1
|
Kim B, Kostaki A, McClymont S, Matthews SG. Identification of a DNA methylation signature in whole blood of newborn guinea pigs and human neonates following antenatal betamethasone exposure. Transl Psychiatry 2024; 14:465. [PMID: 39511158 PMCID: PMC11543945 DOI: 10.1038/s41398-024-03175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Antenatal corticosteroids (ACS) are administered where there is risk of preterm birth to promote fetal lung development and improve perinatal survival. However, treatment may be associated with increased risk of developing neurobehavioural disorders. We have recently identified that ACS results in significant changes to DNA methylation patterns in the newborn and juvenile prefrontal cortex (PFC) of exposed guinea pig offspring. Methylation changes at transcription factor binding sites (TFBS) for PLAGL1, TFAP2C, ZNF263, and SP1 were consistently noted at both post-natal stages, suggesting a long-lasting signature of ACS exposure. In this study, we determined if comparable methylation changes are also present in the newborn blood of ACS-exposed guinea pig offspring, as this would determine whether blood methylation patterns may be used as a peripheral biomarker of changes in the brain. Pregnant guinea pigs were treated with saline or betamethasone (1 mg/kg) on gestational days 50/51. gDNA from whole blood of term-born offspring on post-natal day (PND) 1 was used for reduced representation bisulfite sequencing. Overall, 1677 differentially methylated CpG sites (DMCs) were identified in response to ACS. While no specific DMCs identified in the blood overlapped with those previously reported in the PFC of PND1 offspring, significant differential methylation at TFBSs for PLAGL1, TFAP2C, EGR1, ZNF263, and SP1 was persistently observed. Furthermore, re-examination of our previously reported data of DMCs in human neonatal blood following ACS identified the presence of this same TFBS signature in human infants, suggesting the potential for clinical translation of our epigenomic data.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Alisa Kostaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sarah McClymont
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ferhat M, Mayer J, Costa LH, Prendecki M, Tarazona AAP, Schinagl A, Kerschbaumer RJ, Tam FWK, Landlinger C, Thiele M. Targeting of oxidized Macrophage Migration Inhibitory Factor (oxMIF) with antibody ON104 attenuates the severity of glomerulonephritis. PLoS One 2024; 19:e0311837. [PMID: 39374239 PMCID: PMC11458038 DOI: 10.1371/journal.pone.0311837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
The oxidized form of Macrophage Migration Inhibitory Factor (oxMIF) has been identified as the disease-related isoform of MIF, exerting pathological functions in inflamed tissue. In this study, we aimed to explore the in vivo effects of the neutralizing anti-oxMIF antibody ON104 in a rat model of crescentic glomerulonephritis (CGN), to better understand its disease modifying activities. WKY rats received a single intravenous injection of a rabbit nephrotoxic serum (NTS), targeting rat glomerular basement membrane to induce CGN. On day 4 and day 6, ON104 was given intraperitoneally (i.p.) and on day 8 urine, blood and kidney tissue were collected. ON104 substantially attenuated the severity of CGN demonstrated by reduced proteinuria, hematuria, as well as lower levels of kidney injury molecule (KIM)-1. ON104 treatment preserved the glomerular morphology and suppressed crescent formation, a hallmark of the disease. On the cellular level, oxMIF neutralization by ON104 strongly reduced the number of macrophages and neutrophils within the inflamed kidneys. In vitro, we identified human neutrophils, but not monocytes, as main producers of oxMIF among total peripheral cells. The present study demonstrates that oxMIF is a pertinent therapeutic target in a model of CGN which mechanistically resembles human immune mediated CGN. In this model, neutralization of oxMIF by ON104 leads to an improvement in both urinary abnormalities and histological pathological characteristics of the disease. ON104, thus has the potential to become a novel disease-modifying drug for the treatment of glomerulonephritis and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Maroua Ferhat
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Lyndon H. Costa
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | - Maria Prendecki
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | | | | - Frederick W. K. Tam
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | |
Collapse
|
3
|
Khezrian A, Shojaeian A, Khaghani Boroujeni A, Amini R. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer (Auckl) 2024; 18:11782234241276310. [PMID: 39246383 PMCID: PMC11380135 DOI: 10.1177/11782234241276310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
As a heterogeneous disease, breast cancer (BC) has been characterized by the uncontrolled proliferation of mammary epithelial cells. The tumor microenvironment (TME) also contains inflammatory cells, fibroblasts, the extracellular matrix (ECM), and soluble factors that all promote BC progression. In this sense, the macrophage migration inhibitory factor (MIF), a pleiotropic pro-inflammatory cytokine and an upstream regulator of the immune response, enhances breast tumorigenesis through escalating cancer cell proliferation, survival, angiogenesis, invasion, metastasis, and stemness, which then brings tumorigenic effects by activating key oncogenic signaling pathways and inducing immunosuppression. Against this background, this review was to summarize the current understanding of the MIF pathogenic mechanisms in cancer, particularly BC, and address the central role of this immunoregulatory cytokine in signaling pathways and breast tumorigenesis. Furthermore, different inhibitors, such as small molecules as well as antibodies (Abs) or small interfering RNA (siRNA) and their anti-tumor effects in BC studies were examined. Small molecules and other therapy target MIF. Considering MIF as a promising therapeutic target, further clinical evaluation of MIF-targeted agents in patients with BC was warranted.
Collapse
Affiliation(s)
- Ali Khezrian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Karabowicz J, Długosz E, Bąska P, Pękacz M, Wysmołek ME, Klockiewicz M, Wiśniewski M. Analysis of the role of Dirofilaria repens macrophage migration inhibitory factors in host-parasite interactions. J Vet Res 2024; 68:381-388. [PMID: 39318519 PMCID: PMC11418385 DOI: 10.2478/jvetres-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Dirofilaria repens is a zoonotic parasitic filarial nematode that infects carnivores and occasionally humans. Knowledge of the host-parasite molecular interactions enabling the parasite's avoidance of the host immune response in subcutaneous dirofilariasis remains limited. Parasitic orthologues of host macrophage migration inhibitory factor (MIF) are molecules potentially involved in this process. Material and Methods Complementary DNA encoding two D. repens MIF orthologues (rDre-MIF-1 and rDre-MIF-2) was cloned into a pET-28a expression vector. The recombinant proteins were produced in Escherichia coli and purified using affinity nickel chromatography. The reactivity of both recombinant proteins was analysed with infected dog and immunised mouse sera. Results Stronger antibody production was induced by rDre-MIF-1 in mice, as evidenced by significantly higher levels of anti-rDre-MIF-1 total IgG, IgG2 and IgE antibodies than of anti-rDre-MIF-2 immunoglobulins. Additionally, a significantly different level of antibodies specific to both proteins was noted between the sera of infected dogs and those of uninfected dogs. Conclusion This study is the first attempt to characterise MIF orthologues from the filarial parasite D. repens, which may affect the immune response during infection.
Collapse
Affiliation(s)
- Justyna Karabowicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Piotr Bąska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Mateusz Pękacz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Magdalena Elżbieta Wysmołek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Maciej Klockiewicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Marcin Wiśniewski
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| |
Collapse
|
5
|
Jahanbani F, Sing JC, Maynard RD, Jahanbani S, Dafoe J, Dafoe W, Jones N, Wallace KJ, Rastan A, Maecker HT, Röst HL, Snyder MP, Davis RW. Longitudinal cytokine and multi-modal health data of an extremely severe ME/CFS patient with HSD reveals insights into immunopathology, and disease severity. Front Immunol 2024; 15:1369295. [PMID: 38650940 PMCID: PMC11033372 DOI: 10.3389/fimmu.2024.1369295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Rajan Douglas Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Janet Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Whitney Dafoe
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nathan Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Kelvin J. Wallace
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Azuravesta Rastan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Holden T. Maecker
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Pulmonary and Critical Care Medicine, Institute of Immunity, Transplantation, and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Hannes L. Röst
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
6
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Ortiz-Sánchez BJ, Juárez-Avelar I, Andrade-Meza A, Mendoza-Rodríguez MG, Chirino YI, Monroy-Pérez E, Paniagua-Contreras GL, Rodriguez-Sosa M. Periodontitis exacerbation during pregnancy in mice: Role of macrophage migration inhibitory factor as a key inductor. J Periodontal Res 2024; 59:267-279. [PMID: 37990413 DOI: 10.1111/jre.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE The present study was designed to investigate the role of macrophage migration inhibitory factor (MIF) in the exacerbation of pregestational periodontal disease (PGPD). BACKGROUND Periodontitis (PT) is a severe stage of periodontal disease characterized by inflammation of the supporting tissues of the teeth, which usually worsens during pregnancy. MIF is a proinflammatory cytokine that is significantly elevated in periodontitis, both at the beginning and at the end of pregnancy. Although periodontitis usually presents with greater severity during pregnancy, the participation of MIF in the evolution of periodontitis has not been established. METHODS To analyze the relevance of MIF in the exacerbation of PGPD, we employed a model of PGPD in WT and Mif-/- mice, both with a BALB/c genetic background. PT was induced with nylon suture ligatures placed supramarginally around the second upper right molar. For PGPD, PT was induced 2 weeks before mating. We evaluated histological changes and performed histometric analysis of the clinical attachment loss, relative expression of MMP-2 and MMP-13 by immunofluorescence, and relative expression of the cytokines mif, tnf-α, ifn-γ, and il-17 by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our data revealed that periodontal tissue from PGPD WT mice produced a twofold increase in MIF compared with PT WT mice. Moreover, the evolution of periodontitis in Mif-/- mice was less severe than in PGDP WT mice. Periodontal tissue from Mif-/- mice with PGPD produced 80% less TNF-α and no IFN-γ, as well as 50% lower expression of matrix metalloproteinase (MMP)-2 and 25% less MMP-13 compared to WT PGDP mice. CONCLUSIONS Our study suggests that MIF plays an important role in the exacerbation of periodontitis during pregnancy and that MIF is partially responsible for the inflammation associated with the severity of periodontitis during pregnancy.
Collapse
Affiliation(s)
- Betsaida J Ortiz-Sánchez
- Carrera de Cirujano Dentista, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Imelda Juárez-Avelar
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Antonio Andrade-Meza
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Mónica Gabriela Mendoza-Rodríguez
- Laboratorio de Inmunoparasitología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | | | - Miriam Rodriguez-Sosa
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
8
|
Hawthorne IJ, Dunbar H, Tunstead C, Schorpp T, Weiss DJ, Enes SR, Dos Santos CC, Armstrong ME, Donnelly SC, English K. Human macrophage migration inhibitory factor potentiates mesenchymal stromal cell efficacy in a clinically relevant model of allergic asthma. Mol Ther 2023; 31:3243-3258. [PMID: 37735872 PMCID: PMC10638061 DOI: 10.1016/j.ymthe.2023.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).
Collapse
Affiliation(s)
- Ian J Hawthorne
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tamara Schorpp
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Huang K, Yang B, Xu Z, Chen H, Wang J. The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. J Anim Sci Biotechnol 2023; 14:130. [PMID: 37821933 PMCID: PMC10568933 DOI: 10.1186/s40104-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Four-chambered stomach including the forestomachs (rumen, reticulum, and omasum) and abomasum allows ruminants convert plant fiber into high-quality animal products. The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants, especially the immune development. However, the dynamics of immune development are poorly understood. RESULTS We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep, at 5, 10, 15, and 25 days of age. We found that forestomachs share similar gene expression patterns, all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25, whereas the metabolic function were significantly downregulated with age. We constructed a cell landscape of the four-chambered stomach using single-cell sequencing. Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells, monocytes and macrophages, as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues. Moreover, the non-immune cells such as epithelial cells play key roles in immune maturation. Cell communication analysis predicted that in addition to immune cells, non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs. CONCLUSIONS Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life. We also identified the gene expression patterns and functional cells associated with immune development. Additionally, we identified some key receptors and signaling involved in immune regulation. These results help to understand the early life immune development at single-cell resolution, which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
La Paglia L, Vazzana M, Mauro M, Dumas F, Fiannaca A, Urso A, Arizza V, Vizzini A. Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta. Int J Mol Sci 2023; 24:ijms24044112. [PMID: 36835523 PMCID: PMC9960688 DOI: 10.3390/ijms24044112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs).
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
12
|
Wang X, Wang X, Liu Y, Sun Z, Liu H, Shen J, Zhu HL, Qian Y. Activity-Based Imaging of Macrophage Migration Inhibitory Factor with a Two-Photon Fluorescent Probe. ACS Sens 2023; 8:335-343. [PMID: 36530142 DOI: 10.1021/acssensors.2c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macrophage migration inhibitory factor (MIF), as a cytokine, plays an important role in the pathogenesis of cancer and some other diseases, and it is also one of the potential drug targets for disease treatment. However, due to the lack of simple and effective MIF imaging detection tools, the fluctuation and distribution of MIF in living cells or at lesion sites remain difficult to track precisely and in real time. Here, we report activity-based fluorescent probes, named MIFP1-MIFP3, which are used for real-time imaging and tracking of intracellular MIF, thus establishing a relationship between the fluctuation of MIF and the change of fluorescence signal during the cancer disease process. With the excellent optical properties of two-photon probe imaging, we can easily distinguish multiple cancer cells from normal cells with the representative probe, MIFP3. Moreover, MIFP3 has also been successfully used to directly identify the pathological tissues of patients with clinical liver cancer. These potential MIF probes could provide powerful tools for further study of the physiological function of MIF and will be helpful to promote the accurate diagnosis and therapeutic evaluation of MIF-associated malignancies.
Collapse
Affiliation(s)
- Xueao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| | - Xueting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yani Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Zhigang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Huan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Jiawen Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| |
Collapse
|
13
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Zhang Z, Hu X, Diao Q, Zhang P, Wu Y, Cao Z, Zhou Y, Liu C, Sun Y. Macrophage migration inhibitory factor (MIF) of golden pompano (Trachinotus ovatus) is involved in the antibacterial immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104445. [PMID: 35588935 DOI: 10.1016/j.dci.2022.104445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with a unique structure involved in immune regulation and inflammation. In the present study, we identified a MIF from Trachinotus ovatus (golden pompano) and analyzed its function. TroMIF shares high homology (58.26%-94.78%) with the other known MIF sequences of vertebrates. TroMIF is most closely related to large yellow croaker (Larimichthys crocea). The expression of TroMIF was most abundant in the liver and head kidney, and was significantly up-regulated after Edwardsiella tarda infection. The subcellular localization of TroMIF was mostly distributed in the cytoplasm. In vitro results revealed that the recombinant protein rTroMIF could inhibit the migration of head kidney lymphocytes (HKLs) and macrophages (HKMs) and enhance the phagocytic activity of HKMs. As a pro-inflammatory cytokine, rTroMIF could increase the expression levels of some pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), IL-6, IL-8, and interferon-gamma (IFN-γ) and decrease the expression of IL-10. The rTroMIF was proved to have enzymatic redox activity in vitro. Furthermore, overexpression of TroMIF in the head kidney cell line of golden pompano could significantly enhance its ability to resist E. tarda infection from 1 h to 4 h. The knockdown of TroMIF expression induced a significant increase in the number of bacteria after E. tarda infection at 1, 2, and 4 hpi. Our results suggest that TroMIF is an essential effector of the innate immune system and plays a pivotal role in antibacterial immunity.
Collapse
Affiliation(s)
- Zhengshi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiucong Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Qianying Diao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Chunsheng Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
15
|
Aneja A, Landy DC, Mittwede PN, Albano AY, Teasdall RJ, Isla A, Kavolus M. Inflammatory cytokines associated with outcomes in orthopedic trauma patients independent of New Injury Severity score: A pilot prospective cohort study. J Orthop Res 2022; 40:1555-1562. [PMID: 34729810 DOI: 10.1002/jor.25183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injury is the leading cause of mortality in patients under 50. It is associated with a complex inflammatory response involving hormonal, immunologic, and metabolic mediators. The marked elevation of cytokines and inflammatory mediators subsequently correlates with the development of posttraumatic complications. The aim was to determine whether elevated cytokine levels provide a predictive value for orthopedic trauma patients. A prospective cohort study of patients with New Injury Severity Score (NISS) > 5 was undertaken. IL-6, IL-8, IL-10, and migration inhibitory factor levels were measured within 24-h of presentation. Demographic covariates and clinical outcomes were obtained from the medical records. Fifty-eight patients (83% male, 40 years) were included. Addition of IL-6 to baseline models significantly improved prediction of pulmonary complication (LR = 6.21, p = 0.01), ICU (change in R2 = 0.31, p < 0.01), and hospital length of stay (change in R2 = 0.16, p < 0.01). The addition of IL-8 significantly improved the prediction of acute kidney injury (LR = 9.15, p < 0.01). The addition of postinjury IL-6 level to baseline New Injury Severity Score model is better able to predict the occurrence of pulmonary complications as well as prolonged ICU and hospital length of stay.
Collapse
Affiliation(s)
- Arun Aneja
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - David C Landy
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Peter N Mittwede
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ashley Y Albano
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Robert J Teasdall
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alexander Isla
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew Kavolus
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Cakan N, Yılmaz R, Karaaslan E, Ateş Ö. Association of Macrophage Migration Inhibitory Factor Gene –173 G/C Polymorphism (rs755622) with Familial Mediterranean Fever in Children. J Pediatr Genet 2022; 11:91-98. [DOI: 10.1055/s-0040-1719053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/18/2020] [Indexed: 10/22/2022]
Abstract
Abstract
Objectives The aim of this study was to identify the genotypic analysis and allele frequencies of the –173 G/C polymorphism in the macrophage migration inhibitory factor (MIF) gene in children diagnosed with familial Mediterranean fever (FMF).
Methods The study included 98 children who were diagnosed with FMF according to the Tel Hashomer criteria and one hundred and 57 healthy children as the control group. Genotyping was done for a polymorphism in a promoter region of the MIF gene (G/C at position –173).
Results The relationship of FMF prevalence and –173 G/C genotype of the MIF gene was statistically significant. Individuals with the CC genotype seem to be predisposed to FMF.
Conclusion The C/C polymorphism at position –173 of the MIF gene could be associated with excessive inflammation and immune response and can lead to susceptibility to FMF
Collapse
Affiliation(s)
- Nursen Cakan
- Clinic of Pediatrics, Tokat State Hospital, Tokat, Turkey
| | - Resul Yılmaz
- Division of Pediatric Critical Care, Department of Pediatrics, Selcuk University School of Medicine, Konya, Turkey
| | - Erhan Karaaslan
- Department of Pediatrics, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Ömer Ateş
- Department of Medical Biology and Genetics, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| |
Collapse
|
17
|
Yang T, Jiang H, Luo X, Hou Y, Li A, He B, Zhang X, Hao H, Song H, Cai R, Wang X, Wang Y, Yao C, Qi L, Wang Y. Thrombin acts as inducer of proinflammatory macrophage migration inhibitory factor in astrocytes following rat spinal cord injury. J Neuroinflammation 2022; 19:120. [PMID: 35624475 PMCID: PMC9137112 DOI: 10.1186/s12974-022-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Haiyan Jiang
- Health Management Center, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
18
|
Park H, Kam TI, Peng H, Chou SC, Mehrabani-Tabari AA, Song JJ, Yin X, Karuppagounder SS, Umanah GK, Rao AVS, Choi Y, Aggarwal A, Chang S, Kim H, Byun J, Liu JO, Dawson TM, Dawson VL. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson's disease. Cell 2022; 185:1943-1959.e21. [PMID: 35545089 DOI: 10.1016/j.cell.2022.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae-Jin Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A V Subba Rao
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - YuRee Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sohyun Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyunhee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Byun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Yu JJ, Zhao Q, Li HN, Song JQ, Chen DC. Macrophage migration inhibitory factor as a potential novel biomarker for cognitive function in patients with first-episode schizophrenia. Aust N Z J Psychiatry 2022; 56:292-300. [PMID: 33985351 DOI: 10.1177/00048674211013086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Cognitive impairment is prevalent in schizophrenia. Macrophage migration inhibitory factor which is released into the circulation under stress or inflammation, is associated with cognition and also plays an important role in immunity. However, no study has investigated the relationship between macrophage migration inhibitory factor and cognitive function in first-episode schizophrenia patients at baseline or after treatment. This study investigated the pre- and post-risperidone treatment correlations between serum macrophage migration inhibitory factor levels and cognitive function in first-episode schizophrenia patients. METHODS A total of 83 first-episode schizophrenia patients who received risperidone monotherapy and 57 healthy controls - matched for sex, age, smoking status, education (years), marital status and waist-to-hip ratio - were included. Macrophage migration inhibitory factor levels were measured before and 10 weeks after treatment in the patient group and at baseline in the controls. Pre- and post-treatment cognitive functions in patients were assessed using the MATRICS Consensus Cognitive Battery. RESULTS At baseline, macrophage migration inhibitory factor levels were significantly higher in first-episode schizophrenia patients than those in healthy controls (p < 0.01) and decreased in patients after 10 weeks of risperidone treatment compared with baseline (p < 0.05). The MATRICS Consensus Cognitive Battery total score and the sub-scores for the Trail Making Test, Symbol Coding, Letter Number Sequence, Maze and Brief Visuospatial Memory Test-Revised improved significantly after risperidone treatment. After controlling for age, sex, education, waist-to-hip ratio and smoking status, partial correlation analysis showed a positive correlation between baseline macrophage migration inhibitory factor levels and patients' baseline MATRICS Consensus Cognitive Battery verbal memory scores (r = 0.29, p = 0.01). Macrophage migration inhibitory factor changes correlated negatively with verbal memory changes (r = -0.26, p = 0.04). Multiple linear regression analysis identified a definite correlation between the changes in word memory test score and macrophage migration inhibitory factor level (β = -0.09, p = 0.04). CONCLUSION Macrophage migration inhibitory factor may be involved in the process of cognitive impairment in first-episode schizophrenia and repair mechanisms following risperidone treatment.
Collapse
Affiliation(s)
- Jian-Jin Yu
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Changping district, Beijing 100096, China
| | - Qing Zhao
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Changping district, Beijing 100096, China
| | - Hong-Na Li
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Changping district, Beijing 100096, China
| | - Jia-Qi Song
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Changping district, Beijing 100096, China
| | - Da-Chun Chen
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Changping district, Beijing 100096, China
| |
Collapse
|
20
|
Chen X, Chen Y, Qi D, Cui D. Multifaceted interconnections between macrophage migration inhibitory factor and psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110422. [PMID: 34358623 DOI: 10.1016/j.pnpbp.2021.110422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/02/2023]
Abstract
Inflammation is involved in the pathogenesis of psychiatric disorders. Many previous studies have defined the important roles of inflammatory factors in the pathogenesis, diagnosis, and treatment outcomes of psychiatric disorders. Macrophage migration inhibitory factor (MIF), a pro-inflammatory factor, has been gradually recognized to be involved in the development of neurological diseases in recent years. Our current review focuses on discussing the potential beneficial and detrimental roles of MIF in psychiatric disorders. We will provide new mechanistic insights for the development of potential diagnostic and therapeutic biomarkers based on MIF for psychiatric diseases.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Yifan Chen
- Department of Psychology, Tufts University, Medford, MA, USA.
| | - Dake Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Liu F, Wu M, Wang J, Wen H, An R, Cai H, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Recombinant Toxoplasma gondii MIF, CDPK3, and 14-3-3 Protein Cocktail Vaccine. Front Immunol 2021; 12:755792. [PMID: 35003067 PMCID: PMC8727341 DOI: 10.3389/fimmu.2021.755792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii can infect almost all endotherm organisms including humans and cause life-threatening toxoplasmosis in immunocompromised individuals, which leads to serious public health problems. Developing an excellent vaccine against this disease is impending. In present study, we formulated a cocktail protein vaccine including the TgMIF, TgCDPK3, and Tg14-3-3 proteins, which play critical roles in T. gondii infection. The recombinant protein vaccines were constructed and assessed by vaccination in BALB/c mice. We organized the mice in various protein combination groups of vaccines, and all mice were immunized with corresponding proteins at 0, 2, and 4 weeks. The specific protective effects of the vaccines on mice against T. gondii were analyzed by the mensuration of cytokines, serum antibodies, splenocyte proliferation assay, survival time, and parasite cyst burden of mice after the challenge. The study indicated that mice immunized with all three multicomponent proteins vaccine triggered a strong immune response with highest levels of IFN-γ production and IgG antibody compared with the other two protein combinations and controls. Moreover, there was an increase in IL-4 production and antigen-specific lymphocyte proliferation. The parasite cysts were significantly reduced (resulting in an 82.7% reduction), and survival time was longer in immunized mice with three multicomponent proteins compared with the other groups of mice. The enhanced humoral and cell-mediated immunity indicated that the protein cocktail vaccine containing three antigens provided effective protection for mice. These results indicated that recombinant TgMIF, TgCDPK3, and Tg14-3-3 multicomponent proteins were potential candidates for vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| |
Collapse
|
23
|
Macrophage migration inhibitory factor in Nodding syndrome. PLoS Negl Trop Dis 2021; 15:e0009821. [PMID: 34662363 PMCID: PMC8553141 DOI: 10.1371/journal.pntd.0009821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Nodding syndrome (NS) is a catastrophic and enigmatic childhood epilepsy, accompanied by multiple neurological impairments and neuroinflammation. Of all the infectious, environmental and psychological factors associated with NS, the major culprit is Onchocerca Volvulus (Ov)-a parasitic worm transmitted to human by blackflies. NS seems to be an 'Autoimmune Epilepsy' in light of the recent findings of deleterious autoimmune antibodies to Glutamate receptors and to Leiomodin-I in NS patients. Moreover, we recently found immunogenetic fingerprints in HLA peptide-binding grooves associate with protection or susceptibility to NS. Macrophage migration inhibitory factor (MIF) is an immune-regulatory cytokine playing a central role in modulating innate and adaptive immunity. MIF is also involved in various pathologies: infectious, autoimmune and neurodegenerative diseases, epilepsy and others. Herein, two functional polymorphisms in the MIF gene, a -794 CATT5-8 microsatellite repeat and a -173 G/C single-nucleotide polymorphism, were assessed in 49 NS patients and 51 healthy controls from South Sudan. We also measured MIF plasma levels in established NS patients and healthy controls. We discovered that the frequency of the high-expression MIF -173C containing genotype was significantly lower in NS patients compared to healthy controls. Interestingly however, MIF plasma levels were significantly elevated in NS patients than in healthy controls. We further demonstrated that the HLA protective and susceptibility associations are dominant over the MIF association with NS. Our findings suggest that MIF might have a dual role in NS. Genetically controlled high-expression MIF genotype is associated with disease protection. However, elevated MIF in the plasma may contribute to the detrimental autoimmunity, neuroinflammation and epilepsy.
Collapse
|
24
|
Zhao M, Chang Q, Liu Y, Sang P, Kang Z, Wang X. Functional Characterization of the Wheat Macrophage Migration Inhibitory Factor TaMIF1 in Wheat-Stripe Rust ( Puccinia striiformis) Interaction. BIOLOGY 2021; 10:biology10090878. [PMID: 34571757 PMCID: PMC8470491 DOI: 10.3390/biology10090878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary There have been many breakthroughs in MIF function and mechanism investigation in vertebrates, but it has rarely been studied in plants. Here, we aimed to characterize the function of MIF in wheat and its potential role in Wheat-Stripe rust interaction. We showed that wheat MIF has some similarities with that MIF in vertebrates, such as subcellular localization in both the cytosol and nuclei, as well as significant tautomerase activity, and both can inhibit Bax-induced programmed cell death. In the wheat–Pst interaction, TaMIF1 is upregulated during Pst infection. Silencing TaMIF1 decreased Pst infection of wheat tissues, and the accumulation of ROS was increased in TaMIF1-silenced wheat leaves, which hinted that TaMIF1 mainly modulates the ROS signaling and then alters the subsequent immune responses. The function characterization of TaMIF1 provides significant insight into the role of MIFs across kingdoms and helpful in-depth functional mechanism analysis on these proteins. Abstract Macrophage migration inhibitory factor (MIF), named for its role in inhibiting macrophage/monocyte migration, has multiple functions in modulation of inflammation, cell proliferation, angiogenesis, and tumorigenesis in vertebrates. Although homologs of this gene can be found in plants, the function of MIF in plants remains obscure. Here, we characterized TaMIF1 in Triticum aestivum resembling the MIF secreted from Homo sapiens. Transcript analysis revealed that TaMIF1 responded to stripe rust infection of wheat and was upregulated during the infection stage. TaMIF1 was localized to both the cytosol and nuclei in wheat mesophyll protoplast. Additionally, TaMIF1 possessed significant tautomerase activity, indicating conservation of MIFs across kingdoms. Agrobacterium tumefaciens infiltration assay demonstrated that TaMIF1 was capable of suppressing programmed cell death hinting its role in plant immunity. Heterologous expression of TaMIF1 increased fission yeast sensitivity to oxidative stress. Silencing TaMIF1 decreased the susceptibility of wheat to Pst seemingly through increasing reactive oxygen species accumulation. In conclusion, functions of the TaMIF1 were investigated in this study, which provides significant insight into understanding the role of MIFs across kingdoms.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (M.Z.); (Y.L.); (P.S.)
| | - Qing Chang
- Bio-Agriculture Institute of Shaanxi, Xi’an 710043, China;
| | - Yueni Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (M.Z.); (Y.L.); (P.S.)
| | - Peng Sang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (M.Z.); (Y.L.); (P.S.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (M.Z.); (Y.L.); (P.S.)
- Correspondence: (Z.K.); (X.W.); Tel./Fax: +86-29-87080061 (Z.K.); +86-29-87080063 (X.W.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (M.Z.); (Y.L.); (P.S.)
- Correspondence: (Z.K.); (X.W.); Tel./Fax: +86-29-87080061 (Z.K.); +86-29-87080063 (X.W.)
| |
Collapse
|
25
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Toldi J, Nemeth D, Hegyi P, Molnar Z, Solymar M, Farkas N, Alizadeh H, Rumbus Z, Pakai E, Garami A. Macrophage migration inhibitory factor as a diagnostic and predictive biomarker in sepsis: meta-analysis of clinical trials. Sci Rep 2021; 11:8051. [PMID: 33850259 PMCID: PMC8044150 DOI: 10.1038/s41598-021-87613-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
The hunt for useful sepsis biomarkers is ongoing. Macrophage migration inhibitory factor (MIF) was implicated as a biomarker in sepsis, but its diagnostic and prognostic value has remained unclear in human studies. Here, we aimed at clarifying the value of MIF as a sepsis biomarker with the meta-analysis of clinical trials. PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases were searched until December 2019. From the included studies, blood MIF levels and indicators of disease severity were extracted in septic and control patient groups. Twenty-one eligible studies were identified, including data from 1876 subjects (of which 1206 had sepsis). In the septic patients, blood MIF levels were significantly higher than in healthy controls with a standardized mean difference (SMD) of 1.47 (95% confidence interval, CI: 0.96-1.97; p < 0.001) and also higher than in patient groups with nonseptic systemic inflammation (SMD = 0.94; CI: 0.51-1.38; p < 0.001). Markedly greater elevation in blood MIF level was found in the more severe forms of sepsis and in nonsurvivors than in less severe forms and in survivors with SMDs of 0.84 (CI: 0.45-1.24) and 0.75 (CI: 0.40-1.11), respectively (p < 0.001 for both). In conclusion, blood MIF level is more elevated in systemic inflammation caused by infection (i.e., sepsis) compared to noninfectious causes. In more severe forms of sepsis, including fatal outcome, MIF levels are higher than in less severe forms. These results suggest that MIF can be a valuable diagnostic and prognostic biomarker in sepsis given that well-designed clinical trials validate our findings.
Collapse
Affiliation(s)
- Janos Toldi
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Department of Anesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - David Nemeth
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Molnar
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Hussain Alizadeh
- Division of Hematology, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| |
Collapse
|
27
|
Yao J, Leng L, Fu W, Li J, Bronner C, Bucala R. ICBP90 Regulates MIF Expression, Glucocorticoid Sensitivity, and Apoptosis at the MIF Immune Susceptibility Locus. Arthritis Rheumatol 2021; 73:1931-1942. [PMID: 33844457 DOI: 10.1002/art.41753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is an inflammatory and neurorendocrine mediator that counterregulates glucocorticoid immunosuppression. MIF polymorphisms, which comprise a variant promoter microsatellite (-794 CATT5-8 ), are linked genetically to autoimmune disease severity and to glucocorticoid resistance. While invasive stimuli increase MIF expression, MIF also is up-regulated by glucocorticoids, which serve as a physiologic regulator of inflammatory responses. This study was undertaken to define interactions between the MIF promoter, the glucocorticoid receptor (GR), and the transcription factor inverted CCAAT box binding protein 90 kd (ICBP90) (also referred to as UHRF1), which binds to the promoter in a -794 CATT5-8 length-dependent manner, to regulate MIF transcription. METHODS Interactions of ICBP90, GR, and activator protein 1 (AP-1) with MIF -794 CATT5-8 promoter constructs were assessed by coimmunoprecipitation, Western blotting, and genetic knockdown. Nuclear colocalization studies were performed using anti-transcription factor antibodies and confocal microscopy of glucocorticoid-treated cells. MIF transcription was studied in CEM-C7 T cells, and the impact of the MIF -794 CATT5-8 microsatellite variation confirmed in peripheral blood T cells and in rheumatoid synovial fibroblasts of defined MIF genotype. Functional interactions were quantified by apoptosis and apoptotic signaling in high- and low-genotypic MIF-expressing human cells. RESULTS We defined functional interactions between the transcription factors ICBP90, the GR, and AP-1 that up-regulated MIF transcription in a -794 CATT5-8 length-dependent manner. Experimental reduction of ICBP90, GR, or AP-1 decreased MIF expression and increased glucocorticoid sensitivity, leading to enhanced apoptosis in T lymphocytes and in rheumatoid synovial fibroblasts. CONCLUSION These findings suggest a mechanism for genetic variation of glucocorticoid-regulated MIF transcription, with implications for autoimmune disease severity and glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Jie Yao
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Lin Leng
- Yale University School of Medicine, New Haven, Connecticut
| | - Weiling Fu
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Yale University School of Medicine, New Haven, Connecticut
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Ligue Nationale Contre le Cancer Equipe Labellisée Illkirch, Alsace, France
| | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Zaorska K, Zawierucha P, Świerczewska M, Ostalska-Nowicka D, Zachwieja J, Nowicki M. Prediction of steroid resistance and steroid dependence in nephrotic syndrome children. J Transl Med 2021; 19:130. [PMID: 33785019 PMCID: PMC8011118 DOI: 10.1186/s12967-021-02790-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background Steroid resistant (SR) nephrotic syndrome (NS) affects up to 30% of children and is responsible for fast progression to end stage renal disease. Currently there is no early prognostic marker of SR and studied candidate variants and parameters differ highly between distinct ethnic cohorts. Methods Here, we analyzed 11polymorphic variants, 6 mutations, SOCS3 promoter methylation and biochemical parameters as prognostic markers in a group of 124 Polish NS children (53 steroid resistant, 71 steroid sensitive including 31 steroid dependent) and 55 controls. We used single marker and multiple logistic regression analysis, accompanied by prediction modeling using neural network approach. Results We achieved 92% (AUC = 0.778) SR prediction for binomial and 63% for multinomial calculations, with the strongest predictors ABCB1 rs1922240, rs1045642 and rs2235048, CD73 rs9444348 and rs4431401, serum creatinine and unmethylated SOCS3 promoter region. Next, we achieved 80% (AUC = 0.720) in binomial and 63% in multinomial prediction of SD, with the strongest predictors ABCB1 rs1045642 and rs2235048. Haplotype analysis revealed CD73_AG to be associated with SR while ABCB1_AGT was associated with SR, SD and membranoproliferative pattern of kidney injury regardless the steroid response. Conclusions We achieved prediction of steroid resistance and, as a novelty, steroid dependence, based on early markers in NS children. Such predictions, prior to drug administration, could facilitate decision on a proper treatment and avoid diverse effects of high steroid doses. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02790-w.
Collapse
Affiliation(s)
- Katarzyna Zaorska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland.
| | - Piotr Zawierucha
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Zygmunta Noskowskiego St 12/14, 61-704, Poznan, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Jacek Zachwieja
- Clinic of Pediatric Nephrology and Hypertension, University of Medical Sciences, Szpitalna St 27/33, 60-572, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, University of Medical Sciences, Swiecickiego St 6, 60-781, Poznan, Poland
| |
Collapse
|
29
|
Vizzini A, Bonura A, La Paglia L, Fiannaca A, La Rosa M, Urso A, Arizza V. ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta. Int J Mol Sci 2021; 22:ijms22073497. [PMID: 33800649 PMCID: PMC8037537 DOI: 10.3390/ijms22073497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to vertebrates, is an excellent model to investigate mechanisms of post-transcriptional regulation evolutionarily highly conserved in immune homeostasis. The combined use of NGS and bioinformatic analyses suggests that in the pharynx, the hematopoietic organ of Ciona robusta, the Tgf-β, Wnt, Hedgehog and FoxO pathways are involved in tissue homeostasis, as they are in human. Furthermore, ceRNA network interactions and 3'UTR elements analyses of Tgf-β, Wnt, Hedgehog and FoxO pathways genes suggest that different miRNAs conserved (cin-let-7d, cin-mir-92c, cin-mir-153), species-specific (cin-mir-4187, cin-mir-4011a, cin-mir-4056, cin-mir-4150, cin-mir-4189, cin-mir-4053, cin-mir-4016, cin-mir-4075), pseudogenes (ENSCING00000011392, ENSCING00000018651, ENSCING00000007698) and mRNA 3'UTR elements are involved in post-transcriptional regulation in an integrated way in C. robusta.
Collapse
Affiliation(s)
- Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, via Archirafi 18, 90100 Palermo, Italy;
- Correspondence:
| | - Angela Bonura
- Istituto per La Ricerca e l’Innovazione Biomedica–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy;
| | - Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Massimo La Rosa
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale Delle Ricerche, via Ugo La Malfa 153, 90100 Palermo, Italy; (L.L.P.); (A.F.); (M.L.R.); (A.U.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, via Archirafi 18, 90100 Palermo, Italy;
| |
Collapse
|
30
|
Treatment-Resistant Depression Revisited: A Glimmer of Hope. J Pers Med 2021; 11:jpm11020155. [PMID: 33672126 PMCID: PMC7927134 DOI: 10.3390/jpm11020155] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric disorder worldwide. It causes individual suffering, loss of productivity, increased health care costs and high suicide risk. Current pharmacologic interventions fail to produce at least partial response to approximately one third of these patients, and remission is obtained in approximately 30% of patients. This is known as Treatment-Resistant Depression (TRD). The burden of TRD exponentially increases the longer it persists, with a higher risk of impaired functional and social functioning, vast losses in quality of life and significant risk of somatic morbidity and suicidality. Different approaches have been suggested and utilized, but the results have not been encouraging. In this review article, we present new approaches to identify and correct potential causes of TRD, thereby reducing its prevalence and with it the overall burden of this disease entity. We will address potential contributory factors to TRD, most of which can be investigated in many laboratories as routine tests. We discuss endocrinological aberrations, notably, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and thyroid and gonadal dysfunction. We address the role of Vitamin D in contributing to depression. Pharmacogenomic testing is being increasingly used to determine Single Nucleotide Polymorphisms in Cytochrome P450, Serotonin Transporter, COMT, folic acid conversion (MTHFR). As the role of immune system dysregulation is being recognized as potentially a major contributory factor to TRD, the measurement of C-reactive protein (CRP) and select immune biomarkers, where testing is available, can guide combination treatments with anti-inflammatory agents (e.g., selective COX-2 inhibitors) reversing treatment resistance. We focus on established and emerging test procedures, potential biomarkers and non-biologic assessments and interventions to apply personalized medicine to effectively manage treatment resistance in general and TRD specifically.
Collapse
|
31
|
Saeidi A, Seifi-Ski-Shahr F, Soltani M, Daraei A, Shirvani H, Laher I, Hackney AC, Johnson KE, Basati G, Zouhal H. Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial. Arch Physiol Biochem 2020; 129:640-648. [PMID: 33370549 DOI: 10.1080/13813455.2020.1856142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to determine how different resistance training protocols affect gremlin 1, macrophage migration inhibitory factor (MIF), cardiometabolic, and anthropometric measures in obese men. METHODS Forty-four males with obesity (weight: 93.2 ± 2.2 kg, BMI: 32.9 ± 1.2 kg/m2, age: 27.5 ± 9.4 years) were randomly assigned to traditional resistance training (TRT, n = 11), circuit resistance training (CRT, n = 11), interval resistance training (IRT, n = 11) or control (C, n = 11) groups. TRT group performed ten exercises at 50% of 1RM with 14 repetitions for three sets and 30 seconds rest interval between exercises and 1.5 min rest between sets, the CRT protocol included three circuits of 10 exercises, at an intensity of 50% of 1-RM, 14 repetitions with a minimum rest (< 15 s) between exercises and 3 min rest between sets, and the IRT group performed two sets of the same exercises with 50% of 1 RM, and 14 repetitions were followed with active rest of 25% of 1RM and 14 repetitions. All resistance training groups performed 60 min per session resistance exercises, 3 days per week, for 12 weeks. Measurements were taken at baseline and after 12 weeks of exercise training. RESULTS Resistance training (TRT, CRT, and IRT) significantly decreased plasma levels of gremlin (TRT from 231.0 ± 5.8 to 210.0 ± 11.6 ng/ml, CRT from 226.0 ± 7.6 to 188.0 ± 7.7 ng/ml and, IRT from 227.0 ± 6.3 to 183.0 ± 9.0 ng/ml, effect size (ES): 0.50), MIF (TRT from 251.0 ± 7.4 to 260.0 ± 6.5 ng/ml, CRT from 248.0 ± 10.9 to 214.0 ± 9.0 ng/ml and, IRT from 247.0 ± 8.9 to 196.0 ± 6.9 ng/ml, ES: 0.55) and CRP (TRT from 28.4 ± 1.7 to 23.3 ± 2.1 nmol/l, CRT from 28.5 ± 2.2 to 21.1 ± 1.8 nmol/l, IRT from 28.1 ± 1.3 to 20.8 ± 1.3 nmol/l, ES: 0.49) compared to the control group (p < .05), but these reduction were greater in the CRT and IRT groups compared to the TRT group (p < .05). CONCLUSION The CRT and IRT protocols had more beneficial improvement in gremlin 1, MIF, body composition, and cardiometabolic risk factors compared to the beneficial changes produced by TRT protocol.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Farnaz Seifi-Ski-Shahr
- Department of Physical Education and Sport Sciences, Faculty of Education and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Soltani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kelly E Johnson
- Department Kinesiology, Coastal Carolina University, Conway SC, SC, USA
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes, France
| |
Collapse
|
32
|
Garcia-Orozco A, Martinez-Magaña IA, Riera-Leal A, Muñoz-Valle JF, Martinez-Guzman MA, Quiñones-Venegas R, Sánchez-Zuno GA, Fafutis-Morris M. Macrophage inhibitory factor (MIF) gene polymorphisms are associated with disease susceptibility and with circulating MIF levels in active non-segmental vitiligo in patients from western Mexico. Mol Genet Genomic Med 2020; 8:e1416. [PMID: 32705792 PMCID: PMC7549602 DOI: 10.1002/mgg3.1416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background The macrophage migration inhibiting factor (MIF) is a protein that promotes the activation of immune cells and the production of other proinflammatory cytokines such as TNF‐α, IL‐1β, and IFN‐γ, which have proposed to play an essential role in the pathogenesis of vitiligo. The study aimed to assess the association between MIF polymorphisms (−794 CATT5‐8 and −173 G>C), MIF in situ expression, and MIF serum concentrations with susceptibility and disease activity in patients with non‐segmental vitiligo (NSV) from western Mexico. Methods The study included 111 patients with NSV and 201 control subjects. Genotyping was performed by conventional PCR (−794 CATT5‐8) and PCR‐RFLP (−173 G>C) methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum concentrations were determined by ELISA kit. Histopathological samples were analyzed by automated immunohistochemistry. Results The MIF polymorphisms were associated with NSV susceptibility. Serum concentrations of MIF were higher in patients with active NSV and correlated negatively with the years of evolution. The depigmented skin from patients with active vitiligo showed a high expression of MIF. Conclusion MIF polymorphisms increase the risk of NSV in the western Mexican population. The serum concentrations of MIF and in situ expression are associated with active NSV.
Collapse
Affiliation(s)
- Alejandra Garcia-Orozco
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico.,Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Annie Riera-Leal
- Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Marco Alonso Martinez-Guzman
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico
| | - Ricardo Quiñones-Venegas
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan, Mexico
| | - Gabriela Athziri Sánchez-Zuno
- Doctorado en Ciencias Biomédicas con Orientación en Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología/Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
33
|
Arizza V, Bonura A, La Paglia L, Urso A, Pinsino A, Vizzini A. Transcriptional and in silico analyses of MIF cytokine and TLR signalling interplay in the LPS inflammatory response of Ciona robusta. Sci Rep 2020; 10:11339. [PMID: 32647255 PMCID: PMC7347617 DOI: 10.1038/s41598-020-68339-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023] Open
Abstract
The close phylogenetic relationship between Ciona robusta and vertebrates makes it a powerful model for studying innate immunity and the evolution of immune genes. To elucidate the nature and dynamics of the immune response, the molecular mechanisms by which bacterial infection is detected and translated into inflammation and how potential pattern recognition receptors (PRRs) are involved in pathogen recognition in tunicate C. robusta (formerly known as Ciona intestinalis), we applied an approach combining bacterial infections, next-generation sequencing, qRT-PCR, bioinformatics and in silico analyses (criteria of a p-value < 0.05 and FDR < 0.05). A STRING analysis indicated a functional link between components of the Tlr/MyD88-dependent signalling pathway (Tlr2, MyD88, and Irak4) and components of the Nf-κB signalling pathway (Nf-κB, IκBα, and Ikkα) (p-value < 0.05, FDR < 0.05). A qRT-PCR analysis of immune genes selected from transcriptome data revealed Mif as more frequently expressed in the inflammatory response than inflammation mediator or effector molecules (e.g., Il-17s, Tnf-α, Tgf-β, Mmp9, Tlrs, MyD88, Irak4, Nf-κB, and galectins), suggesting close interplay between Mif cytokines and Nf-κB signalling pathway components in the biphasic activation of the inflammatory response. An in silico analyses of the 3′-UTR of Tlr2, MyD88, IκBα, Ikk, and Nf-κB transcripts showed the presence of GAIT elements, which are known to play key roles in the regulation of immune gene-specific translation in humans. These findings provide a new level of understanding of the mechanisms involved in the regulation of the C. robusta inflammatory response induced by LPS and suggest that in C. robusta, as in humans, a complex transcriptional and post-transcriptional control mechanism is involved in the regulation of several inflammatory genes.
Collapse
Affiliation(s)
- Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, Palermo, Italy
| | - Angela Bonura
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, Palermo, Italy.
| |
Collapse
|
34
|
Kim BS, Tilstam PV, Arnke K, Leng L, Ruhl T, Piecychna M, Schulte W, Sauler M, Frueh FS, Storti G, Lindenblatt N, Giovanoli P, Pallua N, Bernhagen J, Bucala R. Differential regulation of macrophage activation by the MIF cytokine superfamily members MIF and MIF-2 in adipose tissue during endotoxemia. FASEB J 2020; 34:4219-4233. [PMID: 31961019 PMCID: PMC7060131 DOI: 10.1096/fj.201901511r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023]
Abstract
Sepsis is a leading cause of death worldwide and recent studies have shown white adipose tissue (WAT) to be an important regulator in septic conditions. In the present study, the role of the inflammatory cytokine macrophage migration inhibitory factor (MIF) and its structural homolog D-dopachrome tautomerase (D-DT/MIF-2) were investigated in WAT in a murine endotoxemia model. Both MIF and MIF-2 levels were increased in the peritoneal fluid of LPS-challenged wild-type mice, yet, in visceral WAT, the proteins were differentially regulated, with elevated MIF but downregulated MIF-2 expression in adipocytes. Mif gene deletion polarized adipose tissue macrophages (ATM) toward an anti-inflammatory phenotype while Mif-2 gene knockout drove ATMs toward a pro-inflammatory phenotype and Mif-deficiency was found to increase fibroblast viability. Additionally, we observed the same differential regulation of these two MIF family proteins in human adipose tissue in septic vs healthy patients. Taken together, these data suggest an inverse relationship between adipocyte MIF and MIF-2 expression during systemic inflammation, with the downregulation of MIF-2 in fat tissue potentially increasing pro-inflammatory macrophage polarization to further drive adipose inflammation.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Pathricia V. Tilstam
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tim Ruhl
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Surgery, Yale University School of Medicine, New Haven, CT
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Maor Sauler
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Florian S. Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Gabriele Storti
- Unit of Plastic and Reconstructive Surgery University of Rome- “Tor Vergata”
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Norbert Pallua
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
35
|
Niu J, Huang Y, Liu X, Luo G, Tang J, Wang B, Lu Y, Cai J, Jian J. Functional characterization of galectin-3 from Nile tilapia (Oreochromis niloticus) and its regulatory role on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 95:268-276. [PMID: 31655269 DOI: 10.1016/j.fsi.2019.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Galectin-3 is a kind of β-galactoside-binding lectin involved in host defense against pathogen infection. However, the immune functions of fish galectin-3 remain poorly understood. In this study, the roles of a fish galectin-3 (OnGal-3) from Nile tilapia (Oreochromis niloticus) on the binding activity on bacterial pathogens or PAMPs, the agglutinating activity on bacterial pathogens and the regulatory effects on monocytes/macrophages activity were investigated. After in vitro challenge of Streptococcus agalactiae and Aeromonas hydrophila, OnGal-3 expressions were significantly up-regulated in monocytes/macrophages. In addition, recombinant OnGal-3(rOnGal-3) protein showed strong binding activity on bacterial pathogens or PAMPs. Also, rOnGal-3 agglutinated Gram-positive and Gram-negative bacteria. Moreover, rOnGal-3 could induce the inflammatory factors expressions in monocytes/macrophages and enhance phagocytosis and respiratory burst activity of monocytes/macrophages. These results suggest that fish galectin-3 participates in anti-bacterial immune response through recognizing pathogens and modulating monocytes/macrophages activity.
Collapse
Affiliation(s)
- Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Xinchao Liu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Guoling Luo
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, 536000, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
| |
Collapse
|
36
|
The Effect of Macrophage Migration Inhibitory Factor on Intestinal Permeability: FITC-Dextran Serum Measurement and Transmission Electron Microscopy. Methods Mol Biol 2019. [PMID: 31745882 DOI: 10.1007/978-1-4939-9936-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Macrophage migration inhibitory factor (MIF) is a molecule with multiple functions: from enforcing the immune system to fight bacterial infection to the regulation of insulin activity. Also, MIF is expressed by enterocytes that line the intestinal border toward the lumen, and in M cells, where it regulates phagocytosis of antigens from the lumen of the gut and their transport to Peyer's patches. Since there were no data on the role of MIF in the maintenance of the intestinal barrier, we used MIF-deficient mice bred on C57BL/6 background as a model for the investigation of intestinal permeability. The obtained results indicate that the absence of MIF increases intestinal permeability. Here we describe two methods for measuring intestinal permeability in mice: detection of orally delivered FITC-dextran in the serum and transmission electron microscopy used for visualization and measurement of cell-to-cell connections width.
Collapse
|
37
|
Santoscoy-Ascencio G, Baños-Hernández CJ, Navarro-Zarza JE, Hernández-Bello J, Bucala R, López-Quintero A, Valdés-Alvarado E, Parra-Rojas I, Illades-Aguiar B, Muñoz-Valle JF. Macrophage migration inhibitory factor promoter polymorphisms are associated with disease activity in rheumatoid arthritis patients from Southern Mexico. Mol Genet Genomic Med 2019; 8:e1037. [PMID: 31701681 PMCID: PMC6978234 DOI: 10.1002/mgg3.1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a cytokine capable of stimulating inflammatory cytokine and matrix metalloproteinase production from macrophages and synovial fibroblasts, which leads to persistent inflammation and bone degradation, two of the major pathological processes in rheumatoid arthritis (RA). The aim of this study was to evaluate the association of MIF promoter polymorphisms (−794CATT5‐8rs5844572 and −173G > C, rs755622), circulating MIF levels, and mRNA expression with RA susceptibility and disease activity. Methods A case–control study was conducted in 200 RA patients and 200 control subjects (CS) from Southern Mexico. Genotyping was performed by conventional PCR and PCR‐RFLP methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum levels were determined by an ELISA kit. Results The 7,7 (−794CATT5‐8) and −173CC (−173G > C) genotypes were associated with higher disease activity in RA patients. MIF serum levels were increased, and MIF mRNA expression was reduced in RA patients as compared to CS. In addition, RA patients with moderate disease activity had higher MIF levels than those with low disease activity. The −794CATT5‐8 and −173G > C MIF polymorphisms were not associated with RA susceptibility. Conclusion These results suggest an important role of MIF polymorphisms and MIF serum levels with disease activity in RA.
Collapse
Affiliation(s)
- Guillermo Santoscoy-Ascencio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Biología Molecular, Unidad de Patología Clínica, Guadalajara, Jalisco, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Reumatología, Hospital General de Chilpancingo Dr. Raymundo Abarca Alarcón, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Richard Bucala
- Department of Medicine/Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Andres López-Quintero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
38
|
Rosani U, Domeneghetti S, Gerdol M, Pallavicini A, Venier P. Expansion and loss events characterized the occurrence of MIF-like genes in bivalves. FISH & SHELLFISH IMMUNOLOGY 2019; 93:39-49. [PMID: 31306763 DOI: 10.1016/j.fsi.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Macrophage migration inhibitory factor (MIF) dynamically connects innate and adaptive immune systems in vertebrate animals, allowing highly orchestrated systemic responses to various insults. The occurrence of MIF-like genes in non-vertebrate organisms suggests its origin from an ancestral metazoan gene, whose function is still a matter of debate. In the present work, by analyzing available genomic and transcriptomic data from bivalve mollusks, we identified 137 MIF-like sequences, which were classified into three types, based on phylogeny and conservation of key residues: MIF, D-DT, and the lineage-specific type MDL. Comparative genomics revealed syntenic conservation of homologous genes at the family level, the loss of D-DT in the Ostreidae family as well as the expansion of MIF-like genes in the Mytilidae family, possibly underpinning the neofunctionalization of duplicated gene copies. In M. galloprovincialis, MIF and one D-DT were mostly expressed in haemocytes and mantle rim of untreated animals, while D-DT paralogs often showed very limited expression, suggesting an accessory role or their persistence as relict genes.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy; AWI Alfred Wegener Institute, Coastal Ecology, Hafenstraße 43, 25992, List auf Sylt, Germany.
| | - Stefania Domeneghetti
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy.
| |
Collapse
|
39
|
Tu Y, Guo R, Li J, Wang S, Leng L, Deng J, Bucala R, Lu L. MiRNA Regulation of MIF in SLE and Attenuation of Murine Lupus Nephritis With miR-654. Front Immunol 2019; 10:2229. [PMID: 31608058 PMCID: PMC6761280 DOI: 10.3389/fimmu.2019.02229] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Macrophage Migration Inhibitory Factor (MIF) is involved in the pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis (LN). MicroRNAs (miRNAs) play important roles in LN but whether specific miRNAs regulate the expression of MIF in LN is unknown. We explore specific miRNAs that can regulate MIF expression, and investigate miR-654 for the treatment of experimentally-induced murine lupus nephritis. Methods: Sera samples from 24 SLE patients and 24 controls were collected to measure the MIF concentration and its correlation with disease activity. A luciferase reporter assay was used to explore the target of miR-654. ELISA was used to detect the downstream cytokines regulated by miR-654 and MIF. Western blot was applied to measure the impact of miR-654 inhibition on downstream MIF signaling. The therapeutic efficacy of miR-654 was tested in the pristine-induced lupus mouse model. We further measured miR-654 expression and analyzed its relationship with MIF expression in SLE patients. Results: The serum MIF level was increased in SLE patients (p < 0.001) and positively correlated with the SLEDAI score (r = 0.5473; p = 0.0056). MiR-654 inhibited MIF and downstream inflammatory cytokine production by selectively inhibiting the phosphorylation of ERK and AKT. Activation of miR-654 reduced IL-1β, IL-6, IL-8, and TNF-α production, reduced gomerulonephritis, and decreased MIF, IgG, and C3 expression in murine lupus glomeruli. Furthermore, MIF was negatively correlated with miR-654 expression (r = −0.4644; p = 0.0222) in SLE patients. Conclusion: MiR-654 negatively correlated with MIF and disease activity in patients with SLE. MiR-654 inhibits MIF expression via binding to MIF 3'UTR, selectively suppresses the phosphorylation of ERK and AKT, and reduces downstream inflammatory cytokine production. In vivo miR-654 treatment decreases MIF and downstream cytokine production and ameliorates murine lupus nephritis.
Collapse
Affiliation(s)
- Yang Tu
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruru Guo
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Li
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Suli Wang
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Leng
- Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, United States
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard Bucala
- Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, United States
| | - Liangjing Lu
- Department of Rheumatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019; 23:733-744. [PMID: 31414920 DOI: 10.1080/14728222.2019.1656718] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction. Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity and is implicated in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Several classes of MIF inhibitors such as small molecule inhibitors and peptide inhibitors are in clinical development. Areas covered. The role of MIF in the pathogenesis of RA and SLE is examined; the authors review the structure, physiology and signaling characteristics of MIF and the related cytokine D-DT/MIF-2. The preclinical and clinical trial data for MIF inhibitors are also reviewed; information was retrieved from PubMed and ClinicalTrials.gov using the keywords MIF, D-DT/MIF-2, CD74, CD44, CXCR2, CXCR4, Jab-1, rheumatoid arthritis, systemic lupus erythematosus, MIF inhibitor, small molecule, anti-MIF, anti-CD74, and peptide inhibitor. Expert opinion. Studies in mice and in humans demonstrate the therapeutic potential of MIF inhibition for RA and SLE. MIF- directed approaches could be particularly efficacious in patients with high expression MIF genetic polymorphisms. In patients with RA and SLE and high expression MIF alleles, targeted MIF inhibition could be a precision medicine approach to treatment. Anti-MIF pharmacotherapies could also be steroid-sparing in patients with chronic glucocorticoid dependence or refractory autoimmune disease.
Collapse
Affiliation(s)
- Joshua B Bilsborrow
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Edward Doherty
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
41
|
Stošić-Grujičić S, Saksida T, Miljković Đ, Stojanović I. MIF and insulin: Lifetime companions from common genesis to common pathogenesis. Cytokine 2019; 125:154792. [PMID: 31400637 DOI: 10.1016/j.cyto.2019.154792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Pro-inflammatory nature of macrophage migration inhibitory factor (MIF) has been generally related to the propagation of inflammatory and autoimmune diseases. But this molecule possesses many other peculiar functions, unrelated to the immune system, among which is its supportive role in the post-translational modifications of insulin. In this way MIF enables proper insulin conformation within the pancreatic beta cell and its full activity. The inherent or acquired changes in MIF expression might therefore lead to different insulin processing and initiation of autoimmunity. The relation between MIF and insulin does not stop at this point; these two molecules continue to interact during pathological states characterized by inflammation and insulin resistance. In this context, MIF indirectly and negatively influences insulin action by boosting inflammatory environment and disabling target cells to respond to insulin. On the other side, insulin might interfere with MIF action as well, acting as an anti-inflammatory mediator. Therefore, the proper interaction between MIF and insulin is crucial for maintaining homeostasis, while anti-inflammatory therapies based on the systemic MIF blockage may disturb this balance. This review covers MIF-insulin relationship in the physiological and pathological conditions and discusses the approaches for MIF inhibition and their net effect specifically considering possible impact on insulin misfolding and the possible misinterpretation of previous results due to the discovery of MIF functional homolog D-dopachrome tautomerase.
Collapse
Affiliation(s)
- Stanislava Stošić-Grujičić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
42
|
Smith CA, Tyrell DJ, Kulkarni UA, Wood S, Leng L, Zemans RL, Bucala R, Goldstein DR. Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight 2019; 4:128034. [PMID: 31292300 PMCID: PMC6629144 DOI: 10.1172/jci.insight.128034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 01/24/2023] Open
Abstract
Influenza-associated mortality continues to occur annually despite available antiviral therapies. New therapies that improve host immunity could reduce influenza virus disease burden. Targeting macrophage migration inhibitory factor (MIF) has improved the outcomes of certain inflammatory diseases, but its role in influenza viral infection is unclear. Here, we showed that, during influenza viral infection, Mif-deficient mice have less inflammation, viral load, and mortality compared with WT control mice; conversely, Tg mice, overexpressing Mif in alveolar epithelial cells, had higher inflammation, viral load, and mortality. Antibody-mediated blockade of MIF in WT mice during influenza viral infection improved their survival. Mif-deficient murine lungs showed reduced levels of parkin, a mitophagy protein that negatively regulates antiviral signaling, prior to infection and augmented antiviral type I/III IFN levels in the airspaces after infection as compared with WT lungs. Additionally, in vitro assays with human lung epithelial cells showed that treatment with recombinant human MIF increased the percentage of influenza virus-infected cells. In conclusion, our study reveals that MIF impairs antiviral host immunity and increases inflammation during influenza infection and suggests that targeting MIF could be therapeutically beneficial during influenza viral infection.
Collapse
MESH Headings
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/pathology
- Alveolar Epithelial Cells/virology
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Disease Models, Animal
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/virology
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/immunology
- Intramolecular Oxidoreductases/metabolism
- Lung/immunology
- Lung/pathology
- Macrophage Migration-Inhibitory Factors/antagonists & inhibitors
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Survival Analysis
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
- Viral Load
Collapse
Affiliation(s)
- Candice A. Smith
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J. Tyrell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Upasana A. Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherri Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology and
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
44
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
45
|
Ma F, Meyer-Siegler KL, Leng L, Bucala R, Vera PL. Spinal macrophage migration inhibitory factor and high mobility group box 1 mediate persistent bladder pain. Neurosci Lett 2019; 699:54-58. [PMID: 30708129 DOI: 10.1016/j.neulet.2019.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 01/03/2023]
Abstract
Repeated intravesical PAR4 (protease activated receptor 4) activation elicits persistent bladder pain lasting 5 days after the last treatment. Persistent bladder pain was fully reversed by a systemic HMGB1 (high mobility group box 1) inhibitor while a MIF (macrophage migration inhibitory factor) antagonist partly reversed it. Since there is growing evidence that spinal MIF and HMGB1 mediate inflammatory and neuropathic pain we examined whether there were spinal changes occurring during persistent bladder pain that may be responsible for maintaining bladder pain. In addition, we tested whether we could modulate persistent bladder pain with spinal MIF or HMGB1 antagonists. Persistent bladder pain was elicited in female C57 mice by repeated (3x) intravesical instillation of PAR4-activating peptide while control animals received scramble peptide treatment. On day 4, spinal cord (L6-S1) changes in c-fos (non-specific marker of spinal activation) was assessed with immunofluorescence while MIF and HMGB1 were assessed with immunofluorescence, western blotting and real-time PCR. On day 7, mice received an intrathecal injection of a neutralizing MIF monoclonal antibody (15 μg in 5 μl PBS) or a HMGB1 inhibitor glycyrrhizin (25 μg in 5 μl of 5% alcohol in PBS) and abdominal mechanical threshold was tested. On day 9, mice were treated with vehicle or control and abdominal mechanical threshold was tested. Immunofluorescence showed that c-fos and MIF in the dorsal horn, dorsal grey commissure and intermediolateral areas significantly increased in PAR4-treated mice while HMGB1 was decreased. In addition, intrathecal treatment with MIF neutralizing mAb or glycyrrhizin significantly alleviated abdominal mechanical hypersensitivity at 1 and 2 h and the analgesic effect diminished at 6 h. Vehicle or control treatment had no effect. Persistent bladder pain is associated with spinal changes in MIF and HMGB1 levels. Furthermore, spinal treatment with MIF monoclonal antibody and HMGB1 inhibitor temporarily reversed bladder pain. Our findings suggest that spinal MIF and HMGB1 participate in persistent bladder pain induced by repeated intravesical PAR4 and may be potential therapeutic targets in chronic bladder pain conditions.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, KY, United States; Department of Physiology, University of Kentucky, Lexington, KY, United States.
| | | | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT, United States.
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT, United States.
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, KY, United States; Department of Physiology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
46
|
Ma F, Kouzoukas DE, Meyer-Siegler KL, Hunt DE, Leng L, Bucala R, Vera PL. MIF mediates bladder pain, not inflammation, in cyclophosphamide cystitis. Cytokine X 2019; 1. [PMID: 31289792 PMCID: PMC6615480 DOI: 10.1016/j.cytox.2019.100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MIF mediates bladder pain but not bladder inflammation induced by CYP. ISO-1 blocks CYP induced bladder inflammation independent of MIF. MIF may mediate bladder pain by promoting bladder ERK phosphorylation.
Macrophage migration inhibitory factor (MIF), a proinflammatory mediator, is recognized as a player in inflammatory and neuropathic pain. Cyclophosphamide (CYP) results in bladder inflammation and pain and it’s a frequently used animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). Because pretreatment with a MIF inhibitor (ISO-1) prevented both CYP-induced bladder pain and inflammation we used genetic MIF knockout (KO) mice to further investigate MIF’s role in CYP-induced bladder pain and inflammation. Abdominal mechanical threshold measured bladder pain induced by CYP in wild type (WT) and MIF KO mice at several time points (0–48 h). End-point (48 h) changes in micturition parameters and histological signs of bladder inflammation were also evaluated. Abdominal mechanical hypersensitivity developed within 4 h after CYP injection (and lasted for the entire observation period: 48 h) in WT mice. MIF KO mice, on the other hand, did not develop abdominal mechanical hypersensitivity suggesting that MIF is a pivotal molecule in mediating CYP-induced bladder pain. Both WT and MIF KO mice treated with CYP showed histological signs of marked bladder inflammation and showed a significant decrease in micturition volume and increase in frequency. Since both changes were blocked in MIF KO mice by pretreatment with a MIF inhibitor (ISO-1) it is likely these are non-specific effects of ISO-1. MIF mediates CYP-induced bladder pain but not CYP-induced bladder inflammation. The locus of effect (bladder) or central (spinal) for MIF mediation of bladder pain remains to be determined.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Dimitrios E Kouzoukas
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Katherine L Meyer-Siegler
- Department of Natural Sciences, St. Petersburg College, St. Petersburg, Florida, United States of America
| | - David E Hunt
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America.,Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
47
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
48
|
Ning J, Xu L, Shen CQ, Zhang YY, Zhao Q. Increased serum levels of macrophage migration inhibitory factor in autism spectrum disorders. Neurotoxicology 2018; 71:1-5. [PMID: 30503813 DOI: 10.1016/j.neuro.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) has been suggested as a pivotal regulator of innate immunity and inflammatory. The aim of this study was to measure serum circulating levels of MIF in relation to the degree of the severity of autism spectrum disorders (ASD). METHODS One hundred and two Chinese children with ASD and same their age-sex matched typical development children were included. Concentrations of MIF were tested by Quantikine Human MIF Immunoassay. Serum levels of homocysteine (HCY), C-reactive protein (CRP) and serum Interleukin 6 (IL-6) were also tested. The influence of serum levels of MIF on ASD risk and ASD severity were performed by binary logistic regression analysis. RESULTS The serum levels of MIF in the children with ASD (24.7 ± 08.9 ng/ml) were significantly higher than those of control subjects (18.3 ± 5.5 ng/ml) (t = 6.134, P < 0.001). Levels of MIF increased with increasing severity of ASD as defined by the CARS score (P < 0.001). In multivariate model, MIF was associated with an increased risk of ASD (OR 1.11, 95% CI: 1.05-1.17; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict ASD (P < 0.001). At admission, 68 children (66.7%) had a severe autism. In these children, the mean serum level of MIF was higher than in those children with mild to moderate autism (28.1 ± 8.5 ng/ml VS. 17.9 ± 4.7 ng/ml; t = 6.482, P < 0.001). In multivariate model, MIF was still associated with an increased risk of severe ASD (OR: 1.15, 95% CI: 1.04-1.19; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict severe ASD (P < 0.001). CONCLUSIONS These results identify high serum MIF levels are associated with severity of ASD. Further study is warranted on the precise involvement of MIF in ASD, and the mechanism by which MIF contributes to ASD pathogenesis.
Collapse
Affiliation(s)
- Jun Ning
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Li Xu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang-Qing Shen
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yu-Yan Zhang
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing Zhao
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
49
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
50
|
Lipschutz R, Bick J, Nguyen V, Lee M, Leng L, Grigorenko E, Bucala R, Mayes LC, Crowley MJ. Macrophage migration inhibitory factor (MIF) gene is associated with adolescents' cortisol reactivity and anxiety. Psychoneuroendocrinology 2018; 95:170-178. [PMID: 29870971 DOI: 10.1016/j.psyneuen.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
Emerging evidence points to interactions between inflammatory markers and stress reactivity in predicting mental health risk, but underlying mechanisms are not well understood. Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine involved in inflammatory signaling and Hypothalamus Pituitary Adrenal (HPA) axis stress-response, and has recently been identified as a candidate biomarker for depression and anxiety risk. We examined polymorphic variations of the MIF gene in association with baseline MIF levels, HPA axis reactivity, and self-reported anxiety responses to a social stressor in 74 adolescents, ages 10-14 years. Genotyping was performed for two polymorphisms, the -794 CATT5-8 tetranucleotide repeat and the -173*G/C single nucleotide polymorphism (SNP). Youth carrying the MIF-173*C and CATT7 alleles displayed attenuated cortisol reactivity when compared with non-carriers. Children with the CATT7-173*C haplotype displayed lower cortisol reactivity to the stressor compared to those without this haplotype. Additionally, the CATT5-173*C and CATT6-173*C haplotypes were associated with lower self-reported anxiety ratings across the stressor. Results extend prior work pointing to the influence of MIF signaling on neuroendocrine response to stress and suggest a potential pathophysiological pathway underlying risk for stress-related physical and mental health disorders. To our knowledge, these are the first data showing associations between the MIF gene, HPA axis reactivity, and anxiety symptoms during adolescence.
Collapse
Affiliation(s)
- Rebecca Lipschutz
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Johanna Bick
- Department of Psychology, University of Houston, Houston, TX, United States.
| | - Victoria Nguyen
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Maria Lee
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Lin Leng
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT, United States
| | - Elena Grigorenko
- Department of Psychology, University of Houston, Houston, TX, United States; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Richard Bucala
- Department of Internal Medicine, Rheumatology, Yale School of Medicine, New Haven, CT, United States
| | - Linda C Mayes
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Michael J Crowley
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|