1
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity. J Chromatogr A 2022; 1684:463582. [DOI: 10.1016/j.chroma.2022.463582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
|
3
|
Antithetic hTERT Regulation by Androgens in Prostate Cancer Cells: hTERT Inhibition Is Mediated by the ING1 and ING2 Tumor Suppressors. Cancers (Basel) 2021; 13:cancers13164025. [PMID: 34439179 PMCID: PMC8391603 DOI: 10.3390/cancers13164025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The expression of the catalytic subunit of the human telomerase reverse transcriptase subunit (hTERT) is hormonally controlled. Androgen treatment suppresses the hTERT expression at a transcriptional level in prostate cancer cells. Here, we identified the responsive promoter element that mediates the androgen receptor induced transrepression of hTERT. The negative androgen response element (nARE) is identified as 62 bp located in the core promoter of hTERT. Chromatin immunoprecipitations indicate an androgen-dependent recruitment of the androgen receptor (AR) ING1 and ING2 to the hTERT promoter. Interestingly, the androgen-induced transrepression is mediated by the class II tumor suppressors inhibitor of growth 1 and 2, namely ING1 and ING2, respectively. Abstract The human telomerase is a key factor during tumorigenesis in prostate cancer (PCa). The androgen receptor (AR) is a key drug target controlling PCa growth and regulates hTERT expression, but is described to either inhibit or to activate. Here, we reveal that androgens repress and activate hTERT expression in a concentration-dependent manner. Physiological low androgen levels activate, while, notably, supraphysiological androgen levels (SAL), used in bipolar androgen therapy (BAT), repress hTERT expression. We confirmed the SAL-mediated gene repression of hTERT in PCa cell lines, native human PCa samples derived from patients treated ex vivo, as well as in cancer spheroids derived from androgen-dependent or castration resistant PCa (CRPC) cells. Interestingly, chromatin immuno-precipitation (ChIP) combined with functional assays revealed a positive (pARE) and a negative androgen response element (nARE). The nARE was narrowed down to 63 bp in the hTERT core promoter region. AR and tumor suppressors, inhibitor of growth 1 and 2 (ING1 and ING2, respectively), are androgen-dependently recruited. Mechanistically, knockdown indicates that ING1 and ING2 mediate AR-regulated transrepression. Thus, our data suggest an oppositional, biphasic function of AR to control the hTERT expression, while the inhibition of hTERT by androgens is mediated by the AR co-repressors ING1 and ING2.
Collapse
|
4
|
Abstract
The androgen receptor (AR) is tightly linked to prostate cancer, but the mechanisms by which AR transactivation is dysregulated during cancer progression are not fully explored. Dagar et al. examined AR translocation to the nucleus to identify a link between heat shock protein 90 (HSP90) and protein kinase A (PKA). Their findings provide a potential mechanism of the initiation of AR transactivation and potential targets for developing and refining treatments for prostate cancer.
Collapse
Affiliation(s)
- Amy H Tien
- From Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| | - Marianne D Sadar
- From Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|
5
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Interaction between androgen receptor and coregulator SLIRP is regulated by Ack1 tyrosine kinase and androgen. Sci Rep 2019; 9:18637. [PMID: 31819114 PMCID: PMC6901447 DOI: 10.1038/s41598-019-55057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Aberrant activation of the androgen receptor (AR) may play a critical role in castration resistant prostate cancer. After ligand binding, AR is recruited to the androgen responsive element (ARE) sequences on the DNA where AR interaction with coactivators and corepressors modulates transcription. We demonstrated that phosphorylation of AR at Tyr-267 by Ack1/TNK2 tyrosine kinase results in nuclear translocation, DNA binding, and androgen-dependent gene transcription in a low androgen environment. In order to dissect downstream mechanisms, we searched for proteins whose interaction with AR was regulated by Ack1. SLIRP (SRA stem-loop interacting RNA binding protein) was identified as a candidate protein. Interaction between AR and SLIRP was disrupted by Ack1 kinase activity as well as androgen or heregulin treatment. The noncoding RNA, SRA, was required for AR-SLIRP interaction. SLIRP was bound to ARE’s of AR target genes in the absence of androgen. Treatment with androgen or heregulin led to dissociation of SLIRP from the ARE. Whole transcriptome analysis of SLIRP knockdown in androgen responsive LNCaP cells showed that SLIRP affects a significant subset of androgen-regulated genes. Our data suggest that Ack1 kinase and androgen regulate interaction between AR and SLIRP and that SLIRP functions as a coregulator of AR with properties of a corepressor in a context-dependent manner.
Collapse
|
7
|
Lempiäinen JK, Niskanen EA, Vuoti KM, Lampinen RE, Göös H, Varjosalo M, Palvimo JJ. Agonist-specific Protein Interactomes of Glucocorticoid and Androgen Receptor as Revealed by Proximity Mapping. Mol Cell Proteomics 2017; 16:1462-1474. [PMID: 28611094 DOI: 10.1074/mcp.m117.067488] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) and androgen receptor (AR) are steroid-inducible transcription factors (TFs). The GR and the AR are central regulators of various metabolic, homeostatic and differentiation processes and hence important therapeutic targets, especially in inflammation and prostate cancer, respectively. Hormone binding to these steroid receptors (SRs) leads to DNA binding and activation or repression of their target genes with the aid of interacting proteins, coregulators. However, protein interactomes of these important drug targets have remained poorly defined. We used proximity-dependent biotin identification to map the protein interaction landscapes of GR and AR in the presence and absence of their cognate agonist (dexamethasone, 5α-dihydrotestosterone) and antagonist (RU486, enzalutamide) in intact human cells. We reproducibly identified more than 30 proteins that interacted with the GR in an agonist-specific manner and whose interactions were significantly influenced by the DNA-binding function of the receptor. Interestingly, the agonist-dependent interactome of the GR overlapped considerably with that of the AR. In addition to known coactivators, corepressors and components of BAF (SWI/SNF) chromatin-remodeling complex, we identified a number of proteins, including lysine methyltransferases and demethylases that have not been previously linked to glucocorticoid or androgen signaling. A substantial number of these novel agonist-dependent GR/AR-interacting proteins, e.g. BCOR, IRF2BP2, RCOR1, and TLE3, have previously been implicated in transcription repression. This together with our data on the effect of BCOR, IRF2BP2, and RCOR1 on GR target gene expression suggests multifaceted functions and roles for SR coregulators. These first high confidence SR interactomes will aid in therapeutic targeting of the GR and the AR.
Collapse
Affiliation(s)
- Joanna K Lempiäinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa-Mari Vuoti
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Riikka E Lampinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Helka Göös
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland;
| |
Collapse
|
8
|
Myung JK, Wang G, Chiu HHL, Wang J, Mawji NR, Sadar MD. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One 2017; 12:e0174134. [PMID: 28306720 PMCID: PMC5357013 DOI: 10.1371/journal.pone.0174134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.
Collapse
Affiliation(s)
- Jae-Kyung Myung
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gang Wang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Helen H. L. Chiu
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jun Wang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nasrin R. Mawji
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D. Sadar
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Cabeza M, Sánchez-Márquez A, Garrido M, Silva A, Bratoeff E. Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases. Curr Med Chem 2016; 23:792-815. [PMID: 26861003 PMCID: PMC5412001 DOI: 10.2174/0929867323666160210125642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 11/22/2022]
Abstract
This article summarizes the importance of different targets such as 5α-reductase, 17β-HSD, CYP17A, androgen receptor and protein kinase A for the treatment of prostate cancer and benign prostatic hyperplasia. It is a well known fact that dihydrotestosterone (DHT) is associated with the development of androgen-dependent afflictions. At the present time, several research groups are attempting to develop new steroidal and non-steroidal molecules with the purpose of inhibiting the synthesis and biological response of DHT. This review also discusses the most recent studies reported in the literature that describe the therapeutic potential of novel compounds, as well as the new drugs, principally inhibitors of 5α-reductase.
Collapse
Affiliation(s)
- Marisa Cabeza
- Departamento De Sistemas Biológicos, Universidad Autónoma Metropolitana- Xochimilco Calzada Del Hueso No. 1100, México, D.F., C.P. 04960, México.
| | | | | | | | | |
Collapse
|
10
|
Inhibition of the Androgen Receptor by Antiandrogens in Spinobulbar Muscle Atrophy. J Mol Neurosci 2015; 58:343-7. [DOI: 10.1007/s12031-015-0681-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022]
|
11
|
Perner S, Cronauer MV, Schrader AJ, Klocker H, Culig Z, Baniahmad A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget 2015; 6:35542-55. [PMID: 26325261 PMCID: PMC4742123 DOI: 10.18632/oncotarget.4689] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Prostate Cancer (PCa) is an important age-related disease being the most common cancer malignancy and the second leading cause of cancer mortality in men in Western countries. Initially, PCa progression is androgen receptor (AR)- and androgen-dependent. Eventually advanced PCa reaches the stage of Castration-Resistant Prostate Cancer (CRPC), but remains dependent on AR, which indicates the importance of AR activity also for CRPC. Here, we discuss various pathways that influence the AR activity in CRPC, which indicates an adaptation of the AR signaling in PCa to overcome the treatment of PCa. The adaptation pathways include interferences of the normal regulation of the AR protein level, the expression of AR variants, the crosstalk of the AR with cytokine tyrosine kinases, the Src-Akt-, the MAPK-signaling pathways and AR corepressors. Furthermore, we summarize the current treatment options with regard to the underlying molecular basis of the common adaptation processes of AR signaling that may arise after the treatment with AR antagonists, androgen deprivation therapy (ADT) as well as for CRPC, and point towards novel therapeutic strategies. The understanding of individualized adaptation processes in PCa will lead to individualized treatment options in the future.
Collapse
Affiliation(s)
- Sven Perner
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | | | | | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Austria
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Germany
| |
Collapse
|
12
|
Hikichi Y, Yamaoka M, Kusaka M, Hara T. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile. Eur J Pharmacol 2015; 765:322-31. [PMID: 26335395 DOI: 10.1016/j.ejphar.2015.08.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/03/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity.
Collapse
Affiliation(s)
- Yukiko Hikichi
- Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, 12-10, Nihonbashi 2-chome, Chuo-ku, Tokyo 103-8668, Japan
| | - Masuo Yamaoka
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masami Kusaka
- CMC Center, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Takahito Hara
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
13
|
Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23. [PMID: 24909511 PMCID: PMC4571323 DOI: 10.1038/aps.2014.18] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.
Collapse
|
14
|
Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 2014; 382:97-106. [PMID: 24055275 DOI: 10.1016/j.mce.2013.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
While the structures of the DNA- and ligand-binding domains of many nuclear receptors have been determined in great detail; the mechanisms by which these domains interact and possibly 'communicate' is still under debate. The first crystal structures of receptor dimers bound to ligand, DNA and coactivator peptides provided new insights in this matter. The observed binding modes revealed exciting new interaction surfaces between the different nuclear receptor domains. Such interfaces are proposed to be the route through which allosteric signals from the DNA are passed on to the ligand-binding domain and the activating functions of the receptor. The structural determinations of DNA-bound receptor dimers in solution, however, revealed an extended structure of the receptors. Here, we discuss these apparent contradictory structural data and their possible implications for the functioning of nuclear receptors.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Tan JA, Bai S, Grossman G, Titus MA, Harris Ford O, Pop EA, Smith GJ, Mohler JL, Wilson EM, French FS. Mechanism of androgen receptor corepression by CKβBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer. Mol Cell Endocrinol 2014; 382:302-313. [PMID: 24103312 PMCID: PMC3880566 DOI: 10.1016/j.mce.2013.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/12/2023]
Abstract
The transcription factor coregulator Casein kinase IIβ-binding protein 2 or CR6-interacting factor 1 (CKβBP2/CRIF1) binds the androgen receptor (AR) in prostate cancer cells and in response to dihydrotestosterone localizes with AR on the prostate-specific antigen gene enhancer, but does not bind DNA suggesting CKβBP2/CRIF1 localization in chromatin is determined by AR. In this study we show also that CKβBP2/CRIF1 inhibits wild-type AR and AR N-terminal transcriptional activity, binds to the AR C-terminal region, inhibits interaction of the AR N- and C-terminal domains (N/C interaction) and competes with p160 coactivator binding to the AR C-terminal domain, suggesting CKβBP2/CRIF1 interferes with AR activation functions 1 and 2. CKβBP2/CRIF1 is expressed mainly in stromal cells of benign prostatic hyperplasia and in stroma and epithelium of prostate cancer. CKβBP2/CRIF1 protein is increased in epithelium of androgen-dependent prostate cancer compared to benign prostatic hyperplasia and decreased slightly in castration recurrent epithelium compared to androgen-dependent prostate cancer. The multifunctional CKβBP2/CRIF1 is a STAT3 interacting protein and reported to be a coactivator of STAT3. CKβBP2/CRIF1 is expressed with STAT3 in prostate cancer where STAT3 may help to offset the AR repressor effect of CKβBP2/CRIF1 and allow AR regulation of prostate cancer growth.
Collapse
Affiliation(s)
- Jiann-An Tan
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Suxia Bai
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Gail Grossman
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Mark A Titus
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - O Harris Ford
- Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Elena A Pop
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Urology, University of Buffalo, School of Medicine and Biotechnology, Buffalo, NY, United States
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Frank S French
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Pan C, Wang Q, Liu YP, Xu LF, Li YF, Hu JX, Jiang M, Zhang JP, Zhang MR, Yu HM, Zhou JL, Zhou XL, Xu LC. Anti-androgen effects of the pyrethroid pesticide cypermethrin on interactions of androgen receptor with corepressors. Toxicology 2013; 311:178-83. [DOI: 10.1016/j.tox.2013.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
|
17
|
Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013; 14:12496-519. [PMID: 23771019 PMCID: PMC3709796 DOI: 10.3390/ijms140612496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional arsenal to treat castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | | | | | | |
Collapse
|
18
|
Paskova L, Smesny Trtkova K, Fialova B, Benedikova A, Langova K, Kolar Z. Different effect of sodium butyrate on cancer and normal prostate cells. Toxicol In Vitro 2013; 27:1489-95. [PMID: 23524101 DOI: 10.1016/j.tiv.2013.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 11/18/2022]
Abstract
Sodium butyrate, as a naturally occurring inhibitor of histone deacetylases (HDACI), is a non-toxic agent, with an ability to change histone acetylation and expression of large number genes. This study shows different effects of sodium butyrate on expression and transcription activity of the androgen receptor in cancer (LNCaP, C4-2) and normal (RWPE-1) prostate cells. Moreover, we studied the coregulator expressions and histone acetylation alteration in cancer and normal cells. Coregulators, coactivators as well as corepressors, play an important role in AR-mediated growth and progression of prostate cancer. There is a competition between coactivators and corepressors for binding on the AR and therefore the changes in coregulators expression and ratio could be important for prostate cancer survival. Our study was focused on two coregulators, SMRT and p300, which interact with AR in multiprotein complex and affect the AR transcription activity. Our data indicate that sodium butyrate has an effect on AR coregulators expression, transcription activity and histone acetylation in cancer cells, but there is only minimal effect in normal cells. In addition, the results of changes in acetylation level on lysine residues of histone H4 after sodium butyrate treatment confirm its epigenetic effect on prostate cancer cells.
Collapse
Affiliation(s)
- Lenka Paskova
- Laboratory of Molecular Pathology, Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
LANP mediates neuritic pathology in Spinocerebellar ataxia type 1. Neurobiol Dis 2012; 48:526-32. [PMID: 22884877 DOI: 10.1016/j.nbd.2012.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/30/2012] [Accepted: 07/25/2012] [Indexed: 01/18/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)-an ATXN1 binding inhibitor of histone acetylation-reverses aspects of SCA1 neuritic pathology.
Collapse
|
20
|
Grosdidier S, Carbó LR, Buzón V, Brooke G, Nguyen P, Baxter JD, Bevan C, Webb P, Estébanez-Perpiñá E, Fernández-Recio J. Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Mol Endocrinol 2012; 26:1078-90. [PMID: 22653923 DOI: 10.1210/me.2011-1281] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.
Collapse
Affiliation(s)
- Solène Grosdidier
- Joint BSC-IRB Research Programme in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Grosse A, Bartsch S, Baniahmad A. Androgen receptor-mediated gene repression. Mol Cell Endocrinol 2012; 352:46-56. [PMID: 21784131 DOI: 10.1016/j.mce.2011.06.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/19/2022]
Abstract
Androgens have an essential role in inducing the genetic program for masculinization during development. Androgens mediate their effect through the androgen receptor (AR), a ligand-controlled transcription factor and regulator of rapid signaling. Inactivated AR results in complete feminization. Androgens are also essential in later life for reproduction, behavior, muscle development, breast, and prostate growth. In general, androgens inhibit breast and promote prostate growth. In the latter context the AR is a major drug target. On the one hand, many insights have been obtained how the AR mediates gene activation on a molecular level. Gene activation is mediated by a battery of factors including coactivators, chromatin remodeling complex proteins and transcription factors which either directly or indirectly interact with the AR at DNA binding sites. On the other hand, there are important AR target genes that are repressed by androgen-bound AR. However, the underlying molecular mechanisms are poorly understood although genes repressed by AR are key factors involved in cell proliferation and invasion. Here, we summarize molecular mechanisms of AR-mediated gene repression, thereby differentiating between direct and indirect DNA/chromatin recruitment and between genomic and non-genomic effects.
Collapse
Affiliation(s)
- Andreas Grosse
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany
| | | | | |
Collapse
|
22
|
Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M, Iñiguez-Lluhí JA. Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. J Biol Chem 2012; 287:18318-29. [PMID: 22493429 DOI: 10.1074/jbc.m112.339424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
FOXC1 and FOXC2 are forkhead transcription factors that play essential roles during development and physiology. Despite their critical role, the mechanisms that regulate the function of these factors remain poorly understood. We have identified conserved motifs within a previously defined N-terminal negative regulatory region of FOXC1/C2 that conforms to the definition of synergy control or SC motifs. Because such motifs inhibit the activity of transcription factors by serving as sites of post-translational modification by small ubiquitin-like modifier (SUMO), we have examined whether FOXC1/C2 are targets of SUMOylation and probed the functional significance of this modification. We find that endogenous FOXC1 forms modified by SUMO2/3 can be detected. Moreover, in cell culture, all three SUMO isoforms are readily conjugated to FOXC1 and FOXC2. The modification can be reconstituted in vitro with purified components and can be reversed in vitro by treatment with the SUMO protease SENP2. SUMOylation of FOXC1 and FOXC2 occurs primarily on one consensus synergy control motif with minor contributions of a second, more degenerate site. Notably, although FOXC1 is also phosphorylated at multiple sites, disruption of sites immediately downstream of the SC motifs does not influence SUMOylation. Consistent with a negative functional role, SUMOylation-deficient mutants displayed higher transcriptional activity when compared with wild type forms despite comparable protein levels and subcellular localization. Thus, the findings demonstrate that SC motifs mediate the inhibitory function of this region by serving as sites for SUMOylation and reveal a novel mechanism for acute and reversible regulation of FOXC1/C2 function.
Collapse
Affiliation(s)
- Theodora E Danciu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 2012; 348:430-9. [PMID: 21664237 PMCID: PMC3202666 DOI: 10.1016/j.mce.2011.04.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/04/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Coactivators are a diverse group of non-DNA binding proteins that induce structural changes in agonist-bound nuclear receptors (NRs) that are essential for NR-mediated transcriptional activation. Once bound, coactivators function to bridge enhancer binding proteins to the general transcription machinery, as well as to recruit secondary coactivators that modify promoter and enhancer chromatin in a manner permissive for transcriptional activation. In the following review article, we focus on one of the most in-depth studied families of coactivators, the steroid receptor coactivators (SRC) 1, 2, and 3. SRCs are widely implicated in NR-mediated diseases, especially in cancers, with the majority of studies focused on their roles in breast cancer. We highlight the relevant literature supporting the oncogenic activity of SRCs and their future as diagnostic and prognostic indicators. With much interest in the development of selective receptor modulators (SRMs), we focus on how these coactivators regulate the interactions between SRMs and their respective NRs; and, importantly, the influence that coactivators have on the functional output of SRMs. Furthermore, we speculate that coactivator-specific inhibitors could provide powerful, all-encompassing treatments that target multiple modes of oncogenic regulation in cancers resistant to typical anti-endocrine treatments.
Collapse
Affiliation(s)
- Amber B Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
24
|
New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Prostate Cancer 2011; 2011:918707. [PMID: 22111003 PMCID: PMC3196248 DOI: 10.1155/2011/918707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/27/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the United States, and it is the second leading cause of cancer-related death in American men. The androgen receptor (AR), a receptor of nuclear family and a transcription factor, is the most important target in this disease. While most efforts in the clinic are currently directed at lowering levels of androgens that activate AR, resistance to androgen deprivation eventually develops. Most prostate cancer deaths are attributable to this castration-resistant form of prostate cancer (CRPC). Recent work has shed light on the importance of epigenetic events including facilitation of AR signaling by histone-modifying enzymes, posttranslational modifications of AR such as sumoylation. Herein, we provide an overview of the structure of human AR and its key structural domains that can be used as targets to develop novel antiandrogens. We also summarize recent findings about the antiandrogens and the epigenetic factors that modulate the action of AR.
Collapse
|
25
|
Asim M, Hafeez BB, Siddiqui IA, Gerlach C, Patz M, Mukhtar H, Baniahmad A. Ligand-dependent corepressor acts as a novel androgen receptor corepressor, inhibits prostate cancer growth, and is functionally inactivated by the Src protein kinase. J Biol Chem 2011; 286:37108-17. [PMID: 21856747 DOI: 10.1074/jbc.m111.292771] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activated androgen receptor (AR) promotes prostate cancer (PCa) growth. AR antagonists repress the AR by recruitment of corepressors. Not much is known about the inactivation of AR by corepressors in the presence of agonists (androgens). Here we show that the corepressor LCoR acts as an androgen-dependent corepressor that represses human PCa growth in vivo. In line with this, progressive decrease of ligand-dependent corepressor expression was observed in the PCa TRAMP mouse model with increasing age. LCoR interacts with AR and is recruited to chromatin in an androgen-induced manner. Unexpectedly, the LXXLL motif of LCoR is dispensable for interaction with the AR. Rather, the data indicate that LCoR interacts with the AR DNA binding domain on DNA. Interestingly, the interaction of LCoR with AR is inhibited by signaling pathways that are associated with androgen-independent PCa. Here we also show that the Src kinase inactivates the corepressive function of LCoR. Interfering with endogenous Src function by a dominant negative Src mutant, the growth inhibitory activity of LCoR is enhanced in vivo in a xenograft mouse model system. Thus, our studies indicate a role of LCoR as an AR corepressor and a tumor suppressor. Further, the decreased expression or inactivation of LCoR is as an important step toward PCa carcinogenesis in vivo.
Collapse
Affiliation(s)
- Mohammad Asim
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Buchanan G, Need EF, Barrett JM, Bianco-Miotto T, Thompson VC, Butler LM, Marshall VR, Tilley WD, Coetzee GA. Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Mol Cell Endocrinol 2011; 342:20-31. [PMID: 21664238 PMCID: PMC3314496 DOI: 10.1016/j.mce.2011.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
The response of prostate cells to androgens reflects a combination of androgen receptor (AR) transactivation and transrepression, but how these two processes differ mechanistically and influence prostate cancer risk and disease outcome remain elusive. Given recent interest in targeting AR transrepressive processes, a better understanding of AR/corepressor interaction and responses is warranted. Here, we used transactivation and interaction assays with wild-type and mutant ARs, and deletion AR fragments, to dissect the relationship between AR and the corepressor, silencing mediator for retinoic acid and thyroid hormone receptors (SMRT). We additionally tested how these processes are influenced by AR agonist and antagonist ligands, as well as by variation in the polyglutamine tract in the AR amino terminal domain (NTD), which is encoded by a polymorphic CAG repeat in the gene. SMRT was recruited to the AR ligand binding domain by agonist ligand, and as determined by the effect of strategic mutations in activation function 2 (AF-2), requires a precise conformation of that domain. A distinct region of SMRT also mediated interaction with the AR-NTD via the transactivation unit 5 (TAU5; residues 315-538) region. The degree to which SMRT was able to repress AR increased from 17% to 56% as the AR polyglutamine repeat length was increased from 9 to 42 residues, but critically this effect could be abolished by increasing the SMRT:AR molar ratio. These data suggest that the extent to which the CAG encoded polyglutamine repeat influences AR activity represents a balance between corepressor and coactivator occupancy of the same ligand-dependent and independent AR interaction surfaces. Changes in the homeostatic relationship of AR to these molecules, including SMRT, may explain the variable penetrance of the CAG repeat and the loss of AR signaling flexibility in prostate cancer progression.
Collapse
Affiliation(s)
- Grant Buchanan
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reeb CA, Gerlach C, Heinssmann M, Prade I, Ceraline J, Roediger J, Roell D, Baniahmad A. A designed cell-permeable aptamer-based corepressor peptide is highly specific for the androgen receptor and inhibits prostate cancer cell growth in a vector-free mode. Endocrinology 2011; 152:2174-83. [PMID: 21486935 DOI: 10.1210/en.2011-0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The repression of the androgen receptor (AR) activity is a major objective to inhibit prostate cancer growth. One underlying mechanism for efficient hormone therapy is based on corepressors that inactivate the AR. In line with this, castration-resistant prostate cancer is associated with malfunction or reduced corepressor action. To overcome this, the overexpression of endogenous corepressors, however, affects many other transcription factors. Therefore, an AR-specific corepressor could be of advantage. Using a yeast peptide aptamer two-hybrid screen with the full-length human AR, we identified a short amino acid-stretch that binds specifically to the human AR in yeast and in mammalian cells and not to the closely related progesterone or glucocorticoid receptors. Furthermore, fused to a silencing domain, this aptamer-based corepressor (AB-CoR) exhibits corepressor activity by inhibiting both the AR-mediated transactivation and expression of the AR target gene PSA. Furthermore, stable expression of the AB-CoR inhibits growth of human LNCaP prostate cancer cells. Moreover, we generated a cell-permeable AB-CoR by fusing a protein transduction domain to establish a vector-free transport system. Treatment of LNCaP cells with the bacterially expressed and affinity-purified cell-permeable AB-CoR peptide resulted in a significant inhibition of both AR-mediated transactivation and prostate cancer cell proliferation. Thus, generation of a novel AR-specific aptamer-based corepressor may present a vector-free inhibition of AR-dependent prostate cancer growth as a novel approach.
Collapse
Affiliation(s)
- Christina A Reeb
- Institute of Human Genetics, Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Differential regulation of PTEN expression by androgen receptor in prostate and breast cancers. Oncogene 2011; 30:4327-38. [DOI: 10.1038/onc.2011.144] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Lavery DN, Villaronga MA, Walker MM, Patel A, Belandia B, Bevan CL. Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors. J Biol Chem 2011; 286:17796-808. [PMID: 21454491 DOI: 10.1074/jbc.m110.198655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Hairy/Enhancer-of-split-related with YRPW-like motif (HEY) family of proteins are transcriptional repressors and downstream effectors of Notch signaling. We previously reported that HEY1 and HEY2 selectively repress androgen receptor (AR) signaling in mammalian cell lines and have shown that in human tissue HEY1 is excluded from the nuclei in prostate cancer but not benign prostatic hyperplasia. We have now characterized a third member of this family, HEYL, which is a more potent repressor of AR activity. HEYL interacted with and repressed AR activation function-1 domain and competitively inhibited SRC1e activation of AR transcriptional activity. Using a cell line inducibly expressing exogenous HEYL, we showed that HEYL represses endogenous AR-regulated genes and reduces androgen-dependent prostate cancer cell growth. Using a trans-repression assay, we identified both trichostatin-sensitive and -insensitive domains within HEYL; however, analysis of endogenous AR target genes suggested that HEYL represses AR activity through histone deacetylase I/II-independent mechanisms. Immunohistochemical analyses of tissue indicated that, in a fashion similar to that previously reported for HEY1, HEYL is excluded from the nuclei in prostate cancer but not adjacent benign tissue. This suggests that nuclear exclusion of HEY proteins may be an important step in the progression of prostate cancer.
Collapse
Affiliation(s)
- Derek N Lavery
- Androgen Signalling Laboratory, Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Roell D, Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol Cell Endocrinol 2011; 332:1-8. [PMID: 20965230 DOI: 10.1016/j.mce.2010.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Accepted: 09/27/2010] [Indexed: 11/17/2022]
Abstract
Extracts from the plant Pygeum africanum are widely used in the therapy of benign prostate hyperplasia (BPH) and in combinational therapy for prostate cancer, the second leading cause of cancer death and the mostly diagnosed form of cancer in men. The androgen receptor (AR) plays a crucial role in the development of the prostate as well as in prostate diseases. Even though the extracts from P. africanum are considered as beneficial for prostate diseases in clinical trials, and some active compounds for treatment of BPH could be identified, compounds responsible for AR inhibition and the molecular mechanism for inhibition of prostatitis need to be identified. Recently, atraric acid and N-butylbenzene-sulfonamide were isolated from a selective dichlormethane extract of P. africanum as two novel AR antagonistic compounds. The molecular mechanisms of AR inhibition were analyzed and are summarized here. Both compounds are the first known natural, complete and specific AR antagonist.
Collapse
Affiliation(s)
- Daniela Roell
- Institute of Human Genetics, Jena University Hospital, Kollegiengasse 10, D-07743 Jena, Germany
| | | |
Collapse
|
31
|
Abstract
The transcriptional activity of the androgen receptor is regulated by both ligand binding and posttranslational modifications including acetylation and SUMOylation. Histone deacetylases are known to catalyze the removal of acetyl groups from both histones and non-histone proteins. In the present study, we report that histone deacetylase 4 (HDAC4) binds to and inhibits the activity of the androgen receptor (AR). This inhibition was found to depend on the SUMOylation, instead of deacetylation, of the AR. Consistently, HDAC4 increases the level of AR SUMOylation in both whole cell and cell-free assay systems, raising the possibility that the deacetylase may act as an E3 ligase for AR SUMOylation. Knock down of HDAC4 increases the activity of endogenous AR and androgen induction of prostate specific antigen expression and prostate cancer cell growth, which is associated with decreased SUMOylation of the receptor. Overall, the studies identify HDAC4 as a positive regulator for AR SUMOylation, revealing a deacetylase-independent mechanism of histone deacetylase action in prostate cancer cells.
Collapse
|
32
|
Papaioannou M, Schleich S, Prade I, Degen S, Roell D, Schubert U, Tanner T, Claessens F, Matusch R, Baniahmad A. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J Cell Mol Med 2010; 13:2210-2223. [PMID: 18627423 DOI: 10.1111/j.1582-4934.2008.00426.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracts from Pygeum africanum are used in the treatment of prostatitis, benign prostatic hyperplasia and prostate cancer (Pca), major health problems of men in Western countries. The ligand-activated human androgen receptor (AR) supports the growth of the prostate gland. Inhibition of human AR by androgen ablation therapy and by applying synthetic anti-androgens is therefore the primary goal in treatment of patients. Here, we show that atraric acid (AA) isolated from bark material of Pygeum africanum has anti-androgenic activity, inhibiting the transactivation mediated by the ligand-activated human AR. This androgen antagonistic activity is receptor specific and does not inhibit the closely related glucocorticoid or progesterone receptors. Mechanistically, AA inhibits nuclear transport of AR. Importantly, AA is able to efficiently repress the growth of both the androgen-dependent LNCaP and also the androgen-independent C4-2 Pca cells but not that of PC3 or CV1 cells lacking AR. In line with this, AA inhibits the expression of the endogenous prostate specific antigen gene in both LNCaP und C4-2 cells. Analyses of cell invasion revealed that AA inhibits the invasiveness of LNCaP cells through extracellular matrix. Thus, this study provides a molecular insight for AA as a natural anti-androgenic compound and may serve as a basis for AA derivatives as a new chemical lead structure for novel therapeutic compounds as AR antagonists, that can be used for prophylaxis or treatment of prostatic diseases.
Collapse
Affiliation(s)
- Maria Papaioannou
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany
| | - Sonja Schleich
- Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg, Marburg, Germany
| | - Ina Prade
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany
| | - Stephanie Degen
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany
| | - Daniela Roell
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany
| | - Undine Schubert
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany
| | - Tamzin Tanner
- Department of Molecular Cell Biology, University of Leuven, Heresraat, Leuven, Belgium
| | - Frank Claessens
- Department of Molecular Cell Biology, University of Leuven, Heresraat, Leuven, Belgium
| | - Rudolf Matusch
- Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg, Marburg, Germany
| | - Aria Baniahmad
- Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Kollegiengasse, Jena, Germany.,Department of Molecular Cell Biology, University of Leuven, Heresraat, Leuven, Belgium
| |
Collapse
|
33
|
Kim JY, Son YL, Kim JS, Lee YC. Molecular determinants required for selective interactions between the thyroid hormone receptor homodimer and the nuclear receptor corepressor N-CoR. J Mol Biol 2009; 396:747-60. [PMID: 20006618 DOI: 10.1016/j.jmb.2009.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 12/03/2009] [Accepted: 12/05/2009] [Indexed: 12/21/2022]
Abstract
The unliganded nuclear receptor (NR) generally recruits the NR corepressor (N-CoR) and the silencing mediator of retinoid and thyroid hormone receptor via its direct binding to the extended helical motif within dual NR-interaction domains (IDs) of corepressors. Interestingly, N-CoR has a third ID (ID3) upstream of two IDs (ID1 and ID2) and its core motif (IDVII), rather than an extended helical motif, is known to be involved directly in the exclusive interaction of ID3 with the thyroid hormone receptor (TR). Here, we investigated the molecular determinants of the TR interaction with ID3 to understand the molecular basis of the N-CoR preference shown by the TR homodimer. Using a one- plus two-hybrid system, we identified the specific residues of N-CoR-ID2 and N-CoR-ID3 that are required for stable association of N-CoR with the TR homodimer. By swapping experiments and mutagenesis studies, we found that the C-terminally flanked residues of the core motif of ID3 contribute to the TR preference for N-CoR-ID3, suggesting that an extended three-turn helix might form within the ID3 via a C-terminal extension (IDVIITRQI) and participate directly in the TR-specific interaction. Structural modeling of the ID3 motif on TR-LBD is consistent with this conclusion. Notably, we identified a novel interaction between N-CoR-ID3 and orphan NR RevErb that is mediated by the residues crucial also in TR binding. These observations raise the intriguing possibility that NR homodimers such as TR and RevErb display preferential binding to the N-CoR corepressor via their specific interactions with ID3, which is normally absent from the silencing mediator of retinoid and thyroid hormone receptor.
Collapse
Affiliation(s)
- Ji Young Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD. Position stand on androgen and human growth hormone use. J Strength Cond Res 2009; 23:S1-S59. [PMID: 19620932 DOI: 10.1519/jsc.0b013e31819df2e6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hoffman, JR, Kraemer, WJ, Bhasin, S, Storer, T, Ratamess, NA, Haff, GG, Willoughby, DS, and Rogol, AD. Position stand on Androgen and human growth hormone use. J Strength Cond Res 23(5): S1-S59, 2009-Perceived yet often misunderstood demands of a sport, overt benefits of anabolic drugs, and the inability to be offered any effective alternatives has fueled anabolic drug abuse despite any consequences. Motivational interactions with many situational demands including the desire for improved body image, sport performance, physical function, and body size influence and fuel such negative decisions. Positive countermeasures to deter the abuse of anabolic drugs are complex and yet unclear. Furthermore, anabolic drugs work and the optimized training and nutritional programs needed to cut into the magnitude of improvement mediated by drug abuse require more work, dedication, and preparation on the part of both athletes and coaches alike. Few shortcuts are available to the athlete who desires to train naturally. Historically, the NSCA has placed an emphasis on education to help athletes, coaches, and strength and conditioning professionals become more knowledgeable, highly skilled, and technically trained in their approach to exercise program design and implementation. Optimizing nutritional strategies are a vital interface to help cope with exercise and sport demands (). In addition, research-based supplements will also have to be acknowledged as a strategic set of tools (e.g., protein supplements before and after resistance exercise workout) that can be used in conjunction with optimized nutrition to allow more effective adaptation and recovery from exercise. Resistance exercise is the most effective anabolic form of exercise, and over the past 20 years, the research base for resistance exercise has just started to develop to a significant volume of work to help in the decision-making process in program design (). The interface with nutritional strategies has been less studied, yet may yield even greater benefits to the individual athlete in their attempt to train naturally. Nevertheless, these are the 2 domains that require the most attention when trying to optimize the physical adaptations to exercise training without drug use.Recent surveys indicate that the prevalence of androgen use among adolescents has decreased over the past 10-15 years (). The decrease in androgen use among these students may be attributed to several factors related to education and viable alternatives (i.e., sport supplements) to substitute for illegal drug use. Although success has been achieved in using peer pressure to educate high school athletes on behaviors designed to reduce the intent to use androgens (), it has not had the far-reaching effect desired. It would appear that using the people who have the greatest influence on adolescents (coaches and teachers) be the primary focus of the educational program. It becomes imperative that coaches provide realistic training goals for their athletes and understand the difference between normal physiological adaptation to training or that is pharmaceutically enhanced. Only through a stringent coaching certification program will academic institutions be ensured that coaches that they hire will have the minimal knowledge to provide support to their athletes in helping them make the correct choices regarding sport supplements and performance-enhancing drugs.The NSCA rejects the use of androgens and hGH or any performance-enhancing drugs on the basis of ethics, the ideals of fair play in competition, and concerns for the athlete's health. The NSCA has based this position stand on a critical analysis of the scientific literature evaluating the effects of androgens and human growth hormone on human physiology and performance. The use of anabolic drugs to enhance athletic performance has become a major concern for professional sport organizations, sport governing bodies, and the federal government. It is the belief of the NSCA that through education and research we can mitigate the abuse of androgens and hGH by athletes. Due to the diversity of testosterone-related drugs and molecules, the term androgens is believed to be a more appropriate term for anabolic steroids.
Collapse
Affiliation(s)
- Jay R Hoffman
- Department of Health and Exercise Science, The College of New Jersey, Ewing, 08628, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Papaioannou M, Schleich S, Roell D, Schubert U, Tanner T, Claessens F, Matusch R, Baniahmad A. NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth. Invest New Drugs 2009; 28:729-43. [DOI: 10.1007/s10637-009-9304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 12/25/2022]
|
36
|
Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 2009; 98:36-53. [PMID: 16440300 DOI: 10.1002/jcb.20802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z1L3, Canada
| | | |
Collapse
|
37
|
Bergerat JP, Céraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30:145-57. [PMID: 18800375 DOI: 10.1002/humu.20848] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) signaling pathway plays an important role during the development of the normal prostate gland, but also during the progression of prostate cancer on androgen ablation therapy. Mutations in the AR gene emerge to keep active the AR signaling pathway and to support prostate cancer cells growth and survival despite the low levels of circulating androgens. Indeed, mutations affecting the ligand binding domain (LBD) of the AR have been shown to generate so-called "promiscuous" receptors that present widened ligand specificity and allow the stimulation of these receptors by a larger spectrum of endogenous hormones. Another class of mutations, arising in the amino-terminal domain (NTD) of the receptor, modulate AR interactions with coregulators involved in cell proliferation regulation. Besides characteristics of these well-known types of mutations, the properties of other classes of AR mutants recently described in prostate cancer are currently under investigation. Most interestingly, in addition to their potential role in the mechanisms which allow prostate cancer cells to escape androgen ablation therapy, data suggest that certain AR mutations are present early in the natural history of the disease and may play a role in many aspects of prostate cancer progression. Surprisingly, singular truncated AR devoid of their carboxy-terminal end (CTE) region seem to exert specific paracrine effects and to induce a clonal cooperation with neighboring prostate cancer cells, which may facilitate both the invasion and metastasis processes. In this article, we review the functional properties of different classes of AR mutants and their potential impact on the natural history of prostate cancer. Hum Mutat 0, 1-14, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jean-Pierre Bergerat
- EA 3430-Signalisation et Cancer de la Prostate, Faculté de Médecine, Université Strasbourg, Strasbourg, France
| | | |
Collapse
|
38
|
Hodgson MC, Shen HC, Hollenberg AN, Balk SP. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol Cancer Ther 2008; 7:3187-94. [PMID: 18852122 DOI: 10.1158/1535-7163.mct-08-0461] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) recruitment of transcriptional corepressors NCoR and SMRT can be enhanced by antagonists such as mifepristone. This study shows that enhanced NCoR binding to the mifepristone-liganded AR is mediated by the NCoR COOH-terminal N1 CoRNR box and that this selectivity is due to charged residues unique to the COOH-terminal CoRNR boxes of NCoR and SMRT. Significantly, these residues are on a helical face adjacent to oppositely charged residues in helix 4 of the AR ligand-binding domain. Mutagenesis of these AR residues in helix 4, as well as mutation of lysine 720 in helix 3 (predicted to interact with the CoRNR box), markedly impaired AR recruitment of NCoR, indicating that N1 CoRNR box binding is being stabilized by these ionic interactions in the AR ligand-binding domain coactivator/corepressor binding site. Finally, results using a helix 12-deleted AR indicate that mifepristone induces allosteric changes in addition to helix 12 displacement that are critical for NCoR binding. These findings show that AR antagonists can enhance corepressor recruitment by stabilizing a distinct antagonist conformation of the AR coactivator/corepressor binding site and support the development of additional antagonists that may be able to further enhance AR recruitment of corepressors.
Collapse
Affiliation(s)
- Myles C Hodgson
- Cancer Biology Program/Hematology-Oncology Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
39
|
Söderholm AA, Viiliäinen J, Lehtovuori PT, Eskelinen H, Roell D, Baniahmad A, Nyrönen TH. Computationally Identified Novel Diphenyl- and Phenylpyridine Androgen Receptor Antagonist Structures. J Chem Inf Model 2008; 48:1882-90. [DOI: 10.1021/ci800149w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Annu A. Söderholm
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Johanna Viiliäinen
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Pekka T. Lehtovuori
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Hanna Eskelinen
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Daniela Roell
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Aria Baniahmad
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| | - Tommi H. Nyrönen
- CSC−Scientific Computing Ltd., PO Box 405, FI-02101 Espoo, Finland, Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FI-20521 Turku, Finland, Department of Biochemistry, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, Institute of Human Genetics and Anthropology, Friedrich Schiller University, 07740 Jena, Germany
| |
Collapse
|
40
|
Lavery DN, McEwan IJ. Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry 2008; 47:3352-9. [PMID: 18284209 DOI: 10.1021/bi702220p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that mediates the actions of the steroid hormones testosterone and dihydrotestosterone at the level of gene transcription. The main transactivation function is modular in structure, maps to the N-terminal domain (NTD), and is termed AF1. This region of the AR is structurally flexible and functions in multiple protein-protein interactions with coregulatory proteins and components of the general transcription machinery. Using surface plasmon resonance, the binding kinetics for the interaction of AR-AF1 with the large subunit of the general transcription factor TFIIF, termed RAP74, and the coactivator SRC-1a were measured. AR-AF1 interacts with both the NTD and CTD of RAP74 and the CTD of SRC-1a. The dissociation constants ( Kd) for the binding of polypeptides derived from RAP74 are in the submicromolar range, while a peptide from SRC-1a bound with a Kd of 14 microM. Significantly, the individual NTD and CTD of RAP74 interacted with AR-AF1 with distinct binding kinetics, with the NTD exhibiting slower on and off rates. TFIIF is involved in transcription initiation and elongation, and the CTD of RAP74 binds to the RNA polymerase II enzyme, the general transcription factor TFIIB, and a CTD phosphatase, FCP1. We have mutated hydrophobic residues in the RAP74-CTD structure to disrupt secondary structure elements and show that binding of AR-AF1 depends upon helix 3 in the winged-helix domain of the RAP74-CTD polypeptide. Altogether, a model is suggested for AR-AF1-dependent transactivation of receptor-target genes.
Collapse
Affiliation(s)
- Derek N Lavery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | |
Collapse
|
41
|
Asim M, Siddiqui IA, Hafeez BB, Baniahmad A, Mukhtar H. Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene 2008; 27:3596-604. [PMID: 18223692 DOI: 10.1038/sj.onc.1211016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is one of the most prominent malignancies of elderly men in many Western countries including Europe and the United States with increasing trend worldwide. The growth of normal prostate as well as of prostate carcinoma cells depends on functional androgen receptor (AR) signaling. AR manifests the biological actions of androgens and its transcriptional activity is known to be influenced by signal transduction pathways. Here we show that Src, a nonreceptor tyrosine kinase, is overexpressed in androgen-independent prostate carcinoma C4-2 cells. Interestingly, the expression of Src was found to progressively increase (up to threefold) in transgenic adenocarcinoma of mouse prostate mice as a function of age and cancer progression. Blocking Src kinase function by a specific inhibitor, PP2, resulted in decreased AR transactivation function on two different reporters, mouse mammary tumor virus (MMTV) and prostate-specific antigen (PSA). Consistent with this, overexpression of a functional Src mutant also led to a dramatic decrease in AR transactivation potential in a hormone-dependent manner. Interference with Src function in C4-2 cells led to decreased recruitment of AR on the target gene PSA enhancer and also resulted in the abrogation of hormone-dependent PSA transcript induction. Src inhibition also led to a dramatic decrease in the cell invasion in addition to decreasing the cellular growth. We suggest that targeting Src kinase could be an effective strategy to inhibit prostate cancer growth and metastasis.
Collapse
Affiliation(s)
- M Asim
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Papaioannou M, Melle C, Baniahmad A. The coregulator Alien. NUCLEAR RECEPTOR SIGNALING 2007; 5:e008. [PMID: 18174916 PMCID: PMC2121318 DOI: 10.1621/nrs.05008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
Abstract
Alien has characteristics of a corepressor for selected members of the nuclear hormone receptor (NHR) superfamily and also for transcription factors involved in cell cycle regulation and DNA repair. Alien mediates gene silencing and represses the transactivation of specific NHRs and other transcription factors to modulate hormone response and cell proliferation. Alien is a highly conserved protein and is expressed in a wide variety of tissues. Knockout of the gene encoding Alien in mice is embryonic lethal at a very early stage, indicating an important evolutionary role in multicellular organisms. From a mechanistic perspective, the corepressor function of Alien is in part mediated by histone deacetylase (HDAC) activity. In addition, Alien seems to modulate nucleosome assembly activity. This suggests that Alien is acting on chromatin not only through recruitment of histone-modifying activities, but also through enhancing nucleosome assembly.
Collapse
Affiliation(s)
- Maria Papaioannou
- Molecular Genetics, Institute of Human Genetics and Anthropology, Friedrich-Schiller-University, Jena, Germany
| | | | | |
Collapse
|
43
|
Kumar S, Chaturvedi NK, Kumar S, Tyagi RK. Agonist-mediated docking of androgen receptor onto the mitotic chromatin platform discriminates intrinsic mode of action of prostate cancer drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:59-73. [PMID: 18070607 DOI: 10.1016/j.bbamcr.2007.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 10/02/2007] [Accepted: 11/05/2007] [Indexed: 11/26/2022]
Abstract
This study documents the analysis of a hitherto unreported dynamic behavior of androgen receptor (AR), a member of the nuclear receptor superfamily. Employing GFP-tagged AR, we observed agonist-mediated docking of AR onto the mitotic chromatin during all the stages of mitosis. When bound to therapeutic drugs with intrinsically absolute or partial agonistic properties, AR concomitantly associated with the mitotic chromatin. Conversely, pure antagonists known to bind and subsequently translocate unliganded AR from cytoplasm to nuclear compartment did not provoke such association. The agonist-mediated docking of AR could not be competed with other transcription factors that constitutively preoccupied the chromosomal docking sites. Amongst the previously reported proteins, AR is first example of a transcription factor whose response on mitotic chromatin platform can be modulated in a ligand-specific manner. However, data from live cell imaging revealed that co-activators of agonist-activated receptor that are recruited into "nuclear foci" of interphase chromatin are dislodged from the mitotic chromatin during cell division. This implies that in absence of critical co-activators, AR transverses mitotic phase in transcriptionally silenced state. Finally, our results indicate that ligand-mediated dynamic relationship of nuclear receptors with mitotic chromatin can be effectively exploited to study, analyze and authenticate therapeutic ligands.
Collapse
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
44
|
Moehren U, Papaioannou M, Reeb CA, Grasselli A, Nanni S, Asim M, Roell D, Prade I, Farsetti A, Baniahmad A. Wild-type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB J 2007; 22:1258-67. [PMID: 17991730 DOI: 10.1096/fj.07-9360com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Androgens play a central role in prostate development and prostate cancer proliferation. Induction of telomerase is an early event in prostate carcinogenesis and is considered as a marker for both primary tumors and metastases. Interestingly, several reports suggest that telomerase activity is regulated by androgens in vivo. Here, we show that the wild-type (WT) human androgen receptor (AR) inhibits the expression of the human telomerase reverse transcriptase (hTERT) and telomerase activity via inhibition of hTERT promoter activity in the presence of androgen receptor agonists. However, pure androgen antagonists failed to repress hTERT transcription. The androgen-mediated repression of hTERT is abrogated in a human prostate cancer cell line exhibiting hormone-dependent growth, which expresses a mutant AR (T877A) frequently occurring in prostate cancer. We reveal that this single amino acid exchange is sufficient for the lack of transrepression. Interestingly, chromatin immunoprecipitation data suggest that, in contrast to the WT AR, the mutant AR is recruited less efficiently to the hTERT promoter in vivo, indicating that loss of transrepression results from reduced chromatin recruitment. Thus, our findings suggest that the WT AR inhibits expression of hTERT, which is indicative of a protective mechanism, whereas the T877A mutation of AR not only broadens the ligand spectrum of the receptor but abrogates this inhibitory mechanism in prostate cancer cells. This novel role of AR mutations in prostate cancer development suggests the benefit to a search for new AR antagonists that inhibit transactivation but allow transrepression.
Collapse
Affiliation(s)
- Udo Moehren
- Division of Biochemistry, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hodgson MC, Astapova I, Hollenberg AN, Balk SP. Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 2007; 67:8388-95. [PMID: 17804755 DOI: 10.1158/0008-5472.can-07-0617] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms by which androgen receptor (AR) antagonists inhibit AR activity, and how their antagonist activity may be abrogated in prostate cancer that progresses after androgen deprivation therapy, are not clear. Recent studies show that AR antagonists (including the clinically used drug bicalutamide) can enhance AR recruitment of corepressor proteins [nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid receptors (SMRT)] and that loss of corepressors may enhance agonist activity and be a mechanism of antagonist failure. We first show that the agonist activities of weak androgens and an AR antagonist (cyproterone acetate) are still dependent on the AR NH(2)/COOH-terminal interaction and are enhanced by steroid receptor coactivator (SRC)-1, whereas the bicalutamide-liganded AR did not undergo a detectable NH(2)/COOH-terminal interaction and was not coactivated by SRC-1. However, both the isolated AR NH(2) terminus and the bicalutamide-liganded AR could interact with the SRC-1 glutamine-rich domain that mediates AR NH(2)-terminal binding. To determine whether bicalutamide agonist activity was being suppressed by NCoR recruitment, we used small interfering RNA to deplete NCoR in CV1 cells and both NCoR and SMRT in LNCaP prostate cancer cells. Depletion of these corepressors enhanced dihydrotestosterone-stimulated AR activity on a reporter gene and on the endogenous AR-regulated PSA gene in LNCaP cells but did not reveal any detectable bicalutamide agonist activity. Taken together, these results indicate that bicalutamide lacks agonist activity and functions as an AR antagonist due to ineffective recruitment of coactivator proteins and that enhanced coactivator recruitment, rather than loss of corepressors, may be a mechanism contributing to bicalutamide resistance.
Collapse
Affiliation(s)
- Myles C Hodgson
- Cancer Biology Program/Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
46
|
Berndt K, Kim M, Meinhardt A, Klug J. Macrophage migration inhibitory factor does not modulate co-activation of androgen receptor by Jab1/CSN5. Mol Cell Biochem 2007; 307:265-71. [PMID: 17786542 DOI: 10.1007/s11010-007-9578-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/10/2007] [Indexed: 01/12/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory immune modulator that plays an important role in the regulation of innate and adaptive immune responses. MIF signaling involves CD74/CD44 membrane receptor complexes, the chemokine receptors CXCR2 and 4 as well as uptake by non-receptor mediated endocytosis. Endocytosed or endogenous MIF interacts with Jun activation domain-binding protein 1 (Jab1), originally described as transcriptional co-activator for the transcription factor AP-1, that is also known as subunit 5 of the COP9 signalosome (CSN5). Since Jab1/CSN5 also functions as a co-activator for a number of steroid hormone receptors (SHRs), it had been speculated that MIF could modulate Jab1/CSN5-SHR interactions. Here we show (i) that fluorescently labeled MIF is internalized by NIH 3T3 cells within minutes, (ii) compromises the induction of phospho-c-Jun levels by TNFalpha and PMA and, hence, is biologically active, but (iii) is not able to interfere with co-activation by Jab1/CSN5 of the androgen receptor.
Collapse
Affiliation(s)
- Kersten Berndt
- Institut für Anatomie und Zellbiologie, Justus-Liebig-Universität Giessen, Aulweg 123, 35385, Giessen, Germany
| | | | | | | |
Collapse
|
47
|
Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007; 21:2855-63. [PMID: 17636035 DOI: 10.1210/me.2007-0223] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The androgen receptor (AR) is a nuclear receptor transcription factor that mediates the cellular actions of androgens, the male sex steroids. Androgen-dependent tissues, such as the prostate, rely on androgen action for their development as well as their maintenance in adulthood. This requirement is exploited during systemic therapy of prostate cancer, which is initially an androgen-dependent disease. Indeed, androgen ablation, which prevents the production or blocks the action of androgens, inhibits prostate cancer growth. Invariably, the disease recurs with a phenotype resistant to further hormonal manipulations. However, this so-called androgen depletion-independent prostate cancer remains dependent on a functional AR for growth. Many studies have focused on the mechanistic and structural basis of AR activation with the important goal of understanding how the AR is activated at this stage of the disease. In this review, we summarize how these studies have revealed important functional domains in the AR protein and have provided initial clues to their role in prostate cancer development and progression. A comprehensive understanding of the role and functional relationships between these AR domains could lead to the development of novel AR-directed therapies for prostate cancer.
Collapse
Affiliation(s)
- Scott M Dehm
- Departments of Urology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
48
|
Kim JY, Park OG, Lee JW, Lee YC. One- plus two-hybrid system, a novel yeast genetic selection for specific missense mutations disrupting protein/protein interactions. Mol Cell Proteomics 2007; 6:1727-40. [PMID: 17609197 DOI: 10.1074/mcp.m700079-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To facilitate analysis of protein/protein interaction interfaces, we devised a novel yeast genetic screening method, named the "one- plus two-hybrid system," for the efficient selection of missense mutations that specifically disrupt known protein/protein interactions. This system modifies the standard yeast two-hybrid system to allow the operation of dual reporter systems within the same cell. The one-hybrid system is first used to select the intact interacting partner (prey), resulting in the positive selection of informative missense mutants from a large library of randomly generated mutant alleles. Then in a second screening step, interaction-defective prey mutants for a given protein are selected using the two-hybrid reporter system among the isolated missense mutants. We used this method to characterize the interactions between unliganded nuclear receptors (NRs) and the conserved motif within the bipartite NR interaction domains (IDs) of the NR corepressor (N-CoR) and identified the specific residues of N-CoR-IDs required either generally for optimal NR binding or to interact with a particular NR. This efficient and rapid method should allow us to quickly analyze a large number of interaction interfaces.
Collapse
Affiliation(s)
- Ji Young Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | |
Collapse
|
49
|
Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120:719-33. [PMID: 17163421 DOI: 10.1002/ijc.22365] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The androgen receptor signaling axis plays an essential role in the development, function and homeostasis of male urogenital structures including the prostate gland although the mechanism by which the AR axis contributes to the initiation, progression and metastatic spread of prostate cancer remains somewhat enigmatic. A number of molecular events have been proposed to act at the level of the AR and associated coregulators to influence the natural history of prostate cancer including deregulated expression, somatic mutation, and post-translational modification. The purpose of this article is to review the evidence for deregulated expression and function of the AR and associated coactivators and corepressors and how such events might contribute to the progression of prostate cancer by controlling the selection and expression of AR targets.
Collapse
Affiliation(s)
- Renée Chmelar
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
50
|
Fuse H, Korenaga S, Sakari M, Hiyama T, Ito T, Kimura K, Kato S. Non-steroidal antiandrogens act as AF-1 agonists under conditions of high androgen-receptor expression. Prostate 2007; 67:630-7. [PMID: 17342748 DOI: 10.1002/pros.20269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The mechanism of resistance acquisition to antiandrogens in prostate cancer is not fully understood. Numerous clinical and basic research studies have shown expression of androgen receptors (ARs) increases in hormone-refractory prostate cancer and therefore we explored possible molecular mechanisms by which prostate cancer acquires resistance to antiandrogens under conditions of increased AR expression. METHODS In order to study resistance to antiandrogens at the AR transactivation level we used a human AR (hAR) reporter assay system. In addition, we utilized an hAR deletion mutant to determine the functional domain responsible for the acquisition of resistance. RESULTS Increased hAR protein expression enhanced the sensitivity of AR transactivation to low concentrations of DHT, and also reduced the inhibitory activity of the non-steroidal antiandrogens, hydroxyflutamide, and bicalutamide on DHT-induced AR transactivation. Moreover, these antiandrogens acquired agonistic activity under conditions of high hAR protein expression. Such agonistic activity of antiandrogens was not detected in an hAR deletion mutant (hAR-DeltaA/B) that lacked an A/B domain with AF-1 activity. CONCLUSIONS We found that non-steroidal antiandrogens act as AF-1 agonists under conditions of high AR protein expression. This partial antagonistic property of antiandrogens may be a molecular mechanism by which prostate cancer develops resistance to these drugs.
Collapse
Affiliation(s)
- Hiroaki Fuse
- Pharmacological Research Department, ASKA Pharmaceutical Co. Ltd., Takatsu-ku, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|