1
|
Koca D, Lother A. Molecular pharmacology of mineralocorticoid receptor antagonists: The role of co-regulators. Steroids 2023; 199:109291. [PMID: 37558173 DOI: 10.1016/j.steroids.2023.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Mineralocorticoid receptor (MR) antagonists have shown remarkable benefits in the treatment of cardiovascular disease. However, their underutilization in clinical practice may be attributed to concerns regarding the risk of hyperkalemia. An ideal selective MR modulator would inhibit the detrimental effects of MR in non-epithelial cells of the cardiovascular system while sparing its physiological function in kidney epithelial cells, thereby reducing the risk of adverse events. To address this issue, a new generation of non-steroidal MR antagonists, including esaxereneone, balcinrenone, ocedurenone, and finerenone, has been developed with distinct molecular structures and pharmacology. They share a mechanism of action that is different from the previously developed steroidal MR antagonists, leading to altered co-regulator interaction, potentially involving conformational changes of the receptor. Interfering with MR co-regulator interaction or the co-regulator itself may enable selective targeting of downstream signaling cascades and - in the long term - lead to more personalized medicine. In this review article, we summarize what is currently known about the mechanisms of action of the different MR antagonists with a focus on MR co-factor interaction and what may be inferred from this for future developments.
Collapse
Affiliation(s)
- Duygu Koca
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Fuller PJ, Young MJ, Yang J, Cole TJ. Structure-function relationships of the aldosterone receptor. VITAMINS AND HORMONES 2023; 123:285-312. [PMID: 37717989 DOI: 10.1016/bs.vh.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular response to the adrenal steroid aldosterone is mediated by the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. The MR binds more than one physiological ligand with binding at the MR determined by pre-receptor metabolism of glucocorticoid ligands by 11β hydroxysteroid dehydrogenase type 2. The MR has a wide tissue distribution with multiple roles beyond the classical role in electrolyte homeostasis including cardiovascular function, immune cell signaling, neuronal fate and adipocyte differentiation. The MR has three principal functional domains, an N-terminal ligand domain, a central DNA binding domain and a C-terminal, ligand binding domain, with structures having been determined for the latter two domains but not for the whole receptor. MR signal-transduction can be best viewed as a series of interactions which are determined by the conformation conferred on the receptor by ligand binding. This conformation then determines subsequent intra- and inter-molecular interactions. These interactions include chromatin, coregulators and other transcription factors, and additional less well characterized cytoplasmic non-genomic effects via crosstalk with other signaling pathways. This chapter will provide a review of MR structure and function, and an analysis of the critical interactions involved in MR-mediated signal transduction, which contribute to ligand- and tissue-specificity. Understanding the relevant mechanisms for selective MR signaling in terms of these interactions opens the possibility of novel therapeutic approaches for the treatment of MR-mediated diseases.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
4
|
Ruhs S, Griesler B, Huebschmann R, Stroedecke K, Straetz N, Ihling C, Sinz A, Masch A, Schutkowski M, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB J 2021; 36:e22059. [PMID: 34847273 DOI: 10.1096/fj.202100977rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Bruno Griesler
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Huebschmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
6
|
Ali Y, Kuppusamy M, Velarde-Miranda C, Gomez-Sanchez CM, Plonczynski M, Gomez-Sanchez CE, Gomez-Sanchez EP. 11βHSD2 Efficacy in Preventing Transcriptional Activation of the Mineralocorticoid Receptor by Corticosterone. J Endocr Soc 2021; 5:bvab146. [PMID: 34568711 DOI: 10.1210/jendso/bvab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Affinity of the mineralocorticoid receptor (MR) is similar for aldosterone and the glucocorticoids (GC) cortisol and corticosterone, which circulate at concentrations far exceeding those of aldosterone. 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) inactivation of GC within the immediate vicinity of the MR is credited with prereceptor specificity for aldosterone in cells coexpressing MR and 11βHSD2. 11βHSD2 efficacy is also critical to other recently described 11βHSD2 substrates. The aim of this work was to address doubts that low levels of expression of 11βHSD2 in aldosterone target tissues suffice to prevent the initiation of gene transcription by the MR activated by physiological concentrations of corticosterone. Cell models stably expressing an MR/Gaussia luciferase reporter and various levels of constitutive or induced 11βHSD2 at concentrations lower than those in rat kidney homogenates and microsomes were produced. Aldosterone and corticosterone were equipotent transactivators of the MR reporter gene in cells without 11βHSD2. Rate of conversion of tritiated corticosterone to 11-dehydrocorticosterone increased and corticosterone-induced nuclear translocation of MR decreased, as 11βHSD2 expression increased. The 50% maximal MR activation for the reporter gene stimulation by corticosterone rose with increasing 11βHSD2 expression, shifting the steroid dose-response curve for corticosterone-induced MR transactivation to the right. Several stable cell lines expressing an easily and reproducibly measured MR reporter system and consistent incremental amounts of 11βHSD2 protein were produced and used to document that 11βHSD2 within low physiological levels inactivates relevant concentrations of GC and decreases MR transactivation by GC in a dose-dependent fashion, laying to rest doubts of the efficacy of this enzyme.
Collapse
Affiliation(s)
- Yusuf Ali
- G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Maniselvan Kuppusamy
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Carolina Velarde-Miranda
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Clara M Gomez-Sanchez
- Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Maria Plonczynski
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Celso E Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| |
Collapse
|
7
|
Clarisse D, Deng L, de Bosscher K, Lother A. Approaches towards tissue-selective pharmacology of the mineralocorticoid receptor. Br J Pharmacol 2021; 179:3235-3249. [PMID: 34698367 DOI: 10.1111/bph.15719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are highly effective therapies for cardiovascular and renal disease. However, the widespread clinical use of currently available MRAs in cardiorenal medicine is hampered by an increased risk of hyperkalemia. The mineralocorticoid receptor (MR) is a nuclear receptor responsible for fluid and electrolyte homeostasis in epithelial tissues, whereas pathophysiological MR activation in nonepithelial tissues leads to undesirable pro-inflammatory and pro-fibrotic effects. Therefore, new strategies that selectively target the deleterious effects of MR but spare its physiological function are needed. In this review, we discuss recent pharmacological developments starting from novel non-steroidal MRAs that are now entering clinical use, such as finerenone or esaxerenone, to concepts arising from the current knowledge of the MR signaling pathway, aiming at receptor-coregulator interaction, epigenetics, or downstream effectors of MR.
Collapse
Affiliation(s)
- Dorien Clarisse
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karolien de Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Angiology I, University Heart Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Bell RMB, Villalobos E, Nixon M, Miguelez-Crespo A, Murphy L, Fawkes A, Coutts A, Sharp MGF, Koerner MV, Allan E, Meijer OC, Houtman R, Odermatt A, Beck KR, Denham SG, Lee P, Homer NZM, Walker BR, Morgan RA. Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Mol Metab 2021; 48:101225. [PMID: 33785425 PMCID: PMC8095185 DOI: 10.1016/j.molmet.2021.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 20β-dihydrocorticosterone (20β-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states. METHODS The actions of 20β-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists. Mice lacking one Cbr1 allele and mice overexpressing Cbr1 in their adipose tissue underwent metabolic phenotyping before and after induction of obesity with high-fat feeding. RESULTS 20β-DHB activated both the glucocorticoid and mineralocorticoid receptor in adipose tissue and systemic administration to wild-type mice induced glucose intolerance, an effect that was ameliorated by both glucocorticoid and mineralocorticoid receptor antagonism. Cbr1 haploinsufficient lean male mice had lower fasting glucose and improved glucose tolerance compared with littermate controls, a difference that was abolished by administration of 20β-DHB and absent in female mice with higher baseline adipose 20β-DHB concentrations than male mice. Conversely, overexpression of Cbr1 in adipose tissue resulted in worsened glucose tolerance and higher fasting glucose in lean male and female mice. However, neither Cbr1 haploinsfficiency nor adipose overexpression affected glucose dyshomeostasis induced by high-fat feeding. CONCLUSIONS Carbonyl reductase 1 is a novel regulator of glucocorticoid and mineralocorticoid receptor activation in adipose tissue that influences glucose homeostasis in lean mice.
Collapse
Affiliation(s)
- Rachel M B Bell
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Elisa Villalobos
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Mark Nixon
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Allende Miguelez-Crespo
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Lee Murphy
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Angie Fawkes
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Audrey Coutts
- Genetics Core, Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | - Matthew G F Sharp
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Martha V Koerner
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Emma Allan
- Transgenics Core, Bioresearch & Veterinary Services, University of Edinburgh, Edinburgh, United Kingdom.
| | - Onno C Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Renè Houtman
- Pamgene International, Den Bosch, the Netherlands.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Scott G Denham
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Patricia Lee
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Natalie Z M Homer
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Brian R Walker
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Ruth A Morgan
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
9
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Rognlien AG, Munthe-Kaas MC, Micci F, Heim S. Rare KMT2A-ELL and Novel ZNF56-KMT2A Fusion Genes in Pediatric T-cell Acute Lymphoblastic Leukemia. Cancer Genomics Proteomics 2021; 18:121-131. [PMID: 33608309 DOI: 10.21873/cgp.20247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Previous reports have associated the KMT2A-ELL fusion gene, generated by t(11;19)(q23;p13.1), with acute myeloid leukemia (AML). We herein report a KMT2A-ELL and a novel ZNF56-KMT2A fusion genes in a pediatric T-lineage acute lymphoblastic leukemia (T-ALL). MATERIALS AND METHODS Genetic investigations were performed on bone marrow of a 13-year-old boy diagnosed with T-ALL. RESULTS A KMT2A-ELL and a novel ZNF56-KMT2A fusion genes were generated on der(11)t(11;19)(q23;p13.1) and der(19)t(11;19)(q23;p13.1), respectively. Exon 20 of KMT2A fused to exon 2 of ELL in KMT2A-ELL chimeric transcript whereas exon 1 of ZNF56 fused to exon 21 of KMT2A in ZNF56-KMT2A transcript. A literature search revealed four more T-ALL patients carrying a KMT2A-ELL fusion. All of them were males aged 11, 11, 17, and 20 years. CONCLUSION KMT2A-ELL fusion is a rare recurrent genetic event in T-ALL with uncertain prognostic implications. The frequency and impact of ZNF56-KMT2A in T-ALL are unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Gro Rognlien
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
11
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
12
|
Koning ASCAM, Buurstede JC, van Weert LTCM, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. J Endocr Soc 2019; 3:1917-1930. [PMID: 31598572 PMCID: PMC6777400 DOI: 10.1210/js.2019-00158] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Adrenal glucocorticoid hormones are crucial for maintenance of homeostasis and adaptation to stress. They act via the mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs)-members of the family of nuclear receptors. MRs and GRs can mediate distinct, sometimes opposite, effects of glucocorticoids. Both receptor types can mediate nongenomic steroid effects, but they are best understood as ligand-activated transcription factors. MR and GR protein structure is similar; the receptors can form heterodimers on the DNA at glucocorticoid response elements (GREs), and they share a number of target genes. The transcriptional basis for opposite effects on cellular physiology remains largely unknown, in particular with respect to MR-selective gene transcription. In this review, we discuss proven and potential mechanisms of transcriptional specificity for MRs and GRs. These include unique GR binding to "negative GREs," direct binding to other transcription factors, and binding to specific DNA sequences in conjunction with other transcription factors, as is the case for MRs and NeuroD proteins in the brain. MR- and GR-specific effects may also depend on specific interactions with transcriptional coregulators, downstream mediators of transcriptional receptor activity. Current data suggest that the relative importance of these mechanisms depends on the tissue and physiological context. Insight into these processes may not only allow a better understanding of homeostatic regulation but also the development of drugs that target specific aspects of disease.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Jacobus C Buurstede
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Lisa T C M van Weert
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| | - Onno C Meijer
- Einthoven Laboratory and Department of Medicine, Division of Endocrinology, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
13
|
Fuller PJ, Yang J, Young MJ. Mechanisms of Mineralocorticoid Receptor Signaling. VITAMINS AND HORMONES 2019; 109:37-68. [DOI: 10.1016/bs.vh.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Le Billan F, Amazit L, Bleakley K, Xue QY, Pussard E, Lhadj C, Kolkhof P, Viengchareun S, Fagart J, Lombès M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures. FASEB J 2018; 32:5626-5639. [PMID: 29733691 DOI: 10.1096/fj.201800391rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.
Collapse
Affiliation(s)
- Florian Le Billan
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Larbi Amazit
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France.,Unité Mixte de Service 32, Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kevin Bleakley
- Institut National de Recherche en Informatique et Automatique-Saclay, Palaiseau, France.,Département de Mathématiques d'Orsay, Orsay, France
| | - Qiong-Yao Xue
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Service de Génétique Moléculaire, Pharmacogénomique et Hormonologie, Le Kremlin Bicêtre, France
| | - Eric Pussard
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Service de Génétique Moléculaire, Pharmacogénomique et Hormonologie, Le Kremlin Bicêtre, France
| | - Christophe Lhadj
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Peter Kolkhof
- Department of Cardiology Research, Bayer AG, Global Drug Discovery, Wuppertal, Germany
| | - Say Viengchareun
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France.,(AP-HP), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin Bicêtre, France
| |
Collapse
|
15
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
16
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
17
|
Ruhs S, Strätz N, Quarch K, Masch A, Schutkowski M, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 2. Sci Rep 2017; 7:15340. [PMID: 29127314 PMCID: PMC5681688 DOI: 10.1038/s41598-017-15418-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of cardiovascular diseases is a multifunctional process in which the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, is involved as proven by numerous clinical studies. The development of pathophysiological MR actions depends on the existence of additional factors e.g. inflammatory cytokines and seems to involve posttranslational MR modifications e.g. phosphorylation. Casein kinase 2 (CK2) is a ubiquitously expressed multifunctional serine/threonine kinase that can be activated under inflammatory conditions as the MR. Sequence analysis and inhibitor experiments revealed that CK2 acts as a positive modulator of MR activity by facilitating MR-DNA interaction with subsequent rapid MR degradation. Peptide microarrays and site-directed mutagenesis experiments identified the highly conserved S459 as a functionally relevant CK2 phosphorylation site of the MR. Moreover, MR-CK2 protein-protein interaction mediated by HSP90 was shown by co-immunoprecipitation. During inflammation, cytokine stimulation led to a CK2-dependent increased expression of proinflammatory genes. The additional MR activation by aldosterone during cytokine stimulation augmented CK2-dependent NFκB signaling which enhanced the expression of proinflammatory genes further. Overall, in an inflammatory environment the bidirectional CK2-MR interaction aggravate the existing pathophysiological cellular situation.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of Physiology, University Halle-Wittenberg, Halle, 06112, Germany.
| | - Nicole Strätz
- Julius Bernstein Institute of Physiology, University Halle-Wittenberg, Halle, 06112, Germany
| | - Katja Quarch
- Julius Bernstein Institute of Physiology, University Halle-Wittenberg, Halle, 06112, Germany
| | - Antonia Masch
- Institute of Biotechnology and Biochemistry, Division of Enzymology, University Halle-Wittenberg, Halle, 06110, Germany
| | - Mike Schutkowski
- Institute of Biotechnology and Biochemistry, Division of Enzymology, University Halle-Wittenberg, Halle, 06110, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, University Halle-Wittenberg, Halle, 06112, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, University Halle-Wittenberg, Halle, 06112, Germany
| |
Collapse
|
18
|
Birth P, Schöne S, Stelzl U, Meijsing SH. Identification and characterization of BATF3 as a context-specific coactivator of the glucocorticoid receptor. PLoS One 2017; 12:e0181219. [PMID: 28708849 PMCID: PMC5510845 DOI: 10.1371/journal.pone.0181219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022] Open
Abstract
The ability of the glucocorticoid receptor (GR) to regulate the transcriptional output of genes relies on its interactions with transcriptional coregulators. However, which coregulators are required for GR-dependent activation is context-dependent and can be influenced by the sequence of the DNA bound by GR and by the nature of the GR isoform responsible for the regulation of a gene. Here, we screened for GR-interacting proteins for which the interaction signal differed between two GR isoforms GRα and GRγ. These isoforms diverge by a single amino acid insertion in a domain, the lever arm, which adopts DNA sequence-specific conformations. We identify Basic Leucine Zipper ATF-Like Transcription Factor 3 (BATF3), an AP-1 family transcription factor, as a GR coregulator whose interaction with GR is modulated by the lever arm. Further, a combination of experiments uncovered that BATF3 acts as a gene-specific coactivator of GR whose coactivator potency is influenced by the sequence of the GR binding site. Together, our findings suggest that GR isoform and the sequence of GR binding site influence the interaction of GR with BATF3, which might direct the assembly of gene-specific regulatory complexes to fine-tune the expression of individual GR target genes.
Collapse
Affiliation(s)
- Petra Birth
- Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, Berlin, Germany
| | - Stefanie Schöne
- Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, Berlin, Germany
| | - Ulrich Stelzl
- Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, Berlin, Germany
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, Universitätsplatz 1, Graz, Austria
| | | |
Collapse
|
19
|
Fuller PJ, Yang J, Young MJ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Coregulators as mediators of mineralocorticoid receptor signalling diversity. J Endocrinol 2017. [PMID: 28634265 DOI: 10.1530/joe-17-0060] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cloning of the mineralocorticoid receptor (MR) 30 years ago was the start of a new era of research into the regulatory processes of MR signalling at target genes in the distal nephron, and subsequently in many other tissues. Nuclear receptor (NR) signalling is modified by interactions with coregulatory proteins that serve to enhance or inhibit the gene transcriptional responses. Over 400 coregulatory proteins have been described for the NR super family, many with functional roles in signalling, cellular function, physiology and pathophysiology. Relatively few coregulators have however been described for the MR although recent studies have demonstrated both ligand and/or tissue selectivity for MR-coregulator interactions. A full understanding of the cell, ligand and promoter-specific requirements for MR-coregulator signalling is an essential first step towards the design of small molecular inhibitors of these protein-protein interactions. Tissue-selective steroidal or non-steroidal modulators of the MR are also a desired therapeutic goal. Selectivity, as for other steroid hormone receptors, will probably depend on differential expression and recruitment of coregulatory proteins.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research and the Monash University Department of Molecular Translational Science, Clayton, Victoria, Australia
| | - Jun Yang
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research and the Monash University Department of Molecular Translational Science, Clayton, Victoria, Australia
| | - Morag J Young
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research and the Monash University Department of Molecular Translational Science, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, Zhang D, Wang J, Liu X, Ouyang G, Zhou J, Xiao W. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7:11057. [PMID: 27009366 PMCID: PMC4820845 DOI: 10.1038/ncomms11057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.
Collapse
Affiliation(s)
- Yu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Chi Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Ji
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Zhichao Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Dawei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jiangang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| |
Collapse
|
22
|
Yang J, Fuller PJ, Morgan J, Shibata H, Clyne CD, Young MJ. GEMIN4 functions as a coregulator of the mineralocorticoid receptor. J Mol Endocrinol 2015; 54:149-60. [PMID: 25555524 DOI: 10.1530/jme-14-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Peter J Fuller
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - James Morgan
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Hirotaka Shibata
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Colin D Clyne
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Morag J Young
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| |
Collapse
|
23
|
Chow CC, Finn KK, Storchan GB, Lu X, Sheng X, Simons SS. Kinetically-defined component actions in gene repression. PLoS Comput Biol 2015; 11:e1004122. [PMID: 25816223 PMCID: PMC4376387 DOI: 10.1371/journal.pcbi.1004122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| | - Kelsey K. Finn
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffery B. Storchan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoyan Sheng
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| |
Collapse
|
24
|
Meijsing SH. Mechanisms of Glucocorticoid-Regulated Gene Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215990 DOI: 10.1007/978-1-4939-2895-8_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?To answer these questions, this chapter will describe the function of the various "components" and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first "component" is GR itself. The second "component" is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Biology, Ihnestrasse 63-73, Berlin, 14195, Germany,
| |
Collapse
|
25
|
Abstract
The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Collapse
Affiliation(s)
- Elise Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Celso E. Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
26
|
Rogerson FM, Yao Y, Young MJ, Fuller PJ. Identification and characterization of a ligand‐selective mineralocorticoid receptor coactivator. FASEB J 2014; 28:4200-10. [DOI: 10.1096/fj.13-242479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yi‐Zhou Yao
- Prince Henry's Institute of Medical ResearchClaytonVictoriaAustralia
| | - Morag J. Young
- Prince Henry's Institute of Medical ResearchClaytonVictoriaAustralia
| | - Peter J. Fuller
- Prince Henry's Institute of Medical ResearchClaytonVictoriaAustralia
| |
Collapse
|
27
|
Zhu R, Lu X, Pradhan M, Armstrong S, Storchan GB, Chow C, Simons SS. A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 2014; 53:1753-67. [PMID: 24559102 PMCID: PMC3985961 DOI: 10.1021/bi5000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/20/2014] [Indexed: 12/18/2022]
Abstract
A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to affect paused polymerase could reverse the effects of NELF-A and -B. Unexpectedly, Cdk9 and ELL augmented, rather than prevented, the effects of NELF-A and -B. Furthermore, Cdk9 actions are not blocked either by Ckd9 inhibitors (DRB or flavopiridol) or by two Cdk9 mutants defective in kinase activity. The mode and site of action of NELF-A and -B mutants with an altered NELF domain are similarly affected by wild-type and kinase-dead Cdk9. We conclude that Cdk9 is a new modulator of GR action, that Ckd9 and ELL have novel activities in GR-regulated gene expression, that NELF-A and -B can act separately from the NELF complex, and that Cdk9 possesses activities that are independent of Cdk9 kinase activity. Finally, the competition assay has succeeded in ordering the site of action of several cofactors of GR transactivation. Extension of this methodology should be helpful in determining the site and mode of action of numerous additional cofactors and in reducing unwanted side effects.
Collapse
Affiliation(s)
- Rong Zhu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Xinping Lu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Madhumita Pradhan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Stephen
P. Armstrong
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Geoffrey B. Storchan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Carson
C. Chow
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - S. Stoney Simons
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
28
|
ELL inhibits E2F1 transcriptional activity by enhancing E2F1 deacetylation via recruitment of histone deacetylase 1. Mol Cell Biol 2013; 34:765-75. [PMID: 24344198 DOI: 10.1128/mcb.00878-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ELL (eleven-nineteen lysine-rich leukemia protein) was first identified as a translocation partner of MLL in acute myeloid leukemia; however, the exact mechanism of its action has remained elusive. In this study, we identified ELL as a direct downstream target gene of E2F1. Coimmunoprecipitation assays showed that ELL interacted with E2F1 in vitro and in vivo, leading to inhibition of E2F1 transcriptional activity. In addition, ELL enhanced E2F1 deacetylation via recruitment of histone deacetylase 1 (HDAC1). Notably, the MLL-ELL fusion protein lost the inhibitory role of ELL in E2F1 transcriptional activity. Furthermore, DNA damage induced ELL in an E2F1-dependent manner and ELL protected cells against E2F1-dependent apoptosis. Our findings not only connect ELL to E2F1 function and uncover a novel role of ELL in response to DNA damage but also provide an insight into the mechanism for MLL-ELL-associated leukemogenesis.
Collapse
|
29
|
van den Berg TNA, Rongen GA, Fröhlich GM, Deinum J, Hausenloy DJ, Riksen NP. The cardioprotective effects of mineralocorticoid receptor antagonists. Pharmacol Ther 2013; 142:72-87. [PMID: 24275323 DOI: 10.1016/j.pharmthera.2013.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023]
Abstract
Despite state-of-the-art reperfusion therapy, morbidity and mortality remain significant in patients with an acute myocardial infarction. Therefore, novel strategies to limit myocardial ischemia-reperfusion injury are urgently needed. Mineralocorticoid receptor (MR) antagonists are attractive candidates for this purpose, since several clinical trials in patients with heart failure have reported a survival benefit with MR antagonist treatment. MRs are expressed by several cells of the cardiovascular system, including cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, and endothelial cells. Experiments in animal models of myocardial infarction have demonstrated that acute administration of MR antagonists, either before ischemia or immediately at the moment of coronary reperfusion, limits infarct size. This action appears to be independent of the presence of aldosterone and cortisol, which are the endogenous ligands for the MR. The cardioprotective effect is mediated by a nongenomic intracellular signaling pathway, including adenosine receptor stimulation, and activation of several components of the Reperfusion Injury Salvage Kinase (RISK) pathway. In addition to limiting infarct size, MR antagonists can improve scar healing when administered shortly after reperfusion and can reduce cardiac remodeling post myocardial infarction. Clinical trials are currently being performed studying whether early administration of MR antagonists can indeed improve prognosis in patients with an acute myocardial infarction, independent of the presence of heart failure.
Collapse
Affiliation(s)
- T N A van den Berg
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Georg M Fröhlich
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Jaap Deinum
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Niels P Riksen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Ruhs S, Strätz N, Schlör K, Meinel S, Mildenberger S, Rabe S, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by nitrosative stress. Free Radic Biol Med 2012; 53:1088-100. [PMID: 22749806 DOI: 10.1016/j.freeradbiomed.2012.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022]
Abstract
The mineralocorticoid receptor (MR) plays an important role in salt and water homeostasis and pathological tissue modifications, such as cardiovascular and renal fibrosis. Importantly, MR activation by aldosterone per se is not sufficient for the deleterious effects but requires the additional presence of a certain pathological milieu. Phenomenologically, this milieu could be generated by enhanced nitrosative stress. However, little is known regarding the modulation of MR transcriptional activity in a pathological milieu. The glucocorticoid receptor (GR), the closest relative of the MR, binds to the same hormone-response element but elicits protective effects on the cardiovascular system. To investigate the possible modulation of MR and GR by nitrosative stress under controlled conditions we used human embryonic kidney (HEK) cells and measured MR and GR transactivation after stimulation with the nitric oxide (NO)-donor SNAP and the peroxynitrite-donor Sin-1. In the presence of corticosteroids NO led to a general reduced corticosteroid receptor activity by repression of corticosteroid receptor-DNA interaction. The NO-induced diminished transcriptional MR activity was most pronounced during stimulation with physiological aldosterone concentrations, suggesting that NO treatment prevented its pathophysiological overactivation. In contrast, single peroxynitrite administration specifically induced the MR transactivation activity whereas genomic GR activity remained unchanged. Mechanistically, peroxynitrite permitted nuclear MR translocation whereas the cytosolic GR distribution was unaffected. Consequently, peroxynitrite represents a MR-specific aldosterone mimetic. In summary, our data indicate that the genomic function of corticosteroid receptors can be modulated by nitrosative stress which may induce the shift from physiological toward pathophysiological MR effects.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius-Bernstein-Institut für Physiologie der Universität Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stow LR, Voren GE, Gumz ML, Wingo CS, Cain BD. Dexamethasone stimulates endothelin-1 gene expression in renal collecting duct cells. Steroids 2012; 77:360-6. [PMID: 22209709 PMCID: PMC3303981 DOI: 10.1016/j.steroids.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 01/28/2023]
Abstract
Aldosterone stimulates the endothelin-1 gene (Edn1) in renal collecting duct (CD) cells by a mechanism involving the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The goal of the present study was to determine if the synthetic glucocorticoid dexamethasone affected Edn1 gene expression and to characterize GR binding patterns to an element in the Edn1 promoter. Dexamethasone (1μM) induced a 4-fold increase in Edn1 mRNA in mIMCD-3 inner medullary CD cells. Similar results were obtained from cortical collecting duct-derived mpkCCD(c14) cells. RU486 inhibition of GR completely blocked dexamethasone action on Edn1. Similarly, 24h transfection of siRNA against GR reduced Edn1 expression by approximately 50%. However, blockade of MR with either spironolactone or siRNA had little effect on dexamethasone induction of Edn1. Cotransfection of MR and GR siRNAs together had no additive effect compared to GR-siRNA alone. The results indicate that dexamethasone acts on Edn1 exclusively through GR and not MR. DNA affinity purification studies revealed that either dexamethasone or aldosterone resulted in GR binding to the same hormone response element in the Edn1Edn1 promoter. The Edn1 hormone response element contains three important sequence segments. Mutational analysis revealed that one of these segments is particularly important for modulating MR and GR binding to the Edn1 hormone response element.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Gene Expression/drug effects
- Glucocorticoids/pharmacology
- Hormone Antagonists/pharmacology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mifepristone/pharmacology
- Mineralocorticoid Receptor Antagonists
- Mutation
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spironolactone/pharmacology
Collapse
Affiliation(s)
- Lisa R. Stow
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - George E. Voren
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Michelle L. Gumz
- Department of Medicine, University of Florida Gainesville, Florida 32610
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
| | - Charles S. Wingo
- Department of Medicine, University of Florida Gainesville, Florida 32610
- North Florida/South Georgia VA Medical Center, Gainesville Florida 32608
| | - Brian D. Cain
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville, Florida 32610
- CORRESPONDENCE addressed to Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610,
| |
Collapse
|
32
|
Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol 2012; 350:310-7. [PMID: 21771637 DOI: 10.1016/j.mce.2011.06.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
The blockade of mineralocorticoid receptors (MR) has been shown to be an invaluable therapy in heart failure and hypertension. To date, only two steroidal antimineralocorticoids, spironolactone (and its active metabolite canrenone) and eplerenone, have been approved, whereas novel non-steroidal compounds are in preclinical and early development. The careful investigation of the efficacy and tolerance of spironolactone in essential hypertension initially supported the idea that a more selective second generation of MR antagonists is desired for chronic treatment of cardiovascular diseases. More than 40 years went by between the approval of the first MR antagonist spironolactone and the market introduction of its sole successor, eplerenone. The molecular pharmacology of MR antagonists may be addressed at different levels. Available preclinical and clinical data of the two approved steroidal antimineralocorticoids allow a good comparison of potency and selectivity of MR antagonists and their pharmacokinetic properties. The search for novel generations of MR antagonists with the ultimate goal of a more tissue selective mode of action may require novel compounds that are differentiated with respect to the binding mode to the MR. Other factors that may contribute to tissue selectivity as e.g. the physicochemical properties of a drug and how they influence the resulting pharmacology in the context of tissue selective co-factor expression are even less well understood. In the following we will review these aspects and demonstrate that the molecular pharmacology of current MR antagonists is on the one hand far from well understood and, on the other hand, still offers room for improvements.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Research, Department Heart Diseases, Global Drug Discovery, Bayer Healthcare Pharmaceuticals, Wuppertal, Germany
| | | |
Collapse
|
33
|
Yang J, Fuller PJ. Interactions of the mineralocorticoid receptor--within and without. Mol Cell Endocrinol 2012; 350:196-205. [PMID: 21784126 DOI: 10.1016/j.mce.2011.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 01/02/2023]
Abstract
The mineralocortoid receptor (MR) regulates salt homeostasis in the kidneys and plays a range of other roles in the heart, vasculature, brain and adipose tissue. It interacts with both mineralocorticoids and glucocorticoids to mediate transcription of target genes. The ability of the MR to exert tissue- and ligand-specific effects relies on its interactions with a range of binding partners, including the chaperone proteins, coregulators, other transcription factors, DNA and modifying proteins. Interactions within the domains of the MR also modulate the overall transcriptional complex. This review will discuss the current understanding of interactions involving the MR and highlight their relevance to ligand- or tissue-specificity as well as their suitability as therapeutic targets.
Collapse
Affiliation(s)
- Jun Yang
- Department of Medicine, Prince Henry's Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
34
|
Lindschau C, Kirsch T, Klinge U, Kolkhof P, Peters I, Fiebeler A. Dehydroepiandrosterone-induced phosphorylation and translocation of FoxO1 depend on the mineralocorticoid receptor. Hypertension 2011; 58:471-8. [PMID: 21747041 DOI: 10.1161/hypertensionaha.111.171280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In humans, dehydroepiandrosterone (DHEA), with its sulfate, is the most abundant adrenal steroid, whereas the rat adrenals are not capable of synthesizing this steroid. Circulating concentrations of DHEA sulfate lie in the millimolar range and those of DHEA in the subnanomolar range. DHEA exerts protective potential during vascular remodeling, although the underlying mechanisms of this protection are imperfectly defined. We hypothesized that physiological doses of DHEA alter signaling pathways that are of central importance for vascular integrity. We exposed human endothelial cells, vascular smooth muscle cells, and fibroblasts to DHEA (10(-6) to 10(-10) mol/L) and observed a dose- and time-dependent increase of extracellular signal-regulated kinases 1 and 2 activation. Similar results were observed in rat vascular smooth muscle cells. In addition, in rat vascular smooth muscle cells, we found altered phosphorylation and cellular translocation of the transcription factor FoxO1. Pharmacological blockade of the mineralocorticoid receptor (MR) with eplerenone or small interfering RNA-mediated MR-silencing prevented DHEA-induced extracellular signal-regulated kinase 1/2 phosphorylation and its effects on FoxO1. Of note, in a cell-based MR transactivation assay, we did not find any agonist effect of DHEA on MR activity. We conclude that DHEA induces early signaling events in vascular cells that might underlie the DHEA-mediated protection against vasculopathies. These effects are dependent on the MR, although the finding that DHEA fails to act as a direct MR agonist suggests that additional signaling proteins are involved. In this regard, DHEA may either interact with coeffectors to modify MR activity or serves as a ligand for a yet unknown receptor that might transactivate the MR.
Collapse
Affiliation(s)
- Carsten Lindschau
- Department of Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Yang J, Chang CY, Safi R, Morgan J, McDonnell DP, Fuller PJ, Clyne CD, Young MJ. Identification of ligand-selective peptide antagonists of the mineralocorticoid receptor using phage display. Mol Endocrinol 2010; 25:32-43. [PMID: 21106883 DOI: 10.1210/me.2010-0193] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. The glucocorticoid cortisol binds the MR with equivalent affinity to that of the mineralocorticoids aldosterone and deoxycorticosterone. In nonepithelial tissues, including the myocardium, which do not express the cortisol-inactivating enzyme 11β hydroxysteroid dehydrogenase 2, cortisol has been implicated in the activation of MR. The mechanisms for ligand- and tissue-specific actions of the MR are undefined. Over the past decade, it has become clear that coregulator proteins are critical for nuclear receptor-mediated gene expression. A subset of these coregulators may confer specificity to MR-mediated responses. To evaluate whether different physiological ligands can induce distinct MR conformations that underlie differential coregulator recruitment and ligand-specific gene regulation, we utilized phage display technology to screen 10(8) 19mer peptides for their interaction with the MR in the presence of agonist ligands. We identified ligand-selective MR-interacting peptides that acted as potent antagonists of MR-mediated transactivation. This represents a novel mechanism of MR antagonism that may be manipulated in the rational design of a ligand- or tissue-selective MR modulator to treat diseases like heart failure without side effects such as hyperkalemia.
Collapse
Affiliation(s)
- Jun Yang
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ. Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Mol Endocrinol 2010; 24:1935-48. [PMID: 20685853 DOI: 10.1210/me.2010-0005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mineralocorticoid receptor (MR) binds the steroid hormones aldosterone and cortisol and has an important physiological role in the control of salt homeostasis. Regions of the protein important for gene regulation have been mapped to the amino-terminal domain (NTD) and termed activation function (AF)1a, AF1b, and middle domain (MD). In the present study, we used a combination of biophysical and biochemical techniques to investigate the folding and function of the MR-NTD transactivation functions. We demonstrate that MR-AF1a and MR-MD have relatively little stable secondary structure but have the propensity to form α-helical conformation. Induced folding of the MR-MD enhanced protein-protein binding with a number of coregulatory proteins, including the coactivator cAMP response element-binding protein-binding protein and the corepressors SMRT and RIP140. By contrast, the MR-AF1b domain appeared to have a more stable conformation consisting predominantly of β-secondary structure. Furthermore, MR-AF1b specifically interacted with the TATA-binding protein, via an LxxLL-like motif, in the absence of induced folding. Together, these data suggest that the MR-NTD contains a complex transactivation system made up of distinct structural and functional domains. The results are discussed in the context of the induced folding paradigm for steroid receptor NTDs.
Collapse
Affiliation(s)
- Katharina Fischer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Huijbregts L, de Roux N. KISS1 is down-regulated by 17beta-estradiol in MDA-MB-231 cells through a nonclassical mechanism and loss of ribonucleic acid polymerase II binding at the proximal promoter. Endocrinology 2010; 151:3764-72. [PMID: 20534720 DOI: 10.1210/en.2010-0260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Kisspeptins are hypothalamic neuropeptides encoded by KISS1 and recently described as major regulators of GnRH release from hypothalamic neurons. Although 17beta-estradiol (E2)-induced up-regulation of KISS1 expression has been documented in anteroventral periventricular nucleus neurons, E2 down-regulates KISS1 expression in arcuate nucleus neurons via the estrogen receptor alpha by unknown molecular mechanisms. Because KISS1 was initially described as a metastasis inhibitor, notably in breast tumors, we used the MDA-MB-231 breast cancer cell line, which expresses high levels of KISS1, to characterize the molecular mechanism underlying KISS1 regulation by E2. E2 rapidly down-regulated endogenous KISS1 in a stable ERalpha-expressing MDA-MB-231 cell line. Promoter analysis revealed that E2 down-regulation was determined by a short 93-bp sequence devoid of estrogen response element and Sp1 sites. E2 down-regulation persisted with an ERalpha that was unable to bind DNA and in the presence of histone deacetylase inhibitor. In the absence of E2, unliganded ERalpha and RNA polymerase II (RNAPII) were present on the proximal promoter. E2 stimulation induced recruitment of ERalpha and loss of RNAPII at the proximal promoter. Along the gene body, total RNAPII amounts were similar in E2-treated and untreated cells, whereas the active form was significantly less abundant in E2-treated cells. Thus, E2-induced down-regulation of KISS1 is mediated by a pathway combining RNAPII loss at the proximal promoter and modulation of active RNAPII along the gene body, which is a novel mechanism in the complex process of E2-induced repression of gene expression.
Collapse
Affiliation(s)
- Lukas Huijbregts
- Avenir Team Genetic and Physiology of the Onset of Puberty, Institut National de la Santé et de laRecherche Médicale Unité 676, Hopital Robert Debré, and Université Paris Diderot, 75019 Paris, France
| | | |
Collapse
|
38
|
Paibomesai MI, Moghadam HK, Ferguson MM, Danzmann RG. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling. BMC Res Notes 2010; 3:215. [PMID: 20670436 PMCID: PMC3161366 DOI: 10.1186/1756-0500-3-215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022] Open
Abstract
Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.
Collapse
Affiliation(s)
- Marion I Paibomesai
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
39
|
Liu L, Ai J, Xiao W, Liu J, Wang Y, Xin D, He Z, Guo Y, Wang Z. ELL is an HIF-1alpha partner that regulates and responds to hypoxia response in PC3 cells. Prostate 2010; 70:797-805. [PMID: 20166137 PMCID: PMC2857586 DOI: 10.1002/pros.21113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Eleven-nineteen lysine-rich leukemia (ELL) plays an important role in tumorigenesis and animal development. HIF-1 is a transcriptional factor that functions as a master regulator of O(2) homeostasis. Our previous studies showed that a binding partner of ELL, U19/Eaf2, can modulate HIF-1alpha activity and hypoxia response, suggesting that ELL may also influence HIF-1alpha pathway and hypoxia response. METHODS Co-localization and co-immunoprecipitation were performed to test the interaction between ELL and HIF-1alpha. PC3 cells with stable ELL knockdown and PC3 cells with stable ELL overexpression, along with their controls, were established using lentiviral expression system. Western blot and real-time PCR were performed to test the effect of ELL on HIF-1alpha protein and its down-stream gene transcription. To elucidate potential effect of hypoxia on ELL, cell growth and colony formation assays were performed using PC3 subline with stable ELL overexpression. RESULTS ELL is associated with HIF-1alpha in transfected cells. In PC3 prostate cancer cells, ELL inhibited HIF-1alpha protein level and down-stream gene expression. As expected, ELL inhibited cell growth and colony formation under normoxia. Interestingly, the inhibition was alleviated under hypoxia. CONCLUSIONS Our findings suggest that ELL and HIF-1alpha are binding partners and can modulate the functions of each other in hypoxia.
Collapse
Affiliation(s)
- Lingqi Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wuhan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - June Liu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yujuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dianqi Xin
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yinglu Guo
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
- Requests for reprints: Yinglu Guo, Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China. . Zhou Wang, University of Pittsburgh Medical College, Suite G40, 5200 Centre Avenue, Pittsburgh, PA 15232. Phone: 412-623-3903; Fax: 412-623-3904;
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Requests for reprints: Yinglu Guo, Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China. . Zhou Wang, University of Pittsburgh Medical College, Suite G40, 5200 Centre Avenue, Pittsburgh, PA 15232. Phone: 412-623-3903; Fax: 412-623-3904;
| |
Collapse
|
40
|
Abstract
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth-factor-mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV-1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT-facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT-modulating proteins and how they influence ESCRT-dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT-mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady-state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.
Collapse
|
41
|
Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Mitsuishi Y, Jo R, Kitagawa H, Kato S, Saruta T, Itoh H. NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J Biol Chem 2010; 285:8084-93. [PMID: 20054001 DOI: 10.1074/jbc.m109.053371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of aldosterone has been implicated in the metabolic syndrome and cardiovascular diseases. The biological actions of aldosterone are mediated through mineralocorticoid receptor (MR). Nuclear receptor-mediated gene expression is regulated by dynamic and coordinated recruitment of coactivators and corepressors. To identify new coregulators of the MR, full-length MR was used as bait in yeast two-hybrid screening. We isolated NF-YC, one of the subunits of heterotrimeric transcription factor NF-Y. Specific interaction between MR and NF-YC was confirmed by yeast two-hybrid, mammalian two-hybrid, coimmunoprecipitation assays, and fluorescence subcellular imaging. Transient transfection experiments in COS-7 cells demonstrated that NF-YC repressed MR transactivation in a hormone-sensitive manner. Moreover, reduction of NF-YC protein levels by small interfering RNA potentiated hormonal activation of endogenous target genes in stably MR-expressing cells, indicating that NF-YC functions as an agonist-dependent MR corepressor. The corepressor function of NF-YC is selective for MR, because overexpression of NF-YC did not affect transcriptional activity mediated by androgen, progesterone, or glucocorticoid receptors. Chromatin immunoprecipitation experiments showed that endogenous MR and steroid receptor coactivator-1 were recruited to an endogenous ENaC gene promoter in a largely aldosterone-dependent manner, and endogenous NF-YC was sequentially recruited to the same element. Immunohistochemistry showed that endogenous MR and NF-YC were colocalized within the mouse kidney. Although aldosterone induces interaction of the N and C termini of MR, NF-YC inhibited the N/C interaction. These findings indicate that NF-YC functions as a new corepressor of agonist-bound MR via alteration of aldosterone-induced MR conformation.
Collapse
Affiliation(s)
- Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mathews A, Holland L, Yankulov K. The interaction between EAP30 and ELL is modulated by MCM2. FEBS Lett 2009; 583:3431-6. [PMID: 19819239 DOI: 10.1016/j.febslet.2009.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/17/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.
Collapse
Affiliation(s)
- Amit Mathews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
43
|
Pippal JB, Yao Y, Rogerson FM, Fuller PJ. Structural and functional characterization of the interdomain interaction in the mineralocorticoid receptor. Mol Endocrinol 2009; 23:1360-70. [PMID: 19541744 DOI: 10.1210/me.2009-0032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mineralocorticoid receptor (MR) plays a central role in electrolyte homeostasis and in cardiovascular disease. We have previously reported a ligand-dependent N/C-interaction in the MR. In the present study we sought to fully characterize the MR N/C-interaction. By using a range of natural and synthetic MR ligands in a mammalian two-hybrid assay we demonstrate that in contrast to aldosterone, which strongly induces the interaction, the physiological ligands deoxycorticosterone and cortisol weakly promote the interaction but predominantly inhibit the aldosterone-mediated N/C-interaction. Similarly, progesterone and dexamethasone antagonize the interaction. In contrast, the synthetic agonist 9alpha-fludrocortisol robustly induces the interaction. The ability of the N/C interaction to discriminate between MR agonists suggests a subtle conformational difference in the ligand-binding domain induced by these agonists. We also demonstrate that the N/C interaction is not cell specific, consistent with the evidence from a glutathione-S-transferase pull-down assay, of a direct protein-protein interaction between the N- and C-terminal domains of the MR. Examination of a panel of deletions in the N terminus suggests that several regions may be critical to the N/C-interaction. These studies have identified functional differences between physiological MR ligands, which suggest that the ligand-specific dependence of the N/C-interaction may contribute to the differential activation of the MR that has been reported in vivo.
Collapse
Affiliation(s)
- Jyotsna B Pippal
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Zhou J, Feng X, Ban B, Liu J, Wang Z, Xiao W. Elongation factor ELL (Eleven-Nineteen Lysine-rich Leukemia) acts as a transcription factor for direct thrombospondin-1 regulation. J Biol Chem 2009; 284:19142-52. [PMID: 19447890 DOI: 10.1074/jbc.m109.010439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the transactivation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.
Collapse
Affiliation(s)
- Jiangang Zhou
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
45
|
Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol 2009; 300:7-16. [PMID: 19000736 PMCID: PMC2674248 DOI: 10.1016/j.mce.2008.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptor agonists are mainstays in the treatment of various malignancies of hematological origin. Glucocorticoids are included in therapeutic regimens for their ability to stimulate intracellular signal transduction cascades that culminate in alterations in the rate of transcription of genes involved in cell cycle progression and programmed cell death. Unfortunately, subpopulations of patients undergoing systemic glucocorticoid therapy for these diseases are or become insensitive to glucocorticoid-induced cell death, a phenomenon recognized as glucocorticoid resistance. Multiple factors contributing to glucocorticoid resistance have been identified. Here we summarize several of these mechanisms and describe the processes involved in generating a host of glucocorticoid receptor isoforms from one gene. The potential role of glucocorticoid receptor isoforms in determining cellular responsiveness to glucocorticoids is emphasized.
Collapse
Affiliation(s)
| | | | - John A. Cidlowski
- Corresponding Author. Mailing address: National Institute of Environmental Health Sciences, P.O. Box 12233, MD F3-07, Research Triangle Park, NC 27709, Phone: 919-541-1564. Fax: 919-541-1367. E-mail:
| |
Collapse
|
46
|
Odermatt A, Atanasov AG. Mineralocorticoid receptors: emerging complexity and functional diversity. Steroids 2009; 74:163-71. [PMID: 19022273 DOI: 10.1016/j.steroids.2008.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/18/2008] [Accepted: 10/20/2008] [Indexed: 12/29/2022]
Abstract
Mineralocorticoid receptor (MR) activation in renal epithelial cells in response to the binding of aldosterone has long been implicated in the maintenance of body salt and fluid homeostasis and blood pressure control. 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) is believed to confer specificity on aldosterone to activate MR by inactivating 11beta-hydroxyglucocorticoids (corticosterone, cortisol) that are 100-1000 times more abundant in plasma than aldosterone and that can also bind and activate MR. Increasing evidence, however, challenges such a simple view of MR activation as well as its interaction with glucocorticoids and 11beta-HSDs. In non-epithelial tissues including brain, cardiomyocytes and macrophages, 11beta-hydroxyglucocorticoids seem to act as MR antagonists, and redox changes and signaling events may play pivotal roles for receptor activation in these tissues. This review addresses the emerging new view of the complex mechanisms underlying MR specificity of action, with a diversity of physiological roles and functions in different mineralocorticoid-responsive tissues.
Collapse
Affiliation(s)
- Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
47
|
Simons SS. What goes on behind closed doors: physiological versus pharmacological steroid hormone actions. Bioessays 2008; 30:744-56. [PMID: 18623071 DOI: 10.1002/bies.20792] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steroid-hormone-activated receptor proteins are among the best-understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (> or =100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Bldg 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772, USA
| |
Collapse
|
48
|
Weber M, Wehling M, Lösel R. Proteins interact with the cytosolic mineralocorticoid receptor depending on the ligand. Am J Physiol Heart Circ Physiol 2008; 295:H361-5. [DOI: 10.1152/ajpheart.00825.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid receptors belonging to the superfamily of nuclear receptors do not exist as single monomeric proteins but mediate their effects by the interaction with numerous other proteins, e.g., cofactors for transcription, but also other proteins involved in cellular signaling. This interaction may be ligand dependent, which explains the differential effects of receptor ligands. Whereas some receptors, e.g., the estrogen receptor, have been studied in great detail, much less is known about proteins interacting with the mineralocorticoid receptor (MR). In this study, we aimed to identify interacting proteins using a proteomics approach involving tagged receptor constructs. After affinity isolation of MR complexes, blue native electrophoresis revealed the presence of several populations of MR complexes differing in size and composition. During the identification of interacting proteins, various heat shock proteins but also several previously undescribed potential interactors were found, including 14-3-3-ε. We also demonstrate here that the cytosolic MR in the presence of detergent interacts in a ligand-selective manner with glucose-regulated protein 78 and propionyl-CoA carboxylase-β precursor, which are found in the unliganded or aldosterone-containing complex but not with spironolactone.
Collapse
|
49
|
van der Laan S, Meijer OC. Pharmacology of glucocorticoids: Beyond receptors. Eur J Pharmacol 2008; 585:483-91. [DOI: 10.1016/j.ejphar.2008.01.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 11/28/2022]
|
50
|
Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr Opin Nephrol Hypertens 2008; 17:174-80. [DOI: 10.1097/mnh.0b013e3282f56854] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|