1
|
Olsson F, Wåhlén E, Heldin J, Söderberg O, Norlin M, Lennartsson J. Crosstalk between 1,25(OH) 2-Vitamin D 3 and the growth factors EGF and PDGF-BB: Impact on CYP24A1 expression and cell proliferation. Biochem Biophys Res Commun 2024; 736:150866. [PMID: 39447276 DOI: 10.1016/j.bbrc.2024.150866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
This study explored the signaling interplay between the vitamin D receptor (VDR) and receptor tyrosine kinases (RTKs). Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-BB promotes cell proliferation in normal and cancer cells. At the same time, the active form of vitamin D (1,25(OH)2-vitamin D3) inhibits proliferation in some cells. Although EGF receptors (EGFR) and PDGF receptors (PDGFR) activate similar downstream pathways, we found that they interact with VDR signaling in distinct ways. We confirmed that 1,25(OH)2-vitamin D3 induces CYP24A1 gene expression in U2OS, T98G, and U251 cells. We found this to be potentiated when combined with EGF. In contrast, PDGF-BB did not impact 1,25(OH)2-vitamin D3-induced CYP24A1 expression in U2OS cells. The increase in CYP24A1 expression due to the combined action of EGF and 1,25(OH)2-vitamin D3 was dependent on AKT and ERK1/2 activation. Another VDR-responsive gene, CYP27B1, was unaffected by the addition of EGF, suggesting that EGF may have gene-specific effects on VDR signaling. While PDGF-BB did not influence CYP24A1 expression, 1,25(OH)2-vitamin D3 significantly influenced PDGF-BB-induced receptor phosphorylation and cell proliferation. In summary, we found that EGF, but not PDGF-BB, influenced the expression of the VDR-dependent gene CYP24A1, while 1,25(OH)2-vitamin D3 had an inhibitory effect on PDGFR signaling and proliferation. These findings highlight unique crosstalk between 1,25(OH)2-vitamin D3 signaling and EGF or PDGF-BB.
Collapse
Affiliation(s)
- Frida Olsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden
| | - Erik Wåhlén
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Box 591, SE-75124, Uppsala, Sweden.
| |
Collapse
|
2
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Targeting CBP and p300: Emerging Anticancer Agents. Molecules 2024; 29:4524. [PMID: 39407454 PMCID: PMC11482477 DOI: 10.3390/molecules29194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
CBP and p300 are versatile transcriptional co-activators that play essential roles in regulating a wide range of signaling pathways, including Wnt/β-catenin, p53, and HIF-1α. These co-activators influence various cellular processes such as proliferation, differentiation, apoptosis, and response to hypoxia, making them pivotal in normal physiology and disease progression. The Wnt/β-catenin signaling pathway, in particular, is crucial for cellular proliferation, differentiation, tissue homeostasis, and embryogenesis. Aberrant activation of this pathway is often associated with several types of cancer, such as colorectal tumor, prostate cancer, pancreatic and hepatocellular carcinomas. In recent years, significant efforts have been directed toward identifying and developing small molecules as novel anticancer agents capable of specifically inhibiting the interaction between β-catenin and the transcriptional co-activators CBP and p300, which are required for Wnt target gene expression and are consequently involved in the regulation of tumor cell proliferation, migration, and invasion. This review summarizes the most significant and original research articles published from 2010 to date, found by means of a PubMed search, highlighting recent advancements in developing both specific and non-specific inhibitors of CBP/β-catenin and p300/β-catenin interactions. For a more comprehensive view, we have also explored the therapeutic potential of CBP/p300 bromodomain and histone acetyltransferase inhibitors in disrupting the transcriptional activation of genes involved in various signaling pathways related to cancer progression. By focusing on these therapeutic strategies, this review aims to offer a detailed overview of recent approaches in cancer treatment that selectively target CBP and p300, with particular emphasis on their roles in Wnt/β-catenin-driven oncogenesis.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
3
|
Lindgren H, Ademi D, Godina C, Tryggvadottir H, Isaksson K, Jernström H. Potential interplay between tumor size and vitamin D receptor (VDR) polymorphisms in breast cancer prognosis: a prospective cohort study. Cancer Causes Control 2024; 35:907-919. [PMID: 38351438 PMCID: PMC11130020 DOI: 10.1007/s10552-023-01845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 05/28/2024]
Abstract
PURPOSE Vitamin D has some anticancer properties that may decrease breast cancer risk and improve prognosis. The aim was to investigate associations between four previously studied VDR SNPs (Taq1, Tru91, Bsm1, and Fok1) and prognosis in different groups of breast cancer patients. METHODS VDR genotyping of 1,017 breast cancer patients included 2002-2012 in Lund, Sweden, was performed using Oncoarray. Follow-up was until June 30, 2019. Clinical data and patient information were collected from medical records and questionnaires. Cox regression was used for survival analyses. RESULTS Genotype frequencies were as follows: Fok1 (AA 15.7%, AG 49.1%, GG 35.1%), Bsm1 (CC 37.2%, CT 46.1%, TT 16.7%), Tru91 (CC 77.8%, CT 20.7%, TT 1.5%), and Taq1 (AA 37.2%, AG 46.2%, GG 16.6%). During follow-up there were 195 breast cancer events. The homozygous variants of Taq1 and Bsm1 were associated with reduced risk of breast cancer events (adjusted HR = 0.59, 95% CI 0.38-0.92 for Taq1 and adjusted HR = 0.61, 95% CI 0.40-0.94 for Bsm1). The G allele of the Fok1 was associated with increased risk of breast cancer events in small tumors (pT1, adjusted HR = 1.83, 95% CI 1.04-3.23) but not in large tumors (pT2/3/4, adjusted HR = 0.80, 95% CI 0.41-1.59) with a borderline interaction (Pinteraction = 0.058). No interactions between VDR genotypes and adjuvant treatments regarding breast cancer prognosis were detected. CONCLUSION VDR genotypes were associated with breast cancer prognosis and the association might be modified by tumor size. Further research is needed to confirm the findings and elucidate their potential clinical implications.
Collapse
Affiliation(s)
- Hampus Lindgren
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - David Ademi
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, SE 221 85, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, J A Hedlunds väg 5, SE 291 33, Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85, Lund, Sweden.
| |
Collapse
|
4
|
Liu Y, Liu X, Duan L, Zhao Y, He Y, Li W, Cui J. Associations of micronutrient dietary patterns with sarcopenia among US adults: a population-based study. Front Nutr 2024; 11:1301831. [PMID: 38410638 PMCID: PMC10894935 DOI: 10.3389/fnut.2024.1301831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Background Current epidemiological evidence points to an association between micronutrient (MN) intake and sarcopenia, but studies have focused on single MN, and no combined effects on MNs have been reported. The aim of this study was to investigate the relationship between different MN intake patterns and sarcopenia and skeletal muscle mass. Methods We performed a population-based cross-sectional study, with a total of 5,256 U.S. adults aged 20-59 years, and we collected total daily MN intake and appendicular skeletal muscle mass measured by Dual-Energy X-ray Absorptiometry (DXA). Principal component analysis (PCA) was used to obtain nutrient patterns and principal component scores based on the intake of 14 MNs, and logistic regression analysis was used to assess the effects of single MN and MN intake patterns on sarcopenia and muscle mass. Results We defined three MN intake patterns by PCA: (1) adherence to VitB-mineral, high intake of vitamin B and minerals; (2) adherence to VitAD-Ca-VB12, high intake of vitamin A, vitamin D, calcium and vitamin B12; and (3) adherence to Antioxidant Vit, high intake of antioxidant vitamins A, C, E, and K. These three nutrient patterns explained 73.26% of the variance of the population. A negative association was observed between most single MN intakes and sarcopenia, and after adjusting for confounders, adherence to the highest tertile of the three nutrient patterns was associated with a lower risk of sarcopenia and relatively higher skeletal muscle mass compared to the lowest adherence. In subgroup analysis, MN intake patterns were significantly correlated with sarcopenia in middle-aged females. Conclusion Nutritional patterns based on MN intake were significantly related to sarcopenia, indicating that MNs interact with each other while exerting their individual functions, and that MN dietary patterns may provide promising strategies for preventing the loss of muscle mass, with further prospective studies warranted in the future.
Collapse
Affiliation(s)
- Yining Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Linnan Duan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yixin Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yuwei He
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Kashyap J, Kumari N, Ponnusamy K, Tyagi RK. Hereditary Vitamin D-Resistant Rickets (HVDRR) associated SNP variants of vitamin D receptor exhibit malfunctioning at multiple levels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194891. [PMID: 36396100 DOI: 10.1016/j.bbagrm.2022.194891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily. It is a primary regulator of calcium and phosphate homeostasis required for skeleton and bone mineralization. Vitamin D in active form 1α,25 dihydroxyvitamin-D3 mediates its cellular functions by binding to VDR. Active VDR forms heterodimers with partner RXR (retinoid X receptor) to execute its physiological actions. HVDRR (Hereditary Vitamin D-Resistant Rickets) is a rare genetic disorder that occurs because of generalized resistance to the 1α,25(OH)2D3. HVDRR is caused by the polymorphic variations in VDR gene leading to defective intestinal calcium absorption and mineralization of newly forming bones. Using point and deletion SNPs of VDR we have studied several HVDRR-associated SNP variants for their subcellular dynamics, transcriptional functions, 'genome bookmarking', heterodimeric interactions with RXR, and receptor stability. We previously reported that VDR is a 'mitotic bookmarking factor' that remains constitutively associated with the mitotic chromatin to inherit 'transcriptional memory', however the mechanistic details remained unclear. We document that 'genome bookmarking' property by VDR is critically impaired by naturally occurring HVDRR-associated point and deletion variants found in patients. Furthermore, these HVDRR-associated SNP variants of VDR were found to be compromised in transcriptional function, nuclear translocation, protein stability and intermolecular interactions with its heterodimeric partner RXR. Intriguingly, majority of these disease-allied functional defects failed to be rescued by RXR. Our findings suggest that the HVDRR-associated SNP variations influence the normal functioning of the receptor, and this derived understanding may help in the management of disease with precisely designed small molecule modulators.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Rochel N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients 2022; 14:nu14142847. [PMID: 35889804 PMCID: PMC9325172 DOI: 10.3390/nu14142847] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
The activities of 1α,25-dihydroxyvitamin D3, 1,25D3, are mediated via its binding to the vitamin D receptor (VDR), a ligand-dependent transcription factor that belongs to the nuclear receptor superfamily. Numerous studies have demonstrated the important role of 1,25D3 and VDR signaling in various biological processes and associated pathologies. A wealth of information about ligand recognition and mechanism of action by structural analysis of the VDR complexes is also available. The methods used in these structural studies were mainly X-ray crystallography complemented by NMR, cryo-electron microscopy and structural mass spectrometry. This review aims to provide an overview of the current knowledge of VDR structures and also to explore the recent progress in understanding the complex mechanism of action of 1,25D3 from a structural perspective.
Collapse
Affiliation(s)
- Natacha Rochel
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
7
|
Khazan N, Kim KK, Hansen JN, Singh NA, Moore T, Snyder CWA, Pandita R, Strawderman M, Fujihara M, Takamura Y, Jian Y, Battaglia N, Yano N, Teramoto Y, Arnold LA, Hopson R, Kishor K, Nayak S, Ojha D, Sharon A, Ashton JM, Wang J, Milano MT, Miyamoto H, Linehan DC, Gerber SA, Kawar N, Singh AP, Tabdanov ED, Dokholyan NV, Kakuta H, Jurutka PW, Schor NF, Rowswell-Turner RB, Singh RK, Moore RG. Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors In Vivo. J Med Chem 2022; 65:6039-6055. [PMID: 35404047 PMCID: PMC9059124 DOI: 10.1021/acs.jmedchem.1c01878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 12/02/2022]
Abstract
Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.
Collapse
Affiliation(s)
- Negar Khazan
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Kyu Kwang Kim
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Jeanne N. Hansen
- Department
of Pediatrics, University of Rochester Medical
Center, Rochester, New York 14642, United
States
| | - Niloy A. Singh
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Taylor Moore
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Cameron W. A. Snyder
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Ravina Pandita
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Myla Strawderman
- Department
of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Michiko Fujihara
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Ye Jian
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Nicholas Battaglia
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Naohiro Yano
- Department
of Surgery, Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Yuki Teramoto
- Department
of Pathology and Laboratory Medicine, University
of Rochester Medical Center, Rochester, New York 14624, United States
| | - Leggy A. Arnold
- Department
of Chemistry and Biochemistry, University
of Wisconsin Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Russell Hopson
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Keshav Kishor
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sneha Nayak
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Debasmita Ojha
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Ashoke Sharon
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - John M. Ashton
- Genomics Core Facility, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Jian Wang
- Department of Pharmacology and Department of Biochemistry and Molecular
Biology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania 17036, United States
| | - Michael T. Milano
- Department of Radiation Oncology, University
of Rochester Medical Center, Rochester, New York 16424, United States
| | - Hiroshi Miyamoto
- Department
of Pathology and Laboratory Medicine, University
of Rochester Medical Center, Rochester, New York 14624, United States
| | - David C. Linehan
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Scott A. Gerber
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
- Department of Radiation Oncology, University
of Rochester Medical Center, Rochester, New York 16424, United States
| | - Nada Kawar
- Center for Breast Health and Gynecologic
Oncology, Mercy Medical Center, 271 Carew Street, Springfield, Massachusetts 01104, United States
| | - Ajay P. Singh
- Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08019, United States
| | - Erdem D. Tabdanov
- CytoMechanobiology
Laboratory, Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17036, United States
| | - Nikolay V. Dokholyan
- Department of Pharmacology and Department of Biochemistry and Molecular
Biology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania 17036, United States
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Health Futures Center, Phoenix, Arizona 85054, United States
- University of Arizona College of Medicine, Phoenix, Arizona 85004, United States
| | - Nina F. Schor
- Departments of Pediatrics, Neurology, and Neuroscience, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Rachael B. Rowswell-Turner
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Rakesh K. Singh
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Richard G. Moore
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| |
Collapse
|
8
|
Hoemberg M, Schwenzfeur R, Berthold F, Simon T, Hero B. Hypercalcemia is a frequent side effect of 13-cis-retinoic acid treatment in patients with high-risk neuroblastoma. Pediatr Blood Cancer 2022; 69:e29374. [PMID: 34569150 DOI: 10.1002/pbc.29374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE 13-cis-Retinoic acid (13-cisRA) is used as a postconsolidation treatment in patients with high-risk neuroblastoma. Hypercalcemia is a known side effect of retinoids. Frequency, symptoms, treatment, and risk factors for hypercalcemia were analyzed. PATIENTS Data were retrospectively analyzed for 350 patients registered in the German Neuroblastoma trials NB97 and NB04 who were treated with high-risk protocols-including myeloablative chemotherapy with autologous stem cell transplantation (SCT) or maintenance therapy-and had received 13-cisRA between January 1, 2000 and December 31, 2010. RESULTS Hypercalcemia was reported in 78 patients (22.3%), and 37 patients (10.6%) developed Common Terminology Criteria for Adverse Events (CTCAE) grade 3 or 4 hypercalcemia. The calcium levels were 2.5-4.6 mmol/L (median 3.1 mmol/L). Patients with a single kidney were at a higher risk of developing hypercalcemia (p = .001). Regarding postinduction treatment, 69 of 280 patients with SCT (24.6%) and nine of 70 patients without SCT (12.9%) developed hypercalcemia during 13-cisRA treatment (p = .037). Most patients developed hypercalcemia in the first cycle of 13-cisRA, and only in a single cycle. Hypercalcemia symptoms were frequent but moderate. In most patients, treatment with 13-cisRA was continued without dose reduction in subsequent cycles. CONCLUSION In this cohort, grades 3 and 4 hypercalcemia were observed more often than previously reported. A single kidney and pretreatment with myeloablative chemotherapy with stem cell transplantation were identified as potential risk factors for the development of hypercalcemia.
Collapse
Affiliation(s)
- Marc Hoemberg
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Ruth Schwenzfeur
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin) 2021; 15:360-374. [PMID: 33825665 PMCID: PMC8032246 DOI: 10.1080/19336950.2021.1905248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.
Collapse
Affiliation(s)
- Wentong Long
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Janyne Johnson
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | | | - Peter Light
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Adelani IB, Rotimi OA, Maduagwu EN, Rotimi SO. Vitamin D: Possible Therapeutic Roles in Hepatocellular Carcinoma. Front Oncol 2021; 11:642653. [PMID: 34113565 PMCID: PMC8185231 DOI: 10.3389/fonc.2021.642653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a unique type of liver cancer instigated by underlying liver diseases. Pre-clinical evidence suggests that HCC progression, like other cancers, could be aided by vitamin D deficiency. Vitamin D is a lipid-soluble hormone usually obtained through sunlight. Vitamin D elucidates its biological responses by binding the vitamin D receptor; thus, promoting skeletal mineralization, and maintain calcium homeostasis. Other reported Vitamin D functions include specific roles in proliferation, angiogenesis, apoptosis, inflammation, and cell differentiation. This review highlighted studies on vitamin D's functional roles in HCC and discussed the specific therapeutic targets from various in vivo, in vitro and clinical studies over the years. Furthermore, it described recent advancements in vitamin D's anticancer effects and its metabolizing enzymes' roles in HCC development. In summary, the review elucidated specific vitamin D-associated target genes that play critical functions in the inhibition of tumorigenesis through inflammation, oxidative stress, invasion, and apoptosis in HCC progression.
Collapse
|
11
|
Treveil A, Sudhakar P, Matthews ZJ, Wrzesiński T, Jones EJ, Brooks J, Ölbei M, Hautefort I, Hall LJ, Carding SR, Mayer U, Powell PP, Wileman T, Di Palma F, Haerty W, Korcsmáros T. Regulatory network analysis of Paneth cell and goblet cell enriched gut organoids using transcriptomics approaches. Mol Omics 2021; 16:39-58. [PMID: 31819932 DOI: 10.1039/c9mo00130a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epithelial lining of the small intestine consists of multiple cell types, including Paneth cells and goblet cells, that work in cohort to maintain gut health. 3D in vitro cultures of human primary epithelial cells, called organoids, have become a key model to study the functions of Paneth cells and goblet cells in normal and diseased conditions. Advances in these models include the ability to skew differentiation to particular lineages, providing a useful tool to study cell type specific function/dysfunction in the context of the epithelium. Here, we use comprehensive profiling of mRNA, microRNA and long non-coding RNA expression to confirm that Paneth cell and goblet cell enrichment of murine small intestinal organoids (enteroids) establishes a physiologically accurate model. We employ network analysis to infer the regulatory landscape altered by skewing differentiation, and using knowledge of cell type specific markers, we predict key regulators of cell type specific functions: Cebpa, Jun, Nr1d1 and Rxra specific to Paneth cells, Gfi1b and Myc specific for goblet cells and Ets1, Nr3c1 and Vdr shared between them. Links identified between these regulators and cellular phenotypes of inflammatory bowel disease (IBD) suggest that global regulatory rewiring during or after differentiation of Paneth cells and goblet cells could contribute to IBD aetiology. Future application of cell type enriched enteroids combined with the presented computational workflow can be used to disentangle multifactorial mechanisms of these cell types and propose regulators whose pharmacological targeting could be advantageous in treating IBD patients with Crohn's disease or ulcerative colitis.
Collapse
Affiliation(s)
- A Treveil
- Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blufstein A, Behm C, Kubin B, Gahn J, Moritz A, Rausch‐Fan X, Andrukhov O. Transcriptional activity of vitamin D receptor in human periodontal ligament cells is diminished under inflammatory conditions. J Periodontol 2021; 92:137-148. [PMID: 32474936 PMCID: PMC7891446 DOI: 10.1002/jper.19-0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/22/2019] [Accepted: 04/26/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although vitamin D3 deficiency is considered as a risk factor for periodontitis, supplementation during periodontal treatment has not been shown to be beneficial to date. Human periodontal ligament cells (hPDLCs) are regulated by vitamin D3 and play a fundamental role in periodontal tissue homeostasis and inflammatory response in periodontitis. The aim of this study is to investigate possible alterations of the vitamin D3 activity in hPDLCs under inflammatory conditions. METHODS Cells isolated from six different donors were treated with either 1,25(OH)2 D3 (0 to 10 nM) or 25(OH)D3 (0 to 100 nM) in the presence and absence of ultrapure or standard Porphyromonas gingivalis lipopolysaccharide (PgLPS), Pam3CSK4, or interferon-γ for 48 hours. Additionally, nuclear factor (NF)-κB inhibition was performed with BAY 11-7082. The bioactivity of vitamin D in hPDLCs was assessed based on the gene expression levels of vitamin D receptor (VDR)-regulated genes osteocalcin and osteopontin. Additionally, VDR and CYP27B1 expression levels were measured. RESULTS The vitamin D3 -induced increase of osteocalcin and osteopontin expression was significantly decreased in the presence of standard PgLPS and Pam3CSK4, which was not observed by ultrapure PgLPS. Interferon-y had diverse effects on the response of hPDLCs to vitamin D3 metabolites. NF-kB inhibition abolished the effects of standard PgLPS and Pam3CSK4. Standard PgLPS and Pam3CSK4 increased VDR expression in the presence of vitamin D3 . CYP27B1 expression was not affected by vitamin D3 and inflammatory conditions. CONCLUSIONS This study indicates that the transcriptional activity of VDR is diminished under inflammatory conditions, which might mitigate the effectiveness of vitamin D3 supplementation during periodontal treatment.
Collapse
Affiliation(s)
- Alice Blufstein
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Christian Behm
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Barbara Kubin
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Johannes Gahn
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and PeriodontologyUniversity Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
13
|
Zendehdel A, Arefi M. Molecular evidence of role of vitamin D deficiency in various extraskeletal diseases. J Cell Biochem 2019; 120:8829-8840. [PMID: 30609168 DOI: 10.1002/jcb.28185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Role of vitamin D is not only limited to skeletal system but various other systems of the body, such as immune system, endocrine system, and cardiopulmonary system. MATERIALS AND METHODS It is supported by the confirmations of systems-wide expression of vitamin D receptor (VDR), endocrinal effect of calcitriol, and its role in immune responses. RESULTS Expression of VDR in various systems, immunoregulatory and hormonal response of vitamin D and deficiency of vitamin D may establish various pathologies in the body. CONCLUSION This review provides molecular evidence of relation of vitamin D with extra skeletal.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arefi
- Department of Clinical Toxicology, School of Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jusu S, Presley JF, Williams C, Das SK, Jean-Claude B, Kremer R. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer. Endocrinology 2018; 159:1303-1327. [PMID: 29300860 DOI: 10.1210/en.2017-03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
Abstract
Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy.
Collapse
Affiliation(s)
- Sylvester Jusu
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | - Sanjoy Kumar Das
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Bertrand Jean-Claude
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Richard Kremer
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
DeSmet ML, Fleet JC. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J Steroid Biochem Mol Biol 2017; 173:194-201. [PMID: 28104492 PMCID: PMC5511787 DOI: 10.1016/j.jsbmb.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Abstract
High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.
Collapse
Affiliation(s)
- Marsha L DeSmet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| | - James C Fleet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Purdue University Center for Cancer Research, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
16
|
Zhang X, Harbeck N, Jeschke U, Doisneau-Sixou S. Influence of vitamin D signaling on hormone receptor status and HER2 expression in breast cancer. J Cancer Res Clin Oncol 2017; 143:1107-1122. [PMID: 28025696 DOI: 10.1007/s00432-016-2325-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a significant global public health issue. It is the leading cause of death among women around the world, with an incidence increasing annually. In recent years, there has been more and more information in the literature regarding a protective role of vitamin D in cancer. Increasingly preclinical and clinical studies suggest that vitamin D optimal levels can reduce the risk of breast cancer development and regulate cancer-related pathways. METHOD In this review, we focus on the importance of vitamin D in breast cancers, discussing especially the influence of vitamin D signaling on estrogen receptor and human epidermal growth factor receptor 2 (HER2), two major biomarkers of breast cancer today. CONCLUSION We discuss the possibility of actual and future targeted therapeutic approaches for vitamin D signaling in breast cancer.
Collapse
Affiliation(s)
- Xi Zhang
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Udo Jeschke
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Sophie Doisneau-Sixou
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany.
- Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 31062, Toulouse Cedex 09, France.
| |
Collapse
|
17
|
Jusu S, Presley JF, Kremer R. Phosphorylation of Human Retinoid X Receptor α at Serine 260 Impairs Its Subcellular Localization, Receptor Interaction, Nuclear Mobility, and 1α,25-Dihydroxyvitamin D3-dependent DNA Binding in Ras-transformed Keratinocytes. J Biol Chem 2017; 292:1490-1509. [PMID: 27852823 PMCID: PMC5270490 DOI: 10.1074/jbc.m116.758185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Human retinoid X receptor α (hRXRα) plays a critical role in DNA binding and transcriptional activity through heterodimeric association with several members of the nuclear receptor superfamily, including the human vitamin D receptor (hVDR). We previously showed that hRXRα phosphorylation at serine 260 through the Ras-Raf-MAPK ERK1/2 activation is responsible for resistance to the growth inhibitory effects of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the biologically active metabolite of vitamin D3 To further investigate the mechanism of this resistance, we studied intranuclear dynamics of hVDR and hRXRα-tagged constructs in living cells together with endogenous and tagged protein in fixed cells. We find that hVDR-, hRXRα-, and hVDR-hRXRα complex accumulate in the nucleus in 1α,25(OH)2D3-treated HPK1A cells but to a lesser extent in HPK1ARas-treated cells. Also, by using fluorescence resonance energy transfer (FRET), we demonstrate increased interaction of the hVDR-hRXRα complex in 1α,25(OH)2D3-treated HPK1A but not HPK1ARas cells. In HPK1ARas cells, 1α,25(OH)2D3-induced nuclear localization and interaction of hRXRα are restored when cells are treated with the MEK1/2 inhibitor UO126 or following transfection of the non-phosphorylatable hRXRα Ala-260 mutant. Finally, we demonstrate using fluorescence loss in photobleaching and quantitative co-localization with chromatin that RXR immobilization and co-localization with chromatin are significantly increased in 1α,25(OH)2D3-treated HPK1ARas cells transfected with the non-phosphorylatable hRXRα Ala-260 mutant. This suggests that hRXRα phosphorylation significantly disrupts its nuclear localization, interaction with VDR, intra-nuclear trafficking, and binding to chromatin of the hVDR-hRXR complex.
Collapse
Affiliation(s)
- Sylvester Jusu
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - John F Presley
- the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Richard Kremer
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1,
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
18
|
Lau AJ, Politi R, Yang G, Chang TKH. Cell-based and in silico evidence against quercetin and structurally-related flavonols as activators of vitamin D receptor. J Steroid Biochem Mol Biol 2016; 163:59-67. [PMID: 27041117 DOI: 10.1016/j.jsbmb.2016.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
It has been reported that quercetin is an activator of rat vitamin D receptor (rVDR). However, the conclusion was based on experiments performed without all the appropriate control groups, raising the possibility of a false-positive finding. Furthermore, distinct differences exist in the chemical structures of quercetin and 1α,25-dihydroxyvitamin D3, which is a prototypic agonist of VDR. Therefore, we investigated systematically whether quercetin and other flavonols are agonists of rVDR, mouse VDR (mVDR), or human VDR (hVDR). Quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin did not activate rVDR, mVDR, or hVDR in HEK-293 and HepG2 cells transfected with the corresponding receptor expression plasmid and either the secreted phosphoprotein 1 (Spp1) or cytochrome P450 24A1 (CYP24A1) reporter plasmid, when compared to the respective empty vector control group transfected with one or the other reporter plasmid and treated with one of the flavonols. Control analysis indicated that lithocholic acid and 1α,25-dihydroxyvitamin D3, but not rifampicin, activated rVDR, mVDR, and hVDR. As shown in transfected HEK293 and HepG2 cells, the flavonols did not influence hVDR ligand binding domain transactivation, steroid receptor coactivator-1 recruitment, or hVDR target gene expression (transient receptor potential cation channel 6 and CYP24A1) in hVDR-expressing Caco-2 or LS180 cells. The cumulative data from the cell-based experiments were corroborated by results obtained from molecular docking analysis. In conclusion, quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin are not agonists of rVDR, mVDR, or hVDR, as judged by cell-based and in silico evidence.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada
| | - Regina Politi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guixiang Yang
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
19
|
Britt RD, Faksh A, Vogel ER, Thompson MA, Chu V, Pandya HC, Amrani Y, Martin RJ, Pabelick CM, Prakash YS. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells. J Cell Physiol 2015; 230:1189-98. [PMID: 25204635 DOI: 10.1002/jcp.24814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023]
Abstract
Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.
Collapse
Affiliation(s)
- Rodney D Britt
- Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kollitz EM, Zhang G, Hawkins MB, Whitfield GK, Reif DM, Kullman SW. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates. PLoS One 2015; 10:e0122853. [PMID: 25855982 PMCID: PMC4391915 DOI: 10.1371/journal.pone.0122853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.
Collapse
Affiliation(s)
- Erin M. Kollitz
- Program in Environmental and Molecular Toxicology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Guozhu Zhang
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary Beth Hawkins
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - G. Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - David M. Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Seth W. Kullman
- Program in Environmental and Molecular Toxicology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Vitamin D as an adjunctive therapy in asthma. Part 1: A review of potential mechanisms. Pulm Pharmacol Ther 2015; 32:60-74. [PMID: 25732539 DOI: 10.1016/j.pupt.2015.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/24/2022]
Abstract
Vitamin D deficiency (VDD) is highly prevalent worldwide. The classical role for vitamin D is to regulate calcium absorption form the gastrointestinal tract and influence bone health. Recently vitamin D receptors and vitamin D metabolic enzymes have been discovered in numerous sites systemically supporting diverse extra-skeletal roles of vitamin D, for example in asthmatic disease. Further, VDD and asthma share several common risk factors including high latitude, winter season, industrialization, poor diet, obesity, and dark skin pigmentation. Vitamin D has been demonstrated to possess potent immunomodulatory effects, including effects on T cells and B cells as well as increasing production of antimicrobial peptides (e.g. cathelicidin). This immunomodulation may lead to asthma specific clinical benefits in terms of decreased bacterial/viral infections, altered airway smooth muscle-remodeling and -function as well as modulation of response to standard anti-asthma therapy (e.g. glucocorticoids and immunotherapy). Thus, vitamin D and its deficiency have a number of biological effects that are potentially important in altering the course of disease pathogenesis and severity in asthma. The purpose of this first of a two-part review is to review potential mechanisms whereby altering vitamin D status may influence asthmatic disease.
Collapse
|
22
|
Kollitz EM, Hawkins MB, Whitfield GK, Kullman SW. Functional diversification of vitamin D receptor paralogs in teleost fish after a whole genome duplication event. Endocrinology 2014; 155:4641-54. [PMID: 25279795 PMCID: PMC4239418 DOI: 10.1210/en.2014-1505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The diversity and success of teleost fishes (Actinopterygii) has been attributed to three successive rounds of whole-genome duplication (WGD). WGDs provide a source of raw genetic material for evolutionary forces to act upon, resulting in the divergence of genes with altered or novel functions. The retention of multiple gene pairs (paralogs) in teleosts provides a unique opportunity to study how genes diversify and evolve after a WGD. This study examines the hypothesis that vitamin D receptor (VDR) paralogs (VDRα and VDRβ) from two distantly related teleost orders have undergone functional divergence subsequent to the teleost-specific WGD. VDRα and VDRβ paralogs were cloned from the Japanese medaka (Beloniformes) and the zebrafish (Cypriniformes). Initial transactivation studies using 1α, 25-dihydroxyvitamin D3 revealed that although VDRα and VDRβ maintain similar ligand potency, the maximum efficacy of VDRβ was significantly attenuated compared with VDRα in both species. Subsequent analyses revealed that VDRα and VDRβ maintain highly similar ligand affinities; however, VDRα demonstrated preferential DNA binding compared with VDRβ. Protein-protein interactions between the VDR paralogs and essential nuclear receptor coactivators were investigated using transactivation and mammalian two-hybrid assays. Our results imply that functional differences between VDRα and VDRβ occurred early in teleost evolution because they are conserved between distantly related species. Our results further suggest that the observed differences may be associated with differential protein-protein interactions between the VDR paralogs and coactivators. We speculate that the observed functional differences are due to subtle ligand-induced conformational differences between the two paralogs, leading to divergent downstream functions.
Collapse
Affiliation(s)
- Erin M Kollitz
- Program in Environmental and Molecular Toxicology Department of Biological Sciences (E.M.K., S.W.K.), and Department of Biological Sciences (M.B.H.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Basic Medical Sciences (G.K.W.), The University of Arizona College of Medicine, Phoenix, Arizona 85004
| | | | | | | |
Collapse
|
23
|
Cheng TYD, Goodman GE, Thornquist MD, Barnett MJ, Beresford SAA, LaCroix AZ, Zheng Y, Neuhouser ML. Estimated intake of vitamin D and its interaction with vitamin A on lung cancer risk among smokers. Int J Cancer 2014; 135:2135-45. [PMID: 24622914 PMCID: PMC4293152 DOI: 10.1002/ijc.28846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 02/17/2014] [Indexed: 11/11/2022]
Abstract
Data are very limited on vitamin D and lung cancer prevention in high-risk populations. The authors investigated whether estimated vitamin D intake was associated with lung cancer risk and whether effect modification by vitamin A existed among current/former heavy smokers and workers with occupational exposure to asbestos. A case-cohort study selected 749 incident lung cancers and 679 noncases from the Carotene and Retinol Efficacy Trial (CARET), 1988-2005. The active intervention was supplementation of 30 mg β-carotene + 25,000 IU retinyl palmitate/day. Baseline total intake including both diet (from food frequency questionnaire) and personal supplements (from brand names linked to the labeled potencies) was assessed. Hazard ratios (HRs) were estimated by Cox proportional hazard models. No significant association of total vitamin D intake with lung cancer was observed overall. However, total vitamin D intake ≥600 versus <200 IU/day was associated with a lower risk of non-small cell lung cancer among former smokers [HR = 0.36, 95% confidence interval (CI) = 0.13-0.96]. Total vitamin D intake ≥400 versus <400 IU/day was associated with a lower risk of total lung cancer among participants who received the CARET active intervention (HR = 0.56, 95% CI = 0.32-0.99) and among those who had total vitamin A intake ≥1,500 µg/day retinol activity equivalent (RAE; HR = 0.46, 95% CI = 0.23-0.91). The beneficial associations were attenuated among those who did not receive the CARET active intervention or who had total vitamin A intake <1,500 µg/day RAE (p-interaction = 0.02 for current smokers). Our observation suggests that vitamin A may assist vitamin D in preventing lung cancer among smokers.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Gary E. Goodman
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Mark D. Thornquist
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Matt J. Barnett
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Shirley A. A. Beresford
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Andrea Z. LaCroix
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Yingye Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| | - Marian L. Neuhouser
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA (T-YDC, GEG, MDT, MJB, SAAB, AZL, YZ, MLN) Department of Epidemiology, University of Washington, Seattle, WA (T-YDC, SAAB, AZL, MLN) Department of Biostatistics, University of Washington, Seattle, WA (MDT, YZ)
| |
Collapse
|
24
|
Kurtak KA. Dietary and Nutritional Manipulation of the Nuclear Transcription Factors Peroxisome Proliferator-Activated Receptor and Sterol Regulatory Element-Binding Proteins As a Tool for Reversing the Primary Diseases of Premature Death and Delaying Aging. Rejuvenation Res 2014; 17:140-4. [DOI: 10.1089/rej.2013.1485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Abstract
INTRODUCTION Retinoid X receptors (RXRs) are nuclear receptors that act as ligand-dependent transcription factors. RXRs function as homodimers or as heterodimers with other nuclear receptors, such as retinoic acid receptors, PPARs, liver X receptors, farnesoid X receptor, vitamin D receptor or thyroid hormone receptors. RXR ligands (agonists or antagonists) show various physiological effects, depending on their partner receptors. RXR agonist bexarotene (Targretin®) is used for the treatment of cutaneous T-cell lymphoma in clinical practice. RXR agonists were also reported to be useful for treatment of type 2 diabetes, autoimmune disease and Alzheimer's disease. RXR antagonists were also reported to be effective in type 2 diabetes treatment. AREAS COVERED Here patent applications (2007 - 2013) concerning RXR ligands are summarized, and the usefulness of RXR ligands as pharmaceutical agents is discussed. EXPERT OPINION RXR agonists show a wide variety of biological effects. However, they cause serious side effects, such as blood triglyceride elevation, hypothyroidism and others. Thus, for clinical application of RXR agonists, abrogation of these side effects is required. RXR heterodimer-selective agonists and RXR partial agonists exhibiting desired effects without side effects are expected to find clinical application.
Collapse
Affiliation(s)
- Shoya Yamada
- Okayama University Graduate School of Medicine, Division of Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530 , Japan +81 086 251 7963 ; +81 086 251 7963 ;
| | | |
Collapse
|
26
|
Chow ECY, Quach HP, Vieth R, Pang KS. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Am J Physiol Endocrinol Metab 2013; 304:E977-89. [PMID: 23482451 DOI: 10.1152/ajpendo.00489.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The vitamin D receptor (VDR) maintains a balance of plasma calcium and 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], its natural active ligand, by directly regulating the calcium ion channel (TRPV6) and degradation enzyme (CYP24A1), and indirectly regulating the parathyroid hormone (PTH) for feedback regulation of the synthetic enzyme CYP27B1. Studies that examined the intricate relationships between plasma and tissue 1,25(OH)2D3 levels and changes in VDR target genes and plasma calcium and PTH are virtually nonexistent. In this study, we investigated temporal correlations between tissue 1,25(OH)2D3 concentrations and VDR target genes in ileum and kidney and plasma calcium and PTH concentrations in response to 1,25(OH)2D3 treatment in mice (2.5 μg/kg ip, singly or q2d × 4). After a single ip dose, plasma 1,25(OH)2D3 peaked at ∼0.5 h and then decayed biexponentially, falling below basal levels after 24 h and then returning to baseline after 8 days. Upon repetitive ip dosing, plasma, ileal, renal, and bone 1,25(OH)2D3 concentrations rose and decayed in unison. Temporal profiles showed increased expressions of ileal Cyp24a1 and renal Cyp24a1, Mdr1/P-gp, and VDR but decreased renal Cyp27b1 mRNA after a time delay in VDR activation. Increased plasma calcium and attenuated PTH levels and increased ileal and renal Trpv6 expression paralleled the changes in tissue 1,25(OH)2D3 concentrations. Gene changes in the kidney were more sustained than those in intestine, but the magnitudes of change for Cyp24a1 and Trpv6 were lower than those in intestine. The data revealed that 1,25(OH)2D3 equilibrates with tissues rapidly, and VDR target genes respond quickly to exogenously administered 1,25(OH)2D3.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Staunstrup NH, Bak RO, Cai Y, Svensson L, Petersen TK, Rosada C, Stenderup K, Bolund L, Mikkelsen JG. A lentiviral vector-based genetic sensor system for comparative analysis of permeability and activity of vitamin D3 analogues in xenotransplanted human skin. Exp Dermatol 2013; 22:178-83. [DOI: 10.1111/exd.12091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 01/18/2023]
Affiliation(s)
| | - Rasmus O. Bak
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | - Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | - Lars Svensson
- Department of Disease Pharmacology; LEO Pharma; Ballerup; Denmark
| | | | - Cecilia Rosada
- Department of Clinical Medicine; Aarhus University; Aarhus C; Denmark
| | - Karin Stenderup
- Department of Clinical Medicine; Aarhus University; Aarhus C; Denmark
| | | | | |
Collapse
|
28
|
Zhang J, Zhang H, Zhang X, Yu Z. Synergistic effect of retinoic acid and vitamin D analog EB1089-induced apoptosis of hepatocellular cancer cells. Cytotechnology 2012; 65:457-65. [PMID: 23070539 DOI: 10.1007/s10616-012-9500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023] Open
Abstract
Previous report showed that leukemia cells' differentiation could be induced by retinoic acid (RA), and prostate cancer cells' proliferation could be inhibited by Vitamin D or its analog. This study aimed to examine whether RA and vitamin D analog EB1089 have synergistic effect on hepatocellular cancer cells' apoptosis. The hepatocellular cancer cell lines' viability was determined by MTT method after treating by RA and EB1089 alone or in combination, cell cycle of SSMC-7721 cell analyzed by FACS, mitochondrial membrane potential of SSMC-7721 under different treatments were detected using MitoTracker Red CMXRos. TUNEL analysis was also used for cell apoptosis detection. Real time-PCR and Western Blot assay were used to detect the expression of Bcl-2 and Bax. Moreover, hepatocellular cancer model was developed by subcutaneously (S.C.) challenging H22 cells to nude mice. In the combination group (10 μmol/L RA, 10 nmol/L EB1089), the viability of hepatocellular cancer cells decreased significantly compared with drugs used alone (P < 0.05). From the TUNEL analysis, SSMC-7721 cells have a higher apoptotic ratio in the combined drug group than in the groups for which the drugs were used separately. In a hepatocellular cancer model, the tumor weight of H22 tumor bearing mice was more reduced in the combined drug treated group when compared to the groups for which the drugs were used alone (P < 0.05), in addition, significantly prolonged survival was observed. Combination of RA and EB1089 exert synergistic growth inhibition and apoptosis induction on hepatocellular cancers cells.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Oncology, Beijing Army General Hospital, No. 5, Nanmencang Ro., Beijing, 100700, China
| | | | | | | |
Collapse
|
29
|
Paintlia AS, Paintlia MK, Hollis BW, Singh AK, Singh I. Interference with RhoA-ROCK signaling mechanism in autoreactive CD4+ T cells enhances the bioavailability of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:993-1006. [PMID: 22796435 DOI: 10.1016/j.ajpath.2012.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency is a major risk factor for central nervous system (CNS) demyelinating diseases including multiple sclerosis (MS) and its animal model, that of experimental autoimmune encephalomyelitis (EAE). Both vitamin D(3) and 1, 25-dihydroxyviatmin-D(3) (calcitriol) had beneficial effects in EAE/MS. However, the exact cause of vitamin D deficiency in EAE/MS is not clear. Previously, we documented that lovastatin (LOV) provides protection in EAE animals via inhibition of RhoA-ROCK signaling. Herein, we demonstrate that LOV prevents the lowering of circulating 25-hydroxyvitamin-D(3) and 1,25-dihydroxyviatmin-D(3) levels including 1,25-dihydroxyviatmin-D(3) levels in the peripheral lymphoid organs and CNS of treated EAE animals. These effects of LOV were attributed to enhanced expression of vitamin D synthesizing enzyme (1α-hydroxylase) in kidney and the CNS, with corresponding reduction of vitamin D catabolizing enzyme (24-hydorxylase) expression in the CNS of EAE animals via inhibition of RhoA-ROCK signaling. Ex vivo and in vitro studies established that autoreactive Th1/Th17 cells had higher expression of 24-hydroxylase than Th2/T regulatory cells, that was reverted by LOV or ROCK inhibitor. Interestingly, LOV-mediated regulation of vitamin D metabolism had improved vitamin D(3) efficacy to confer protection in EAE animals and that was ascribed to the LOV- and calcitriol-induced immunomodulatory synergy. Together, these data provide evidence that interfering with RhoA-ROCK signaling in autoreactive Th1/Th17 cells can improve vitamin D(3) efficacy in clinical trials of MS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, USA
| | | | | | | | | |
Collapse
|
30
|
Kotani H, Tanabe H, Mizukami H, Amagaya S, Inoue M. A Naturally Occurring Rexinoid, Honokiol, Can Serve as a Regulator of Various Retinoid X Receptor Heterodimers. Biol Pharm Bull 2012; 35:1-9. [DOI: 10.1248/bpb.35.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hitoshi Kotani
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University
- Laboratory of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hiroki Tanabe
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University
| | - Hajime Mizukami
- Laboratory of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Sakae Amagaya
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
31
|
Ditsch N, Toth B, Mayr D, Lenhard M, Gallwas J, Weissenbacher T, Dannecker C, Friese K, Jeschke U. The association between vitamin D receptor expression and prolonged overall survival in breast cancer. J Histochem Cytochem 2011; 60:121-9. [PMID: 22108646 DOI: 10.1369/0022155411429155] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we analyzed vitamin D receptor (VDR) expression and survival in a breast cancer patient cohort of 82 breast cancer patients. Immunohistochemical analysis was possible in 91.5% of the patients (75/82). Staining was evaluated using the semi-quantitative assay according to Remmele and Stegner (immunoreactivity score [IRS]). IRS 0-1 was negative/very low, IRS 2-4 was moderate to high, and IRS 6-12 was high. Statistical analysis was performed by Spearman's correlation test (p<0.05 significant). Overall survival was analyzed using Kaplan-Meier estimations. Only 6 patients had a negative IRS. Moderate IRS values were present in 20 patients. Most of the patients had a high IRS (49). For survival analysis, data were dichotomized (IRS 0-4: negative to moderate and IRS 6-12: high VDR expression). In univariate analysis, VDR expression showed significant differences in progression-free survival (PFS) and overall survival (OS). Patients with high IRS scores showed significantly better PFS and OS than patients with moderate/negative IRS scores for VDR expression. Tumor size was significantly correlated to PFS. When analyzed separately, the three different IRS groups showed significant differences in VDR expression. The present data suggest that VDR expression in breast cancer tissue may be of clinical significance, and the results provide evidence that VDR may be a factor with prognostic relevance.
Collapse
Affiliation(s)
- Nina Ditsch
- Department of Obstetrics and Gynecology-Großhadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
33
|
Tremmel C, Azoitei A, Schaefer M, Hollmann H, Spindler-Barth M. Influence of helix 12 of Ultraspiracle on Drosophila melanogaster ecdysone receptor function. INSECT MOLECULAR BIOLOGY 2011; 20:417-428. [PMID: 21585578 DOI: 10.1111/j.1365-2583.2011.01077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although it has no ligand, helix 12 in the ligand binding domain of Ultraspiracle (USP) is locked in an antagonistic position. To investigate whether this position is of functional importance, we enhanced the flexibility of helix 12 by mutating two amino acids (259, located in L1-3 and F491 in helix 12). Mutated USP reduces the stability of USP and all isoforms of the ecdysone receptor (EcR) and impairs nuclear localization and DNA binding of EcR/USP(L259A/F491/A), resulting in lower levels of basal transcriptional activity. Although the affinity of the ligand ponasterone A to EcR/USP(L259/F491) is moderately diminished, hormone-induced stimulation of transcriptional activity is normal. Potentiation of the ecdysone response by juvenile hormone (JH) is selectively increased in mutated heterodimers with EcR-B1, demonstrating that the antagonistic position impairs functional interaction of the EcR complex with JHIII.
Collapse
Affiliation(s)
- Ch Tremmel
- Institute of General Zoology and Endocrinology, Ulm University, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
34
|
Na S, Ma Y, Zhao J, Schmidt C, Zeng QQ, Chandrasekhar S, Chin WW, Nagpal S. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia. Autoimmune Dis 2011; 2011:132958. [PMID: 21318047 PMCID: PMC3034943 DOI: 10.4061/2011/132958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/10/2010] [Accepted: 12/19/2010] [Indexed: 11/21/2022] Open
Abstract
Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia.
Collapse
Affiliation(s)
- Songqing Na
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Kumar N, Nuhant P, Cameron MD, Istrate MA, Roush WR, Griffin PR, Burris TP. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. ACS Chem Biol 2010; 5:1029-34. [PMID: 20735016 DOI: 10.1021/cb100223d] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors because ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice, and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist, and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongjun Wang
- The Scripps Research Institute, Jupiter, Florida 33458
| | - Naresh Kumar
- The Scripps Research Institute, Jupiter, Florida 33458
| | | | | | | | | | | | | |
Collapse
|
36
|
Martin MT, Dix DJ, Judson RS, Kavlock RJ, Reif DM, Richard AM, Rotroff DM, Romanov S, Medvedev A, Poltoratskaya N, Gambarian M, Moeser M, Makarov SS, Houck KA. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program. Chem Res Toxicol 2010; 23:578-90. [PMID: 20143881 DOI: 10.1021/tx900325g] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such effects during early stages of chemical development and use, and before potential exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation approaches to meet this demand is limited by low throughput and high costs. In the context of EPA's ToxCast project, we have evaluated a novel cellular biosensor system (Factorial (1) ) that enables rapid, high-content assessment of a compound's impact on gene regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated transcription factor reporter constructs with a highly homogeneous method of detection enabling simultaneous evaluation of multiplexed transcription factor activities. Here, we demonstrate the application of the technology toward determining bioactivity profiles by quantitatively evaluating the effects of 309 environmental chemicals on 25 nuclear receptors and 48 transcription factor response elements. We demonstrate coherent transcription factor activity across nuclear receptors and their response elements and that Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a chemical. Additionally, as part of the ToxCast program, we identify molecular targets that associate with in vivo end points and represent modes of action that can serve as potential toxicity pathway biomarkers and inputs for predictive modeling of in vivo toxicity.
Collapse
Affiliation(s)
- Matthew T Martin
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Kovalenko P, Cui M, Desmet M, Clinton SK, Fleet JC. Constitutive activation of the mitogen-activated protein kinase pathway impairs vitamin D signaling in human prostate epithelial cells. J Cell Physiol 2010; 224:433-42. [PMID: 20432439 DOI: 10.1002/jcp.22139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of prolonged activation of mitogen-activated protein kinase (MAPK) signaling on 1,25 dihydroxyvitamin D (1,25(OH)(2)D(3)) action in the immortalized human prostate epithelial cell line RWPE1 and its Ki-Ras transformed clone RWPE2. 1,25(OH)(2)D(3)-treatment caused growth arrest and induced gene expression in both cell lines but the response was blunted in RWPE2 cells. Vitamin D receptor (VDR) levels were lower in RWPE2 cells but VDR over-expression did not increase vitamin-D-mediated gene transcription in either cell line. In contrast, MAPK inhibition restored normal vitamin D transcriptional responses in RWPE2 cells and MAPK activation with constitutively active MEK1R4F reduced vitamin-D-regulated transcription in RWPE1 cells. 1,25(OH)(2)D(3)-mediated transcription depends upon the VDR and its heterodimeric partner the retinoid X receptor (RXR) so we studied whether changes in the VDR-RXR transcription complex occur in response to MAPK activation. Mutation of putative phosphorylation sites in the activation function 1 (AF-1) domain (S32A, T82A) of RXRalpha restored 1,25(OH)(2)D(3)-mediated transactivation in RWPE2 cells. Mammalian two-hybrid and co-immunoprecipitation assays revealed a vitamin-D-independent interaction between steroid receptor co-activator-1 (SRC-1) and RXRalpha that was reduced by MAPK activation and was restored in RWPE2 cells by mutating S32 and T82 in the RXRalpha AF-1 domain. Our data show that a common contributor to cancer development, prolonged activation of MAPK signaling, impairs 1,25(OH)(2)D(3)-mediated transcription in prostate epithelial cells. This is due in part to the phosphorylation of critical amino acids in the RXRalpha AF-1 domain and impaired co-activator recruitment.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907-2059, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cui M, Zhao Y, Hance KW, Shao A, Wood RJ, Fleet JC. Effects of MAPK signaling on 1,25-dihydroxyvitamin D-mediated CYP24 gene expression in the enterocyte-like cell line, Caco-2. J Cell Physiol 2009; 219:132-42. [PMID: 19097033 DOI: 10.1002/jcp.21657] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We examined the role of the extracellular signal regulated kinases (ERK) in 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3))-induced gene expression in the differentiated Caco-2 cells. 1,25(OH)(2)D(3)-regulated expression of the 25-hydroxyvitamin D, 24-hydroxylase (CYP24) gene (both natural gene and promoter construct) was strongly modulated by altering ERK activity (i.e., reduced by MEK inhibitors and dominant negative (dn) ERK1 and ERK2, activated by epidermal growth factor) but ERK inhibition had no effect on 1,25(OH)(2)D(3)-regulated expression of the transient receptor potential cation channel, subfamily V, member 6 (TRPV6). ERK5-mediated phosphorylation of the transcription factor Ets-1 enhanced 1,25(OH)(2)D(3)-mediated CYP24 gene transcription in proliferating but not differentiated Caco-2 cells due to reduced levels of ERK5 and Ets-1 (total and phosphoprotein levels) in differentiated cells. MEK inhibition reduced 1,25(OH)(2)D(3)-induced 3X-VDRE promoter activity but had no impact on the association of vitamin D receptor (VDR) with chromatin suggesting a role for co-activator recruitment in ERK-modulation of vitamin D-regulated CYP24 gene activation. Chromatin immunoprecipitation assays revealed that the ERK1/2 target, mediator 1 (MED1), is recruited to the CYP24, but not the TRPV6, promoter following 1,25(OH)(2)D(3) treatment. MED1 phosphorylation was sensitive to activators and inhibitors of the ERK1/2 signaling and MED1 siRNA reduced 1,25(OH)(2)D(3)-regulated human CYP24 promoter activity. This suggests ERK1/2 signaling enhances 1,25(OH)(2)D(3) effects on the CYP24 promoter by MED1-mediated events. Our data show that there are both promoter-specific and cell stage-specific roles for the ERK signaling pathway on 1,25(OH)(2)D(3)-mediated gene induction in enterocyte-like Caco-2 cells.
Collapse
Affiliation(s)
- Min Cui
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47906-2059, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wang K, Chen S, Xie W, Wan YJY. Retinoids induce cytochrome P450 3A4 through RXR/VDR-mediated pathway. Biochem Pharmacol 2008; 75:2204-13. [PMID: 18400206 PMCID: PMC2742682 DOI: 10.1016/j.bcp.2008.02.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 12/20/2022]
Abstract
A panel of retinoids and carotenoids was screened as potential inducers of CYP3A4 through the RXR/VDR-mediated signaling pathway. Transient transfection assays revealed that 3 out of 12 retinoids screened transactivated RXRalpha/VDR and induced CYP3A4 reporter activity. These three retinoids are the active metabolites of retinoids, 9-cis-retinal, 9-cis-retinoic acid (9-cis-RA), and all-trans-retinoic acid (all-trans-RA). 9-cis-RA and all-trans-RA preferentially transactivated the RXR/VDR heterodimers and RXR homodimers. Retinoids and VDR agonist 1alpha, 25-dihydroxyvitamin D(3), but not PXR or CAR activator, could induce Cyp3a11 mRNA level in hepatocytes derived from PXR/CAR-double null mouse. Moreover, retinoids induced CYP3A4 enzyme activity in HepG2 human hepatoma and Caco-2 human colorectal adenocarcinoma cells. A direct role of retinoid-mediated CYP3A4 induction through RXRalpha/VDR was proved by the results that 9-cis-retinal, 9-cis-RA, and all-trans-RA recruited RXRalpha and VDR to CYP3A4 regulatory region pER6 (proximal everted repeat with a 6-nucleotide spacer) and dXREM (distal xenobiotic-responsive enhancer module). Thus, using various approaches, we have unequivocally demonstrated that retinoids transactivate RXR/VDR heterodimers and RXR homodimers and induce CYP3A expression at mRNA as well as enzyme activity levels in both liver and intestinal cells. It is possible that retinoids might alter endobiotic metabolism through CYP3A4 induction in vivo.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 2146 W 39th Avenue, Kansas City, Kansas 66160
| | - Shiyong Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 2146 W 39th Avenue, Kansas City, Kansas 66160
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, 633 Salk Hall, Pittsburgh, Pennsylvania 15261
| | - Yu-Jui Yvonne Wan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 2146 W 39th Avenue, Kansas City, Kansas 66160
| |
Collapse
|
40
|
Fleet JC, Hong J, Zhang Z. Reshaping the way we view vitamin D signalling and the role of vitamin D in health. Nutr Res Rev 2007; 17:241-8. [DOI: 10.1079/nrr200480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough the biological requirement for vitamin D can be met by epidermal exposure to UV light, there are a number of conditions where this production does not occur or is not sufficient to meet biological needs. When this happens, vitamin D must be consumed and is a nutrient. However, two distinct observations have caused researchers to rethink certain dogma in vitamin D biology. First, it appears that in addition to the hormonally active form of 1,25 dihydroxyvitamin D (1,25(OH)2D), circulating levels of 25 hydroxyvitamin D have a critical importance for optimal human health. This and other data suggest that extra-renal production of 1,25(OH)2D contributes to Ca homeostasis and cancer prevention. Second, in addition to its role in the transcriptional activation of genes through the vitamin D receptor there is now compelling evidence that 1,25(OH)2D has a second molecular mode of action; the rapid activation of second-messenger and kinase pathways. The purpose of this second mode of action is only now being explored. The present review will discuss how these two areas are reshaping our understanding of vitamin D metabolism and action.
Collapse
|
41
|
Houck KA, Kavlock RJ. Understanding mechanisms of toxicity: insights from drug discovery research. Toxicol Appl Pharmacol 2007; 227:163-78. [PMID: 18063003 DOI: 10.1016/j.taap.2007.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 09/28/2007] [Accepted: 10/11/2007] [Indexed: 12/18/2022]
Abstract
Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments.
Collapse
Affiliation(s)
- Keith A Houck
- National Center for Computational Toxicology, Office Research and Development, United Stated Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
42
|
Klopot A, Hance KW, Peleg S, Barsony J, Fleet JC. Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J Cell Biochem 2007; 100:617-28. [PMID: 16960876 PMCID: PMC2680295 DOI: 10.1002/jcb.21087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined the effects of 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on the distribution and mobility of the vitamin D receptor (VDR) in the enterocyte-like Caco-2 cell. Confocal microscopy showed that a green fluorescent protein-vitamin D receptor (GFP-VDR) fusion protein is predominantly nuclear (58%) and it does not associate with the apical or basolateral membrane of proliferating or polarized, differentiated cells. In contrast to the previously studied cell types, neither endogenous VDR nor GFP-VDR levels accumulate in the nucleus following 1,25(OH)(2)D(3) treatment (100 nM, 30 min). However, in nuclear photobleaching experiments nuclear GFP-VDR import was significantly increased by 1,25(OH)(2)D(3) during both an early (0-5 min) and later (30-35 min) period (20% per 5 min). Compared to the natural ligand, nuclear import of GFP-VDR was 60% lower in cells treated with the 1,25(OH)(2)D(3) analog, 1-alpha-fluoro-16-ene-20-epi-23-ene-26,27-bishomo-25-hydroxyvitamin D(3) (Ro-26-9228, 5 min, 100 nM). Downstream events like ligand-induced association of VDR with chromatin at 1 h and the accumulation of CYP24 mRNA were significantly lower in Ro-26-9228 treated cells compared to 1,25(OH)(2)D(3) (60 and 95% lower, respectively). Collectively our data are consistent with a role for ligand-induced nuclear VDR import in receptor activation. In addition, ligand-dependent VDR nuclear import appears to be balanced by export, thus accounting for the lack of nuclear VDR accumulation even when VDR import is significantly elevated.
Collapse
Affiliation(s)
- Anna Klopot
- Department of Foods and Nutrition and the Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana 47907-2059
| | - Kenneth W. Hance
- Department of Foods and Nutrition and the Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana 47907-2059
| | - Sara Peleg
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Julia Barsony
- Laboratory of cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James C. Fleet
- Department of Foods and Nutrition and the Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana 47907-2059
| |
Collapse
|
43
|
Stafslien DK, Vedvik KL, De Rosier T, Ozers MS. Analysis of ligand-dependent recruitment of coactivator peptides to RXRbeta in a time-resolved fluorescence resonance energy transfer assay. Mol Cell Endocrinol 2007; 264:82-9. [PMID: 17184907 DOI: 10.1016/j.mce.2006.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/04/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
Because RXR plays a significant role in nuclear receptor signaling as a common heterodimeric partner for TR, PPAR, RAR, VDR, LXR and others, the ability of RXRbeta ligand binding domain (LBD) to interact with coregulator peptides bearing LXXLL or other interaction motifs was investigated using time-resolved fluorescence resonance energy transfer (TR-FRET). The random phage display peptide D22 and peptides derived from PGC1alpha, SRC1-4, SRC2-3, PRIP/RAP250 and RIP140 yielded the highest TR-FRET signal with RXRbeta LBD in the presence of saturating 9-cis retinoic acid (9-cisRA). Several peptides including D22, PGC1alpha, SRC3-2, PRIP/RAP250 and SRC1-4 also formed a complex with RXRbeta LBD in the presence of all-trans retinoic acid (at-RA) and the fatty acids, phytanic acid (PA) and docosahexaenoic acid (DHA). Determination of the dose dependency (EC50) of these compounds to recruit D22 to RXRbeta LBD indicated that the rank order potency was 9-cisRA>PA>at-RA>DHA. The ligands 9-cisRA and at-RA yielded an overall higher fold-change in D22 recruitment to RXRbeta LBD suggesting that more RXRbeta LBD-D22 complex was formed in the presence of these ligands under the assay conditions tested. The statistical parameter Z' factor for 9-cisRA-induced recruitment of D22 to RXRbeta LBD was 0.6 after 2h incubation, indicating a robust methodology that could be applied to high throughput screening. These results demonstrate that RXRbeta occupied with the fatty acid ligands, DHA and PA, can recruit coactivator peptides in a ligand-dependent manner.
Collapse
|
44
|
Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 2006; 26:6469-86. [PMID: 16914732 PMCID: PMC1592822 DOI: 10.1128/mcb.00353-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RANKL is a tumor necrosis factor (TNF)-like factor secreted by mesenchymal cells, osteoblast derivatives, and T cells that is essential for osteoclastogenesis. In osteoblasts, RANKL expression is regulated by two major calcemic hormones, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and parathyroid hormone (PTH), as well as by several inflammatory/osteoclastogenic cytokines; the molecular mechanisms for this regulation are unclear. To identify such mechanisms, we screened a DNA microarray which tiled across the entire mouse RankL gene locus at a 50-bp resolution using chromatin immunoprecipitation (ChIP)-derived DNA precipitated with antibodies to the vitamin D receptor (VDR) and the retinoid X receptor (RXR). Five sites of dimer interaction were observed on the RankL gene centered at 16, 22, 60, 69, and 76 kb upstream of the TSS. These regions contained binding sites for not only VDR and RXR, but also the glucocorticoid receptor (GR). The most distant of these regions, termed the distal control region (RL-DCR), conferred both VDR-dependent 1,25(OH)(2)D(3) and GR-dependent glucocorticoid (GC) responses. We mapped these activities to an unusual but functionally active vitamin D response element and to several potential GC response elements located over a more extensive region within the RL-DCR. An evolutionarily conserved region within the human RANKL gene contained a similar vitamin D response element and exhibited an equivalent behavior. Importantly, hormonal activation of the RankL gene was also associated with chromatin modification and RNA polymerase II recruitment. Our studies demonstrate that regulation of RankL gene expression by 1,25(OH)(2)D(3) is complex and mediated by at least five distal regions, one of which contains a specific element capable of mediating direct transcriptional activation.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
45
|
Sánchez-Martínez R, Castillo AI, Steinmeyer A, Aranda A. The retinoid X receptor ligand restores defective signalling by the vitamin D receptor. EMBO Rep 2006; 7:1030-4. [PMID: 16936639 PMCID: PMC1618365 DOI: 10.1038/sj.embor.7400776] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/29/2006] [Accepted: 07/10/2006] [Indexed: 11/09/2022] Open
Abstract
It is assumed that the retinoid X receptor (RXR) acts as a silent partner to the vitamin D receptor (VDR) with its only function to increase affinity of VDR/RXR to its DNA recognition site. In this study, we show that the RXR ligand 9-cis-retinoic acid (9-cis-RA) induces recruitment of coactivators by the DNA-bound heterodimer and potentiates vitamin D-dependent transcriptional responses. The presence of 9-cis-RA increases induction of cyp24 transcripts and differentiation of colon cancer cells by vitamin D, confers significant agonistic activity to a VDR ligand with very low agonistic activity and can even restore transcriptional activity of an AF-2 mutant VDR that causes hereditary rickets. This study shows that, in VDR/RXR heterodimers, allosteric communication triggered by the RXR ligand has a previously unrecognized role in vitamin D signalling, with important physiological and therapeutic implications.
Collapse
Affiliation(s)
- Ruth Sánchez-Martínez
- Regulación de la Expresión Génica, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Ana I Castillo
- Regulación de la Expresión Génica, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | | | - Ana Aranda
- Regulación de la Expresión Génica, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
- Tel: +34 91 5854453; Fax: +34 91 5854401; E-mail:
| |
Collapse
|
46
|
Matsusue K, Miyoshi A, Yamano S, Gonzalez FJ. Ligand-activated PPARbeta efficiently represses the induction of LXR-dependent promoter activity through competition with RXR. Mol Cell Endocrinol 2006; 256:23-33. [PMID: 16806672 PMCID: PMC1544360 DOI: 10.1016/j.mce.2006.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 04/07/2006] [Accepted: 05/16/2006] [Indexed: 12/27/2022]
Abstract
Angiopoietin-like protein 3 (angptl3), a member of the vascular endothelial growth factor family, was shown to play an important role in regulating lipid metabolism. To elucidate the mechanism by which PPARbeta represses angptl3 promoter activity, reporter constructs were prepared and transfection analysis carried out. PPARbeta repressed angptl3-Luc promoter activity and activation of PPARbeta by L-165041, a PPARbeta-specific ligand, increased the extent of repression. The repression by L-165041 was lost in angptl3-Luc plasmids having a deleted or mutated LXRalpha binding site (DR4). PPARbetaL405R, deficient in RXRalpha binding, had no effect on angptl3-Luc promoter activity. PPARbeta did not repress the activity of GAL4-LXRalpha which activates of GAL4DBD TK-Luc independent of RXR. Addition of RXRalpha completely abolished the repression of angptl3-Luc activity by PPARbeta. Mammalian two-hybrid analysis revealed that PPARbeta ligand binding enhanced the dissociation of the LXRalpha-RXRalpha heterodimer. Gel shift assays also indicated that PPARbeta ligand binding increased dissociation of LXRalpha/RXRalpha binding to a DR4 oligonucleotide probe; addition of RXRalpha restored the binding lost by addition of PPARbeta. Collectively, these results suggest that the binding of PPARbeta-specific ligand enhances the affinity between RXRalpha and activated PPARbeta and thus may regulate angptl3 gene expression through a DR4 element by competing with LXRalpha for RXRalpha.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Laboratory of Metabolism, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Aya Miyoshi
- Department of Forensic Medicine, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigeru Yamano
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
- * Corresponding author. Tel.: +1 301 496 9067; fax: +1 301 496 8419. E-mail address: (F.J. Gonzalez)
| |
Collapse
|
47
|
Ma Y, Khalifa B, Yee YK, Lu J, Memezawa A, Savkur RS, Yamamoto Y, Chintalacharuvu SR, Yamaoka K, Stayrook KR, Bramlett KS, Zeng QQ, Chandrasekhar S, Yu XP, Linebarger JH, Iturria SJ, Burris TP, Kato S, Chin WW, Nagpal S. Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators. J Clin Invest 2006; 116:892-904. [PMID: 16528410 PMCID: PMC1395481 DOI: 10.1172/jci25901] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 01/16/2006] [Indexed: 11/17/2022] Open
Abstract
Vitamin D receptor (VDR) ligands are therapeutic agents for the treatment of psoriasis, osteoporosis, and secondary hyperparathyroidism. VDR ligands also show immense potential as therapeutic agents for autoimmune diseases and cancers of skin, prostate, colon, and breast as well as leukemia. However, the major side effect of VDR ligands that limits their expanded use and clinical development is hypercalcemia that develops as a result of the action of these compounds mainly on intestine. In order to discover VDR ligands with less hypercalcemia liability, we sought to identify tissue-selective VDR modulators (VDRMs) that act as agonists in some cell types and lack activity in others. Here, we describe LY2108491 and LY2109866 as nonsecosteroidal VDRMs that function as potent agonists in keratinocytes, osteoblasts, and peripheral blood mononuclear cells but show poor activity in intestinal cells. Finally, these nonsecosteroidal VDRMs were less calcemic in vivo, and LY2108491 exhibited more than 270-fold improved therapeutic index over the naturally occurring VDR ligand 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in an in vivo preclinical surrogate model of psoriasis.
Collapse
MESH Headings
- Acetates/chemical synthesis
- Acetates/metabolism
- Acetates/pharmacology
- Animals
- Arylsulfonates/chemical synthesis
- Arylsulfonates/metabolism
- Arylsulfonates/pharmacology
- Caco-2 Cells
- Calcitriol/metabolism
- Calcitriol/pharmacology
- Cell Proliferation
- Cells, Cultured
- Colonic Neoplasms/metabolism
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Female
- Humans
- Hypercalcemia/metabolism
- Intestines
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Ligands
- Mice
- Mice, Hairless
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Models, Biological
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Psoriasis/drug therapy
- Rats
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/metabolism
- Signal Transduction
- Species Specificity
- Thiophenes/chemical synthesis
- Thiophenes/metabolism
- Thiophenes/pharmacology
- Transcription, Genetic
- Tumor Cells, Cultured
- Vitamin D/analogs & derivatives
- Vitamin D/chemical synthesis
- Vitamin D/metabolism
- Vitamin D/pharmacology
Collapse
Affiliation(s)
- Yanfei Ma
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Berket Khalifa
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ying K. Yee
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Jianfen Lu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ai Memezawa
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Rajesh S. Savkur
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Subba R. Chintalacharuvu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Yamaoka
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Keith R. Stayrook
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kelli S. Bramlett
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Qing Q. Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Srinivasan Chandrasekhar
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Xiao-Peng Yu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Jared H. Linebarger
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Stephen J. Iturria
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Thomas P. Burris
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - William W. Chin
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sunil Nagpal
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Savkur RS, Bramlett KS, Stayrook KR, Nagpal S, Burris TP. Coactivation of the human vitamin D receptor by the peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Mol Pharmacol 2005; 68:511-7. [PMID: 15908514 DOI: 10.1124/mol.105.012708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vitamin D receptor (VDR) belongs to the superfamily of steroid/thyroid hormone receptors that is activated by 1alpha,25-dihydroxyvitamin D(3). Traditional targets for 1alpha,25-dihydroxyvitamin D(3) action include tissues involved in the maintenance of calcium homeostasis and bone development and remodeling. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), a transcriptional coactivator that plays a role in mitochondrial biogenesis and energy metabolism, is predominantly expressed in kidney, heart, liver, and skeletal muscle. Because VDR and PGC-1alpha display an overlapping pattern of expression, we investigated the possibility that PGC-1alpha could serve as a coactivator for VDR. Transient cotransfection assays demonstrate that PGC-1alpha augments ligand-dependent VDR transcription when either full-length VDR or Gal4 DNA binding domain-VDR-ligand binding domain chimeras were analyzed. Furthermore, mammalian two-hybrid assays, coimmunoprecipitation analyses, and biochemical coactivator recruitment assays demonstrate a ligand-dependent interaction between the two proteins both in cells and in vitro. The coactivation potential of PGC-1alpha requires an intact AF-2 domain of VDR and the LXXLL motif in PGC-1alpha. Taken together, these results indicate that PGC-1alpha serves as a coactivator for VDR.
Collapse
Affiliation(s)
- Rajesh S Savkur
- Eli Lilly and Company, DC0434, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | |
Collapse
|
49
|
Fang F, Xu Y, Jones D, Jones G. Interactions of ultraspiracle with ecdysone receptor in the transduction of ecdysone- and juvenile hormone-signaling. FEBS J 2005; 272:1577-89. [PMID: 15794746 DOI: 10.1111/j.1742-4658.2005.04578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Analyses of integration of two-hormone signaling through the vertebrate nuclear hormone receptors, for which the retinoid X receptor is one partner, have generated a number of mechanistic models, including those described as 'subordination' models wherein ligand-activation of one partner is subordinate to the liganded state of the other partner. However, mechanisms by which two-hormone signaling is integrated through invertebrate nuclear hormone-binding receptors has not been heretofore experimentally elucidated. This report investigates the integration of signaling of invertebrate juvenile hormone (JH) and 20-OH ecdysone (20OHE) at the level of identified nuclear receptors (ultraspiracle and ecdysone receptor), which transcriptionally activate a defined model core promoter (JH esterase gene), through specified hormone response elements (DR1 and IR1). Application of JH III, or 20OHE, to cultured Sf9 cells transfected with a DR1JHECoreLuciferase (or IR1JHECoreLuciferase) reporter promoter each induced expression of the reporter. Cotreatment of transfected cells with both hormones yielded a greater than additive effect on transcription, for especially the IR1JHECoreLuciferase reporter. Overexpression in Sf9 cells of recombinant Drosophila melanogaster ultraspiracle (dUSP) fostered formation of dUSP oligomer (potentially homodimer), as measured by coimmunoprecipitation assay and electrophoretic mobility assay (EMSA) on a DR1 probe, and also increased the level of transcription in response to JH III, but did not increase the transcriptional response to either 20OHE treatment alone or to the two hormones together. Inapposite, overexpression of recombinant D. melanogaster ecdysone receptor (dEcR) in the transfected cells generated dUSP/dEcR heterodimer [as measured by EMSA (supershift) on a DR1 probe] and increased the transcriptional response to 20OHE-alone treatment, but did not increase the transcriptional response to the JH III-alone treatment. Our studies provide evidence that in this model system, JH III-activation of the reporter promoter is through USP oligomer (homodimer) that does not contain EcR, while the 20OHE-activation is through the USP/EcR heterodimer. These results also show that the integration of JH III and 20OHE signaling is through the USP/EcR heterodimer, but that when the EcR partner is unliganded, the USP partner in this system is unable to transduce the JH III-activation.
Collapse
Affiliation(s)
- Fang Fang
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|
50
|
Hughes PJ, Steinmeyer A, Chandraratna RAS, Brown G. 1?,25-dihydroxyvitamin D3 stimulates steroid sulphatase activity in HL60 and NB4 acute myeloid leukaemia cell lines by different receptor-mediated mechanisms. J Cell Biochem 2005; 94:1175-89. [PMID: 15696548 DOI: 10.1002/jcb.20377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Steroid sulphatase is a key enzyme in the biosynthesis of bioactive estrogens and androgens from highly abundant inactive circulating sulphated steroid precursors. Little is known about how the expression/activity of this enzyme is regulated. In this article, we show that of 1alpha,25(OH)2D3 stimulates an increase steroid sulphatase activity in the HL60 myeloid leukaemic cell line that is inhibited by a specific nuclear VDR (VDRnuc) antagonist and unaffected by plasma membrane-associated vitamin D receptor (VDRmem) agonists and antagonists. 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells was augmented by RXR agonists, blocked by RXR-specific antagonists, and RAR specific agonists and antagonists had no effect. In contrast, the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in the NB4 myeloid leukaemic cell line was unaffected by the specific VDRnuc and RXR antagonists, but was blocked by a VDRmem-specific antagonist and was increased by VDRmem-specific agonists. The findings reveal that VDRnuc-RXR-heterodimers play a key role in the 1alpha,25(OH)2D3-mediated up-regulation of steroid sulphatase activity in HL60 cells. However, in NB4 cells, VDRnuc-derived signals do not play an obligatory role, and non-genomic VDRmem-derived signals are important.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|