1
|
Shi W, Zhao Q, Gao H, Yang Y, Tan Z, Li N, Wang H, Ji Y, Zhou Y. Exploring the bioactive ingredients of three traditional Chinese medicine formulas against age-related hearing loss through network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3731-3759. [PMID: 39356317 PMCID: PMC11978554 DOI: 10.1007/s00210-024-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Traditional Chinese medicine (TCM) formulas, including the Er-Long-Zuo-Ci pill, Tong-Qiao-Er-Long pill, and Er-Long pill, have long been utilized in China for managing age-related hearing loss (ARHL). However, the specific bioactive compounds, pharmacological targets, and underlying mechanisms remain elusive. This study aims to find the shared bioactive ingredients among these three formulas, uncover the molecular pathways they regulate, and identify potential therapeutic targets for ARHL. Furthermore, it seeks to validate the efficacy of these major components through both in vivo and in vitro experiments. Common bioactive ingredients were extracted from the TCMSP database, and their putative target proteins were predicted using the Swiss Target Prediction database. ARHL-related target proteins were collected from GeneCards and OMIM databases. Our approach involved constructing drug-target networks and drug-disease-specific protein-protein interaction networks and conducting clustering, topological property analyses, and functional annotation through GO and KEGG enrichment analysis. Molecular docking analysis was utilized to delineate interaction mechanisms between major bioactive ingredients and key target proteins. Finally, in vivo and in vitro experiments involving ABR recording, immunofluorescent staining, HE staining, and quantitative PCR were conducted to validate the treatment effects of flavonoids on the declining auditory function in DBA/2 J mice. We identified 11 common chemical compounds across the three formulas and their associated 276 putative targets. Additionally, 3350 ARHL-related targets were compiled. As an intersection of the putative targets of the common compounds and ARHL-related proteins, 145 shared targets were determined. Functional enrichment analysis indicated that these compounds may modulate various biological processes, including cell proliferation, apoptosis, inflammatory response, and synaptic connections. Notably, potential targets such as TNFα, MAPK1, SRC, AKT, EGFR, ESR1, and AR were implicated. Flavonoids emerged as major bioactive components against ARHL based on target numbers, with molecular docking demonstrating diverse interaction models between these flavonoids and protein targets. Furthermore, baicalin could mitigate the age-related cochlear damage and hearing loss of DBA/2 J mice through its multi-target and multi-pathway mechanism, involving anti-inflammation, modulation of sex hormone-related pathways, and activation of potassium channels. This study offers an integrated network pharmacology approach, validated by in vivo and in vitro experiments, shedding light on the potential mechanisms, major active components, and therapeutic targets of TCM formulas for treating ARHL.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yaxin Yang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China.
| |
Collapse
|
2
|
Giulianelli S, Ruivo R, Neuparth T, Castro LFC, Bigatti G, Santos MM. Cloning and comparative analysis of the retinoid X receptor in two marine gastropods with varying sensitivity to imposex under tributyltin contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9479-9488. [PMID: 40128418 DOI: 10.1007/s11356-025-36278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
The Retinoid X Receptor (RXR) has been identified as a primary target in diverse endocrine disruption processes resulting from exposure to tributyltin (TBT), particularly concerning imposex development in gastropods. Two partial open reading frames encoding RXR were successfully isolated from the marine gastropods Buccinastrum deforme (BgRXR) and Trophon geversianus (TgRXR). These edible species, residing in the same area and exposed to similar environmental pollution conditions in Patagonia, Argentina, display different levels of imposex development. Here, we present a thorough functional characterization of both RXRs, examining their responsiveness and modulation by 9-cis-retinoic acid (9-cis-RA) and TBT. BgRXR and TgRXR exhibited dose-dependent activation by both 9-cis-RA and TBT, in luciferase reporter assays. TgRXR displayed higher transcriptional activation than BgRXR triggered by both tested ligands, whereas only BgRXR was activated by low TBT concentrations. Our findings highlight RXR's role in imposex development, emphasizing the importance of species-specific factors in response to environmental contaminants.
Collapse
Affiliation(s)
- Sebastián Giulianelli
- Instituto de Biología de Organismos Marinos, IBIOMAR (CCT CONICET-CENPAT), Puerto Madryn, Argentina.
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
| | - Teresa Neuparth
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
| | - Luís Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gregorio Bigatti
- Instituto de Biología de Organismos Marinos, IBIOMAR (CCT CONICET-CENPAT), Puerto Madryn, Argentina
- Universidad Nacional de La Patagonia San Juan Bosco, Puerto Madryn, Argentina
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Miguel M Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Jurutka PW, Khan Z, Kaneko I, Sausedo MA, Shahani PH, MacNeill M, Grozic A, Bhogal J, Swierski J, Wentzel MR, Chhun C, Applegate MT, Raban S, Ibrahim S, Alwaeli K, Feldman TL, Pomeroy KJ, Sarnowski JT, Nguyen N, Ziller JW, Ma N, van der Vaart A, Hackney JF, Marshall PA, Wagner CE. Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics. Bioorg Med Chem 2025; 119:118059. [PMID: 39808894 DOI: 10.1016/j.bmc.2024.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay. The EC50 values for these analogs, and their corresponding effectiveness in activating both LXR/LXRE and the Sterol Regulatory Element Binding Protein (SREBP) promoter in comparison to 1, suggests that these compounds likely display a range of therapeutic potential and differential side effect profiles. Several analogs also exhibited reduced retinoic-acid-receptor (RAR) cross-signaling implying that they possess enhanced selectivity towards activation of cellular RXR versus RAR pathways. These results show that modifying potent rexinoids such as CD3254 or partial agonists such as CBt-PMN can result in improved target receptor selectivity and enhanced potency, such as compounds 26, 27 and 28 in this study, compared with approved therapeutics such as compound 1, where these three compounds exhibited similar potency as 1, but 26 and 27 lower RAR and SREBP activation than 1.
Collapse
Affiliation(s)
- Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA; Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Michael A Sausedo
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pritika H Shahani
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Mairi MacNeill
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Jaskaran Bhogal
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Johnathon Swierski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael R Wentzel
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Christine Chhun
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Michael T Applegate
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - San Raban
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Samir Ibrahim
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Karar Alwaeli
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Tracie L Feldman
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Kayla J Pomeroy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph T Sarnowski
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Natalia Nguyen
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, CA 92697, USA
| | - Ning Ma
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA
| | - Jennifer F Hackney
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Pamela A Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA
| | - Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA.
| |
Collapse
|
4
|
Zheng G, Wu D, Wei X, Xu D, Mao T, Yan D, Han W, Shang X, Chen Z, Qiu J, Tang K, Cao Z, Qiu T. PbsNRs: predict the potential binders and scaffolds for nuclear receptors. Brief Bioinform 2024; 26:bbae710. [PMID: 39798999 PMCID: PMC11724720 DOI: 10.1093/bib/bbae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling. The utility of PbsNRs was systemically evaluated using both chemical compounds and natural products. Results indicated that PbsNRs achieved a good prediction performance for chemical compounds on internal (ROC-AUC = 0.906, where ROC is Receiver-Operating Characteristic curve and AUC is the Area Under the Curve) and external (ROC-AUC = 0.783) datasets, outperforming both compound-ligand interaction tools and NR-specific predictors. PbsNRs also successfully identified bioactive chemical scaffolds for NRs by screening massive natural products. Moreover, the predicted bioactive and inactive natural products for NR2B1 were experimentally validated using biosensors. PbsNRs not only aids in screening potential therapeutic NR binders but also helps discover the essential molecular scaffold and guide the drug discovery for multiple NR-related diseases. The PbsNRs web server is available at http://pbsnrs.badd-cao.net.
Collapse
Affiliation(s)
- Genhui Zheng
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
- Oden Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, No. 201 East 24th Street, Austin 78712, TX, United States
| | - Dingfeng Wu
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou 310052, China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Tiantian Mao
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Deyu Yan
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Wenhao Han
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaoxiao Shang
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal H3A 0B9, Quebec, Canada
| | - Zikun Chen
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Kailin Tang
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Cao
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
5
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Marino V, Phromkrasae W, Bertacchi M, Cassini P, Chakrabandhu K, Dell'Orco D, Studer M. Disrupted protein interaction dynamics in a genetic neurodevelopmental disorder revealed by structural bioinformatics and genetic code expansion. Protein Sci 2024; 33:e4953. [PMID: 38511490 PMCID: PMC10955615 DOI: 10.1002/pro.4953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | | | | - Paul Cassini
- University Côte d'Azur, CNRS, Inserm, iBVNiceFrance
| | | | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | |
Collapse
|
8
|
Rahimpour A, Shahbazi B, Mafakher L. Discovery of small molecules from natural compound databases as potent retinoid X alpha receptor agonists to treat Alzheimer's disease. J Biomol Struct Dyn 2024:1-15. [PMID: 38373033 DOI: 10.1080/07391102.2024.2313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's is characterized as a progressive neurodegenerative disease due to beta-amyloid accumulation in the brain. Some previous studies reported that RXR agonists could be effective in the treatment of Alzheimer's disease. There are currently numerous attempts being made to discover a natural RXR agonist that is more potent than 9-cis-retinoic acid (9CR). One of the most efficient resources for finding high-potential compounds is natural databases. In this study, 81215 compounds from the IB screen library as natural databases were docked against the RXR-alpha binding site. The best compounds discovered interact with the RXR-alpha binding site with a lower binding energy (-11 to -13 kcal/mol) than the binding energy of -10.94 kcal/mol for 9-cis, which means that these compounds could interact stronger with RXR-alpha than 9CR. All selected compounds could pass the blood-brain barrier. Physiochemical properties assessment indicated that all compounds passed Lipinski's rule and had the potential to be oral drug candidates. The stability of protein-ligand complexes during a timescale of 100 ns by Molecular Dynamics simulation demonstrated that all compounds could effectively interact with the RXR binding site. The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) represented that all selected hit compounds had a better binding affinity to the alpha RXR binding site compared to 9CR, which means these hit compounds had potential drug candidates for the treatment of Alzheimer's disease. However, experimental assessment is needed to validate this result.
Collapse
Affiliation(s)
- Alireza Rahimpour
- Islamic Azad University of Science and Research Branch Tehran, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Kawasaki M, Motoyama T, Yamada S, Watanabe M, Fujihara M, Kambe A, Nakano S, Kakuta H, Ito S. Ligand Screening System for the RXRα Heterodimer Using the Fluorescence RXR Agonist CU-6PMN. ACS Med Chem Lett 2023; 14:291-296. [PMID: 36923911 PMCID: PMC10009790 DOI: 10.1021/acsmedchemlett.2c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Retinoid X receptor (RXR), a nuclear receptor (NR) that regulates transcription of target genes in a ligand binding-dependent manner, is of interest as a drug target. RXR agonists have been developed as therapeutic agents for cutaneous invasive T-cell lymphoma (e.g., bexarotene (1)) and investigated as potential anti-inflammatory agents. Screening systems for the binding of RXR alone have been reported. However, although RXRs function as RXR heterodimers, information on systems to evaluate the differential binding of RXR agonists as RXR heterodimers has not been available until recently. Here we show that the fluorescent RXR agonist CU-6PMN (3), designed by our group, can be useful for assessing RXR binding to PPARγ/RXRα, and that the binding data differ from those of RXRα alone. This screening method opens a new avenue for binding assays for RXR heterodimers.
Collapse
Affiliation(s)
- Mayu Kawasaki
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomoharu Motoyama
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shoya Yamada
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Kambe
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- PREST,
Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sohei Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Shizu R. [Understanding the Underlying Mechanism of Xenobiotic-Sensing Nuclear Receptor Activation]. YAKUGAKU ZASSHI 2023; 143:701-706. [PMID: 37661435 DOI: 10.1248/yakushi.23-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The nuclear receptor superfamily comprises 48 members in humans. In various organs, nuclear receptors regulate a variety of physiological functions through transcription of target genes. They are associated with the development and progression of endocrine and metabolic disorders, as well as with cancer development. Therefore, agonists and antagonists targeting nuclear receptors are currently being developed as therapeutic drugs for these diseases. Nuclear receptors can be activated through ligand binding or phosphorylation, which is mediated by various cellular signaling pathways. Activation of a nuclear receptor necessitates significant structural modifications in each of its domains. My research has been focused on unraveling the intricate mechanisms underlying the activation of nuclear receptors using constitutive androstane receptor (CAR) and pregnane X receptor (PXR) as model nuclear receptor proteins. CAR and PXR are highly expressed in the liver and are activated by a wide range of xenobiotics. Given their crucial roles in the metabolism and disposition of xenobiotics, as well as their potential in mediating drug-drug interactions, it is imperative to extensively study the mechanisms of xenobiotic-induced activation of these receptors. Such studies are essential for advancements in drug development, as well as for ensuring food and chemical safety. In this review, I elucidate the molecular basis underlying the activation of xenobiotic-responsive nuclear receptors.
Collapse
Affiliation(s)
- Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
11
|
le Maire A, Rey M, Vivat V, Guée L, Blanc P, Malosse C, Chamot-Rooke J, Germain P, Bourguet W. Design and in vitro characterization of RXR variants as tools to investigate the biological role of endogenous rexinoids. J Mol Endocrinol 2022; 69:377-390. [PMID: 35900852 DOI: 10.1530/jme-22-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Retinoid X receptors (RXRα, β, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors. Based on available crystal structures, we introduced a series of amino acid substitutions into the ligand-binding pocket of all three RXR subtypes in order to alter their binding properties. Subsequent characterization using a battery of cell-based and in vitro assays led to the identification of a double mutation abolishing the binding of any ligand while keeping the other receptor functions intact and a triple mutation that selectively impairs interaction with natural rexinoids but not with some synthetic ligands. We also report crystal structures that help understand the specific ligand-binding capabilities of both variants. These RXR variants, either fully disabled for ligand binding or retaining the property of being activated by synthetic compounds, represent unique tools that could be used in future studies to probe the presence of active endogenous rexinoids in tissues/organs and to investigate their role in vivo. Last, we provide data suggesting a possible involvement of fatty acids in the weak interaction of RXRs with corepressors.
Collapse
Affiliation(s)
- Albane le Maire
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Martial Rey
- Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France
| | - Valérie Vivat
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Univ Strasbourg, CNRS, Inserm, Illkirch, France
| | - Laura Guée
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Pauline Blanc
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Christian Malosse
- Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université de Paris, CNRS USR2000, Mass Spectrometry for Biology Unit, Paris, France
| | - Pierre Germain
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - William Bourguet
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
12
|
Zhao A, Miao J, Liu L, Pan L. Potencies of organotin compounds in scallop RXRa responsive activity with a GAL4-based reconstituted yeast assay in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19890-19897. [PMID: 35084679 DOI: 10.1007/s11356-022-18620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Retinoid X receptor (RXR) has been found to be a major target in various processes of endocrine disruption from the exposure to organotin compounds (OTCs), including imposex in gastropod mollusks. It was also reported in bivalves that OTCs caused intersex and skewed sex ratio. In order to evaluate the effect of these ligand-like OTCs, we constructed a reconstituted yeast system (CfRE system) based on GAL4 yeast two-hybrid principle using scallop Chlamys farreri retinoid X receptor (CfRXRa) and retinoid X response element (RXRE) to investigate the ligand-induced transactivation of CfRXRa. Responses of CfRXRa to 9-cis retinoic acid (9cRA) and tested four OTCs showed concentration-dependent response which is comparable with reported RXRa in vitro assay of human and gastropods. The detective limits of the CfRE system were found to be 100 nM for 9cRA and 10-1000 nM for the tested OTCs. While the tested non-Sn endocrine disrupting chemicals, including Benzo[a]pyrene, 2,4-Dichlorophenol, Nonylphenol, and Tetrabromobisphenol A, showed no effect on CfRXRa response. The present assay system may provide a valuable tool for screening assessments of unidentified environmental ligand chemicals on bivalve mollusks. It is also useful for comparison of sensitivity differences among species exposed to EDCs.
Collapse
Affiliation(s)
- Anran Zhao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Jingjing Miao
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China.
| | - Liru Liu
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- Ministry of Education, The Key Laboratory of Mariculture (Ocean University of China), Qingdao, 266003, People's Republic of China
| |
Collapse
|
13
|
Kurkinen ST, Lehtonen JV, Pentikäinen OT, Postila PA. Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening. J Chem Inf Model 2022; 62:1100-1112. [PMID: 35133138 PMCID: PMC8889583 DOI: 10.1021/acs.jcim.1c01145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Molecular docking is a key in silico method used routinely in modern drug discovery projects. Although docking provides high-quality ligand binding predictions, it regularly fails to separate the active compounds from the inactive ones. In negative image-based rescoring (R-NiB), the shape/electrostatic potential (ESP) of docking poses is compared to the negative image of the protein's ligand binding cavity. While R-NiB often improves the docking yield considerably, the cavity-based models do not reach their full potential without expert editing. Accordingly, a greedy search-driven methodology, brute force negative image-based optimization (BR-NiB), is presented for optimizing the models via iterative editing and benchmarking. Thorough and unbiased training, testing and stringent validation with a multitude of drug targets, and alternative docking software show that BR-NiB ensures excellent docking efficacy. BR-NiB can be considered as a new type of shape-focused pharmacophore modeling, where the optimized models contain only the most vital cavity information needed for effectively filtering docked actives from the inactive or decoy compounds. Finally, the BR-NiB code for performing the automated optimization is provided free-of-charge under MIT license via GitHub (https://github.com/jvlehtonen/brutenib) for boosting the success rates of docking-based virtual screening campaigns.
Collapse
Affiliation(s)
- Sami T Kurkinen
- Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.,Aurlide Ltd., FI-21420 Lieto, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Jukka V Lehtonen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, FI-20500 Turku, Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.,Aurlide Ltd., FI-21420 Lieto, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Pekka A Postila
- Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.,Aurlide Ltd., FI-21420 Lieto, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
14
|
Combining Network Pharmacology with Molecular Docking for Mechanistic Research on Thyroid Dysfunction Caused by Polybrominated Diphenyl Ethers and Their Metabolites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2961747. [PMID: 34840968 PMCID: PMC8613503 DOI: 10.1155/2021/2961747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Network pharmacology was used to illuminate the targets and pathways of polybrominated diphenyl ethers (PBDEs) causing thyroid dysfunction. A protein-protein interaction (PPI) network was constructed. Molecular docking was applied to analyze PBDEs and key targets according to the network pharmacology results. A total of 247 targets were found to be related to 16 PBDEs. Ten key targets with direct action were identified, including the top five PIK3R1, MAPK1, SRC, RXRA, and TP53. Gene Ontology (GO) functional enrichment analysis identified 75 biological items. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 62 pathways mainly related to the regulation of the thyroid hormone signaling pathway, MAPK signaling pathway, PI3K-Akt signaling, pathways in cancer, proteoglycans in cancer, progesterone-mediated oocyte maturation, and others. The molecular docking results showed that BDE-99, BDE-153, 5-OH-BDE47, 5'-OH-BDE99, 5-BDE47 sulfate, and 5'-BDE99 sulfate have a good binding effect with the kernel targets. PBDEs could interfere with the thyroid hormone endocrine through multiple targets and biological pathways, and metabolites demonstrated stronger effects than the prototypes. This research provides a basis for further research on the toxicological effects and molecular mechanisms of PBDEs and their metabolites. Furthermore, the application of network pharmacology to the study of the toxicity mechanisms of environmental pollutants provides a new methodology for environmental toxicology.
Collapse
|
15
|
Galdadas I, Bonis V, Vgenopoulou P, Papadourakis M, Kakoulidis P, Stergiou G, Cournia Z, Klinakis A. The effect of S427F mutation on RXRα activity depends on its dimeric partner. Chem Sci 2021; 12:14700-14710. [PMID: 34820085 PMCID: PMC8597827 DOI: 10.1039/d1sc04465f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022] Open
Abstract
RXRs are nuclear receptors acting as transcription regulators that control key cellular processes in all tissues. All type II nuclear receptors require RXRs for transcriptional activity by forming heterodimeric complexes. Recent whole-exome sequencing studies have identified the RXRα S427F hotspot mutation in 5% of the bladder cancer patients, which is always located at the interface of RXRα with its obligatory dimerization partners. Here, we show that mutation of S427 deregulates transcriptional activity of RXRα dimers, albeit with diverse allosteric mechanisms of action depending on its dimeric partner. S427F acts by allosteric mechanisms, which range from inducing the collapse of the binding pocket to allosteric stabilization of active co-activator competent RXRα states. Unexpectedly, RXR S427F heterodimerization leads to either loss- or gain-of-function complexes, in both cases likely compromising its tumor suppressor activity. This is the first report of a cancer-associated single amino acid substitution that affects the function of the mutant protein variably depending on its dimerization partner.
Collapse
Affiliation(s)
| | - Vangelis Bonis
- Biomedical Research Foundation Academy of Athens Athens Greece
| | | | | | - Panos Kakoulidis
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | - Georgia Stergiou
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
- Data Science and Information Technologies, Department of Informatics and Telecommunication, National and Kapodistrian University of Athens Athens Greece
| | | |
Collapse
|
16
|
RXR – centralny regulator wielu ścieżek sygnałowych w organizmie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Receptory jądrowe (NRs) tworzą największą nadrodzinę czynników transkrypcyjnych, które odgrywają ważną rolę w regulacji wielu procesów biologicznych. Receptor kwasu 9-cis-retinowego (RXR) wydaje się odgrywać szczególną rolę wśród tej grupy białek, a to ma związek z jego zdolnością do tworzenia dimerów z innymi NRs. Ze względu na kontrolę ekspresji wielu genów, RXR stanowi bardzo dobry cel licznych terapii. Nieprawidłowości w szlakach modulowanych przez RXR są powiązane m.in. z chorobami neurodegeneracyjnymi, otyłością, cukrzycą, a także nowotworami. Istnieje wiele związków mogących regulować aktywność transkrypcyjną RXR. Jednak obecnie dopuszczonych do użytku klinicznego jest tylko kilka z nich. Retinoidy normalizują wzrost i różnicowanie komórek skóry i błon śluzowych, ponadto działają immunomodulująco oraz przeciwzapalnie. Stąd są stosowane przede wszystkim w chorobach skóry i w terapii niektórych chorób nowotworowych. W artykule przedstawiono ogólne wiadomości na temat RXR, jego budowy, ligandów i mechanizmu działania oraz potencjalnej roli w terapii nowotworów i zespołu metabolicznego.
Collapse
|
17
|
Shizu R, Nishiguchi H, Tashiro S, Sato T, Sugawara A, Kanno Y, Hosaka T, Sasaki T, Yoshinari K. Helix 12 stabilization contributes to basal transcriptional activity of PXR. J Biol Chem 2021; 297:100978. [PMID: 34284062 PMCID: PMC8390552 DOI: 10.1016/j.jbc.2021.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Pregnane X receptor (PXR) plays an important role in xenobiotic metabolism. While ligand binding induces PXR-dependent gene transcription, PXR shows constitutive transcriptional activity in the absence of ligands when expressed in cultured cells. This constitutive activity sometimes hampers investigation of PXR activation by compounds of interest. In this study, we investigated the molecular mechanism of PXR activation. In the reported crystal structures of unliganded PXR, helix 12 (H12), including a coactivator binding motif, was stabilized, while it is destabilized in the unliganded structures of other nuclear receptors, suggesting a role for H12 stabilization in the basal activity of PXR. Since Phe420, located in the loop between H11 and H12, is thought to interact with Leu411 and Ile414 to stabilize H12, we substituted alanine at Phe420 (PXR-F420A) and separately inserted three alanine residues directly after Phe420 (PXR-3A) and investigated their influence on PXR-mediated transcription. Reporter gene assays demonstrated that the mutants showed drastically reduced basal activity and enhanced responses to various ligands, which was further enhanced by coexpression of the coactivator peroxisome proliferator-activated receptor gamma coactivator 1α. Mutations of both Leu411 and Ile414 to alanine also suppressed basal activity. Mammalian two-hybrid assays showed that PXR-F420A and PXR-3A bound to corepressors and coactivators in the absence and presence of ligands, respectively. We conclude that the intramolecular interactions of Phe420 with Leu411 and Ile414 stabilize H12 to recruit coactivators even in the absence of ligands, contributing to the basal transcriptional activity of PXR. We propose that the generated mutants might be useful for PXR ligand screening.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Hikaru Nishiguchi
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sarii Tashiro
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takumi Sato
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ayaka Sugawara
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
18
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Kilu W, Merk D, Steinhilber D, Proschak E, Heering J. Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ. J Biol Chem 2021; 297:100814. [PMID: 34081964 PMCID: PMC8258697 DOI: 10.1016/j.jbc.2021.100814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022] Open
Abstract
Nuclear receptors (NRs) activate transcription of target genes in response to binding of ligands to their ligand-binding domains (LBDs). Typically, in vitro assays use either gene expression or the recruitment of coactivators to the isolated LBD of the NR of interest to measure NR activation. However, this approach ignores that NRs function as homo- as well as heterodimers and that the LBD harbors the main dimerization interface. Cofactor recruitment is thereby interconnected with oligomerization status as well as ligand occupation of the partnering LBD through allosteric cross talk. Here we present a modular set of homogeneous time-resolved FRET-based assays through which we investigated the activation of PPARγ in response to ligands and the formation of heterodimers with its obligatory partner RXRα. We introduced mutations into the RXRα LBD that prevent coactivator binding but do not interfere with LBD dimerization or ligand binding. This enabled us to specifically detect PPARγ coactivator recruitment to PPARγ:RXRα heterodimers. We found that the RXRα agonist SR11237 destabilized the RXRα homodimer but promoted formation of the PPARγ:RXRα heterodimer, while being inactive on PPARγ itself. Of interest, incorporation of PPARγ into the heterodimer resulted in a substantial gain in affinity for coactivator CBP-1, even in the absence of ligands. Consequently, SR11237 indirectly promoted coactivator binding to PPARγ by shifting the oligomerization preference of RXRα toward PPARγ:RXRα heterodimer formation. These results emphasize that investigation of ligand-dependent NR activation should take NR dimerization into account. We envision these assays as the necessary assay tool kit for investigating NRs that partner with RXRα.
Collapse
Affiliation(s)
- Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany; Assay development and screening, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany; Assay development and screening, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Jan Heering
- Assay development and screening, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.
| |
Collapse
|
20
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
21
|
Yang Z, Muccio DD, Melo N, Atigadda VR, Renfrow MB. Stability of the Retinoid X Receptor-α Homodimer in the Presence and Absence of Rexinoid and Coactivator Peptide. Biochemistry 2021; 60:1165-1177. [PMID: 33792309 PMCID: PMC9949482 DOI: 10.1021/acs.biochem.0c00865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential scanning calorimetry and differential scanning fluorimetry were used to measure the thermal stability of human retinoid X receptor-α ligand binding domain (RXRα LBD) homodimer in the absence or presence of rexinoid and coactivator peptide, GRIP-1. The apo-RXRα LBD homodimer displayed a single thermal unfolding transition with a Tm of 58.7 °C and an unfolding enthalpy (ΔH) of 673 kJ/mol (12.5 J/g), much lower than average value (35 J/g) of small globular proteins. Using a heat capacity change (ΔCp) of 15 kJ/(mol K) determined by measurements at different pH values, the free energy of unfolding (ΔG) of the native state was 33 kJ/mol at 37 °C. Rexinoid binding to the apo-homodimer increased Tm by 5 to 9 °C and increased the ΔG of the native homodimer by 12 to 20 kJ/mol at 37 °C, consistent with the nanomolar dissociation constant (Kd) of the rexinoids. GRIP-1 binding to holo-homodimers containing rexinoid resulted in additional increases in ΔG of 14 kJ/mol, a value that was the same for all three rexinoids. Binding of rexinoid and GRIP-1 resulted in a combined 50% increase in unfolding enthalpy, consistent with reduced structural fluidity and more compact folding observed in other published structural studies. The complexes of UAB110 and UAB111 are each more stable than the UAB30 complex by 8 kJ/mol due to enhanced hydrophobic interactions in the binding pocket because of their larger end groups. This increase in thermodynamic stability positively correlates with their improved RXR activation potency. Thermodynamic measurements are thus valuable in predicting agonist potency.
Collapse
Affiliation(s)
- Zhengrong Yang
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Donald D Muccio
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Nathalia Melo
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
22
|
Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 2021; 457:152789. [PMID: 33887376 DOI: 10.1016/j.tox.2021.152789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of hundreds of fluorinated chemicals with environmental health concerns due to their widespread presence and persistence in the environment. Several of these chemicals have been comprehensively studied for experimental toxicity, environmental fate and exposure, and human epidemiology; however, most chemicals have limited or no data available. To inform methods for prioritizing these data-poor chemicals for detailed toxicity studies, we evaluated 142 PFAS using an in vitro screening platform consisting of two multiplexed transactivation assays encompassing 81 diverse transcription factor activities and tested in concentration-response format ranging from 137 nM to 300 μM. Results showed activity for various nuclear receptors, including three known PFAS targets--specifically estrogen receptor alpha and peroxisome proliferator receptors alpha and gamma. We also report activity against the retinoid X receptor beta, the key heterodimeric partner of type II, non-steroidal nuclear receptors. Additional activities were found against the pregnane X receptor, nuclear receptor related-1 protein, and nuclear factor erythroid 2-related factor 2, a sensor of oxidative stress. Using orthogonal assay approaches, we confirmed activity of representative PFAS against several of these targets. Finally, we identified key PFAS structural features associated with nuclear receptor activity that can inform future predictive models for use in prioritizing chemicals for risk assessment and in the design of new structures devoid of biological activity.
Collapse
|
23
|
Peng Y, Zhang Q, Zielinski RM, Howells RD, Welsh WJ. Identification of an irreversible PPARγ antagonist with potent anticancer activity. Pharmacol Res Perspect 2020; 8:e00693. [PMID: 33280279 PMCID: PMC7719157 DOI: 10.1002/prp2.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is responsible for most skin cancer deaths, and its incidence continues to rise year after year. Different treatment options have been developed for melanoma depending on the stage of the disease. Despite recent advances in immuno- and targeted therapies, advanced melanoma remains incurable and thus an urgent need persists for safe and more effective melanoma therapeutics. In this study, we demonstrate that a novel compound MM902 (3-(3-(bromomethyl)-5-(4-(tert-butyl) phenyl)-1H-1,2,4-triazol-1-yl) phenol) exhibited potent efficacies in inhibiting the growth of different cancer cells, and suppressed tumor growth in a mouse xenograft model of malignant melanoma. Beginning with MM902 instead of specific targets, computational similarity- and docking-based approaches were conducted to search for known anticancer drugs whose structural features match MM902 and whose pharmacological target would accommodate an irreversible inhibitor. Peroxisome proliferator-activated receptor (PPAR) was computationally identified as one of the pharmacological targets and confirmed by in vitro biochemical assays. MM902 was shown to bind to PPARγ in an irreversible mode of action and to function as a selective antagonist for PPARγ over PPARα and PPARδ. It is hoped that MM902 will serve as a valuable research probe to study the functions of PPARγ in tumorigenesis and other pathological processes.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
| | - Qiang Zhang
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
- Present address:
Intra‐Cellular Therapies, Inc.430 East 29th StreetNew YorkNY10016USA
| | - Robert M. Zielinski
- Graduate School of Biomedical SciencesNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - Richard D. Howells
- Department of Biochemistry & Molecular BiologyNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - William J. Welsh
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
24
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
25
|
Nakashima KI, Yamaguchi E, Noritake C, Mitsugi Y, Goto M, Hirai T, Abe N, Sakai E, Oyama M, Itoh A, Inoue M. Discovery and SAR of Natural-Product-Inspired RXR Agonists with Heterodimer Selectivity to PPARδ-RXR. ACS Chem Biol 2020; 15:1526-1534. [PMID: 32374156 DOI: 10.1021/acschembio.0c00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A known natural product, magnaldehyde B, was identified as an agonist of retinoid X receptor (RXR) α. Magnaldehyde B was isolated from Magnolia obovata (Magnoliaceae) and synthesized along with more potent analogs for screening of their RXRα agonistic activities. Structural optimization of magnaldehyde B resulted in the development of a candidate molecule that displayed a 440-fold increase in potency. Receptor-ligand docking simulations indicated that this molecule has the highest affinity with the ligand binding domain of RXRα among the analogs synthesized in this study. Furthermore, the selective activation of the peroxisome proliferator-activated receptor (PPAR) δ-RXR heterodimer with a stronger efficacy compared to those of PPARα-RXR and PPARγ-RXR was achieved in luciferase reporter assays using the PPAR response element driven reporter (PPRE-Luc). The PPARδ activity of the molecule was significantly inhibited by the antagonists of both RXR and PPARδ, whereas the activity of GW501516 was not affected by the RXR antagonist. Furthermore, the molecule exhibited a particularly weak PPARδ agonistic activity in reporter gene assays using the Gal4 hybrid system. The obtained data therefore suggest that the weak PPARδ agonistic activity of the optimized molecule is synergistically enhanced by its own RXR agonistic activity, indicating the potent agonistic activity of the PPARδ-RXR heterodimer.
Collapse
Affiliation(s)
- Ken-ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | - Chihaya Noritake
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | - Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
26
|
Fonseca E, Ruivo R, Borges D, Franco JN, Santos MM, C. Castro LF. Of Retinoids and Organotins: The Evolution of the Retinoid X Receptor in Metazoa. Biomolecules 2020; 10:biom10040594. [PMID: 32290525 PMCID: PMC7225927 DOI: 10.3390/biom10040594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors accomplishing a multiplicity of functions, essential for organismal homeostasis. Among their numerous members, the retinoid X receptor (RXR) is a central player of the endocrine system, with a singular ability to operate as a homodimer or a heterodimer with other NRs. Additionally, RXR has been found to be a critical actor in various processes of endocrine disruption resulting from the exposure to a known class of xenobiotics termed organotins (e.g., tributyltin (TBT)), including imposex in gastropod molluscs and lipid perturbation across different metazoan lineages. Thus, given its prominent physiological and endocrine role, RXR is present in the genomes of most extant metazoan species examined to date. Here, we expand on the phylogenetic distribution of RXR across the metazoan tree of life by exploring multiple next-generation sequencing projects of protostome lineages. By addressing amino acid residue conservation in combination with cell-based functional assays, we show that RXR induction by 9-cis retinoic acid (9cisRA) and TBT is conserved in more phyla than previously described. Yet, our results highlight distinct activation efficacies and alternative modes of RXR exploitation by the organotin TBT, emphasizing the need for broader species sampling to clarify the mechanistic activation of RXR.
Collapse
Affiliation(s)
- Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- MARE—Marine and Environmental Sciences Centre, ESTM, 2520-637 Peniche, Portugal
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
| | - Débora Borges
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
| | - João N. Franco
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- MARE—Marine and Environmental Sciences Centre, ESTM, 2520-637 Peniche, Portugal
| | - Miguel M. Santos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Correspondence: (M.M.S.); (L.F.C.C.); Tel.: +351-223-401-800 (M.M.S. or L.F.C.C.)
| | - L. Filipe C. Castro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (E.F.); (R.R.); (D.B.); (J.N.F.)
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Correspondence: (M.M.S.); (L.F.C.C.); Tel.: +351-223-401-800 (M.M.S. or L.F.C.C.)
| |
Collapse
|
27
|
Abstract
Retinoic acid receptors were discovered during early studies of the actions and mechanisms of essential vitamins. Vitamin A is metabolized in the body to retinoic acid (RA) which is a key compound in the control of many developmental processes in chordates. These functions are mediated by a subfamily of nuclear receptors, divided into two classes, the retinoic acid receptors (RAR) and the retinoid X receptors (RXR). Each class is encoded by three closely related genes that are located on different chromosomes. The three proteins in each class are designated α, β and γ, respectively. A wealth of structural studies have shown that they all share the same architecture including a DNA-binding domain connected by a flexible linker to the ligand and co-activator binding domain. Retinoic acid incorporation into the ligand-binding domain leads to a conformational change enabling the formation of RAR homodimers or RAR/RXR heterodimers that in turn bind specifically to target DNA sequences. The consensus sequences located on the promotors of regulated genes are known as retinoic acid response elements (RARE). The activated RAR/RXR homodimers recruit co-activators with histone acetylase activity leading to an opening of the chromatin structure and enabling downstream transcription of regulated genes. These canonical pathways describe the control mechanism for the majority of developmental processes mediated by retinoic acid and its derivatives.
Collapse
Affiliation(s)
- Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom; Department of Bioscience, Durham University, Durham, United Kingdom; Biophysical Sciences Institute, Durham University, Durham, United Kingdom.
| | | |
Collapse
|
28
|
|
29
|
Kurkinen ST, Lätti S, Pentikäinen OT, Postila PA. Getting Docking into Shape Using Negative Image-Based Rescoring. J Chem Inf Model 2019; 59:3584-3599. [PMID: 31290660 PMCID: PMC6750746 DOI: 10.1021/acs.jcim.9b00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The failure of default scoring functions to ensure virtual screening enrichment is a persistent problem for the molecular docking algorithms used in structure-based drug discovery. To remedy this problem, elaborate rescoring and postprocessing schemes have been developed with a varying degree of success, specificity, and cost. The negative image-based rescoring (R-NiB) has been shown to improve the flexible docking performance markedly with a variety of drug targets. The yield improvement is achieved by comparing the alternative docking poses against the negative image of the target protein's ligand-binding cavity. In other words, the shape and electrostatics of the binding pocket is directly used in the similarity comparison to rank the explicit docking poses. Here, the PANTHER/ShaEP-based R-NiB methodology is tested with six popular docking softwares, including GLIDE, PLANTS, GOLD, DOCK, AUTODOCK, and AUTODOCK VINA, using five validated benchmark sets. Overall, the results indicate that R-NiB outperforms the default docking scoring consistently and inexpensively, demonstrating that the methodology is ready for wide-scale virtual screening usage.
Collapse
Affiliation(s)
- Sami T Kurkinen
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland
| | - Sakari Lätti
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy , University of Turku , FI-20520 Turku , Finland.,Aurlide Ltd. , FI-21420 Lieto , Finland
| | - Pekka A Postila
- Department of Biological and Environmental Science , University of Jyvaskyla , P.O. Box 35, FI-40014 Jyvaskyla , Finland
| |
Collapse
|
30
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
31
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Eberhardt J, McEwen AG, Bourguet W, Moras D, Dejaegere A. A revisited version of the apo structure of the ligand-binding domain of the human nuclear receptor retinoic X receptor α. Acta Crystallogr F Struct Biol Commun 2019; 75:98-104. [PMID: 30713160 PMCID: PMC6360438 DOI: 10.1107/s2053230x18018022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
The retinoic X receptor (RXR) plays a crucial role in the superfamily of nuclear receptors (NRs) by acting as an obligatory partner of several nuclear receptors; its role as a transcription factor is thus critical in many signalling pathways, such as metabolism, cell development, differentiation and cellular death. The first published structure of the apo ligand-binding domain (LBD) of RXRα, which is still used as a reference today, contained inaccuracies. In the present work, these inaccuracies were corrected using modern crystallographic tools. The most important correction concerns the presence of a π-bulge in helix H7, which was originally built as a regular α-helix. The presence of several CHAPS molecules, which are visible for the first time in the electron-density map and which stabilize the H1-H3 loop, which contains helix H2, are also revealed. The apo RXR structure has played an essential role in deciphering the molecular mode of action of NR ligands and is still used in numerous biophysical studies. This refined structure should be used preferentially in the future in interpreting experiments as well as for modelling and structural dynamics studies of the apo RXRα LBD.
Collapse
Affiliation(s)
- Jérôme Eberhardt
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alastair G. McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), CNRS, Inserm, Université de Montpellier, Montpellier, France
| | - Dino Moras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
33
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
34
|
Miyashita Y, Numoto N, Arulmozhiraja S, Nakano S, Matsuo N, Shimizu K, Shibahara O, Fujihara M, Kakuta H, Ito S, Ikura T, Ito N, Tokiwa H. Dual conformation of the ligand induces the partial agonistic activity of retinoid X receptor α (RXRα). FEBS Lett 2018; 593:242-250. [DOI: 10.1002/1873-3468.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Yurina Miyashita
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutaka Numoto
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Sundaram Arulmozhiraja
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
| | - Shogo Nakano
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Naoya Matsuo
- Department of Chemistry; Rikkyo University; Tokyo Japan
| | | | - Osamu Shibahara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Teikichi Ikura
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutoshi Ito
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Hiroaki Tokiwa
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Research Center for Smart Molecules; Rikkyo University; Tokyo Japan
| |
Collapse
|
35
|
Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife 2018; 7:43320. [PMID: 30575522 PMCID: PMC6317912 DOI: 10.7554/elife.43320] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, United States.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, United States
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Travis S Hughes
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States.,Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, United States
| | - Miru Tang
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Theodore M Kamenekca
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
36
|
de Vera IMS, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, Hughes TS, Rance M, Griffin PR, Kojetin DJ. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. Structure 2018; 27:66-77.e5. [PMID: 30416039 DOI: 10.1016/j.str.2018.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/17/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Nuclear receptor-related 1 protein (Nurr1/NR4A2) is an orphan nuclear receptor (NR) that is considered to function without a canonical ligand-binding pocket (LBP). A crystal structure of the Nurr1 ligand-binding domain (LBD) revealed no physical space in the conserved region where other NRs with solvent accessible apo-protein LBPs bind synthetic and natural ligands. Using solution nuclear magnetic resonance spectroscopy, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we show that the putative canonical Nurr1 LBP is dynamic with high solvent accessibility, exchanges between two or more conformations on the microsecond-to-millisecond timescale, and can expand from the collapsed crystallized conformation to allow binding of unsaturated fatty acids. These findings should stimulate future studies to probe the ligandability and druggability of Nurr1 for both endogenous and synthetic ligands, which could lead to new therapeutics for Nurr1-related diseases, including Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - David P Marciano
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edna Matta-Camacho
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Pankaj Kumar Giri
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Travis S Hughes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
37
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
38
|
Chen L, Wu L, Zhu L, Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell Mol Biol Lett 2018; 23:36. [PMID: 30093910 PMCID: PMC6080560 DOI: 10.1186/s11658-018-0103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα-Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α-tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Linyan Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
39
|
Water Pharmacophore: Designing Ligands using Molecular Dynamics Simulations with Water. Sci Rep 2018; 8:10400. [PMID: 29991756 PMCID: PMC6039478 DOI: 10.1038/s41598-018-28546-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we demonstrate a method to construct a water-based pharmacophore model which can be utilized in the absence of known ligands. This method utilizes waters found in the binding pocket, sampled through molecular dynamics. Screening of compound databases against this water-based pharmacophore model reveals that this approach can successfully identify known binders to a target protein. The method was tested by enrichment studies of 7 therapeutically important targets and compared favourably to screening-by-docking with Glide. Our results suggest that even without experimentally known binders, pharmacophore models can be generated using molecular dynamics with waters and used for virtual screening.
Collapse
|
40
|
Hanish BJ, Hackney Price JF, Kaneko I, Ma N, van der Vaart A, Wagner CE, Jurutka PW, Marshall PA. A novel gene expression analytics-based approach to structure aided design of rexinoids for development as next-generation cancer therapeutics. Steroids 2018; 135:36-49. [PMID: 29704526 PMCID: PMC5977990 DOI: 10.1016/j.steroids.2018.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Rexinoids are powerful ligands that bind to retinoid-X-receptors (RXRs) and show great promise as therapeutics for a wide range of diseases, including cancer. However, only one rexinoid, bexarotene (Targretin TM) has been successfully transitioned from the bench to the clinic and used to treat cutaneous T-cell lymphoma (CTCL). Our goal is to develop novel potent rexinoids with a less untoward side effect profile than bexarotene. To this end, we have synthesized a wide array of rexinoids with EC50 values and biological activity similar to bexarotene. In order to determine their suitability for additional downstream analysis, and to identify potential candidate analogs for clinical translation, we treated human CTCL cells in culture and employed microarray technology to assess gene expression profiles. We analyzed twelve rexinoids and found they could be stratified into three distinct categories based on their gene expression: similar to bexarotene, moderately different from bexarotene, and substantially different from bexarotene. Surprisingly, small changes in the structure of the bexarotene parent compound led to marked differences in gene expression profiles. Furthermore, specific analogs diverged markedly from our hypothesis in expression of genes expected to be important for therapeutic promise. However, promoter analysis of genes whose expression was analyzed indicates general regulatory trends along structural frameworks. Our results suggest that certain structural motifs, particularly the basic frameworks found in analog 4 and analog 9, represent important starting points to exploit in generating additional rexinoids for future study and therapeutic applications.
Collapse
Affiliation(s)
- Bentley J Hanish
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States
| | - Jennifer F Hackney Price
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States
| | - Ichiro Kaneko
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States; University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, Phoenix, AZ, United States; Department of Molecular Nutrition, Institution of Health Bioscience, University of Tokushima Graduate School, Kuramoto-cho, Japan
| | - Ning Ma
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Carl E Wagner
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States
| | - Peter W Jurutka
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States; University of Arizona College of Medicine-Phoenix, Department of Basic Medical Sciences, Phoenix, AZ, United States; University of Arizona Cancer Center, Tucson, AZ, United States
| | - Pamela A Marshall
- New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, United States.
| |
Collapse
|
41
|
Handberg-Thorsager M, Gutierrez-Mazariegos J, Arold ST, Kumar Nadendla E, Bertucci PY, Germain P, Tomançak P, Pierzchalski K, Jones JW, Albalat R, Kane MA, Bourguet W, Laudet V, Arendt D, Schubert M. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. SCIENCE ADVANCES 2018; 4:eaao1261. [PMID: 29492455 PMCID: PMC5821490 DOI: 10.1126/sciadv.aao1261] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/10/2018] [Indexed: 06/02/2023]
Abstract
Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient.
Collapse
Affiliation(s)
- Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Stefan T. Arold
- King Abdullah University of Science and Technology, Center for Computational Bioscience Research, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Eswar Kumar Nadendla
- Centre de Biochimie Structurale, Inserm, CNRS, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Paola Y. Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Pierre Germain
- Centre de Biochimie Structurale, Inserm, CNRS, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Pavel Tomançak
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD 21201, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD 21201, USA
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD 21201, USA
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Michael Schubert
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
42
|
Niu H, Fujiwara H, di Martino O, Hadwiger G, Frederick TE, Menéndez-Gutiérrez MP, Ricote M, Bowman GR, Welch JS. Endogenous retinoid X receptor ligands in mouse hematopoietic cells. Sci Signal 2017; 10:10/503/eaan1011. [PMID: 29089448 DOI: 10.1126/scisignal.aan1011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The retinoid X receptor α (RXRA) has been implicated in diverse hematological processes. To identify natural ligands of RXRA that are present in hematopoietic cells, we adapted an upstream activation sequence-green fluorescent protein (UAS-GFP) reporter mouse to detect natural RXRA ligands in vivo. We observed reporter activity in diverse types of hematopoietic cells in vivo. Reporter activity increased during granulocyte colony-stimulating factor (G-CSF)-induced granulopoiesis and after phenylhydrazine (PHZ)-induced anemia, suggesting the presence of dynamically regulated natural RXRA ligands in hematopoietic cells. Mouse plasma activated Gal4-UAS reporter cells in vitro, and plasma from mice treated with G-CSF or PHZ recapitulated the patterns of reporter activation that we observed in vivo. Plasma from mice with dietary vitamin A deficiency only mildly reduced RXRA reporter activity, whereas plasma from mice on a fatty acid restriction diet reduced reporter activity, implicating fatty acids as plasma RXRA ligands. Through differential extraction coupled with mass spectrometry, we identified the long-chain fatty acid C24:5 as a natural RXRA ligand that was greatly increased in abundance in response to hematopoietic stress. Together, these data suggest that natural RXRA ligands are present and dynamically increased in abundance in mouse hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Haixia Niu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gayla Hadwiger
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - María P Menéndez-Gutiérrez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John S Welch
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
André A, Ruivo R, Capitão A, Froufe E, Páscoa I, Costa Castro LF, Santos MM. Cloning and functional characterization of a retinoid X receptor orthologue in Platynereis dumerilii: An evolutionary and toxicological perspective. CHEMOSPHERE 2017; 182:753-761. [PMID: 28535483 DOI: 10.1016/j.chemosphere.2017.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In the present work we provide the first isolation and functional characterization of a RXR orthologue in an annelid species, the Platynereis dumerilii. Using an in vitro luciferase reporter assay we evaluated the annelid receptor ability to respond to ligand 9-cis-retinoic acid, TBT and TPT. Our results show that the annelid RXR responds to 9-cis-retinoic acid and to the organotins by activating reporter gene transcription. The findings suggest a conserved mode of action of the receptor in response to a common signaling molecule and modulation by organotin compounds between vertebrates and Lophotrochozoans.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Ana Capitão
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Inês Páscoa
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
44
|
Nosova YN, Karlov DS, Pisarev SA, Shutkov IA, Palyulin VA, Baquié M, Milaeva ER, Dyson PJ, Nazarov AA. New highly cytotoxic organic and organometallic bexarotene derivatives. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Universitätstr. 7 45141 Essen Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
46
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017; 56:5480-5484. [PMID: 28407400 PMCID: PMC5435924 DOI: 10.1002/anie.201612504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Spiroketals are structural motifs found in many biologically active natural products, which has stimulated considerable efforts toward their synthesis and interest in their use as drug lead compounds. Despite this, the use of spiroketals, and especially bisbenzanulated spiroketals, in a structure-based drug discovery setting has not been convincingly demonstrated. Herein, we report the rational design of a bisbenzannulated spiroketal that potently binds to the retinoid X receptor (RXR) thereby inducing partial co-activator recruitment. We solved the crystal structure of the spiroketal-hRXRα-TIF2 ternary complex, and identified a canonical allosteric mechanism as a possible explanation for the partial agonist behavior of our spiroketal. Our co-crystal structure, the first of a designed spiroketal-protein complex, suggests that spiroketals can be designed to selectively target other nuclear receptor subtypes.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Sebastian A Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - M Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätstr. 7, 45141, Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
47
|
Gray GM, Ma N, Wagner CE, van der Vaart A. Molecular dynamics simulations and molecular flooding studies of the retinoid X-receptor ligand binding domain. J Mol Model 2017; 23:98. [PMID: 28251414 DOI: 10.1007/s00894-017-3260-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/30/2017] [Indexed: 02/04/2023]
Abstract
Bexarotene is an FDA approved retinoid X-receptor (RXR) agonist for the treatment of cutaneous T-cell lymphoma, and its use in other cancers and Alzheimer's disease is being investigated. The drug causes serious side effects, which might be reduced by chemical modifications of the molecule. To rationalize known agonists and to help identify sites for potential substitutions we present molecular simulations in which the RXR ligand-binding domain was flooded with a large number of drug-like molecules, and molecular dynamics simulations of a series of bexarotene-like ligands bound to the RXR ligand-binding domain. Based on the flooding simulations, two regions of interest for ligand modifications were identified: a hydrophobic area near the bridgehead and another near the fused ring. In addition, positional fluctuations of the phenyl ring were generally smaller than fluctuations of the fused ring of the ligands. Together, these observations suggest that the fused ring might be a good target for the design of higher affinity bexarotene-like ligands, while the phenyl ring is already optimized. In addition, notable differences in ligand position and interactions between the RXRα and RXRβ were observed, as well as differences in hydrogen bonding and solvation, which might be exploited in the development of subspecies-specific ligands.
Collapse
Affiliation(s)
- Geoffrey M Gray
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Ning Ma
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, 4701 W. Thunderbird Rd., Glendale, AZ, 85306, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA.
| |
Collapse
|
48
|
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MEDCHEMCOMM 2017; 8:578-592. [PMID: 30108774 PMCID: PMC6072416 DOI: 10.1039/c6md00680a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023]
Abstract
All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, β and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARβ binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARβ, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, β and γ.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
- Department of Biochemistry and Molecular Biology , Pharmacy College , Helwan University , Cairo , Egypt
| | - David R Chisholm
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Ehmke Pohl
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
| | - Christopher Redfern
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
| | - Andrew Whiting
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
49
|
Tee WV, Ripen AM, Mohamad SB. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor. Sci Rep 2016; 6:35937. [PMID: 27786277 PMCID: PMC5081507 DOI: 10.1038/srep35937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of -37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Allergy and Immunology Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics in Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T, Shimabuku M, Deans DG, Robinson NM, Salama SH, Ziller JW, Ma N, van der Vaart A, Marshall PA, Jurutka PW. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid X Receptor (RXR)-Selective Agonists: Analogues of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic Acid (NEt-TMN). J Med Chem 2016; 59:8924-8940. [DOI: 10.1021/acs.jmedchem.6b00812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael C. Heck
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Carl E. Wagner
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Pritika H. Shahani
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Mairi MacNeill
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Aleksandra Grozic
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Tamana Darwaiz
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Micah Shimabuku
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - David G. Deans
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Nathan M. Robinson
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Samer H. Salama
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, California 92697, United States
| | - Ning Ma
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Pamela A. Marshall
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Peter W. Jurutka
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| |
Collapse
|