1
|
Nagata Y, Goto T, Teramoto Y, Matsukawa T, Fujimoto N, Miyamoto H. Mineralocorticoid receptor signaling inhibits bladder cancer progression. Am J Cancer Res 2024; 14:696-708. [PMID: 38455412 PMCID: PMC10915320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
The biological or clinical significance of mineralocorticoid receptor (MR) in urothelial cancer remains largely unknown. The present study aimed to determine the functional role of MR in bladder cancer progression. In two of the human bladder cancer lines expressing MR, treatment with a natural MR ligand, aldosterone, significantly reduced cell proliferation and migration, which was restored by three MR antagonists clinically used, spironolactone (except colony formation of androgen receptor-positive cells cultured in the presence of androgens), eplerenone, and esaxerenone. Similarly, MR knockdown via shRNA virus infection resulted in significant increases in cell viability/migration, as well as colony formation, compared with control sublines. In addition, MR knockdown augmented the expression of β-catenin, c-fos, and N-cadherin, and lowered that of E-cadherin and p53, indicating the induction of the cadherin switching. Immunohistochemistry in surgical specimens detected MR signals in 58 (92.1%; 36.5% weakly-positive/1+, 44.4% moderately-positive/2+, and 11.1% strongly-positive/3+) of 63 muscle-invasive bladder cancers, which was significantly lower than in adjacent non-neoplastic urothelial tissues (100%; 15.7% 1+, 37.3% 2+, and 47.1% 3+). Moreover, patients with MR-high (3+) tumor had a significantly lower risk of cancer-specific mortality (P=0.039). Multivariable analysis further showed that strong MR expression was an independent predictor of cancer-specific survival in patients with muscle-invasive bladder cancer (hazard ratio 0.117, P=0.039). These findings suggest that MR signaling functions as a tumor suppressor in urothelial carcinoma and prevents tumor growth. Accordingly, there is a possibility that the concurrent use of anti-mineralocorticoids, particularly eplerenone and esaxerenone, in patients with bladder cancer rather contributes to the promotion of disease progression.
Collapse
Affiliation(s)
- Yujiro Nagata
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Occupational and Environmental Health School of MedicineKitakyushu, Japan
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Takuo Matsukawa
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Occupational and Environmental Health School of MedicineKitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health School of MedicineKitakyushu, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
2
|
Xu C, Sun M, Zhang X, Xu Z, Miyamoto H, Zheng Y. Activation of Glucocorticoid Receptor Inhibits the Stem-Like Properties of Bladder Cancer via Inactivating the β-Catenin Pathway. Front Oncol 2020; 10:1332. [PMID: 32850423 PMCID: PMC7419687 DOI: 10.3389/fonc.2020.01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Glucocorticoid receptor (GR) signaling pathway has been shown to involve epithelial -to- mesenchymal transition which was implicated in the regulation of bladder cancer stem cells (CSCs) in our previous study. Herein, we aim to figure out how GR affects the stem-like properties of bladder cancer cells. Methods: We used dexamethasone (DEX) treatment or gene-knockdown/-knockout techniques to activate or silence the GR pathway, respectively. Then we applied immunohistochemical staining and flow cytometry to assess the associations between the expression levels of GR and a stem cell surface marker CD44. Stem-like properties were assessed by reactive oxygen species (ROS), sphere-formation and side population assays. The expression levels of cancer stem cell-associated molecules were assessed by quantitative PCR and Western blotting. Tumor growth was compared using mouse xenograft models. Results: In GR-positive bladder cancer cells, DEX significantly reduced the expression of CD44 as well as pluripotency transcription factors including β-catenin and its downstream target (C-MYC, Snail, and OCT-4), the rate of sphere formation, and the proportion of side populations, and induced the intracellular levels of ROS. By contrast, GR silencing in bladder cancer cells showed the opposite effects. In xenograft-bearing mice, GR silencing resulted in the enhancement of tumor growth. Conclusions: These data suggested that GR activity was inversely associated with the stem-like properties of bladder cancer cells, potentially via inactivating the β-catenin pathway.
Collapse
Affiliation(s)
- Congcong Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Urology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mingwei Sun
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yichun Zheng
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Ide H, Miyamoto H. The Role of Steroid Hormone Receptors in Urothelial Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082155. [PMID: 32759680 PMCID: PMC7465876 DOI: 10.3390/cancers12082155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Preclinical and/or clinical evidence has indicated a potential role of steroid hormone-mediated signaling pathways in the development of various neoplastic diseases, while precise mechanisms for the functions of specific receptors remain poorly understood. Specifically, in urothelial cancer where sex-related differences particularly in its incidence are noted, activation of sex hormone receptors, such as androgen receptor and estrogen receptor-β, has been associated with the induction of tumor development. More recently, glucocorticoid receptor has been implied to function as a suppressor of urothelial tumorigenesis. This article summarizes and discusses available data suggesting that steroid hormone receptors, including androgen receptor, estrogen receptor-α, estrogen receptor-β, glucocorticoid receptor, progesterone receptor and vitamin D receptor, as well as their related signals, contribute to modulating urothelial tumorigenesis.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence:
| |
Collapse
|
4
|
Yao Y, Yao QY, Xue JS, Tian XY, An QM, Cui LX, Xu C, Su H, Yang L, Feng YY, Hao CY, Zhou TY. Dexamethasone inhibits pancreatic tumor growth in preclinical models: Involvement of activating glucocorticoid receptor. Toxicol Appl Pharmacol 2020; 401:115118. [PMID: 32619553 DOI: 10.1016/j.taap.2020.115118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
Glucocorticoid receptor (GR) modulates extensive biological and pathological processes including tumor progression through diverse mechanisms. The regulatory effects of dexamethasone (DEX), a synthetic glucocorticoid, as well as its interaction with GR have been recognized beyond hematologic cancers. In the present study, we investigated the anti-cancer efficacy of DEX and the correlation with GR in pancreatic cancer, a most aggressive malignancy threatening human health. The differential levels of GR expression were examined in two human pancreatic cancer cell lines, PANC-1 and SW1990, as well as in xenografts and patient tumor tissues. DEX significantly inhibited colony formation, migration, and tumor growth of PANC-1 cells expressing abundant GR. The underlying mechanisms involved suppression of nuclear factor κB (NF-κB) phosphorylation and down-regulation of epithelial-to-mesenchymal transition (EMT), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF). The anti-cancer effects of DEX were partially reversed by GR silencing or combinational administration of GR antagonist, RU486. The dose-dependent efficacy of DEX in tumor growth inhibition was also demonstrated in a GR-positive patient-derived xenograft model along with safety in mice. DEX was less potent, however, in SW1990 cells with poor GR expression. Our findings suggest that DEX effectively inhibits pancreatic tumor growth partially through GR activation. The potential correlation between GR expression and anti-cancer efficacy of DEX may have some clinical implications.
Collapse
Affiliation(s)
- Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qing-Yu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun-Sheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Yun Tian
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qi-Ming An
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li-Xuan Cui
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chang Xu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao-Yao Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun-Yi Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Tian-Yan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Ide H, Inoue S, Mizushima T, Jiang G, Nagata Y, Goto T, Kashiwagi E, Miyamoto H. Compound A inhibits urothelial tumorigenesis via both the androgen receptor and glucocorticoid receptor signaling pathways. Am J Transl Res 2020; 12:1779-1788. [PMID: 32509176 PMCID: PMC7270017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Recent preclinical evidence has indicated that both androgen receptor (AR) inactivation and glucocorticoid receptor (GR) transrepression are associated with suppression of urothelial carcinogenesis. We therefore assessed the effect of a unique compound, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride (Compound A; CpdA), which could function as an AR antagonist as well as a GR ligand, on urothelial tumorigenesis. Using the in vitro system with GR-positive non-neoplastic urothelial SVHUC cells stably expressing AR (SVHUC-AR), neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA) was inhibited similarly by an anti-androgen hydroxyflutamide and a glucocorticoid prednisone, and more strongly by CpdA. CpdA also prevented the neoplastic transformation of AR-negative MCA-SVHUC cells, which was diminished by a GR antagonist RU486, but failed to prevent that of GR knockdown MCA-SVHUC cells. In MCA-SVHUC-AR cells, CpdA significantly reduced the expression levels of oncogenes (c-Fos/c-Jun/c-Myc) and induced those of tumor suppressors (UGT1A/p21/p27/p53/PTEN). Additionally, a potent carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine induced bladder cancer in all of 8 mock-treated mice versus 4 (50%) of flutamide-treated (P = 0.021), 4 (50%) of prednisone-treated (P = 0.021), or 2 (25%) of CpdA-treated (P = 0.002) animals. Finally, CpdA was found to reduce AR transactivation and selectively induce GR transrepression (i.e. suppression of NF-κB transactivation and expression of its regulated genes), but not GR transactivation (i.e. activation of glucocorticoid-response element-mediated transcription and expression of its targets) in SVHUC cells. These findings suggest that CpdA suppresses urothelial tumorigenesis via both the AR and GR pathways, which may consequently provide an effective option of chemoprevention for bladder cancer, especially in patients with superficial disease following transurethral surgery.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
6
|
Yorio T, Patel GC, Clark AF. Glucocorticoid-Induced Ocular Hypertension: Origins and New Approaches to Minimize. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:145-157. [PMID: 38274668 PMCID: PMC10810227 DOI: 10.1080/17469899.2020.1762488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Introduction Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.
Collapse
Affiliation(s)
- Thomas Yorio
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| |
Collapse
|
7
|
Ide H, Inoue S, Mizushima T, Kashiwagi E, Zheng Y, Miyamoto H. Role of glucocorticoid signaling in urothelial tumorigenesis: Inhibition by prednisone presumably through inducing glucocorticoid receptor transrepression. Mol Carcinog 2019; 58:2297-2305. [PMID: 31535408 DOI: 10.1002/mc.23118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Glucocorticoids, including dexamethasone (DEX) and prednisone (PRED), have been prescribed in patients with neoplastic disease as cytotoxic agents or comedications. Nonetheless, it remains uncertain whether they have an impact on the development of bladder cancer. We, therefore, assessed the functional role of the glucocorticoid-mediated glucocorticoid receptor (GR) signaling in urothelial tumorigenesis. Tumor formation was significantly delayed in xenograft-bearing mice with implantation of control bladder cancer UMUC3 cells or nonneoplastic urothelial SVHUC cells undergoing malignant transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA), compared with respective GR knockdown xenografts. Using the in vitro system with MCA-SVHUC cells, we screened 11 GR ligands, including DEX, and found significant inhibitory effects of PRED on their neoplastic transformation. The effects of PRED were restored by a GR antagonist RU486 in GR-positive MCA-SVHUC cells, while PRED failed to inhibit the neoplastic transformation of GR knockdown cells. Significant decreases in the expression levels of oncogenes (c-Fos/c-Jun) and significant increases in those of a tumor suppressor UGT1A were seen in MCA-SVHUC-control cells (vs GR-short hairpin RNA) or PRED-treated MCA-SVHUC-control cells (vs mock). In addition, N-butyl-N-(4-hydroxybutyl) nitrosamine induced bladder cancer in all of eight mock-treated mice vs seven (87.5%) of DEX-treated (P = .302) or four (50%) of PRED-treated (P = .021) animals. Finally, DEX was found to considerably induce both transactivation (activation of glucocorticoid-response element mediated transcription and expression of its targets) and transrepression (suppression of nuclear factor-kappa B transactivation and expression of its regulated genes) of GR in SVHUC cells, while PRED more selectively induced GR transrepression. These findings suggest that PRED could prevent urothelial tumorigenesis presumably via inducing GR transrepression.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yichun Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
8
|
The Role of Glucocorticoid Receptor Signaling in Bladder Cancer Progression. Cancers (Basel) 2018; 10:cancers10120484. [PMID: 30518063 PMCID: PMC6315905 DOI: 10.3390/cancers10120484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
Previous preclinical studies have indicated that the activation of glucocorticoid receptor signaling results in inhibition of the growth of various types of tumors. Indeed, several glucocorticoids, such as dexamethasone and prednisone, have been prescribed for the treatment of, for example, hematological malignancies and castration-resistant prostate cancer. By contrast, the role of glucocorticoid-mediated glucocorticoid receptor signaling in the progression of bladder cancer remains far from being fully understood. Nonetheless, emerging evidence implies its unique functions in urothelial cancer cells. Moreover, the levels of glucocorticoid receptor expression have been documented to significantly associate with the prognosis of patients with bladder cancer. This review summarizes the available data suggesting the involvement of glucocorticoid-mediated glucocorticoid receptor signaling in urothelial tumor outgrowth and highlights the potential underlying molecular mechanisms. The molecules/pathways that contribute to modulating glucocorticoid receptor activity and function in bladder cancer cells are also discussed.
Collapse
|
9
|
Clarisse D, Van Wesemael K, Tavernier J, Offner F, Beck IM, De Bosscher K. Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS One 2018; 13:e0197000. [PMID: 29738549 PMCID: PMC5940183 DOI: 10.1371/journal.pone.0197000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse M. Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- * E-mail:
| |
Collapse
|
10
|
Sathianathen NJ, Fan Y, Jarosek SL, Lawrentschuk NL, Konety BR. Finasteride does not prevent bladder cancer: A secondary analysis of the Medical Therapy for Prostatic Symptoms Study. Urol Oncol 2018; 36:338.e13-338.e17. [PMID: 29731413 DOI: 10.1016/j.urolonc.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preclinical models have demonstrated that androgen receptor modulation can influence bladder carcinogenesis with an inverse association observed between serum androgen levels and bladder cancer (BC) incidence. It is still unclear whether 5α-reductase inhibitors, by preventing the conversion of testosterone to dihydrotestosterone, have a similar effect. This study aims to evaluate whether dihydrotestosterone-mediated androgen activity has an impact on BC incidence in a cohort of men included in a clinical trial of finasteride vs. placebo with rigorous compliance monitoring. METHODS A secondary analysis was performed on all patients enrolled in the Medical Therapy for Prostatic Symptoms (MTOPS) Study and included in the biopsy substudy. Men were stratified into groups based on receiving finasteride and the incidence of BC compared between the groups. RESULTS After exclusions for poor finasteride compliance (n = 338) and missing serum hormone results (n = 9), 2,700 men were eligible for analysis. In total, 0.8% (n = 18) of the cohort was diagnosed with BC during the trial period. There was no difference in the incidence of BC between men who received finasteride and those who did not (0.74% [n = 9] vs. 0.61% [n = 9], P = 0.67). Neither serum testosterone levels, prostate cancer diagnosis nor urinary bother (measured by International Prostate Symptom Score) demonstrated an association with BC diagnosis. These relationships were consistent in the subgroup of men in the biopsy substudy. CONCLUSION There was no observable relationship between decreased dihydrotestosterone levels and BC diagnosis.
Collapse
Affiliation(s)
- Niranjan J Sathianathen
- Department of Urology, University of Minnesota, Minneapolis, MN; Department of Surgery, University of Melbourne, Urology Unit and Olivia Newton-John Cancer Research Institute Austin Health, Melbourne, Victoria, Australia.
| | - Yunhua Fan
- Department of Urology, University of Minnesota, Minneapolis, MN
| | | | - Nathan L Lawrentschuk
- Department of Surgery, University of Melbourne, Urology Unit and Olivia Newton-John Cancer Research Institute Austin Health, Melbourne, Victoria, Australia; Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Inoue S, Mizushima T, Miyamoto H. Role of the androgen receptor in urothelial cancer. Mol Cell Endocrinol 2018; 465:73-81. [PMID: 28652170 DOI: 10.1016/j.mce.2017.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Men have had a substantially higher risk of developing bladder cancer than women. This has prompted research on androgen-mediated androgen receptor (AR) signaling in urothelial cancer. Indeed, increasing preclinical evidence indicates that AR activation correlates with the promotion of urothelial carcinogenesis and tumor outgrowth. In this article, we summarize and discuss available data suggesting the involvement of androgens and the AR pathway in the development and progression of urothelial cancer. Although precise mechanisms for the functions of AR and related signals in urothelial cells remain far from being fully understood, current observations may offer effective chemopreventive and therapeutic approaches for urothelial cancer. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to urothelial cancer patients is thus anticipated.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Inoue S, Ide H, Mizushima T, Jiang G, Netto GJ, Gotoh M, Miyamoto H. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling. Mol Cancer Ther 2018; 17:1303-1314. [PMID: 29592878 DOI: 10.1158/1535-7163.mct-17-0786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 (P = 0.015)/phospho-NF-κB/p65 (P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade (P = 0.015)/muscle-invasive (P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression (P < 0.001) and cancer-specific mortality (P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N-butyl-N-(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Taichi Mizushima
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
13
|
Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 2018; 18:231. [PMID: 29486738 PMCID: PMC5830047 DOI: 10.1186/s12885-018-4155-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paclitaxel (PTX) is a potent anti-cancer drug commonly used for the treatment of advanced breast cancer (BCA) and melanoma. Toll-like receptor 4 (TLR4) promotes the production of pro-inflammatory cytokines associated with cancer chemoresistance. This study aims to explore the effect of TLR4 in PTX resistance in triple-negative BCA and advanced melanoma and the effect of compound A (CpdA) to attenuate this resistance. Methods BCA and melanoma cell lines were checked for the response to PTX by cytotoxic assay. The response to PTX of TLR4-transient knockdown cells by siRNA transfection was evaluated compared to the control cells. Levels of pro-inflammatory cytokines, IL-6 and IL-8, and anti-apoptotic protein, XIAP were measured by real-time PCR whereas the secreted IL-8 was quantitated by ELISA in TLR4-transient knockdown cancer cells with or without CpdA treatment. The apoptotic cells after adding PTX alone or in combination with CpdA were detected by caspase-3/7 assay. Results PTX could markedly induce TLR4 expression in both MDA-MB-231 BCA and MDA-MB-435 melanoma cell lines having a basal level of TLR4 whereas no significant induction in TLR4-transient knockdown cells occurred. The siTLR4-treated BCA cells revealed more dead cells after PTX treatment than that of mock control cells. IL-6, IL-8 and XIAP showed increased expressions in PTX-treated cells and this over-production effect was inhibited in TLR4-transient knockdown cells. Apoptotic cells were detected higher when PTX and CpdA were combined than PTX treatment alone. Isobologram exhibited the synergistic effect of CpdA and PTX. CpdA could significantly decrease expressions of IL-6, XIAP and IL-8, as well as excreted IL-8 levels together with reduced cancer viability after PTX treatment. Conclusions The acquired TLR4-mediated PTX resistance in BCA and melanoma is explained partly by the paracrine effect of IL-6 and IL-8 released into the tumor microenvironment and over-production of anti-apoptotic protein, XIAP, in BCA cells and importantly CpdA could reduce this effect and sensitize PTX-induced apoptosis in a synergistic manner. In conclusion, the possible impact of TLR4-dependent signaling pathway in PTX resistance in BCA and melanoma is proposed and using PTX in combination with CpdA may attenuate TLR4-mediated PTX resistance in the treatment of the patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4155-6) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
ZKSCAN3 promotes bladder cancer cell proliferation, migration, and invasion. Oncotarget 2018; 7:53599-53610. [PMID: 27447553 PMCID: PMC5288208 DOI: 10.18632/oncotarget.10679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
The expression status of ZKSCAN3, a zinc-finger transcription factor containing KRAB and SCAN domains, as well as its biological significance, in human bladder cancer remains largely unknown. In the current study, we aimed to determine the functional role of ZKSCAN3 in bladder cancer progression. Immunohistochemistry in tissue specimens detected ZKSCAN3 signals in 138 (93.2%) of 148 urothelial neoplasms, which was significantly higher than in non-neoplastic urothelial tissues [76 (84.4%) of 90; P=0.044]. Correspondingly, the levels of ZKSCAN3 gene were significantly elevated in bladder tumors, compared with those in adjacent normal-appearing bladder mucosae (P=0.008). In a validation set of tissue microarray, significantly higher ZKSCAN3 expression was observed in high-grade and/or muscle-invasive urothelial carcinomas than in low-grade and/or non-muscle-invasive tumors. Two bladder cancer cell lines, UMUC3 and 647V, were found to strongly express ZKSCAN3 protein/mRNA, whereas its expression in 5637 bladder cancer and SVHUC normal urothelium cell lines was very weak. ZKSCAN3 silencing via its short hairpin RNA (shRNA) in UMUC3 and 647V resulted in significant decreases in cell viability/colony formation, cell migration/invasion, and the expression of matrix metalloproteinase (MMP)-2/MMP-9 and oncogenes c-myc/FGFR3, as well as significant increases in apoptosis and the expression of tumor suppressor genes p53/PTEN. ZKSCAN3 overexpression in 5637 also induced cell growth and migration. In addition, ZKSCAN3-shRNA expression considerably retarded tumor formation as well as its subsequent growth in xenograft-bearing mice. These results suggest that ZKSCAN3 plays an important role in bladder cancer outgrowth. Thus, ZKSCAN3 inhibition has the potential of being a therapeutic approach for bladder cancer.
Collapse
|
15
|
Li P, Chen J, Kashiwagi E, Mizushima T, Han B, Inoue S, Ide H, Izumi K, Miyamoto H. The interaction between androgen receptor and semenogelin I: a synthetic LxxLL peptide antagonist inhibits the growth of prostate cancer cells. Br J Cancer 2017; 118:416-420. [PMID: 29136406 PMCID: PMC5808024 DOI: 10.1038/bjc.2017.404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022] Open
Abstract
Background: We previously demonstrated that a seminal plasma protein, semenogelin I (SgI), functioned as an androgen receptor (AR) coactivator. Meanwhile, several short sequence motifs in AR coregulators, such as LxxLL (L=leucine), have been shown to mediate specific interactions with AR. Methods: We investigated the role of the LxxLL motif within SgI in the interactions with AR and cell growth in prostate cancer lines in vitro. Results: A full-length SgI with mutations in the motif (i.e., LxxAA; A=alanine) failed to significantly increase cell proliferation/migration as well as androgen-mediated AR transcription. Co-immunoprecipitation showed no physical interactions between AR and the mutant SgI. In addition, transfection of an 18-amino acid peptide of SgI containing LxxLL, but not LxxAA, resulted in considerable reduction in cell growth and prostate-specific antigen expression in LNCaP and C4-2 lines. Conclusions: The LxxLL motif of SgI could be a novel therapeutic target for both androgen-sensitive and castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Peng Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinbo Chen
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bin Han
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Koji Izumi
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Kawahara T, Inoue S, Kashiwagi E, Chen J, Ide H, Mizushima T, Li Y, Zheng Y, Miyamoto H. Enzalutamide as an androgen receptor inhibitor prevents urothelial tumorigenesis. Am J Cancer Res 2017; 7:2041-2050. [PMID: 29119053 PMCID: PMC5665851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023] Open
Abstract
Emerging preclinical evidence suggests the critical role of androgen-mediated androgen receptor (AR) signals in the development of bladder cancer. However, little is known about the efficacy of enzalutamide, an AR signaling inhibitor, in androgen-induced urothelial tumorigenesis. We therefore aimed to assess the effects of enzalutamide on neoplastic transformation of urothelial cells. An immortalized normal urothelial cell line SVHUC stably expressing wild-type AR (SVHUC-AR) was exposed to a chemical carcinogen 3-methylcholanthrene (MCA) to induce neoplastic transformation, and subsequently cultured for 6 weeks in the presence of anti-androgens, including enzalutamide, hydroxyflutamide, and bicalutamide. Tumorigenesis was then monitored, using plate and soft agar colony formation assays as well as mouse xenograft models. In SVHUC-AR cells exposed to MCA, each anti-androgen inhibited AR-mediated transcriptional activity, but only enzalutamide prevented AR nuclear translocation. In vitro transformation showed that treatment with each anti-androgen during the process of neoplastic transformation reduced the efficiency of colony formation in vitro. Compared with mock treatment, culture with enzalutamide (P = 0.028), hydroxyflutamide (P = 0.033), or bicalutamide (P = 0.038) also resulted in prevention/retardation of tumor formation in male NOD-SCID mice. In addition, anti-androgens up-regulated the expression of several molecules that play a protective role in bladder tumorigenesis, including p53, p21, and PTEN, and down-regulated that of several oncogenic genes, such as c-myc, cyclin D1, and cyclin E, in MCA-exposed SVHUC-AR cells. Thus, enzalutamide, flutamide, and bicalutamide were found to similarly prevent neoplastic transformation of urothelial cells. These findings offer a potential chemopreventive approach for urothelial tumors using AR antagonists.
Collapse
Affiliation(s)
- Takashi Kawahara
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Center, University of Rochester Medical CenterRochester, NY, USA
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Jinbo Chen
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Center, University of Rochester Medical CenterRochester, NY, USA
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Center, University of Rochester Medical CenterRochester, NY, USA
| | - Yi Li
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
| | - Yichun Zheng
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical CenterRochester, NY, USA
- James P. Wilmot Cancer Center, University of Rochester Medical CenterRochester, NY, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
17
|
Androgen Receptor Signaling in Bladder Cancer. Cancers (Basel) 2017; 9:cancers9020020. [PMID: 28241422 PMCID: PMC5332943 DOI: 10.3390/cancers9020020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.
Collapse
|
18
|
Mizushima T, Tirador KA, Miyamoto H. Androgen receptor activation: a prospective therapeutic target for bladder cancer? Expert Opin Ther Targets 2017; 21:249-257. [PMID: 28064545 DOI: 10.1080/14728222.2017.1280468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.
Collapse
Affiliation(s)
- Taichi Mizushima
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA.,b Wilmot Cancer Institute , University of Rochester Medical Center , Rochester , NY , USA
| | - Kathleen A Tirador
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Hiroshi Miyamoto
- a Department of Pathology and Laboratory Medicine , University of Rochester Medical Center , Rochester , NY , USA.,b Wilmot Cancer Institute , University of Rochester Medical Center , Rochester , NY , USA.,c Department of Urology , University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
19
|
Kashiwagi E, Fujita K, Yamaguchi S, Fushimi H, Ide H, Inoue S, Mizushima T, Reis LO, Sharma R, Netto GJ, Nonomura N, Miyamoto H. Expression of steroid hormone receptors and its prognostic significance in urothelial carcinoma of the upper urinary tract. Cancer Biol Ther 2016; 17:1188-1196. [PMID: 27635763 PMCID: PMC5137486 DOI: 10.1080/15384047.2016.1235667] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022] Open
Abstract
To assess the expression status of steroid hormone receptors in upper urinary tract urothelial carcinoma (UUTUC), we immunohistochemically stained for androgen receptor (AR), estrogen receptor-α (ERα), ERβ, glucocorticoid receptor (GR), and progesterone receptor (PR) in 99 UUTUC specimens and paired non-neoplastic urothelial tissues. AR/ERα/ERβ/GR/PR was positive in 20%/18%/62%/63%/16% of tumors, which was significantly lower (except PR) than in benign urothelial tissues [57% (P < 0.001)/40% (P = 0.001)/85% (P = 0.001)/84% (P = 0.002)/13% (P = 0.489)]. There were no significant associations between each receptor expression pattern and histopathological characteristic of the tumors including tumor grade/stage. Kaplan-Meier and log-rank tests revealed no significant prognostic value of each receptor expression in these 99 patients. However, patients with UUTUC positive for either ERα or PR had a significantly higher risk of disease-specific mortality (P = 0.025), compared with those with UUTUC negative for both. PR positivity alone in pT3 or pT4 tumors was also strongly associated with the risk of disease-specific mortality (P = 0.040). Multivariate analysis further identified the expression of ERα and/or PR as a strong predictor for disease-specific mortality in the entire cohort of the patients (hazard ratio, 2.434; P = 0.037). Thus, in accordance with previous observations in bladder specimens, significant decreases in the expression of AR/ERα/ERβ/GR in UUTUC, compared with that in non-neoplastic urothelium, were observed. Meanwhile, the negativity of both ERα and PR in UUTUC as well as the negativity of PR alone in deeply invasive tumor was suggested to serve as a prognosticator.
Collapse
Affiliation(s)
- Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiji Yamaguchi
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonardo O. Reis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J. Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
20
|
Kawahara T, Ide H, Kashiwagi E, El-Shishtawy KA, Li Y, Reis LO, Zheng Y, Miyamoto H. Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth. Urol Oncol 2016; 34:432.e15-432.e4.32E23. [PMID: 27330033 DOI: 10.1016/j.urolonc.2016.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. METHODS Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. RESULTS Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. CONCLUSIONS Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hiroki Ide
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eiji Kashiwagi
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kareem A El-Shishtawy
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Leonardo O Reis
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yichun Zheng
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hiroshi Miyamoto
- Department of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
21
|
Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol 2016; 787:57-71. [PMID: 27388141 PMCID: PMC5014726 DOI: 10.1016/j.ejphar.2016.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
The projected number of people who will develop age-related macular degeneration in estimated at 2020 is 196 million and is expected to reach 288 million in 2040. Also, the number of people with Diabetic retinopathy will grow from 126.6 million in 2010 to 191.0 million by 2030. In addition, it is estimated that there are 2.3 million people suffering from uveitis worldwide. Because of the anti-inflammatory properties of glucocorticoids (GCs), they are often used topically and/or intravitreally to treat ocular inflammation conditions or edema associated with macular degeneration and diabetic retinopathy. Unfortunately, ocular GC therapy can lead to severe side effects. Serious and sometimes irreversible eye damage can occur as a result of the development of GC-induced ocular hypertension causing secondary open-angle glaucoma. According to the world health organization, glaucoma is the second leading cause of blindness in the world and it is estimated that 80 million will suffer from glaucoma by 2020. In the current review, mechanisms of GC-induced damage in ocular tissue, GC-resistance, and enhancing GC therapy will be discussed.
Collapse
Affiliation(s)
- Adnan Dibas
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA.
| | - Thomas Yorio
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
22
|
Kashiwagi E, Ide H, Inoue S, Kawahara T, Zheng Y, Reis LO, Baras AS, Miyamoto H. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer. Oncotarget 2016; 7:49169-49179. [PMID: 27322140 PMCID: PMC5226499 DOI: 10.18632/oncotarget.9994] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/01/2016] [Indexed: 01/26/2023] Open
Abstract
Cisplatin (CDDP)-based combination chemotherapy remains the mainstream treatment for advanced bladder cancer. However, its efficacy is often limited due to the development of resistance for which underlying mechanisms are poorly understood. Meanwhile, emerging evidence has indicated the involvement of androgen-mediated androgen receptor (AR) signals in bladder cancer progression. In this study, we aimed to investigate whether AR signals have an impact on sensitivity to CDDP in bladder cancer cells. UMUC3-control-short hairpin RNA (shRNA) cells with endogenous AR and AR-negative 647V/5637 cells stably expressing AR were significantly more resistant to CDDP treatment at its pharmacological concentrations, compared with UMUC3-AR-shRNA and 647V-vector/5637-vector control cells, respectively. A synthetic androgen R1881 significantly reduced CDDP sensitivity in UMUC3, 647V-AR, or 5637-AR cells, and the addition of an anti-androgen hydroxyflutamide inhibited the effect of R1881. In these AR-positive cells, R1881 treatment also induced the expression levels of NF-κB, which is known to involve CDDP resistance, and its phosphorylated form, as well as nuclear translocation of NF-κB. In CDDP-resistant bladder cancer sublines established following long-term culture with CDDP, the expression levels of AR as well as NF-κB and phospho-NF-κB were considerably elevated, compared with respective control sublines. In bladder cancer specimens, there was a strong trend to correlate between AR positivity and chemoresistance. These results suggest that AR activation correlates with CDDP resistance presumably via modulating NF-κB activity in bladder cancer cells. Targeting AR during chemotherapy may thus be a useful strategy to overcome CDDP resistance in patients with AR-positive bladder cancer.
Collapse
Affiliation(s)
- Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Satoshi Inoue
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leonardo O. Reis
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander S. Baras
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Sundahl N, Clarisse D, Bracke M, Offner F, Berghe WV, Beck IM. Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments. Oncoscience 2016; 3:188-202. [PMID: 27713909 PMCID: PMC5043069 DOI: 10.18632/oncoscience.315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dorien Clarisse
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Medical Biotechnology Center, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
24
|
Kawahara T, Aljarah AK, Shareef HK, Inoue S, Ide H, Patterson JD, Kashiwagi E, Han B, Li Y, Zheng Y, Miyamoto H. Silodosin inhibits prostate cancer cell growth via ELK1 inactivation and enhances the cytotoxic activity of gemcitabine. Prostate 2016; 76:744-56. [PMID: 26864615 DOI: 10.1002/pros.23164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biological significance of ELK1, a transcriptional factor whose phosphorylation is necessary for c-fos proto-oncogene activation, in prostate cancer remains far from fully understood. In this study, we aim to investigate the role of ELK1 in tumor growth as well as the efficacy of a selective α1A-adrenergic blocker, silodosin, in ELK1 activity in prostate cancer cells. METHODS We first immunohistochemically determined the levels of phospho-ELK1 (p-ELK1) expression in radical prostatectomy specimens. We then assessed the effects of ELK1 knockdown via short hairpin RNA and silodosin on cell proliferation, migration, and invasion in prostate cancer lines. RESULTS The levels of p-ELK1 expression were significantly higher in carcinoma than in benign (P < 0.001) or high-grade prostatic intraepithelial neoplasia (HGPIN) (P = 0.002) as well as in HGPIN than in benign (P < 0.001). Kaplan-Meier and log-rank tests revealed that moderate-strong positivity of p-ELK1 in carcinomas tended to correlate with biochemical recurrence after radical prostatectomy (P = 0.098). In PC3 and DU145 expressing ELK1 (mRNA/protein) but no androgen receptor (AR), ELK1 silencing resulted in considerable decreases in the expression of c-fos as well as in cell migration/invasion and matrix metalloproteinase-2 expression, but not in cell viability. Silodosin treatment reduced the expression/activity of ELK1 in these cells as well as the viability of AR-positive LNCaP and C4-2 cells and the migration of both AR-positive and AR-negative cells, but not the viability of AR-negative or ELK1-negative cells. Interestingly, silodosin significantly increased sensitivity to gemcitabine, but not to cisplatin or docetaxel, even in AR-negative cells. CONCLUSIONS ELK1 is likely to be activated in prostate cancer cells and promote tumor progression. Furthermore, silodosin that inactivates ELK1 in prostate cancer cells not only inhibits their growth but also enhances the cytotoxic activity of gemcitabine. Thus, ELK1 inhibition has the potential of being a therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biology, University of Baghdad College of Science, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biology, University of Babylon College of Science for Women, Babylon, Iraq
| | - Satoshi Inoue
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John D Patterson
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Han
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Ide H, Miyamoto H. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor. DISEASE MARKERS 2015; 2015:840640. [PMID: 26770009 PMCID: PMC4685115 DOI: 10.1155/2015/840640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
Abstract
There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.
Collapse
Affiliation(s)
- Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|