1
|
Krolewski JJ, Singh S, Sha K, Jaiswal N, Turowski SG, Pan C, Rich LJ, Seshadri M, Nastiuk KL. TNF Signaling Is Required for Castration-Induced Vascular Damage Preceding Prostate Cancer Regression. Cancers (Basel) 2022; 14:cancers14246020. [PMID: 36551505 PMCID: PMC9775958 DOI: 10.3390/cancers14246020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mainstay treatment for locally advanced, recurrent, or metastatic prostate cancer (PrCa) is androgen deprivation therapy (ADT). ADT causes prostate cancers to shrink in volume, or regress, by inducing epithelial tumor cell apoptosis. In normal, non-neoplastic murine prostate, androgen deprivation via castration induces prostate gland regression that is dependent on TNF signaling. In addition to this direct mechanism of action, castration has also been implicated in an indirect mechanism of prostate epithelial cell death, which has been described as vascular regression. The initiating event is endothelial cell apoptosis and/or increased vascular permeability. This subsequently leads to reduced blood flow and perfusion, and then hypoxia, which may enhance epithelial cell apoptosis. Castration-induced vascular regression has been observed in both normal and neoplastic prostates. We used photoacoustic, power Doppler, and contrast-enhanced ultrasound imaging, and CD31 immunohistochemical staining of the microvasculature to assess vascular integrity in the period immediately following castration, enabling us to test the role of TNF signaling in vascular regression. In two mouse models of androgen-responsive prostate cancer, TNF signaling blockade using a soluble TNFR2 ligand trap reversed the functional aspects of vascular regression as well as structural changes in the microvasculature, including reduced vessel wall thickness, cross-sectional area, and vessel perimeter length. These results demonstrate that TNF signaling is required for vascular regression, most likely by inducing endothelial cell apoptosis and increasing vessel permeability. Since TNF is also the critical death receptor ligand for prostate epithelial cells, we propose that TNF is a multi-purpose, comprehensive signal within the prostate cancer microenvironment that mediates prostate cancer regression following androgen deprivation.
Collapse
Affiliation(s)
- John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shalini Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kai Sha
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Neha Jaiswal
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chunliu Pan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Laurie J. Rich
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: ; Tel.: +1-716-845-5771
| |
Collapse
|
2
|
Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022; 14:6009. [PMID: 36497496 PMCID: PMC9738762 DOI: 10.3390/cancers14236009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.
Collapse
Affiliation(s)
- Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ujjal K. Mukherjee
- Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Sayak Chakravarti
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farshad Amiri
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S. Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Salsabil Ahmed
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Isra Elhussin
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad-Bin Salam
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Windy Dean-Colomb
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Hospital, Newnan, GA 30309, USA
| | - Clayton Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Signaling Pathways That Control Apoptosis in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13050937. [PMID: 33668112 PMCID: PMC7956765 DOI: 10.3390/cancers13050937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy and the fifth leading cancer-caused death in men worldwide. Therapies that target the androgen receptor axis induce apoptosis in normal prostates and provide temporary relief for advanced disease, yet prostate cancer that acquired androgen independence (so called castration-resistant prostate cancer, CRPC) invariably progresses to lethal disease. There is accumulating evidence that androgen receptor signaling do not regulate apoptosis and proliferation in prostate epithelial cells in a cell-autonomous fashion. Instead, androgen receptor activation in stroma compartments induces expression of unknown paracrine factors that maintain homeostasis of the prostate epithelium. This paradigm calls for new studies to identify paracrine factors and signaling pathways that control the survival of normal epithelial cells and to determine which apoptosis regulatory molecules are targeted by these pathways. This review summarizes the recent progress in understanding the mechanism of apoptosis induced by androgen ablation in prostate epithelial cells with emphasis on the roles of BCL-2 family proteins and "druggable" signaling pathways that control these proteins. A summary of the clinical trials of inhibitors of anti-apoptotic signaling pathways is also provided. Evidently, better knowledge of the apoptosis regulation in prostate epithelial cells is needed to understand mechanisms of androgen-independence and implement life-extending therapies for CRPC.
Collapse
|
4
|
Videira A, Beckedorff FC, daSilva LF, Verjovski-Almeida S. PVT1 signals an androgen-dependent transcriptional repression program in prostate cancer cells and a set of the repressed genes predicts high-risk tumors. Cell Commun Signal 2021; 19:5. [PMID: 33430890 PMCID: PMC7798249 DOI: 10.1186/s12964-020-00691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Androgen receptor (AR) and polycomb repressive complex 2 (PRC2) are known to co-occupy the loci of genes that are downregulated by androgen-stimulus. Long intergenic non-coding RNA (lincRNA) PVT1 is an overexpressed oncogene that is associated with AR in LNCaP prostate cancer cells, and with PRC2 in HeLa and many other types of cancer cells. The possible involvement of PVT1 in mediating androgen-induced gene expression downregulation in prostate cancer has not been explored. METHODS LNCaP cell line was used. Native RNA-binding-protein immunoprecipitation with anti-AR or anti-EZH2 was followed by RT-qPCR with primers for PVT1. Knockdown of PVT1 with specific GapmeRs (or a control with scrambled GapmeR) was followed by differentially expressed genes (DEGs) determination with Agilent microarrays and with Significance Analysis of Microarrays statistical test. DEGs were tested as a tumor risk classifier with a machine learning Random Forest algorithm run with gene expression data from all TCGA-PRAD (prostate adenocarcinoma) tumors as input. ChIP-qPCR was performed for histone marks at the promoter of one DEG. RESULTS We show that PVT1 knockdown in androgen-stimulated LNCaP cells caused statistically significant expression upregulation/downregulation of hundreds of genes. Interestingly, PVT1 knockdown caused upregulation of 160 genes that were repressed by androgen, including a significantly enriched set of tumor suppressor genes, and among them FAS, NOV/CCN3, BMF, HRK, IFIT2, AJUBA, DRAIC and TNFRSF21. A 121-gene-set (out of the 160) was able to correctly predict the classification of all 293 intermediate- and high-risk TCGA-PRAD tumors, with a mean ROC area under the curve AUC = 0.89 ± 0.04, pointing to the relevance of these genes in cancer aggressiveness. Native RIP-qPCR in LNCaP showed that PVT1 was associated with EZH2, a component of PRC2. PVT1 knockdown followed by ChIP-qPCR showed significant epigenetic remodeling at the enhancer and promoter regions of tumor suppressor gene NOV, one of the androgen-repressed genes that were upregulated upon PVT1 silencing. CONCLUSIONS Overall, we provide first evidence that PVT1 was involved in signaling a genome-wide androgen-dependent transcriptional repressive program of tumor suppressor protein-coding genes in prostate cancer cells. Identification of transcriptional inhibition of tumor suppressor genes by PVT1 highlights the pathway to the investigation of mechanisms that lie behind the oncogenic role of PVT1 in cancer. Video Abstract.
Collapse
Affiliation(s)
- Alexandre Videira
- Laboratório de Expressão Gênica Em Eucariotos, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900 Brazil
| | - Felipe C. Beckedorff
- Laboratório de Expressão Gênica Em Eucariotos, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900 Brazil
- Present Address: Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Lucas F. daSilva
- Laboratório de Expressão Gênica Em Eucariotos, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900 Brazil
- Present Address: Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica Em Eucariotos, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900 Brazil
| |
Collapse
|
5
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
6
|
Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. FEBS J 2018; 285:4104-4123. [PMID: 29806737 DOI: 10.1111/febs.14523] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
One of the classic hallmarks of cancer is disruption of cell death signalling. Inhibition of cell death promotes tumour growth and metastasis, causes resistance to chemo- and radiotherapies as well as targeted agents, and is frequently due to overexpression of antiapoptotic proteins rather than loss of pro-apoptotic effectors. FLIP is a major apoptosis-regulatory protein frequently overexpressed in solid and haematological cancers, in which its high expression is often correlated with poor prognosis. FLIP, which is expressed as long (FLIP(L)) and short (FLIP(S)) splice forms, achieves its cell death regulatory functions by binding to FADD, a critical adaptor protein which links FLIP to the apical caspase in the extrinsic apoptotic pathway, caspase-8, in a number of cell death regulating complexes, such as the death-inducing signalling complexes (DISCs) formed by death receptors. FLIP also plays a key role (together with caspase-8) in regulating another form of cell death termed programmed necrosis or 'necroptosis', as well as in other key cellular processes that impact cell survival, including autophagy. In addition, FLIP impacts activation of the intrinsic mitochondrial-mediated apoptotic pathway by regulating caspase-8-mediated activation of the pro-apoptotic Bcl-2 family member Bid. It has been demonstrated that FLIP can not only inhibit death receptor-mediated apoptosis, but also cell death induced by a range of clinically relevant chemotherapeutic and targeted agents as well as ionizing radiation. More recently, key roles for FLIP in promoting the survival of immunosuppressive tumour-promoting immune cells have been discovered. Thus, FLIP is of significant interest as an anticancer therapeutic target. In this article, we review FLIP's biology and potential ways of targeting this important tumour and immune cell death regulator.
Collapse
Affiliation(s)
- Luke Humphreys
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Margarita Espona-Fiedler
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Logan IR, McClurg UL, Jones DL, O'Neill DJ, Shaheen FS, Lunec J, Gaughan L, Robson CN. Nutlin-3 inhibits androgen receptor-driven c-FLIP expression, resulting in apoptosis of prostate cancer cells. Oncotarget 2018; 7:74724-74733. [PMID: 27729622 PMCID: PMC5342697 DOI: 10.18632/oncotarget.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023] Open
Abstract
Inhibition of androgen receptor (AR) signalling represents the conventional medical management of prostate cancer. Ultimately this treatment fails because tumors develop an incurable, castrate resistant phenotype, resulting in an unmet need for new treatments in prostate cancer. The AR remains a viable therapeutic target in castrate resistant disease, such that novel ways of downregulating AR activities are attractive as potential treatments. Here we describe a mechanism by which the AR can be downregulated by the MDM2 antagonist Nutlin-3, resulting in loss of pro-survival c-FLIP gene expression and apoptosis. We additionally show that loss of c-FLIP sensitises prostate cancer cells to Nutlin-3. Finally, we demonstrate that the unrelated MDM2 antagonist Mi-63 also impinges upon AR signalling, supporting the concept of future treatment of prostate cancer with MDM2 antagonists.
Collapse
Affiliation(s)
- Ian R Logan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Urszula L McClurg
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Dominic L Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Daniel J O'Neill
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Fadhel S Shaheen
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Lunec
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Luke Gaughan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - Craig N Robson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| |
Collapse
|
8
|
Nastiuk KL, Krolewski JJ. Opportunities and challenges in combination gene cancer therapy. Adv Drug Deliv Rev 2016; 98:35-40. [PMID: 26724249 PMCID: PMC4957561 DOI: 10.1016/j.addr.2015.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
Abstract
Treatment for solid tumor malignancies, which constitute the majority of human cancers, is still dominated by surgery and radiotherapies. This is especially true for many localized solid tumors, which are often curable with these treatments. However, metastatic cancers are beyond the reach of these therapies, and many localized cancers that are initially treated with surgery and radiation will recur and metastasize. Thus, for over 60years there has been a concerted effort to develop effective drug treatments for metastatic cancers. Combination therapies are an increasingly important part of the anti-cancer drug armamentarium. In the case of cytotoxic chemotherapy, multi-drug regimens rapidly became the norm, as the earliest single agents were relatively ineffective. In contrast to chemotherapy, where combination therapies were required in order to achieve treatment efficacy, for both hormonal and targeted therapies the impetus to move toward the use of combination therapies is to prevent or reverse the development of treatment resistance. In addition, emerging evidence suggests that combination therapy may also improve cancer treatment by neutralizing an emerging treatment side effect termed therapy-induced metastasis, which accompanies some effective single agent therapies. Finally, although gene therapy is still far from use in the clinic, we propose that combination therapies may enhance its effectiveness.
Collapse
Affiliation(s)
- Kent L Nastiuk
- Department of Cancer Genetics, Elm & Carlton Streets, Buffalo, NY 14263, United States
| | - John J Krolewski
- Roswell Park Cancer Institute, Center for Personalized Medicine, United States; Department of Cancer Genetics, Elm & Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
9
|
Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget 2016; 7:4399-413. [PMID: 26716643 PMCID: PMC4826214 DOI: 10.18632/oncotarget.6749] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/16/2023] Open
Abstract
We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer.
Collapse
Affiliation(s)
- Anindita Das
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - David Durrant
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Clint Mitchell
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C. Kukreja
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Lee SW, Cho JM, Cho HJ, Kang JY, Kim EK, Yoo TK. Expression levels of heat shock protein 27 and cellular FLICE-like inhibitory protein in prostate cancer correlate with Gleason score sum and pathologic stage. Korean J Urol 2015; 56:505-14. [PMID: 26175869 PMCID: PMC4500807 DOI: 10.4111/kju.2015.56.7.505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/17/2015] [Indexed: 01/26/2023] Open
Abstract
Purpose Heat shock protein (HSP) 27 protects the cell by controlling apoptosis and immune reactions, and c-FLIP (cellular-FLICE inhibitory protein) inhibits apoptosis by inhibiting caspase-8 activity. We investigated the relationship of HSP27 and c-FLIP expression to prostate-specific antigen, Gleason score sum (GSS), and pathologic stage. Materials and Methods Samples from 163 patients between May 2004 and April 2010 were analyzed: 83 from patients that had underwent a radical prostatectomy, and 80 from those that underwent transurethral resection of the prostate to alleviate urinary symptoms from benign prostate hyperplasia. c-FLIP and HSP27 expression were observed by immunohistochemistry staining. Samples with less than 5% expression-positive cells were scored as 1, with 5%-50% were scored as 2, and with more than 50% were scored as 3. Local reactions were identified as 0.5 and evaluated. Results Both the presence of HSP27 within the tumor and the number of cancer cells positive for HSP27 were significantly correlated to GSS and pathologic stage (p<0.001, p=0.001, p<0.001, p<0.001). The same was true for c-FLIP expression (p<0.001). GSS was more highly correlated to HSP27 expression than to c-FLIP expression (r=0.814 for HSP27, r=0.776 for c-FLIP), as was pathologic stage (r=0.592 for HSP27, r=0.554 for c-FLIP). Conclusions In prostate cancer, higher GSS and a more advanced pathologic stage were associated with a higher likelihood of having a HSP27-positive tumor and more HSP27-positive tumor cells. HSP27 expression was correlated with GSS and prostate cancer stage. A more advanced pathologic stage corresponded to a higher likelihood of having a c-FLIP-positive tumor and more c-FLIP-positive tumor cells. HSP27 expression had a higher correlation with prostate cancer stage and GSS than c-FLIP expression did.
Collapse
Affiliation(s)
- Seung Wook Lee
- Department of Urology, Hanyang University Guri Hospital, Hanyang University School of Medicine, Guri, Korea
| | - Jeoung Man Cho
- Department of Urology, Eulji University College of Medicine, Daejeon, Korea
| | - Hee Ju Cho
- Department of Urology, Eulji University College of Medicine, Daejeon, Korea
| | - Jung Yoon Kang
- Department of Urology, Eulji University College of Medicine, Daejeon, Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji University College of Medicine, Daejeon, Korea
| | - Tag Keun Yoo
- Department of Urology, Eulji University College of Medicine, Daejeon, Korea
| |
Collapse
|
11
|
Yun H, Xie J, Olumi AF, Ghosh R, Kumar AP. Activation of AKR1C1/ERβ induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity. Oncotarget 2015; 6:11600-13. [PMID: 25816367 PMCID: PMC4484479 DOI: 10.18632/oncotarget.3417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022] Open
Abstract
We provide first-time evidence for ERβ-mediated transcriptional upregulation of c-FLIP as an underlying mechanism in the development of castrate-resistant cancer. While androgens inhibit apoptosis partly through transcriptional upregulation of the anti-apoptotic protein, c-FLIP in androgen-responsive cells, they downregulate c-FLIP in androgen-independent cells. We found that although Sp1 and p65 trans-activate c-FLIP, the combination of Sp1 and p65 has differential effects in a cellular context-dependent manner. We show that activation of the androgen metabolism enzyme, aldo-keto reductase, AKR1C1, relieves androgen independence through activation of 3β-Adiol-mediated upregulation of ERβ. ERβ competes with Sp1 and Sp3 to transcriptionally downregulate c-FLIP in the absence of consensus estrogen-response element in androgen-independent cells. Forced expression of AR in androgen-independent cells show that ERβ-mediated growth inhibition occurs under conditions of androgen independence. Reactivation of ERβ with the estrogenic metabolite, 2-methoxyestradiol, decreased enrichment ratio of Sp1/Sp3 at the c-FLIP promoter with concomitant effects on cell growth and death. Expression of Sp1 and c-FLIP are elevated while AKR1C1, ERβ and Sp3 are significantly low in human prostate tumor samples. ERβ is epigenetically silenced in prostate cancer patients, therefore our results suggest that combination of ERβ agonists with ADT would benefit men stratified on the basis of high estrogen levels.
Collapse
Affiliation(s)
- Huiyoung Yun
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Jianping Xie
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Urology, Shanxi Dayi Hospital, Shanxi Academy of Medical Science, Taiyuan, P.R., China
| | - Aria F. Olumi
- Department of Urology, Massachusetts General Hospital Harvard Medical School, Boston, MA, USA
| | - Rita Ghosh
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Addanki P. Kumar
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
12
|
Androgens regulate TRAIL-induced cell death in prostate cancer cells via multiple mechanisms. Cancer Lett 2013; 335:136-44. [PMID: 23402817 DOI: 10.1016/j.canlet.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 02/03/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent for prostate cancer because it selectively induces apoptosis in cancer cells but not in normal cells. Previous reports have suggested that androgens regulate TRAIL-induced apoptosis in prostate cancer cells. However, there are discrepancies between these reports of how androgens affect TRAIL-induced cell death. To clarify the role of androgens on TRAIL-induced apoptosis in prostate cancer cells, we investigated the effects of androgen on TRAIL-induced cell death in a dose-response manner. Our results showed that although androgens sensitize LNCaP cells to TRAIL-induced apoptosis, this effect is dose-dependent and biphasic. We found that low levels of androgen are superior to high levels of androgen in term of sensitizing LNCaP cells to TRAIL. We also found that upregulation of DR5 (TRAIL-R2) expression by androgens is critical for sensitizing LNCaP cells to TRAIL. However, low levels of androgen are sufficient to induce DR5 expression and sensitize LNCaP cells to TRAIL-induced cell death. High levels of androgen alter the TRADD/RIP1 ratio, which may contribute to NF-κB activation and sequentially inhibit TRAIL-induced apoptosis.
Collapse
|
13
|
Inhibition of androgen receptor expression with small interfering RNA enhances cancer cell apoptosis by suppressing survival factors in androgen insensitive, late stage LNCaP cells. ScientificWorldJournal 2013; 2013:519397. [PMID: 23476140 PMCID: PMC3580912 DOI: 10.1155/2013/519397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction.The aim was to evaluate the changes of androgen receptor (AR) expression quantitatively and to identify influence of AR on cancer related survival markers in LNCap cell line. Materials and Methods. We compared expressions of AR, heat shock protein 27 (HSP27), clusterin (CLU), glucose-related protein 78 (GRP78), and cellular FLICE-like inhibitory protein (c-FLIP) and their genes between es-LNCaP (less than 33 times subcultured, L-33), ls-LNCaP (over 81 times subcultured, H-81), and si-LNCaP (AR siRNA transfected ls-LNCaP) by Western blotting and RT-PCR. Results. The expressions of AR, HSP27, CLU, GRP78, and c-FLIP were increased in ls-LNCaP compared with es-LNCaP (AR, 157%; HSP27, 132%; CLU, 146%; GRP78, 138%; c-FLIP, 152%). However, in si-LNCaP cell line, protein expressions were reversed to the level of es-LNCaP cell lines (25, 102, 109, 98, and 101%), and gene expressions on real-time PCR were also reversed to the expression level of es-LNCaP (ls-LNCaP: 179, 156, 133, 123, and 167%; si-LNCaP: 22, 93, 103, 112, and 107%). Conclusions. This finding suggests that androgen receptor can be related to the increased expression of cancer related survival markers such as HSP27, GRP78, CLU, and c-FLIP in late stage prostate cancer, and also inhibition of AR gene can be a therapeutic target in this stage of cancer.
Collapse
|
14
|
Abstract
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein, p44/WDR77, that plays a critical role in the proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44/WDR77 gene caused premature death with dramatic astrogliosis in mouse brain. We further found that p44/WDR77 is expressed in astrocytes and that loss of p44/WDR77 expression in astrocytes leads to growth arrest and astrogliosis. The astrocyte activation induced by deletion of the p44/WDR77 gene was associated with upregulation of p21(Cip1) expression and NF-κB activation. Silencing p21(Cip1) or NF-κB p65 expression with short hairpin RNA (shRNA) abolished astrocyte activation and rescued the astrocyte growth inhibition induced by deletion of the p44/WDR77 gene. Our results reveal a novel role for p44/WDR77 in the control of astrocyte activation through p21(Cip1) and NF-κB signaling.
Collapse
|
15
|
McCourt C, Maxwell P, Mazzucchelli R, Montironi R, Scarpelli M, Salto-Tellez M, O'Sullivan JM, Longley DB, Waugh DJJ. Elevation of c-FLIP in castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted therapy. Clin Cancer Res 2012; 18:3822-33. [PMID: 22623731 DOI: 10.1158/1078-0432.ccr-11-3277] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase-8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer cells to androgen receptor (AR)-targeted therapy. EXPERIMENTAL DESIGN c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacologic interventions. RESULTS c-FLIP expression was increased in high-grade prostatic intraepithelial neoplasia and prostate cancer tissue relative to normal prostate epithelium (P < 0.001). Maximal c-FLIP expression was detected in castrate-resistant prostate cancer (CRPC; P < 0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage, and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also downregulated c-FLIP expression, induced caspase-8- and caspase-3/7-mediated apoptosis, and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. CONCLUSION c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of prostate cancer cells. A combination of HDACi with androgen deprivation therapy may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP, however, may be relevant to enhance the response of existing and novel therapeutics in CRPC.
Collapse
Affiliation(s)
- Clare McCourt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
DUDA M, DURLEJ M, KNET M, KNAPCZYK-STWORA K, TABAROWSKI Z, SLOMCZYNSKA M. Does 2-hydroxyflutamide Inhibit Apoptosis in Porcine Granulosa Cells? — An In Vitro Study. J Reprod Dev 2012; 58:438-44. [DOI: 10.1262/jrd.2011-034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Malgorzata DUDA
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Malgorzata DURLEJ
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Malgorzata KNET
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | | | - Zbigniew TABAROWSKI
- Department of Experimental Hematology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Maria SLOMCZYNSKA
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
18
|
Gu Z, Zhou L, Gao S, Wang Z. Nuclear transport signals control cellular localization and function of androgen receptor cofactor p44/WDR77. PLoS One 2011; 6:e22395. [PMID: 21789256 PMCID: PMC3137635 DOI: 10.1371/journal.pone.0022395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/20/2011] [Indexed: 12/26/2022] Open
Abstract
The androgen receptor (AR) cofactor p44/WDR77, which regulates expression of a set of androgen target genes, is required for differentiation of prostate epithelium. Aberrant localization of p44/WDR77 in the cytoplasm is associated with prostate tumorigenesis. Here, we describe studies that used the mouse prostate and human prostate cancer cells as model systems to investigate signals that control subcellular localization of p44/WDR77. We observed distinct subcellular location of p44/WDR77 during prostate development. p44/WDR77 localizes in the cytoplasm at the early stage of prostate development, when prostate epithelial cells are rapidly proliferating, and in the nucleus in adult prostate, when epithelial cells are fully differentiated. Subcellular localization assays designed to span the entire open-reading frame of p44/WDR77 protein revealed the presence of two nuclear exclusion signal (NES) and three nuclear localization signal (NLS) sequences in the p44/WDR77 protein. Site-directed mutagenesis of critical residues within an NLS led to loss of nuclear localization and transcriptional activity of p44/WDR77, suggesting that nuclear localization of p44/WDR77 is essential for its function as a transcriptional cofactor for AR. Three identified NLS were not functional in AR-positive prostate cancer (LNCaP and 22RV1) cells, which led to localization of p44/WDR77 in cytoplasm. The function of NLS in LNCaP cells could be restored by factor(s) from Cos 7 or PC3 cells. Mass spectrometric (MALDI-TOF/TOF) analysis identified proteins associated with an NLS and an NES in prostate cancer cells. These results provide a basis for understanding subcellular transport of p44/WDR77 during prostate development and tumorigenesis.
Collapse
Affiliation(s)
- Zhongping Gu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liran Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shen Gao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhengxin Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CCH, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM. Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell 2011; 42:62-74. [PMID: 21474068 DOI: 10.1016/j.molcel.2011.02.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/02/2010] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.
Collapse
Affiliation(s)
- Che-Chang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peng Y, Li Y, Gellert LL, Zou X, Wang J, Singh B, Xu R, Chiriboga L, Daniels G, Pan R, Zhang DY, Garabedian MJ, Schneider RJ, Wang Z, Lee P. Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion. J Cell Mol Med 2011; 14:2780-9. [PMID: 19840198 PMCID: PMC3822728 DOI: 10.1111/j.1582-4934.2009.00936.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hormones and their receptors play an important role in the development and progression of breast carcinoma. Although the primary focus has been on oestrogen and oestrogen receptor (ER), androgen, androgen receptor (AR) and its coactivator(s) have been implicated in tumorigenesis of breast carcinoma and warrant further investigation. AR coactivator p44/Mep50 is identified as a subunit of methylosome complex and lately characterized as an AR coactivator that enhances AR mediated transcription activity in a ligand dependent manner. In prostate cancer, p44 is expressed in the nucleus of benign epithelia and translocated into the cytoplasm in cancer cells. Furthermore, nuclear expression of p44 inhibits prostate cancer growth. In this report, we examined the expression and function of p44 in breast cancer. In addition to being an AR coactivator, p44 also functions as an ER coactivator. In contrast to findings in prostate cancer, the expression of p44 shows strong cytoplasmic expression in morphologically normal terminal ductal lobular units, while nuclear p44 is observed in both ductal carcinoma in situ and invasive carcinoma. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in MCF7 breast cancer cells in the presence of oestrogen and the process is ERα dependent. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during tumorigenesis in breast.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pathology, New York University School of Medicine, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Davis JS, Nastiuk KL, Krolewski JJ. TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable. Mol Endocrinol 2011; 25:611-20. [PMID: 21292828 DOI: 10.1210/me.2010-0312] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TNF, a proinflammatory and immune-regulatory cytokine, is a potent apoptotic stimulus in vitro. However, there have been few examples of a physiologic role for TNF-induced apoptosis in vivo. Here, we describe a novel role for TNF in prostate epithelial cell apoptosis after androgen withdrawal. Employing high-resolution serial magnetic resonance imaging to measure mouse prostate volume changes over time, we demonstrate that the extent of castration-induced prostate regression is significantly reduced in mice null for either the Tnf or Tnfr1 genes but not mice deficient for TNF-related apoptosis-inducing ligand or Fas signaling. Wild-type mice receiving soluble TNF (sTNF) receptor 2 (to bind TNF and block signaling) before castration exhibit an identical reduction of prostate regression. Together, these data indicate that uniquely among known extrinsic death signals, TNF is required for castration-induced prostate regression. Additionally, membrane-bound TNF protein and stromal cell specific TNF mRNA levels increase in rat prostate after castration. This is consistent with a paracrine role for TNF in prostate regression. When injected into the peritoneum of Tnf(-/-) mice at the time of castration, sTNF restores normal levels of prostate regression. However, wild-type mice receiving sTNF in the absence of castration do not exhibit prostate regression, indicating that TNF alone is not sufficient but acts in the context of additional castration-induced signals. These findings support a physiologic role for TNF in prostate regression after androgen withdrawal. Understanding this role may lead to novel therapies for prostate cancer.
Collapse
Affiliation(s)
- Jennifer S Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | |
Collapse
|
22
|
Abstract
Androgens are critical for normal prostate development and function, as well as prostate cancer initiation and progression. Androgens function mainly by regulating target gene expression through the androgen receptor (AR). Many studies have shown that androgen-AR signaling exerts actions on key events during prostate carcinogenesis. In this review, androgen action in distinct aspects of prostate carcinogenesis, including (i) cell proliferation, (ii) cell apoptosis, and (iii) prostate cancer metastasis will be discussed.
Collapse
Affiliation(s)
- Diping Wang
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
23
|
Magamage MPS, Zengyo M, Moniruzzaman M, Miyano T. Testosterone induces activation of porcine primordial follicles in vitro. Reprod Med Biol 2010; 10:21-30. [PMID: 29662351 DOI: 10.1007/s12522-010-0068-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/01/2010] [Indexed: 11/28/2022] Open
Abstract
Purpose The mechanism underlying primordial follicle activation is poorly understood. In this study, in-vitro culture and subsequent xenotransplantation were conducted to determine whether testosterone promotes the activation of porcine primordial follicles. Methods Prepubertal porcine ovarian cortical strips containing primordial follicles were cultured in the presence of testosterone for 7 days, and subsequently transplanted to immunodeficient mice for 2 months. After culture and transplantation, development of follicles was examined histologically. The presence of androgen receptors in oocytes was assessed by use of western blot and immunohistochemical analyses. Results Testosterone at 10-6 m induced the primordial follicle transition to the intermediate (19 ± 4%) and primary (3 ± 1%) stages after 7-day culture, while 56 ± 5% of primordial follicles remained in the initial pool. Higher concentrations, above 10-5 m, or lower concentrations, below 10-6 m, did not induce follicle transition to the primary stage. After 7-day culture with 10-6 m testosterone, ovarian cortical strips were transplanted to immunodeficient mice. Some of the follicles developed to the secondary (15 ± 3%) and antral (10 ± 3%) stages, whereas 44 ± 7% of primordial follicles remained in the initial pool. In the culture experiment, estradiol-17β (10-7-10-5 m) had no significant effect on follicle activation. The androgen receptor antagonist, cyproterone acetate, inhibited the stimulatory effect of testosterone on primordial follicle activation, suggesting an androgen receptor-mediated action of testosterone. Western blot and immunohistochemical analyses revealed that androgen receptors were present in the oocytes of primordial follicles. Conclusions These results suggest that testosterone at 10-6 m promotes the activation of porcine primordial follicles in vitro through the androgen receptors in the oocytes.
Collapse
Affiliation(s)
- Manjula P S Magamage
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Agricultural Science Kobe University 1-1 Rokkodai-cho, Nada-ku 657-8501 Kobe Japan
| | - Mai Zengyo
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Agricultural Science Kobe University 1-1 Rokkodai-cho, Nada-ku 657-8501 Kobe Japan
| | - Mohammad Moniruzzaman
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Agricultural Science Kobe University 1-1 Rokkodai-cho, Nada-ku 657-8501 Kobe Japan
| | - Takashi Miyano
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Agricultural Science Kobe University 1-1 Rokkodai-cho, Nada-ku 657-8501 Kobe Japan
| |
Collapse
|
24
|
Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int J Cancer 2010; 127:1758-68. [PMID: 20112340 DOI: 10.1002/ijc.25210] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limited success has been achieved in extending the survival of patients with metastatic and hormone-refractory prostate cancer (HRPC). There is a strong need for novel agents in the treatment and prevention of HRPC. We have shown that flavokawain B (FKB), a kava chalcone, is about 4- to 12-fold more effective in reducing the cell viabilities of androgen receptor (AR)-negative, HRPC cell lines DU145 and PC-3 than AR-positive, hormone-sensitive prostate cancer cell lines LAPC4 and LNCaP, with minimal effect on normal prostatic epithelial and stromal cells. FKB induces apoptosis with an associated increased expression of proapoptotic proteins: death receptor-5, Bim and Puma and a decreased expression of inhibitors of apoptosis protein: XIAP and survivin. Among them, Bim expression was significantly induced by FKB as early as 4 hr of the treatment. Knockdown of Bim expression by short-hairpin RNAs attenuates the inhibitory effect on anchorage-dependent and -independent growth and caspase cleavages induced by FKB. These findings suggest that the effect of FKB, at least in part, requires Bim expression. In addition, FKB synergizes with TRAIL for markedly enhanced induction of apoptosis. Furthermore, FKB treatment of mice bearing DU145 xenograft tumors results in tumor growth inhibition and increases Bim expression in tumor tissues. Together, these results suggest robust mechanisms for FKB induction of apoptosis preferentially for HRPC and the potential usefulness of FKB for prevention and treatment of HRPC in an adjuvant setting.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chen LC, Chung IC, Hsueh C, Tsang NM, Chi LM, Liang Y, Chen CC, Wang LJ, Chang YS. The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients. Cell Death Differ 2010; 17:1463-73. [PMID: 20224598 DOI: 10.1038/cdd.2010.24] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) mediates antiapoptotic activity in part by inducing downstream antiapoptotic genes. To systematically identify hnRNP K targets in nasopharyngeal carcinoma (NPC), affymetrix chips were used to identify genes that were both overexpressed in primary NPC and downregulated by hnRNP K knockdown in NPC-TW02 cells. The resulting gene set included the antiapoptotic gene, FLIP, which was selected for further study. In cells treated with hnRNP K siRNA, TRAIL-induced apoptosis was enhanced and the FLIP protein level was reduced. Promoter, DNA pull-down and chromatin-immunoprecipitation assays revealed that hnRNP K directly interacts with the poly(C) element on the FLIP promoter, resulting in transcriptional activation. Through iTRAQ-mass spectrometric identification of proteins differentially associated with the poly(C) element or its mutant, nucleolin was determined to be a cofactor of hnRNP K for FLIP activation. Furthermore, FLIP was highly expressed in tumor cells, and this high-level expression was significantly correlated with high-level hnRNP K expression (P=0.002) and poor overall survival (P=0.015) as examined in 67 NPC tissues. A multivariate analysis confirmed that FLIP was an independent prognostic factor for NPC. Taken together, these findings indicate that FLIP expression is transcriptionally regulated by hnRNP K and nucleolin, and may be a potential prognostic and therapeutic marker for NPC.
Collapse
Affiliation(s)
- L-C Chen
- Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gao S, Wu H, Wang F, Wang Z. Altered differentiation and proliferation of prostate epithelium in mice lacking the androgen receptor cofactor p44/WDR77. Endocrinology 2010; 151:3941-53. [PMID: 20519372 PMCID: PMC2940529 DOI: 10.1210/en.2009-1080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 04/26/2010] [Indexed: 11/19/2022]
Abstract
Although it has been observed that various cofactors modulate activity of the androgen receptor (AR), the specific relationship between AR cofactors and prostate development and functions has not been well studied. To determine whether AR cofactor p44/WDR77 is important in prostate growth and development, we examined prostate architecture in p44/WDR77-null mice and wild-type (WT) littermates. Prostate glands from p44/WDR77-deficient animals were not only smaller than those from WT mice but also had fewer branches and terminal duct tips and were deficient in production of secretory proteins. The p44/WDR77-null prostate tissue was less differentiated and hyperproliferative relative to WT littermates. In addition, the altered expression of androgen-regulated genes was observed in the p44/WDR77-null prostate. Thus, these results suggest that the AR cofactor p44/WDR77 plays important roles in prostate growth and differentiation by modulating AR-target gene expression.
Collapse
Affiliation(s)
- Shen Gao
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | |
Collapse
|
27
|
Structural and functional analysis of amino-terminal enhancer of split in androgen-receptor-driven transcription. Biochem J 2010; 427:499-511. [PMID: 20163360 DOI: 10.1042/bj20091631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that the Groucho protein AES (amino-terminal enhancer of split) functions as a co-repressor of the AR (androgen receptor). It physically interacts with the N-terminal domain of AR and inhibits AR-driven transcription, but the molecular mechanism of its action remained unclear. In the present paper we report that the AES protein contains one inhibitory domain, and one positive and one negative regulatory domain. The negative regulatory domain inhibits AES dimerization and AES-mediated inhibition of AR-driven transcription through an interaction with the inhibitory domain. The positive regulatory domain blocked this interaction and relieved the inhibitory effect. In addition, we discovered mechanisms by which AES regulates AR transcriptional activity, which included disruption of the interaction between the AR N-terminal and C-terminal domains, and inhibition of AR-DNA interaction. Although AES broadly inhibited the activity of androgen-dependent luciferase reporters in a transient transfection assay, it selectively regulated the expression of endogenous androgen-dependent genes in prostate cancer cells.
Collapse
|
28
|
Gluschnaider U, Hidas G, Cojocaru G, Yutkin V, Ben-Neriah Y, Pikarsky E. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor. PLoS One 2010; 5:e9060. [PMID: 20140206 PMCID: PMC2816705 DOI: 10.1371/journal.pone.0009060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/16/2010] [Indexed: 01/19/2023] Open
Abstract
Background Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR) signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. β-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis. Methodology/Principal Findings Here we show that β-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against β-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that β-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR) mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium. Conclusions/Significance Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining β-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.
Collapse
Affiliation(s)
- Udi Gluschnaider
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Guy Hidas
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- Department of Urology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gady Cojocaru
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Vladimir Yutkin
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- Department of Urology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology and the Lautenberg Center for Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
29
|
Li Y, Wang L, Zhang M, Melamed J, Liu X, Reiter R, Wei J, Peng Y, Zou X, Pellicer A, Garabedian MJ, Ferrari A, Lee P. LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res 2009; 69:3332-8. [PMID: 19351848 PMCID: PMC3182465 DOI: 10.1158/0008-5472.can-08-3380] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major obstacle in treating prostate cancer is the development of androgen-independent disease. In this study, we examined LEF1 expression in androgen-independent cancer as well as its regulation of androgen receptor (AR) expression, prostate cancer growth, and invasion in androgen-independent prostate cancer cells. Affymetrix microarray analysis of LNCaP and LNCaP-AI (androgen-independent variant LNCaP) cells revealed 100-fold increases in LEF1 expression in LNCaP-AI cells. We showed that LEF1 overexpression in LNCaP cells resulted in increased AR expression and consequently enhanced growth and invasion ability, whereas LEF1 knockdown in LNCaP-AI cells decreased AR expression and, subsequently, growth and invasion capacity. Chromatin immunoprecipitation, gel shift, and luciferase assays confirmed LEF1 occupancy and regulation of the AR promoter. Thus, we identified LEF1 as a potential marker for androgen-independent disease and as a key regulator of AR expression and prostate cancer growth and invasion. LEF1 is highly expressed in androgen-independent prostate cancer, potentially serving as a marker for androgen-independent disease.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pathology, New York University School of Medicine, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Huang X, Olumi AF. Repression of NF-kappaB and activation of AP-1 enhance apoptosis in prostate cancer cells. Int J Cancer 2009; 124:1980-9. [PMID: 19123467 DOI: 10.1002/ijc.24139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
TNFalpha and TRAIL, 2 members of the tumor necrosis factor family, share many common signaling pathways to induce apoptosis. Although many cancer cells are sensitive to these proapoptotic agents, some develop resistance. Recently, we have demonstrated that upregulation of c-Fos/AP-1 is necessary, but insufficient for cancer cells to undergo TRAIL-induced apoptosis. Here we present a prostate cancer model with differential sensitivity to TNFalpha and TRAIL. We show that inhibition of NF-kappaB or activation of AP-1 can only partially sensitize resistant prostate cancer cells to proapoptotic effects of TNFalpha or TRAIL. Inhibition of NF-kappaB by silencing TRAF2, by silencing RIP or by ectopic expression of IkappaB partially sensitized resistant prostate cancer. Similarly, activation of c-Fos/AP-1 only partially sensitized resistant cancer cells to proapoptotic effects of TNFalpha or TRAIL. However, concomitant repression of NF-kappaB and activation of c-Fos/AP-1 significantly enhanced the proapoptotic effects of TNFalpha and TRAIL in resistant prostate cancer cells. Therefore, multiple molecular pathways may need to be modified, to overcome cancers that are resistant to proapoptotic therapies.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
31
|
Ganapathy M, Ghosh R, Jianping X, Zhang X, Bedolla R, Schoolfield J, Yeh IT, Troyer DA, Olumi AF, Kumar AP. Involvement of FLIP in 2-methoxyestradiol-induced tumor regression in transgenic adenocarcinoma of mouse prostate model. Clin Cancer Res 2009; 15:1601-11. [PMID: 19223508 DOI: 10.1158/1078-0432.ccr-08-1389] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study is to investigate whether Fas-associated death domain interleukin-1 converting enzyme like inhibitory protein (FLIP) inhibition is a therapeutic target associated with 2-methoxyestradiol (2-ME2)-mediated tumor regression. EXPERIMENTAL DESIGN Expression and levels of FLIP were analyzed using (a) real-time PCR and immunoblot analysis in androgen-independent PC-3 cells treated with the newly formulated 2-ME2 and (b) immunohistochemistry in different Gleason pattern human prostate tumors. Transient transfections and chromatin immunoprecipitation (ChIP) assays were used to identify the transcription factors that regulate FLIP. Involvement of FLIP in 2-ME2-induced tumor regression was evaluated in transgenic adenocarcinoma mouse prostate (TRAMP) mice. RESULTS High Gleason pattern (5+5) human prostate tumors exhibit significant increase in FLIP compared with low Gleason pattern 3+3 (P=or<0.04). 2-ME2 reduced the levels and promoter activity of FLIP (P=0.001) in PC-3 cells. Transient expression assays show sequences between -503/+242 being sufficient for 2-ME2-induced inhibition of FLIP promoter activity. Cotransfection experiments show that overexpression of Sp1 activated, whereas Sp3 inhibited, Sp1 transactivation of FLIP promoter activity (P=0.0001). 2-ME2 treatment reduced binding of Sp1 to the FLIP promoter as evidenced by ChIP. Further, levels of FLIP associated with Fas or FADD decreased, whereas cleavage of caspase-8, levels of Bid, and apoptosis increased in response to 2-ME2 treatment in PC-3 cells. Administration of 2-ME2 regressed established prostate tumors in TRAMP mice that were associated with reduced expression of FLIP and Sp1. CONCLUSION Targeting Sp1-mediated FLIP signaling pathway may provide a novel approach for prostate cancer management.
Collapse
Affiliation(s)
- Manonmani Ganapathy
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoo KS, Nastiuk KL, Krolewski JJ. Transforming growth factor ß1 induces apoptosis by suppressing FLICE-like inhibitory protein in DU145 prostate epithelial cells. Int J Cancer 2009; 124:834-42. [DOI: 10.1002/ijc.24024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Ye H, Li Y, Melamed J, Pearce P, Wei J, Chiriboga L, Wang Z, Osman I, Lee P. Stromal anti-apoptotic androgen receptor target gene c-FLIP in prostate cancer. J Urol 2009; 181:872-7. [PMID: 19095249 DOI: 10.1016/j.juro.2008.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Indexed: 11/15/2022]
Abstract
PURPOSE The tumor microenvironment significantly influences prostate cancer progression. Androgen receptor exerts its effect through downstream target genes to regulate prostate cancer cell proliferation. The c-FLIP gene was recently shown to be an androgen receptor target gene. c-FLIP is an inactive homologue of caspase-8 and, thus, it inhibits the death receptor mediated apoptosis pathway. c-FLIP over expression was shown to accelerate the progression of prostate cancer cells to androgen independence. We evaluated the role of c-FLIP expression in stromal cells in prostate cancer development. MATERIALS AND METHODS We examined c-FLIP expression in 53 androgen dependent and 21 androgen independent prostate cancer stromal cells by immunohistochemical analysis. The effects of c-FLIP over expression in stromal cells on the growth and invasion of LNCaP and PC3 prostate cancer cells were determined in indirect coculture systems. RESULTS At the androgen dependent stage the stromal c-FLIP level was increased in prostate cancer tissue. The expression level of stromal c-FLIP was associated with tumor differentiation. However, stromal c-FLIP expression was not increased in androgen independent human prostate cancer. c-FLIP over expression in stromal cells stimulated the growth and invasion of prostate cancer, including LNCaP and PC3 cells in vitro. CONCLUSIONS These results indicate the over expression of stromal c-FLIP and its function for promoting prostate cancer growth and invasion.
Collapse
Affiliation(s)
- Huihui Ye
- Department of Pathology and Urology, New York University School of Medicine, New York Harbor Healthcare System, New York, New York 10010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang L, Zou X, Berger AD, Twiss C, Peng Y, Li Y, Chiu J, Guo H, Satagopan J, Wilton A, Gerald W, Basch R, Wang Z, Osman I, Lee P. Increased expression of histone deacetylaces (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res 2009; 1:62-71. [PMID: 19966939 PMCID: PMC2776287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 05/28/2023]
Abstract
Histone deacetetylases (HDACs) are a group of corepressors of transcriptional activators and their levels of expression are potentially dysregulated in prostate cancer. Certain inhibitors of histone deacetylases show anti-tumor activity in prostate cancer cell lines. Here, we systemically studied the expression of HDACs in human prostate cancer and the suppression of prostate cancer growth and invasion by HDAC inhibitor SAHA. HDAC1-5 showed increased expression using a combination of DNA microarray, in-situ hybridization, and immunohistochemistry in benign and malignant human prostate tissue as well as RT-PCR and Western blot analysis on various PCa cell lines. Importantly, HDAC inhibitor SAHA suppressed, in particular, prostate cancer cell growth and invasion determined using cell proliferation and Matrigel invasion assays. The findings of this study show that the expression of HDACs and their associated corepressors are increased in prostate cancer in humans and HDAC inhibitor SAHA could serve as a potential therapeutic agent in prostate cancer in addition to anti-androgens.
Collapse
Affiliation(s)
- Longgui Wang
- Department of Urology, New York University School of MedicineNew York, NY
| | - Xuanyi Zou
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Aaron D. Berger
- Department of Urology, New York University School of MedicineNew York, NY
| | - Christian Twiss
- Department of Urology, New York University School of MedicineNew York, NY
| | - Yi Peng
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Yirong Li
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Jason Chiu
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Hongfeng Guo
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Jaya Satagopan
- Department of Biostatistics, Memorial Sloan Kettering Cancer CenterNew York, NY
| | - Andrew Wilton
- Department of Biostatistics, Memorial Sloan Kettering Cancer CenterNew York, NY
| | - William Gerald
- Department of Pathology, Memorial Sloan Kettering Cancer CenterNew York, NY
| | - Ross Basch
- Department of Pathology, New York University School of MedicineNew York, NY
| | - Zhengxin Wang
- Department of Cancer Biology, MDAnderson Cancer CenterHouston, TX, USA
| | - Iman Osman
- Department of Urology, New York University School of MedicineNew York, NY
- Department of Dermatology, New York University School of MedicineNew York, NY
- Department of New York Harbor Healthcare SystemNew York, NY
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY
- Department of New York Harbor Healthcare SystemNew York, NY
| |
Collapse
|
35
|
Decoy receptor 3 is a prognostic factor in renal cell cancer. Neoplasia 2008; 10:1049-56. [PMID: 18813347 DOI: 10.1593/neo.08626] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). METHODS A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. FINDINGS High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). INTERPRETATION DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.
Collapse
|
36
|
Raclaw KA, Heemers HV, Kidd EM, Dehm SM, Tindall DJ. Induction of FLIP expression by androgens protects prostate cancer cells from TRAIL-mediated apoptosis. Prostate 2008; 68:1696-706. [PMID: 18726983 PMCID: PMC2574904 DOI: 10.1002/pros.20844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Prostate tumors initially regress in response to androgen-ablation therapy. However, most cancers eventually relapse with an androgen-depletion-independent (ADI) phenotype that is often more aggressive than the original androgen-dependent (AD) tumor. Importantly, most relapsed tumors still rely upon androgen receptor (AR) activity for proliferation and survival. The cellular Fas/FasL-associated death domain protein-like inhibitory protein (FLIP) inhibits activation of procaspase-8 by death receptor-mediated signaling at the cell surface. In the current study, we examined the androgenic regulation of FLIP and its contribution to protecting prostate cancer cells from death receptor-mediated apoptosis. METHODS FLIP expression in tissues from intact and castrated rats as well as androgen-treated prostate cancer cell lines (LNCaP, C4-2, LNCaP-Rf, and DU-145) was monitored via Real-Time RT-PCR and immunoblot. Induction of apoptosis by TRAIL, the death receptor ligand, was determined via microscopic observation and cell counting of fragmented nuclei following fixation and staining with Hoechst 33285. RESULTS FLIP mRNA and protein expression was reduced following castration in multiple rat tissues, including dorsolateral prostate and seminal vesicles. Androgenic induction of FLIP mRNA and protein was observed in isogenic AD LNCaP and ADI LNCaP-Rf cells, but not the isogenic ADI C4-2 cell line. Protection from TRAIL-induced apoptosis by androgen was completely blocked when LNCaP-Rf cells were depleted of endogenous FLIP via siRNA transfection. CONCLUSIONS Androgenic protection from TRAIL-induced apoptosis is predominantly via enhanced transcription of FLIP in prostate cancer cells. Loss of androgen-sensitivity in ADI prostate cancer cells highlights this pathway as a potential target for future therapy of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Donald J. Tindall
- Corresponding author: Donald J. Tindall, Departments of Urology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905. Phone: 507-284-8139. Fax: 507-284-2384,
| |
Collapse
|
37
|
Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJJ. Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol Cancer Ther 2008; 7:2649-61. [PMID: 18790747 DOI: 10.1158/1535-7163.mct-08-0148] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c-FLIP(L) and c-FLIP(S), two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappaB-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.
Collapse
Affiliation(s)
- Catherine Wilson
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Up-regulation of c-FLIP short by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood 2008; 112:690-8. [PMID: 18509086 DOI: 10.1182/blood-2008-02-141382] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Upon encounter with pathogens, T cells activate several defense mechanisms, one of which is the up-regulation of CD95 ligand (CD95L/FasL) which induces apoptosis in sensitive target cells. Despite expression of the CD95 receptor, however, recently activated T cells are resistant to CD95L, presumably due to an increased expression of antiapoptotic molecules. We show here that, in contrast to naive or long-term activated T cells, short-term activated T cells strongly up-regulate the caspase-8 inhibitor, cellular FLICE-inhibitory protein (c-FLIP). Intriguingly, upon activation, T cells highly induced the short splice variant c-FLIP(short), whereas expression of c-FLIP(long) was only marginally modulated. In contrast to the general view that c-FLIP transcription is controlled predominantly by nuclear factor-kappaB (NF-kappaB), induction of c-FLIP(short) in T cells was primarily mediated by the calcineurin-nuclear factor of activated T cells (NFAT) pathway. Importantly, blockage of NFAT-mediated c-FLIP expression by RNA interference or inhibition of calcineurin rendered T cells sensitive toward CD95L, as well as activation-induced apoptosis. Thus, the resistance of recently activated T cells depends crucially on induction of c-FLIP expression by the calcineurin/NFAT pathway. Our findings imply that preventing autocrine CD95L signaling by c-FLIP facilitates T-cell effector function and an efficient immune response.
Collapse
|
39
|
FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene 2008; 27:4422-33. [DOI: 10.1038/onc.2008.80] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Kaarbø M, Klokk TI, Saatcioglu F. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays 2008; 29:1227-38. [PMID: 18008377 DOI: 10.1002/bies.20676] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer is the most frequently diagnosed non-skin cancer and the third leading cause of cancer mortality in men. In the initial stages, prostate cancer is dependent on androgens for growth, which is the basis for androgen ablation therapy. However, in most cases, prostate cancer progresses to a hormone refractory phenotype for which there is no effective therapy available at present. The androgen receptor (AR) is required for prostate cancer growth in all stages, including the relapsed, "androgen-independent" tumors in the presence of very low levels of androgens. This review focuses on AR function and AR-target genes and summarizes the major signaling pathways implicated in prostate cancer progression, their crosstalk with each other and with AR signaling. This complex network of interactions is providing a deeper insight into prostate carcinogenesis and may form the basis for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mari Kaarbø
- Department of Molecular Biosciences, University of Oslo, Norway
| | | | | |
Collapse
|
41
|
Nastiuk KL, Yoo K, Lo K, Su K, Yeung P, Kutaka J, Danielpour D, Krolewski JJ. FLICE-Like Inhibitory Protein Blocks Transforming Growth Factor β1–Induced Caspase Activation and Apoptosis in Prostate Epithelial Cells. Mol Cancer Res 2008; 6:231-42. [DOI: 10.1158/1541-7786.mcr-07-0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Li Y, Li CX, Ye H, Chen F, Melamed J, Peng Y, Liu J, Wang Z, Tsou HC, Wei J, Walden P, Garabedian MJ, Lee P. Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J Cell Mol Med 2008; 12:2790-8. [PMID: 18266956 PMCID: PMC3828892 DOI: 10.1111/j.1582-4934.2008.00279.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Androgen receptor (AR) is expressed in both stromal and epithelial cells of the prostate. The majority of studies on AR expression and function in prostate cancer is focused on malignant epithelial cells rather than stromal cells. In this study, we examined the levels of stromal AR in androgen-dependent and -independent prostate cancer and the function of stromal AR in prostate cancer growth and invasion. We showed that stromal AR levels were decreased in the areas surrounding cancerous tissue, especially in androgen-independent cancer. Using two telomerase-immortalized human stromal cell lines, one AR-positive and the other AR-negative, we demonstrated that stromal cells lacking AR stimulated cell proliferation of co-cultured prostate cancer cells in vitro and enhanced tumour growth in vivo when co-injected with PC3 epithelial cells in nude mice. In contrast, stromal cells expressing AR suppressed prostate cancer growth in vitro and in vivo. In parallel with cancer growth, in vitro invasion assays revealed that stromal cells lacking AR increased the invasion ability of PC3 cell by one order of magnitude, while stromal cells expressing AR reduced this effect. These results indicate a negative regulation of prostate cancer growth and invasion by stromal AR. This provides potentially new mechanistic insights into the failure of androgen ablation therapy, and the reactivation of stromal AR could be a novel therapeutic approach for treating hormone refractory prostate cancer.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pathology, New York University School of Medicine, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chapter 20 Overcoming Resistance to Trail‐Induced Apoptosis in Prostate Cancer by Regulation of c‐FLIP. Methods Enzymol 2008; 446:333-49. [DOI: 10.1016/s0076-6879(08)01620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 2007; 27:2055-63. [PMID: 17998943 DOI: 10.1038/sj.onc.1210840] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising candidate for cancer therapy, however, emergence of drug resistance limits its potential use. Here, we report for the first time that epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, sensitizes TRAIL-resistant LNCaP cells to TRAIL-mediated apoptosis through modulation of intrinsic and extrinsic apoptotic pathways. When combined with EGCG, Apo2L/TRAIL exhibited enhanced apoptotic activity in LNCaP cells characterized by three major molecular events. First, apoptosis induction was accompanied by the upregulation of poly(ADP-ribose) polymerase cleavage and modulation of pro- and antiapoptotic Bcl2 family of proteins. A synergistic inhibition of inhibitors of apoptosis with concomitant increase in caspase cleavage was observed. Second, pretreatment of cells with EGCG resulted in modulation of death-inducing signaling cascade complex involving DR4/TRAIL R1, Fas-associated death domain and FLICE-inhibitory protein proteins. Last, we observed a synergistic inhibition in the invasion and migration of LNCaP cells. This effect was observed to be mediated through inhibition in the protein expression of vascular endothelial growth factor, uPA and angiopoietin 1 and 2. Further, the activity and protein expression of MMP-2, -3 and -9 and upregulation of TIMP1 in cells treated with a combination of EGCG and TRAIL was observed. These data might have implications for developing new strategies aimed at eliminating prostate cancer cells resistant to TRAIL.
Collapse
|
45
|
Prudova A, Albin M, Bauman Z, Lin A, Vitvitsky V, Banerjee R. Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid Redox Signal 2007; 9:1875-81. [PMID: 17854288 DOI: 10.1089/ars.2007.1712] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Clearance of homocysteine via the transsulfuration pathway provides an endogenous route for cysteine synthesis and represents a quantitatively significant source of this amino acid needed for glutathione synthesis. Men have higher plasma levels of total homocysteine than do women, but the mechanism of this sex-dependent difference is not known. In this study, we investigated regulation by testosterone of cystathionine beta-synthase (CBS), which catalyzes the committing step in the transsulfuration pathway. We report that testosterone downregulates CBS expression via a posttranscriptional mechanism in the androgen-responsive prostate cancer cell line, LNCaP. This diminution in CBS levels is accompanied by a decrease in flux through the transsulfuration pathway and by a lower intracellular glutathione concentration. The lower antioxidant capacity in testosterone-treated prostate cancer cells increases their susceptibility to oxidative stress conditions. These results demonstrate regulation of the homocysteine-clearing enzyme, CBS, by testosterone and suggest the potential utility of targeting this enzyme as a chemotherapeutic strategy.
Collapse
Affiliation(s)
- Anna Prudova
- Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zhang X, Zhang L, Yang H, Huang X, Otu H, Libermann TA, DeWolf WC, Khosravi-Far R, Olumi AF. c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res 2007; 67:9425-34. [PMID: 17909052 PMCID: PMC2941899 DOI: 10.1158/0008-5472.can-07-1310] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L promotes apoptosis in cancer cells while sparing normal cells. Although many cancers are sensitive to TRAIL-induced apoptosis, some evade the proapoptotic effects of TRAIL. Therefore, differentiating molecular mechanisms that distinguish between TRAIL-sensitive and TRAIL-resistant tumors are essential for effective cancer therapies. Here, we show that c-Fos functions as a proapoptotic agent by repressing the antiapoptotic molecule c-FLIP(L). c-Fos binds the c-FLIP(L) promoter, represses its transcriptional activity, and reduces c-FLIP(L) mRNA and protein levels. Therefore, c-Fos is a key regulator of c-FLIP(L), and activation of c-Fos determines whether a cancer cell will undergo cell death after TRAIL treatment. Strategies to activate c-Fos or inhibit c-FLIP(L) may potentiate TRAIL-based proapoptotic therapies.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| | - Liang Zhang
- Division of Urologic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Hongmei Yang
- Division of Urologic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Xu Huang
- Division of Urologic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Hasan Otu
- Center for Genomics, Harvard Medical School, Boston, Massachusetts
| | | | - William C. DeWolf
- Division of Urologic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Roya Khosravi-Far
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Aria F. Olumi
- Department of Urology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
47
|
Hsieh AC, Small EJ, Ryan CJ. Androgen-response elements in hormone-refractory prostate cancer: implications for treatment development. Lancet Oncol 2007; 8:933-9. [PMID: 17913662 DOI: 10.1016/s1470-2045(07)70316-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many attempts have been made to derive genetic signatures for progressive prostate cancer for both prognostic and therapeutic purposes. These investigations have resulted in the discovery of many pathways, but the signatures exhibit heterogeneity and restricted reproducibility. A thorough and disciplined analysis of genes with androgen-response elements that are expressed in progressive, castration-resistant prostate cancer is an integral step towards the development of new therapeutic or diagnostic targets. We discuss the effects of bona-fide downstream targets of the androgen receptor on cellular proliferation, evasion of apoptosis, and angiogenesis, and consider the clinical potential of these targets.
Collapse
Affiliation(s)
- Andrew C Hsieh
- Department of Medicine, and UCSF Comprehensive Cancer Center, University of California-San Francisco, 94143, USA.
| | | | | |
Collapse
|
48
|
Vitvitsky V, Prudova A, Stabler S, Dayal S, Lentz SR, Banerjee R. Testosterone regulation of renal cystathionine β-synthase: implications for sex-dependent differences in plasma homocysteine levels. Am J Physiol Renal Physiol 2007; 293:F594-600. [PMID: 17537983 DOI: 10.1152/ajprenal.00171.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is an independent risk factor for ischemic heart disease and stroke. Epidemiological studies reveal that men have higher tHcy levels than women, but the mechanism underlying this sex-dependent difference is unknown. One route for intracellular disposal of homocysteine is catalyzed by cystathionine β-synthase (CBS). Renal function is known to be an important determinant of tHcy, and, in this study, we demonstrate that renal CBS expression and activity in mice diminished approximately twofold after castration, whereas ovariectomization was without effect. The higher renal CBS activity in males (22.7 ± 3.1 mmol cystathionine·h−1·kg kidney−1) vs. females (8.4 ± 3.4 mmol cystathionine·h−1·kg kidney−1, P ≤ 10−6) in C57Bl/6J mice was associated with lower plasma tHcy levels in males vs. females, and this difference was exacerbated in Cbs+/− mice (7.7 ± 1.9 μmol/l in males vs. 13.8 ± 6.4 μmol/l in females, P = 0.005). Surprisingly, mammals exhibit a diversity of regulatory patterns for kidney CBS, with females exhibiting lower CBS activity in mice, higher in rats and humans, and being indistinguishable from males in rabbit, hamster, and guinea pig. Our data suggest that testosterone-dependent regulation of human CBS in kidney may contribute to sex-dependent differences in homocysteine transsulfuration.
Collapse
Affiliation(s)
- Victor Vitvitsky
- Redox Biology Center and the Biochemistry Dept., University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wang J, Zhang H, Liang RX, Pang B, Shi QG, Huang PT, Huang CF, Zhou JG. Identification and characterization of the novel human prostate cancer-specific PC-1 gene promoter. Biochem Biophys Res Commun 2007; 357:8-13. [PMID: 17418805 DOI: 10.1016/j.bbrc.2007.02.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 11/29/2022]
Abstract
Human prostate and colon gene-1 (PC-1, also known as PrLZ) is an androgen-regulated, prostate tissue and prostate cancer cells specifically expressed novel gene. The increased expression of PC-1 gene appears to promote prostate cancer cells androgen-dependent (AD) and androgen-independent (AI) growth. To clone and investigate the expression and regulation elements of PC-1 gene may provide insight into the function of PC-1 and develop a new promoter that targets therapeutic genes to the AD and AI prostate cancer cells. The goal of the present study is cloning and characterization of the PC-1 promoter. A series of luciferase constructs that contain various fragments of the PC-1 5'-genomic region were transfected into human prostate cancer cells for promoter transactivation analysis. 5' deletion analysis identified the -1579 bp promoter region was required for the maximal proximal promoter activity; two transcriptional suppression and a positive regulatory region were identified; -4939 bp promoter fragment of the PC-1 gene retained the characteristic of prostate cancer-specific expression and exhibited higher transcription activity than PSA-6 kb promoter in the medium supplemented with steroid-depleted FBS. An androgen response element (ARE) was located in between -345 and -359 bp of the PC-1 5'-untranslated region relative to the translation initiation site. Thus, our studies not only provide molecular basis of PC-1 transcription regulation, but also define a new regulatory sequence that may be used to restrict expression of therapeutic genes to prostate cancer in the prostate cancer gene therapy.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Institute of Biotechnology, Beijing 100850, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Flowers JB, Oler AT, Nadler ST, Choi Y, Schueler KL, Yandell BS, Kendziorski CM, Attie AD. Abdominal obesity in BTBR male mice is associated with peripheral but not hepatic insulin resistance. Am J Physiol Endocrinol Metab 2007; 292:E936-45. [PMID: 17132824 DOI: 10.1152/ajpendo.00370.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a common feature of obesity. BTBR mice have more fat mass than most other inbred mouse strains. On a chow diet, BTBR mice have elevated insulin levels relative to the C57BL/6J (B6) strain. Male F1 progeny of a B6 x BTBR cross are insulin resistant. Previously, we reported insulin resistance in isolated muscle and in isolated adipocytes in this strain. Whereas the muscle insulin resistance was observed only in male F1 mice, adipocyte insulin resistance was also present in male BTBR mice. We examined in vivo mechanisms of insulin resistance with the hyperinsulinemic euglycemic clamp technique. At 10 wk of age, BTBR and F1 mice had a >30% reduction in whole body glucose disposal primarily due to insulin resistance in heart, soleus muscle, and adipose tissue. The increased adipose tissue mass and decreased muscle mass in BTBR and F1 mice were negatively and positively correlated with whole body glucose disposal, respectively. Genes involved in focal adhesion, actin cytoskeleton, and inflammation were more highly expressed in BTBR and F1 than in B6 adipose tissue. The BTBR and F1 mice have higher levels of testosterone, which may be related to the pathological changes in adipose tissue that lead to systemic insulin resistance. Despite profound peripheral insulin resistance, BTBR and F1 mice retained hepatic insulin sensitivity. These studies reveal a genetic difference in body composition that correlates with large differences in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Jessica B Flowers
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|