G319S variant, active cigarette smoking and incident type 2 diabetes in Aboriginal Canadians: a population-based epidemiological study. BMC MEDICAL GENETICS 2011; 12:1. [PMID: 21208426 PMCID: PMC3022797 DOI: 10.1186/1471-2350-12-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 01/05/2011] [Indexed: 12/02/2022]
Abstract
Background In a recent report of large-scale association analysis, a type 2 diabetes susceptibility locus near HNF1A was identified in predominantly European descent populations. A population-specific G319S polymorphism in HNF1A was previously identified in Aboriginal Canadians who have a high prevalence of type 2 diabetes. We aimed to investigate the association of the HNF1A G319S polymorphism with incident type 2 diabetes and to assess whether clinical risk variables for type 2 diabetes influence the association in an Aboriginal population. Methods Of 606 participants who were free of diabetes at baseline in 1993-1995, 540 (89.1%) participated in 10-year follow-up assessments in 2003-2005. Fasting glucose and a 75-g oral glucose tolerance test were obtained to determine incident type 2 diabetes. Participants were genotyped for the HNF1A G319S polymorphism. Interviewers administered questionnaires on smoking behavior. Results The incidence rates of type 2 diabetes were 14.2% (55/388) in major allele homozygotes and 31.2% (29/93) in minor allele carriers (p < 0.001). The HNF1A G319S carrier status was associated with incident type 2 diabetes (odds ratio [OR] 3.78 [95% CI 2.13-6.69]) after adjustment for age, sex, hypertension, triglyceride, HDL cholesterol, and waist circumference. A statistical interaction was observed between HNF1A G319S and baseline active cigarette smoking on the development of type 2 diabetes with similar adjustment (p = 0.006). When participants were stratified by baseline smoking status, HNF1A G319S carriers who were active smokers had increased risk of developing diabetes (OR 6.91 [95% CI 3.38-14.12]), while the association was attenuated to non-significance among non-smokers (1.11 [0.40-3.08]). Conclusions The HNF1A G319S variant is associated with incident type 2 diabetes in Aboriginal Canadians. Furthermore, cigarette smoking appears to amplify incident diabetes risk in carriers of HNF1A G319S.
Collapse
Affiliation(s)
- Sylvia H Ley
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Ley SH, Hegele RA, Connelly PW, Harris SB, Mamakeesick M, Cao H, Gittelsohn J, Retnakaran R, Zinman B, Hanley AJ. Assessing the association of the HNF1A G319S variant with C-reactive protein in Aboriginal Canadians: a population-based epidemiological study. Cardiovasc Diabetol 2010; 9:39. [PMID: 20716378 PMCID: PMC2929219 DOI: 10.1186/1475-2840-9-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/18/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND C-reactive protein (CRP), a biomarker of inflammation, has been associated with increased risk of developing cardiovascular disease. Common variants of the hepatocyte nuclear factor 1A (HNF1A) gene encoding HNF-1alpha have been associated with plasma CRP in predominantly European Caucasian samples. HNF1A might therefore have an impact on vascular disease and diabetes risk that is mediated by CRP. In an Aboriginal Canadian population, a private polymorphism, HNF1A G319S, was associated with increased prevalence of type 2 diabetes. However, it has not been investigated whether this association is mediated by CRP. We aimed to investigate whether CRP was mediating the association between HNF1A G319S and type 2 diabetes in an Aboriginal Canadian population with a high prevalence of diabetes. METHODS A total of 718 individuals who participated in a diabetes prevalence and risk factor survey were included in the current analysis. Participants were genotyped for HNF1A G319S. Fasting plasma samples were analyzed for CRP. Fasting plasma glucose and a 75-g oral glucose tolerance test were obtained to determine type 2 diabetes. RESULTS The prevalence rate of type 2 diabetes was 17.4% (125/718) using the 1999 World Health Organization definition and was higher among S319 allele carriers compared to G/G homozygotes (p < 0.0001). Among participants without type 2 diabetes, CRP levels were higher among G/G homozygotes (1.64 [95% confidence interval 1.35-2.00] mg/l) than in S319 carriers (1.26 [1.04-1.54] mg/l) (p = 0.009) after adjustment for age, sex, 2-h post-load glucose, waist circumference, and serum amyloid A. CRP levels were elevated among those with diabetes after similar adjustment (4.39 [95% confidence interval 3.09-6.23] and 4.44 [3.13-6.30] mg/L, respectively), and no significant difference in CRP was observed between S319 carriers and non-carriers (p = 0.95). CONCLUSIONS CRP levels were lower in S319 allele carriers of the HNF1A gene compared to non-carriers among individuals without diabetes, but this difference was not present among those with diabetes, who uniformly had elevated CRP levels. Therefore, while HNF1A appears to influence CRP concentrations in the non-diabetic state, chronic elevation of CRP is unlikely mediating the association between the HNF1A polymorphism and the high prevalence of type 2 diabetes in this Aboriginal population.
Collapse
Affiliation(s)
- Sylvia H Ley
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney ASF, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PRV, Jørgensen T, Kao WHL, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JRB, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, et alVoight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney ASF, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PRV, Jørgensen T, Kao WHL, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JRB, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CNA, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI, MAGIC investigators, GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42:579-89. [PMID: 20581827 PMCID: PMC3080658 DOI: 10.1038/ng.609] [Show More Authors] [Citation(s) in RCA: 1380] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/26/2010] [Indexed: 12/11/2022]
Abstract
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
Collapse
Affiliation(s)
- Benjamin F Voight
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jafar-Mohammadi B, Groves CJ, Owen KR, Frayling TM, Hattersley AT, McCarthy MI, Gloyn AL. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes. PLoS One 2009; 4:e6615. [PMID: 19672314 PMCID: PMC2720540 DOI: 10.1371/journal.pone.0006615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/08/2009] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8-10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1-7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8-10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D. METHODOLOGY AND PRINCIPAL FINDINGS We performed targeted capillary resequencing of HNF1A exons 8-10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (< or =45 years) and/or family history of T2D (> or =1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9-24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected. CONCLUSIONS AND SIGNIFICANCE We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.
Collapse
Affiliation(s)
- Bahram Jafar-Mohammadi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Christopher J. Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Katharine R. Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Timothy M. Frayling
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
40
|
Hegele RA, Pollex RL. Hypertriglyceridemia: phenomics and genomics. Mol Cell Biochem 2009; 326:35-43. [PMID: 19130180 DOI: 10.1007/s11010-008-0005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
Hypertriglyceridemia is a common complex metabolic trait that is associated with increased atherosclerosis risk, presence of the metabolic syndrome and, with extreme elevation, increased risk of pancreatitis. Hierarchical cluster analysis using clinical and biochemical features of the Frederickson hyperlipoproteinemia types can generate hypotheses for molecular genetic studies. High throughput resequencing of individuals at the extremes of plasma triglyceride concentration has shown that both rare genetic variants with large effects and common genetic variants with moderate effects explain a relatively large proportion of variation. Very recent progress using high-density sets of genome-wide markers have identified additional genetic determinants of plasma triglyceride concentrations, albeit within largely normolipidemic subjects and with small effect sizes. Phenomic evaluation of patients with hypertriglyceridemia might help to clarify genotype-phenotype correlations and responses to interventions.
Collapse
Affiliation(s)
- Robert A Hegele
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5K8, Canada.
| | | |
Collapse
|
41
|
McCarthy MI, Hattersley AT. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 2008; 57:2889-98. [PMID: 18971436 PMCID: PMC2570381 DOI: 10.2337/db08-0343] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | |
Collapse
|
42
|
Harries LW, Sloman MJ, Sellers EAC, Hattersley AT, Ellard S. Diabetes susceptibility in the Canadian Oji-Cree population is moderated by abnormal mRNA processing of HNF1A G319S transcripts. Diabetes 2008. [PMID: 18586913 PMCID: PMC2453634 DOI: 10.2337/db07-1633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE—The G319S HNF1A variant is associated with an increased risk of type 2 diabetes in the Canadian Oji-Cree population. We hypothesized that the variant site at the 3′ end of exon 4 might influence splicing and characterized mRNA transcripts to investigate the mutational mechanism underlying this susceptibility to diabetes. RESEARCH DESIGN AND METHODS—We established lymphoblastoid cell lines from a G319S homozygote and controls. HNF1A transcripts were characterized in the cell lines and pancreatic tissue by sequence analysis of RT-PCR products and quantification using real-time PCR. Susceptibility to mRNA surveillance was investigated using cycloheximide. RESULTS—Full-length G319S mRNA accounted for 24% of mRNA transcripts in the homozygous G319S cell line. A novel isoform lacking the terminal 12 bases of exon 4 was upregulated (55% of mRNA transcripts) compared with control cell lines (33%) and human pancreatic tissue (17%). Two abnormal transcripts present only in the G319S cell line included premature termination codons as a result of the inclusion of seven nucleotides from intron 4 or the deletion of exon 8. Cycloheximide treatment increased the levels of both transcripts. CONCLUSIONS—The G319S variant results in the production of two abnormal transcripts and an alteration in the relative balance of normal splicing products. This is predicted to lead to a reduction in total HNF1A transcript levels, but residual hepatocyte nuclear factor-1α protein activity in G319S homozygotes may still reach up to 66% of normal levels. A combination of abnormal splicing and reduced activity of the G319S protein may explain the diabetes susceptibility.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, U.K.
| | | | | | | | | |
Collapse
|
43
|
Harries LW, Sloman MJ, Sellers EAC, Hattersley AT, Ellard S. Diabetes susceptibility in the Canadian Oji-Cree population is moderated by abnormal mRNA processing of HNF1A G319S transcripts. Diabetes 2008; 57:1978-82. [PMID: 18586913 PMCID: PMC2453634 DOI: 10.2337/db07-1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 04/02/2008] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The G319S HNF1A variant is associated with an increased risk of type 2 diabetes in the Canadian Oji-Cree population. We hypothesized that the variant site at the 3' end of exon 4 might influence splicing and characterized mRNA transcripts to investigate the mutational mechanism underlying this susceptibility to diabetes. RESEARCH DESIGN AND METHODS We established lymphoblastoid cell lines from a G319S homozygote and controls. HNF1A transcripts were characterized in the cell lines and pancreatic tissue by sequence analysis of RT-PCR products and quantification using real-time PCR. Susceptibility to mRNA surveillance was investigated using cycloheximide. RESULTS Full-length G319S mRNA accounted for 24% of mRNA transcripts in the homozygous G319S cell line. A novel isoform lacking the terminal 12 bases of exon 4 was upregulated (55% of mRNA transcripts) compared with control cell lines (33%) and human pancreatic tissue (17%). Two abnormal transcripts present only in the G319S cell line included premature termination codons as a result of the inclusion of seven nucleotides from intron 4 or the deletion of exon 8. Cycloheximide treatment increased the levels of both transcripts. CONCLUSIONS The G319S variant results in the production of two abnormal transcripts and an alteration in the relative balance of normal splicing products. This is predicted to lead to a reduction in total HNF1A transcript levels, but residual hepatocyte nuclear factor-1alpha protein activity in G319S homozygotes may still reach up to 66% of normal levels. A combination of abnormal splicing and reduced activity of the G319S protein may explain the diabetes susceptibility.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, U.K.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Maturity-onset diabetes of the young (MODY) is a type of non-insulin-dependent diabetes mellitus caused by rare autosomal-dominant mutations. MODY genes play key biochemical roles in the pancreatic beta cell; therefore, common variants of MODY genes are excellent candidate genes for type 2 diabetes. We review recent studies that suggest that common MODY gene variation contributes modestly to the heritability of type 2 diabetes.
Collapse
Affiliation(s)
- Michael N Weedon
- Institute of Biomedical & Clinical Sciences, Peninsula College of Medicine & Dentistry, Peninsula Medical School, St. Lukes Campus, Magdalen Road, Exeter EX1 2LU, UK.
| | | |
Collapse
|
45
|
Holmkvist J, Cervin C, Lyssenko V, Winckler W, Anevski D, Cilio C, Almgren P, Berglund G, Nilsson P, Tuomi T, Lindgren CM, Altshuler D, Groop L. Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia 2006; 49:2882-91. [PMID: 17033837 DOI: 10.1007/s00125-006-0450-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/25/2006] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Mutations in the hepatocyte nuclear factor 1-alpha gene (HNF-1alpha, now known as the transcription factor 1 gene [TCF1]) cause the most common monogenic form of diabetes, MODY3, but it is not known if common variants in HNF-1a are associated with decreased transcriptional activity or phenotypes related to type 2 diabetes, or whether they predict future type 2 diabetes. SUBJECTS AND METHODS We studied the effect of four common polymorphisms (rs1920792, I27L, A98V and S487N) in and upstream of the HNF-1alpha gene on transcriptional activity in vitro, and their possible association with type 2 diabetes and insulin secretion in vivo. RESULTS Certain combinations of the I27L and A98V polymorphisms in the HNF-1alpha gene showed decreased transcriptional activity on the target promoters glucose transporter 2 (now known as solute carrier family 2 [facilitated glucose transporter], member 2) and albumin in both HeLa and INS-1 cells. In vivo, these polymorphisms were associated with a modest but significant impairment in insulin secretion in response to oral glucose. Insulin secretion deteriorated over time in individuals carrying the V allele of the A98V polymorphism (n = 2,293; p = 0.003). In a new case-control (n = 1,511 and n = 2,225 respectively) data set, the I27L polymorphism was associated with increased risk of type 2 diabetes, odds ratio (OR) = 1.5 (p = 0.002; multiple logistic regression), particularly in elderly (age > 60 years) and overweight (BMI > 25 kg/m(2)) patients (OR = 2.3, p = 0.002). CONCLUSIONS/INTERPRETATION This study provides in vitro and in vivo evidence that common variants in the MODY3 gene, HNF-1alpha, influence transcriptional activity and insulin secretion in vivo. These variants are associated with a modestly increased risk of late-onset type 2 diabetes in subsets of elderly overweight individuals.
Collapse
Affiliation(s)
- J Holmkvist
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Center, Malmö University Hospital, Lund University, S-205 02, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saylor K, Canadian Paediatric Society, First Nations, Inuit and Métis Health Committee. Risk reduction for type 2 diabetes in Aboriginal children in Canada. Paediatr Child Health 2005; 10:49-52. [PMID: 19657447 PMCID: PMC2720903 DOI: 10.1093/pch/10.1.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Triggs-Raine BL, Kirkpatrick RD, Kelly SL, Norquay LD, Cattini PA, Yamagata K, Hanley AJG, Zinman B, Harris SB, Barrett PH, Hegele RA. HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proc Natl Acad Sci U S A 2002; 99:4614-9. [PMID: 11904371 PMCID: PMC123696 DOI: 10.1073/pnas.062059799] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Accepted: 02/01/2002] [Indexed: 11/18/2022] Open
Abstract
The prevalence of type 2 diabetes mellitus in the Oji-Cree of northwestern Ontario is the third highest in the world. A private mutation, G319S, in HNF1A, which encodes hepatic nuclear factor-1alpha (HNF-1alpha), was associated with Oji-Cree type 2 diabetes and was found in approximately 40% of affected subjects. The G319S mutation reduced the in vitro ability of HNF-1alpha to activate transcription by approximately 50%, with no effect on DNA binding or protein stability. There was no evidence of a dominant negative effect of the mutant protein. The impact of the G319S mutation at the population level was assessed by classifying subjects with type 2 diabetes according to HNF1A genotype and plotting the cumulative age of onset of diabetes. Disease onset was modeled satisfactorily by two-parameter sigmoidal functions for all diabetic subjects and all three HNF1A genotypes. Pairwise statistical comparisons showed significant between-genotype differences in t50 (all P < 0.00001), corresponding to the age at which half the subjects had become diabetic. Each dose of G319S accelerated median disease onset by approximately 7 years. Thus, the transactivation-deficient HNF1A G319S mutation affects the dynamics of disease onset. The demonstration of a functional consequence for HNF1A G319S provides a mechanistic basis for its strong association with Oji-Cree type 2 diabetes and its unparalleled specificity for diabetes prediction in these people, in whom diabetes presents a significant public health dilemma. The findings also show that HNF1A mutations can be associated with typical adult-onset insulin-resistant obesity-related diabetes in addition to maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Barbara L Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0W3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Maturity-onset diabetes of the young (MODY) are monogenic forms of type 2 diabetes that are characterized by an early disease onset, autosomal-dominant inheritance, and defects in insulin secretion. Genetic studies have identified mutations in at least eight genes associated with different forms of MODY. The majority of the MODY subtypes are caused by mutations in transcription factors that include hepatocyte nuclear factor (HNF)-4 alpha, HNF-1 alpha, PDX-1, HNF-1 beta, and NEURO-DI/BETA-2. In addition, genetic defects in the glucokinase gene, the glucose sensor of the pancreatic beta cells, and the insulin gene also lead to impaired glucose tolerance. Biochemical and genetic studies have demonstrated that the MODY genes are functionally related and form an integrated transcriptional network that is important for many metabolic pathways.
Collapse
Affiliation(s)
- David Q Shih
- Laboratory of Metabolic Diseases, Rockefeller University, 1230 York Avenue, Box 292, New York, NY 10021, USA
| | | |
Collapse
|
49
|
Hegele RA. Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 2001; 69:1161-77. [PMID: 11704922 PMCID: PMC1235529 DOI: 10.1086/324647] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 09/27/2001] [Indexed: 12/19/2022] Open
Affiliation(s)
- R A Hegele
- John P. Robarts Research Institute, London, Ontario, Canada.
| |
Collapse
|
50
|
Smith W, Gowanlock W, Babcock K. Type 2 diabetes in First Nation children: A collaborative effort to assess and prevent disease. Paediatr Child Health 2001; 6:755-9. [PMID: 20084151 PMCID: PMC2805988 DOI: 10.1093/pch/6.10.755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type 2 diabetes occurs in special groups of children. One of the highest rates of type 2 diabetes in the world occurs in First Nation people. Screening of First Nation children has been recommended. To diagnose diabetes earlier and prevent complications in adulthood, a program of screening and primary prevention of First Nation people must begin with children. One hundred fifteen school-aged First Nation children were approached to participate in the present study, and 93% of the children completed the study. Eight (7%) of the study participants had abnormal capillary blood glucose levels, but no cases of type 2 diabetes were confirmed. Risk factors related to exercise, diet, blood pressure and body mass index were identified. The present paper describes a collaborative program with a small Paediatric Diabetic Education Center and the Beausoleil First Nation people.
Collapse
Affiliation(s)
- W Smith
- Paediatric Diabetic Education Centre, Orillia Soldiers Memorial Hospital, Orillia, Ontario
| | | | | |
Collapse
|