1
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
2
|
Wang J, Wang C, Chen Y, Qi S, Wang M. A case report of a MODY6 patient coexistence with Charcot-Marie-Toothe 1A syndrome. Front Endocrinol (Lausanne) 2025; 16:1502783. [PMID: 40026692 PMCID: PMC11867909 DOI: 10.3389/fendo.2025.1502783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Monogenic diabetes, which encompasses neonatal diabetes (NDM), maturity onset diabetes of the young (MODY), and several diabetes-associated syndromes, primarily arises from impaired function or abnormal development of the islets of Langerhans, particularly pancreatic β-cells responsible for insulin secretion. This condition is typically associated with a single pathogenic genetic mutation. Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy that is caused by a duplication of the PMP22 gene located on chromosome 17. Herein, we report a case of a young Chinese patient with MODY6 harboring a novel mutation (c. 317C>T, p. Ala106Val) in the NEUROD1 gene. Additionally, this patient concurrently presents with CMT1A, which is characterized by a large segmental duplication within the exon of the PMP22 gene and its adjacent regions. Considering the patient's compromised islet function, we treat him with insulin and oral hypoglycemic agents (metformin, acarbose). This represents the first reported instance of a patient with NEUROD1-MODY coexisting with CMT1A.
Collapse
Affiliation(s)
- Jianyu Wang
- Department of Health Management Center, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Chunhua Wang
- Department of General Practice, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Yujie Chen
- Department of General Practice, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Shuang Qi
- Department of General Practice, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Min Wang
- Department of Health Management Center, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| |
Collapse
|
3
|
Moon DO. Exploring the Role of Surface and Mitochondrial ATP-Sensitive Potassium Channels in Cancer: From Cellular Functions to Therapeutic Potentials. Int J Mol Sci 2024; 25:2129. [PMID: 38396807 PMCID: PMC10888650 DOI: 10.3390/ijms25042129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
ElSheikh A, Shyng SL. K ATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne) 2023; 14:1161117. [PMID: 37056678 PMCID: PMC10086357 DOI: 10.3389/fendo.2023.1161117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy/childhood and is a serious condition associated with severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion. Timely diagnosis and effective treatment are crucial to prevent severe hypoglycemia that may lead to life-long neurological complications. In pancreatic β-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are a central regulator of insulin secretion vital for glucose homeostasis. Genetic defects that lead to loss of expression or function of KATP channels are the most common cause of HI (KATP-HI). Much progress has been made in our understanding of the molecular genetics and pathophysiology of KATP-HI in the past decades; however, treatment remains challenging, in particular for patients with diffuse disease who do not respond to the KATP channel activator diazoxide. In this review, we discuss current approaches and limitations on the diagnosis and treatment of KATP-HI, and offer perspectives on alternative therapeutic strategies.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Mührer J, Lang-Muritano M, Lehmann R, Blouin JL, Schwitzgebel VM. Atypical familial diabetes associated with a novel NEUROD1 nonsense variant. J Pediatr Endocrinol Metab 2023; 36:101-104. [PMID: 36222545 DOI: 10.1515/jpem-2022-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES We aimed to identify the origin of atypical diabetes in a family with four generations of diabetes from South Asia. The family members showed different clinical phenotypes. Members of generation one to three were presumed to have type 2 diabetes and generation four to have type 1 diabetes. CASE PRESENTATION We performed a genetic analysis of the family using targeted high throughput sequencing. CONCLUSIONS We identified a novel nonsense variant in the neurogenic differentiation 1 (NEUROD1) gene, co-segregating with diabetes. The variant was located in the DNA-binding domain, altering a protein residue that was very well conserved among different species.
Collapse
Affiliation(s)
- Julia Mührer
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Roger Lehmann
- Department of Endocrinology, Diabetes, and Clinical Nutrition and of Transplant Center, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Diagnostics, University Hospitals of Geneva, Geneva, Switzerland
| | - Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva Geneva, Switzerland
| |
Collapse
|
6
|
Lee K, Chan JY, Liang C, Ip CK, Shi YC, Herzog H, Hughes WE, Bensellam M, Delghingaro-Augusto V, Koina ME, Nolan CJ, Laybutt DR. XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and protects against diabetic beta cell failure during metabolic stress in mice. Diabetologia 2022; 65:984-996. [PMID: 35316840 PMCID: PMC9076738 DOI: 10.1007/s00125-022-05669-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states. METHODS Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate. RESULTS Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response. CONCLUSIONS/INTERPRETATION These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states.
Collapse
Affiliation(s)
- Kailun Lee
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chi Kin Ip
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Viviane Delghingaro-Augusto
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mark E Koina
- ACT Pathology, Canberra Health Services, Garran, ACT, Australia
| | - Christopher J Nolan
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Endocrinology, The Canberra Hospital, Garran, ACT, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
7
|
Alquisiras-Burgos I, Franco-Pérez J, Rubio-Osornio M, Aguilera P. The short form of the SUR1 and its functional implications in the damaged brain. Neural Regen Res 2022; 17:488-496. [PMID: 34380876 PMCID: PMC8504400 DOI: 10.4103/1673-5374.320967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonylurea receptor (SUR) belongs to the adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter family; however, SUR is associated with ion channels and acts as a regulatory subunit determining the opening or closing of the pore. Abcc8 and Abcc9 genes code for the proteins SUR1 and SUR2, respectively. The SUR1 transcript encodes a protein of 1582 amino acids with a mass around 140–177 kDa expressed in the pancreas, brain, heart, and other tissues. It is well known that SUR1 assembles with Kir6.2 and TRPM4 to establish KATP channels and non-selective cation channels, respectively. Abbc8 and 9 are alternatively spliced, and the resulting transcripts encode different isoforms of SUR1 and SUR2, which have been detected by different experimental strategies. Interestingly, the use of binding assays to sulfonylureas and Western blotting has allowed the detection of shorter forms of SUR (~65 kDa). Identity of the SUR1 variants has not been clarified, and some authors have suggested that the shorter forms are unspecific. However, immunoprecipitation assays have shown that SUR2 short forms are part of a functional channel even coexisting with the typical forms of the receptor in the heart. This evidence confirms that the structure of the short forms of the SURs is fully functional and does not lose the ability to interact with the channels. Since structural changes in short forms of SUR modify its affinity to ATP, regulation of its expression might represent an advantage in pathologies where ATP concentrations decrease and a therapeutic target to induce neuroprotection. Remarkably, the expression of SUR1 variants might be induced by conditions associated to the decrease of energetic substrates in the brain (e.g. during stroke and epilepsy). In this review, we want to contribute to the knowledge of SUR1 complexity by analyzing evidence that shows the existence of short SUR1 variants and its possible implications in brain function.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| |
Collapse
|
8
|
NeuroD1 promotes tumor cell proliferation and tumorigenesis by directly activating the pentose phosphate pathway in colorectal carcinoma. Oncogene 2021; 40:6736-6747. [PMID: 34657129 DOI: 10.1038/s41388-021-02063-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Tumor metabolic reprogramming ensures that cancerous cells obtain sufficient building blocks, energy, and antioxidants to sustain rapid growth and for coping with oxidative stress. Neurogenic differentiation factor 1 (NeuroD1) is upregulated in various types of tumors; however, its involvement in tumor cell metabolic reprogramming remains unclear. In this study, we report that NeuroD1 is positively correlated with glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway (PPP), in colorectal cancer cells. In addition, the regulation of G6PD by NeuroD1 alters tumor cell metabolism by stimulating the PPP, leading to enhanced production of nucleotides and NADPH. These, in turn, promote DNA and lipid biosynthesis in tumor cells, while decreasing intracellular levels of reactive oxygen species. Mechanistically, we showed that NeuroD1 binds directly to the G6PD promoter to activate G6PD transcription. Consequently, tumor cell proliferation and colony formation are enhanced, leading to increased tumorigenic potential in vitro and in vivo. These findings reveal a novel function of NeuroD1 as a regulator of G6PD, whereby its oncogenic activity is linked to tumor cell metabolic reprogramming and regulation of the PPP. Furthermore, NeuroD1 represents a potential target for metabolism-based anti-tumor therapeutic strategies.
Collapse
|
9
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Li YY, Wang H, Zhang YY. Neuronal Differentiation 1 gene Ala45Thr polymorphism and type 2 diabetes mellitus: A meta-analysis of 7,940 subjects. Nutr Metab Cardiovasc Dis 2021; 31:1809-1821. [PMID: 33893004 DOI: 10.1016/j.numecd.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Previous studies have shown that there was a possible relationship between human Neuronal Differentiation 1 (NEUROD1) gene Ala45Thr polymorphism and type 2 diabetes mellitus (T2DM) susceptibility. Nevertheless, no public opinion has been formed because of the conflicting results in the past studies. In order to illuminate the potential association of human NEUROD1 gene Ala45Thr polymorphism and T2DM, the present meta-analysis was conducted. METHODS AND RESULTS In the current meta-analysis, 7940 subjects from 14 individual studies were included. The fixed or random effects models were used to evaluate the pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). The current meta-analysis found a significant association between NEUROD1 gene Ala45Thr polymorphism and T2DM under allelic (OR: 1.21, 95% CI: 1.04-1.41, P = 0.01), dominant (OR: 0.819, 95% CI: 0.734-0.913, P = 3.31 × 10-4), heterozygous (OR:1.199, 95% CI: 1.068-1.346, P = 0.002), and additive (OR: 1.33, 95% CI: 1.09-1.62, P = 0.004) genetic models. CONCLUSIONS NEUROD1 gene Ala45Thr polymorphism was significantly related to T2DM, especially in the Asian population. More particularly, the Thr45 allele carriers of the NEUROD1 gene may be more susceptible to T2DM.
Collapse
Affiliation(s)
- Yan-Yan Li
- Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Hui Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yang-Yang Zhang
- Department of General Practice, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
11
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
12
|
Alquisiras-Burgos I, Ortiz-Plata A, Franco-Pérez J, Millán A, Aguilera P. Resveratrol reduces cerebral edema through inhibition of de novo SUR1 expression induced after focal ischemia. Exp Neurol 2020; 330:113353. [PMID: 32380020 DOI: 10.1016/j.expneurol.2020.113353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/26/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Cerebral edema is a clinical problem that frequently follows ischemic infarcts. Sulfonylurea receptor 1 (SUR1) is an inducible protein that can form a heteromultimeric complex with aquaporin 4 (AQP4) that mediate the ion/water transport involved in brain tissue swelling. Transcription of the Abcc8 gene coding for SUR1 depends on the activity of transcriptional factor SP1, which is modulated by the cellular redox environment. Since oxidative stress is implicated in the induced neuronal damage in ischemia and edema formation, the present study aimed to evaluate if the antioxidant resveratrol (RSV) prevents the damage by reducing the de novo expression of SUR1 in the ischemic brain. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by different times of reperfusion. RSV (1.9 mg/kg; i.v.) was administered at the onset of reperfusion. Brain damage and edema formation were recognized by neurological evaluation, time of survival, TTC (2,3,5-Triphenyltetrazolium chloride) staining, Evans blue extravasation, and water content. RSV mechanism of action was studied by SP1 binding activity measured through the Electrophoretic Mobility Shift Assay, and Abcc8 and Aqp4 gene expression evaluated by qPCR, immunofluorescence, and Western blot. We found that RSV reduced the infarct area and cerebral edema, prevented blood-brain barrier damage, improved neurological performance, and increased survival. Additionally, our findings suggest that the antioxidant activity of RSV targeted SP transcription factors and inhibited SUR1 and AQP4 expression. Thus, RSV by decreasing SUR1 expression could contribute to reducing edema formation, constituting a therapeutic alternative for edema reduction in stroke.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| | - Alejandro Millán
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Lázaro Cárdenas s/n Ciudad Universitaria, Chilpancingo, Guerrero, 39070, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, CDMX 14269, México.
| |
Collapse
|
13
|
Romer AI, Singer RA, Sui L, Egli D, Sussel L. Murine Perinatal β-Cell Proliferation and the Differentiation of Human Stem Cell-Derived Insulin-Expressing Cells Require NEUROD1. Diabetes 2019; 68:2259-2271. [PMID: 31519700 PMCID: PMC6868472 DOI: 10.2337/db19-0117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Inactivation of the β-cell transcription factor NEUROD1 causes diabetes in mice and humans. In this study, we uncovered novel functions of NEUROD1 during murine islet cell development and during the differentiation of human embryonic stem cells (HESCs) into insulin-producing cells. In mice, we determined that Neurod1 is required for perinatal proliferation of α- and β-cells. Surprisingly, apoptosis only makes a minor contribution to β-cell loss when Neurod1 is deleted. Inactivation of NEUROD1 in HESCs severely impaired their differentiation from pancreatic progenitors into insulin-expressing (HESC-β) cells; however, survival or proliferation was not affected at the time points analyzed. NEUROD1 was also required in HESC-β cells for the full activation of an essential β-cell transcription factor network. These data reveal conserved and distinct functions of NEUROD1 during mouse and human β-cell development and maturation, with important implications about the function of NEUROD1 in diabetes.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Genetics and Development, Columbia University, New York, NY
- Department of Pediatrics, Columbia University, New York, NY
| | - Ruth A Singer
- Department of Genetics and Development, Columbia University, New York, NY
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY
| | - Lina Sui
- Department of Pediatrics, Columbia University, New York, NY
| | - Dieter Egli
- Department of Pediatrics, Columbia University, New York, NY
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY
- Department of Pediatrics, University of Colorado Denver School of Medicine, Denver, CO
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW MODY6 due to mutations in the gene NEUROD1 is very rare, and details on its clinical manifestation and pathogenesis are scarce. In this review, we have summarized all reported cases of MODY6 diagnosed by genetic testing, and examined their clinical features in detail. RECENT FINDINGS MODY6 is a low penetrant MODY, suggesting that development of the disease is affected by genetic modifying factors, environmental factors, and/or the effects of interactions of genetic and environmental factors, as is the case with MODY5. Furthermore, while patients with MODY6 can usually achieve good glycemic control without insulin, when undiagnosed they are prone to become ketotic with chronic hyperglycemia, and microangiopathy can progress. MODY6 may also cause neurological abnormalities such as intellectual disability. MODY6 should be diagnosed early and definitively by genetic testing, so that the correct treatment can be started as soon as possible to prevent chronic hyperglycemia.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1194, Japan.
| | - Mayumi Enya
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1194, Japan
| |
Collapse
|
15
|
A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study. Exp Mol Med 2018; 50:1-12. [PMID: 30598522 PMCID: PMC6312530 DOI: 10.1038/s12276-018-0194-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
We aimed to explore whether changes in circulating levels of miRNAs according to type 2 diabetes mellitus (T2DM) or prediabetes status could be used as biomarkers to evaluate the risk of developing the disease. The study included 462 patients without T2DM at baseline from the CORDIOPREV trial. After a median follow-up of 60 months, 107 of the subjects developed T2DM, 30 developed prediabetes, 223 maintained prediabetes and 78 remained disease-free. Plasma levels of four miRNAs related to insulin signaling and beta-cell function were measured by RT-PCR. We analyzed the relationship between miRNAs levels and insulin signaling and release indexes at baseline and after the follow-up period. The risk of developing disease based on tertiles (T1-T2-T3) of baseline miRNAs levels was evaluated by COX analysis. Thus, we observed higher miR-150 and miR-30a-5p and lower miR-15a and miR-375 baseline levels in subjects with T2DM than in disease-free subjects. Patients with high miR-150 and miR-30a-5p baseline levels had lower disposition index (p = 0.047 and p = 0.007, respectively). The higher risk of disease was associated with high levels (T3) of miR-150 and miR-30a-5p (HRT3-T1 = 4.218 and HRT3-T1 = 2.527, respectively) and low levels (T1) of miR-15a and miR-375 (HRT1-T3 = 3.269 and HRT1-T3 = 1.604, respectively). In conclusion, our study showed that deregulated plasma levels of miR-150, miR-30a-5p, miR-15a, and miR-375 were observed years before the onset of T2DM and pre-DM and could be used to evaluate the risk of developing the disease, which may improve prediction and prevention among individuals at high risk for T2DM. Tiny RNA molecules circulating in the blood could give early warning of type 2 diabetes risk. MicroRNAs help regulate the expression of other genes, and recent research has linked irregularities in these molecules to many different diseases. Researchers led by José López Miranda of the University of Córdoba in Spain monitored a cohort of 462 patients for several years to assess how plasma levels of certain microRNAs are deregulated before the onset and progression of diabetes. They observed a striking ‘signature’ of altered expression in four microRNAs for patients who developed diabetes over the course of the study. Intriguingly, patients with markedly elevated blood sugar—state known as prediabetes—exhibited a similar signature, but with more modest alteration in the gene expression levels, indicating that these microRNAs could help clinicians track and prevent disease onset.
Collapse
|
16
|
Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J Diabetes Investig 2018; 9:704-712. [PMID: 29406598 PMCID: PMC6031504 DOI: 10.1111/jdi.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Maturity‐onset diabetes of the young (MODY) is a form of diabetes classically characterized as having autosomal dominant inheritance, onset before the age of 25 years in at least one family member and partly preserved pancreatic β‐cell function. The 14 responsible genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most common forms. Although MODY is currently classified as diabetes of a single gene defect, it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have small mutagenic effects and low penetrance. In addition, as there are differences in the clinical phenotypes caused by the same mutation even in the same family, other phenotypic modifying factors are thought to exist; MODY could well have characteristics of type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of genetic and environmental factors on the known phenotypes of MODY, focusing mainly on the examples of MODY 5 and 6, which have low penetrance, as suggestive models for elucidating the multifactorial origin of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
17
|
Horikawa Y, Enya M, Mabe H, Fukushima K, Takubo N, Ohashi M, Ikeda F, Hashimoto KI, Watada H, Takeda J. NEUROD1-deficient diabetes (MODY6): Identification of the first cases in Japanese and the clinical features. Pediatr Diabetes 2018; 19:236-242. [PMID: 28664602 DOI: 10.1111/pedi.12553] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Only a few families with neuronal differentiation 1 (NEUROD1)-deficient diabetes, currently designated as maturity-onset diabetes of the young 6 (MODY6), have been reported, but mostly in Caucasian, and no mutation has been identified by family-based screening in Japanese. Accordingly, the phenotypic details of the disease remain to be elucidated. METHODS We examined a total of 275 subjects having diabetes suspected to be MODY who were negative for mutations in MODY1-5 referred from 155 medical institutions throughout Japan. So as not to miss low penetrant cases, we examined non-obese Japanese patients with early-onset diabetes regardless of the presence of family history by direct sequencing of all exons and flanking regions of NEUROD1 . Large genomic rearrangements also were examined. RESULTS Four patients with 3 frameshift mutations and 1 missense mutation, all of which were heterozygous and 3 of which were novel, were identified. Diabetic ketosis was found occasionally in these patients even under conditions of chronic hyperglycemia, for unknown reasons. Although the capacity of early-phase insulin secretion was low in these patients, the insulin secretory capacity was relatively preserved compared to that in hepatocyte nuclear factor (HNF)1A- and HNF1B-MODY. One of the patients and 2 of their diabetic mothers were found to have some mental or neuronal abnormality. CONCLUSIONS This is the first report of NEUROD1 mutations in Japanese, who have a genetic background of intrinsically lower capacity of insulin secretion. NEUROD1-deficient diabetes appears to be low penetrant, and may occur in concert with other genetic factors.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Mayumi Enya
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hiroyo Mabe
- Department of Child Development, Kumamoto University Hospital, Kumamoto, Japan
| | - Kei Fukushima
- Department of Pediatrics, Juntendo University Hospital, Tokyo, Japan
| | - Noriyuki Takubo
- Department of Pediatrics, Juntendo University Hospital, Tokyo, Japan
| | - Masaaki Ohashi
- Department of Diabetes and Endocrinology, Saku Central Hospital, Nagano, Japan
| | - Fuki Ikeda
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken-Ichi Hashimoto
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Takeda
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
18
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Fatima N, Cohen DC, Sukumar G, Sissung TM, Schooley JF, Haigney MC, Claycomb WC, Cox RT, Dalgard CL, Bates SE, Flagg TP. Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis. Front Pharmacol 2015; 6:168. [PMID: 26321954 PMCID: PMC4534802 DOI: 10.3389/fphar.2015.00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs.
Collapse
Affiliation(s)
- Naheed Fatima
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Devin C Cohen
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Tristan M Sissung
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - James F Schooley
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Mark C Haigney
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - William C Claycomb
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center New Orleans, LA, USA
| | - Rachel T Cox
- Department of Biochemistry, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Susan E Bates
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas P Flagg
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| |
Collapse
|
20
|
Uruno A, Saito-Hakoda A, Yokoyama A, Kogure N, Matsuda K, Parvin R, Shimizu K, Sato I, Kudo M, Yoshikawa T, Kagechika H, Iwasaki Y, Ito S, Sugawara A. Retinoic acid receptor-α up-regulates proopiomelanocortin gene expression in AtT20 corticotroph cells. Endocr J 2014; 61:1105-14. [PMID: 25132258 DOI: 10.1507/endocrj.ej14-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is a disorder caused by excessive ACTH secretion from a corticotroph tumor of the pituitary gland. Although its standard therapy is a transsphenoidal surgery, innovation of novel medical treatments for the disease is urgently necessary. Retinoic acid (RA) has been reported to suppress adrenocorticotropic hormone (ACTH) secretion in Cushing's disease. However, the role of RA receptor (RAR) in proopiomelanocortin (Pomc) gene expression remains uncertain. We here examined the involvement of RARα in Pomc regulation using AtT20 corticotroph cells. Surprisingly, a synthetic RARα agonist Am80 increased Pomc mRNA expression, CRH-induced ACTH secretion, and Pomc promoter activity. Small interfering RNA-mediated RARα-knockdown suppressed both basal and Am80-induced Pomc promoter activity. RARα-overexpression dose-dependently increased Pomc promoter activity. Pomc promoter mutation analysis revealed that both Tpit and NeuroD1 binding elements were responsible for the Am80-mediated effect. Am80 increased Tpit expression while RAR antagonist LE540 suppressed the increase. Tpit-overexpression increased Pomc promoter activity. Mammalian two-hybrid assay revealed that Am80 induced NeuroD1-RARα interaction. NeuroD1-overexpression enhanced the Am80-induced Pomc promoter activity, which was suppressed by NeuroD1 truncated mutant-overexpression. RARα thus positively regulates ACTH secretion/Pomc gene expression through interaction with NeuroD1 and Tpit expression increase. The present observation will be useful for the future development of the RA/retinoid-derived therapeutics of the disease.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32:1699-717. [PMID: 22714048 PMCID: PMC3434627 DOI: 10.1038/jcbfm.2012.91] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
The sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH). The channel is linked to microvascular dysfunction that manifests as edema formation and delayed secondary hemorrhage. Also implicated in oncotic cell swelling and oncotic (necrotic) cell death, the channel is a major molecular mechanism of 'accidental necrotic cell death' in the CNS. In animal models of SCI, pharmacological inhibition of Sur1 by glibenclamide, as well as gene suppression of Abcc8, prevents delayed capillary fragmentation and tissue necrosis. In models of stroke and TBI, glibenclamide ameliorates edema, secondary hemorrhage, and tissue damage. In a model of SAH, glibenclamide attenuates the inflammatory response due to extravasated blood. Clinical trials of an intravenous formulation of glibenclamide in TBI and stroke underscore the importance of recent advances in understanding the role of the Sur1-regulated NC(Ca-ATP) channel in acute ischemic, traumatic, and inflammatory injury to the CNS.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | | | |
Collapse
|
22
|
Nlend RN, Aït-Lounis A, Allagnat F, Cigliola V, Charollais A, Reith W, Haefliger JA, Meda P. Cx36 is a target of Beta2/NeuroD1, which associates with prenatal differentiation of insulin-producing β cells. J Membr Biol 2012; 245:263-73. [PMID: 22729650 DOI: 10.1007/s00232-012-9447-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter. The data identify Cx36 as a novel early marker of β cells and as a target of Beta2/NeuroD1, which is essential for β-cell development and differentiation.
Collapse
Affiliation(s)
- Rachel Nlend Nlend
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel Servet CH- 1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cho IS, Jung M, Kwon KS, Moon E, Cho JH, Yoon KH, Kim JW, Lee YD, Kim SS, Suh-Kim H. Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription. PLoS One 2012; 7:e34860. [PMID: 22509362 PMCID: PMC3318007 DOI: 10.1371/journal.pone.0034860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 03/08/2012] [Indexed: 01/05/2023] Open
Abstract
CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM).
Collapse
Affiliation(s)
- In-Su Cho
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
| | - Miyoung Jung
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eunpyo Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kun-Ho Yoon
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Ji-Won Kim
- Department of Endocrinology, Catholic University, School of Medicine, Seoul, South Korea
| | - Young-Don Lee
- Department of Anatomy, Ajou University, Suwon, South Korea
- Molecular Science and Technology, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Control for Cell Death Regulating Biodrug, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University, Suwon, South Korea
- Graduate Neuroscience Program, Ajou University, Suwon, South Korea
- BK21, Division of Cell Transformation and Restoration, Ajou University, Suwon, South Korea
- * E-mail: (HS-K); (S-SK)
| |
Collapse
|
24
|
Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J Cereb Blood Flow Metab 2012; 32:525-36. [PMID: 22086197 PMCID: PMC3293117 DOI: 10.1038/jcbfm.2011.159] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral ischemia causes increased transcription of sulfonylurea receptor 1 (SUR1), which forms SUR1-regulated NC(Ca-ATP) channels linked to cerebral edema. We tested the hypothesis that hypoxia is an initial signal that stimulates transcription of Abcc8, the gene encoding SUR1, via activation of hypoxia-inducible factor 1 (HIF1). In the brain microvascular endothelial cells, hypoxia increased SUR1 abundance and expression of functional SUR1-regulated NC(Ca-ATP) channels. Luciferase reporter activity driven by the Abcc8 promoter was increased by hypoxia and by coexpression of HIF1α. Surprisingly, a series of luciferase reporter assays studying the Abcc8 promoter revealed that binding sites for specificity protein 1 (Sp1), but not for HIF, were required for stimulation of Abcc8 transcription by HIF1α. Luciferase reporter assays studying Sp1 promoters of three species, and chromatin immunoprecipitation analysis in rats after cerebral ischemia, indicated that HIF binds to HIF-binding sites on the Sp1 promoter to stimulate transcription of the Sp1 gene. We conclude that sequential activation of two transcription factors, HIF and Sp1, is required to stimulate transcription of Abcc8 following cerebral ischemia. Sequential gene activation in cerebral ischemia provides a plausible molecular explanation for the prolonged treatment window observed for inhibition of the end-target gene product, SUR1, by glibenclamide.
Collapse
|
25
|
Yang KC, Qi Z, Yanai G, Shirouza Y, Lu DH, Lee HS, Sumi S. Cell coupling regulates Ins1, Pdx-1 and MafA to promote insulin secretion in mouse pancreatic beta cells. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, Kim SS, Lee YD, Park CH, Suh-Kim H. Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 2010; 19:831-41. [PMID: 19757990 DOI: 10.1089/scd.2009.0093] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Members of helix-loop-helix (HLH) protein family of Id (inhibitor of differentiation) dimerize with bHLH transcription factors and function as negative regulators of differentiation during development. Most of inhibitory roles of Id proteins have been demonstrated in non-neural tissues, and their roles in the developing nervous system are not clearly demonstrated. In this study, we show that Id1, Id2, and Id3 increase self-renewing and proliferation potential of cortical neural stem cells (NSCs) while inhibiting neuronal differentiation. In electrophoretic mobility gel shift and luciferase assays, Id proteins interfered with binding of NeuroD/E47 complexes to the E-box sequences and inhibited E-box-mediated gene expression. Overexpression of Id proteins in NSCs increased both the number and the size of neurospheres in colony-forming assays. Expression of Hes1 and Hes5 was not increased by overexpression of Id proteins under the condition in which Nestin expression was increased. In utero electroporation of Id yielded higher numbers of Ki67-positive and Sox2-positive cells in the mouse embryonic brain. The study suggests Id proteins play independent roles in the maintenance of neural stem properties.
Collapse
Affiliation(s)
- Seunghwan Jung
- Department of Anatomy, Ajou University, School of Medicine, Suwon, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, Nave KA, Herrera P, White P, Kaestner KH, Sussel L, Lee JE. Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 2010; 11:298-310. [PMID: 20374962 PMCID: PMC2855640 DOI: 10.1016/j.cmet.2010.03.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/06/2009] [Accepted: 03/16/2010] [Indexed: 12/19/2022]
Abstract
NeuroD, a transactivator of the insulin gene, is critical for development of the endocrine pancreas, and NeuroD mutations cause MODY6 in humans. To investigate the role of NeuroD in differentiated beta cells, we generated mice in which neuroD is deleted in insulin-expressing cells. These mice exhibit severe glucose intolerance. Islets lacking NeuroD respond poorly to glucose and display a glucose metabolic profile similar to immature beta cells, featuring increased expression of glycolytic genes and LDHA, elevated basal insulin secretion and O2 consumption, and overexpression of NPY. Moreover, the mutant islets appear to have defective K(ATP) channel-mediated insulin secretion. Unexpectedly, virtually all insulin in the mutant mice is derived from ins2, whereas ins1 expression is almost extinguished. Overall, these results indicate that NeuroD is required for beta cell maturation and demonstrate the importance of NeuroD in the acquisition and maintenance of fully functional glucose-responsive beta cells.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Gretchen H. Stein
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Ning Pan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Hanna Hörnberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pedro Herrera
- Department of Genetic Medicine & Development, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Peter White
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Jacqueline E. Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| |
Collapse
|
28
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
29
|
Ishizuka N, Minami K, Okumachi A, Okuno M, Seino S. Induction by NeuroD of the components required for regulated exocytosis. Biochem Biophys Res Commun 2007; 354:271-7. [PMID: 17217914 DOI: 10.1016/j.bbrc.2006.12.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 12/28/2006] [Indexed: 11/17/2022]
Abstract
NeuroD is a transcriptional factor critical in differentiation of neuronal cells, enteroendocrine cells, and pancreatic endocrine cells. However, little is known of its roles in cellular functions. We show here that introduction of NeuroD into human fetal epithelial cell line Intestine 407 cells induces neuron-like morphology. In addition, multiple genes associated with vesicular trafficking and exocytotic machinery, including Sec24D, carboxypeptidase E, myosin Va, SNAP25, syntaxin 1A, Rab, Rims, Munc18-1, and adenylyl cyclase, were up-regulated by NeuroD gene transfer. Moreover, low osmotic pressure-induced exocytosis monitored by FM1-43 was enhanced by overexpression of NeuroD. These results suggest that NeuroD plays an important role in regulated exocytosis by inducing expressions of various components required in the process.
Collapse
Affiliation(s)
- Nobuko Ishizuka
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | |
Collapse
|
30
|
Murphy AM, MacHugh DE, Park SDE, Scraggs E, Haley CS, Lynn DJ, Boland MP, Doherty ML. Linkage mapping of the locus for inherited ovine arthrogryposis (IOA) to sheep chromosome 5. Mamm Genome 2007; 18:43-52. [PMID: 17242863 DOI: 10.1007/s00335-006-0016-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 09/21/2006] [Indexed: 11/30/2022]
Abstract
Arthrogryposis is a congenital malformation affecting the limbs of newborn animals and infants. Previous work has demonstrated that inherited ovine arthrogryposis (IOA) has an autosomal recessive mode of inheritance. Two affected homozygous recessive (art/art) Suffolk rams were used as founders for a backcross pedigree of half-sib families segregating the IOA trait. A genome scan was performed using 187 microsatellite genetic markers and all backcross animals were phenotyped at birth for the presence and severity of arthrogryposis. Pairwise LOD scores of 1.86, 1.35, and 1.32 were detected for three microsatellites, BM741, JAZ, and RM006, that are located on sheep Chr 5 (OAR5). Additional markers in the region were identified from the genetic linkage map of BTA7 and by in silico analyses of the draft bovine genome sequence, three of which were informative. Interval mapping of all autosomes produced an F value of 21.97 (p < 0.01) for a causative locus in the region of OAR5 previously flagged by pairwise linkage analysis. Inspection of the orthologous region of HSA5 highlighted a previously fine-mapped locus for human arthrogryposis multiplex congenita neurogenic type (AMCN). A survey of the HSA5 genome sequence identified plausible candidate genes for both IOA and human AMCN.
Collapse
Affiliation(s)
- Angela M Murphy
- Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhat KMR, Maddodi N, Shashikant C, Setaluri V. Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling. Nucleic Acids Res 2006; 34:3819-32. [PMID: 16916793 PMCID: PMC1540725 DOI: 10.1093/nar/gkl476] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2), a neuron-specific protein, stabilizes microtubules and is critical for neurite outgrowth and dendrite development. Although MAP2 is widely used as a marker of neuronal differentiation, regulation of its transcription has not been investigated. We showed that MAP2 is frequently activated in human cutaneous melanoma. Here, we identified a 2.2 kb region that is sufficient for neuronal-specific expression in vitro and in vivo. Comparative analysis of the mouse, rat and human MAP2 promoter sequences showed the presence of a conserved bHLH factor binding sites. Electrophoretic mobility shift analysis, promoter mutagenesis and co-transfection experiments showed that NeuroD, a pro-neuronal differentiation factor, and Hairy and Enhancer of Split (HES1), a transcription repressor, are involved in the regulation of MAP2 promoter activity. Melanoma cells express both NeuroD and HES1. Chromatin immunoprecipitation showed that in metastatic melanoma cells N-box region of the MAP2 promoter is occupied by endogenous HES1. We show that the inhibition of Notch signaling, a regulator of HES1 gene expression, and/or shRNA knockdown of HES1 results in the upregulation of MAP2 promoter activity. Thus, our data suggest that Notch signaling, which is implicated in melanoma progression, and HES1 play a role in MAP2 gene regulation during melanoma progression.
Collapse
Affiliation(s)
| | | | - Cooduvalli Shashikant
- Department of Dairy and Animal Sciences, Pennsylvania State University, University ParkPA, USA
| | | |
Collapse
|
32
|
Cho JH, Tsai MJ. The role of BETA2/NeuroD1 in the development of the nervous system. Mol Neurobiol 2004; 30:35-47. [PMID: 15247487 DOI: 10.1385/mn:30:1:035] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 12/19/2003] [Indexed: 11/11/2022]
Abstract
BETA2/NeuroD1 is a member of the basic helix-loop-helix (bHLH) transcription factor family, which has been shown to play a major role in development of the nervous system and formation of the endocrine system. Gain-of-function studies have indicated that BETA2/NeuroD1 is important for the neurogenesis of Xenopus embryos and several neurogenic cell lines. Disruption of the gene encoding BETA2/NeuroD1 leads to severe abnormalities of the developing mouse central nervous system as well as the peripheral nervous system. The focus of this article is on the recent progress in understanding the role of BETA2/NeuroD1 in the development of the nervous system.
Collapse
Affiliation(s)
- Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Kim S, Yoon YS, Kim JW, Jung M, Kim SU, Lee YD, Suh-Kim H. Neurogenin1 is sufficient to induce neuronal differentiation of embryonal carcinoma P19 cells in the absence of retinoic acid. Cell Mol Neurobiol 2004; 24:343-56. [PMID: 15206818 PMCID: PMC11529961 DOI: 10.1023/b:cemn.0000022767.74774.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Neurogenin1 (Ngn1) is a basic helix-loop-helix (bHLH) transcription factor that is expressed in neuronal precursors during development of the nervous system. 2. In the present work, we investigated a instructive potential of Ngn1 in pluripotent embryonal carcinoma P19 cells. Treatment with retinoic acid (RA) induced expression of Ngn1 as well as NeuroD in P19 cells in early period of neuronal differentiation. P19 cells contained endogenous E47, a heterodimeric partner of neurogenic bHLH factors, and overexpression of Ngn1 alone was sufficient to induce the maximum activation of the E-box-mediated gene expression. 3. Sustained expression of Ngn1 in the absence of RA was sufficient to induce substantial expression of neuronal markers. The data indicate that Ngn1 is able to commit pluripotent P19 cells to adopt a neural cell phenotype in the absence of RA, which may finally lead to enhanced neuronal differentiation. The results also suggest that RA may induce neuronal differentiation of P19 cells by promoting a bHLH cascade including Ngn1.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Anatomy, Ajou University, School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JY, Chu K, Kim HJ, Seong HA, Park KC, Sanyal S, Takeda J, Ha H, Shong M, Tsai MJ, Choi HS. Orphan nuclear receptor small heterodimer partner, a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD. Mol Endocrinol 2004; 18:776-90. [PMID: 14752053 DOI: 10.1210/me.2003-0311] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA binding domain (DBD) and represses the transcriptional activity of various nuclear receptors. In this study, we examined the novel cross talk between SHP and BETA2/NeuroD, a basic helix-loop-helix transcription factor. In vitro and in vivo protein interaction studies showed that SHP physically interacts with BETA2/NeuroD, but not its heterodimer partner E47. Moreover, confocal microscopic study and immunostaining results demonstrated that SHP colocalized with BETA2 in islets of mouse pancreas. SHP inhibited BETA2/NeuroD-dependent transactivation of an E-box reporter, whereas SHP was unable to repress the E47-mediated transactivation and the E-box mutant reporter activity. In addition, SHP repressed the BETA2-dependent activity of glucokinase and cyclin-dependent kinase inhibitor p21 gene promoters. Gel shift and in vitro protein competition assays indicated that SHP inhibits neither dimerization nor DNA binding of BETA2 and E47. Rather, SHP directly repressed BETA2 transcriptional activity and p300-enhanced BETA2/NeuroD transcriptional activity by inhibiting interaction between BETA2 and coactivator p300. We also showed that C-terminal repression domain within SHP is also required for BETA2 repression. However, inhibition of BETA2 activity was not observed by naturally occurring human SHP mutants that cannot interact with BETA2/NeuroD. Taken together, these results suggest that SHP acts as a novel corepressor for basic helix-loop-helix transcription factor BETA2/NeuroD by competing with coactivator p300 for binding to BETA2/NeuroD and by its direct transcriptional repression function.
Collapse
Affiliation(s)
- Joon-Young Kim
- Hormone Research Center, School of Biological Resources and Technology, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci U S A 2003; 100:9578-83. [PMID: 12881483 PMCID: PMC170960 DOI: 10.1073/pnas.1133382100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NeuroD (ND) is a basic helix-loop-helix transcription factor important for neuronal development and survival. By using a yeast two-hybrid screen, we identified two proteins that interact with ND, huntingtin-associated protein 1 (HAP1) and mixed-lineage kinase 2 (MLK2), both of which are known to interact with huntingtin (Htt). Htt is a ubiquitous protein important for neuronal transcription, development, and survival, and loss of its function has been implicated in the pathogenesis of Huntington's disease, a neurodegenerative disorder. However, the mechanism by which Htt exerts its neuron-specific function at the molecular level is unknown. Here we report that Htt interacts with ND via HAP1, and that MLK2 phosphorylates and stimulates the activity of ND. Furthermore, we show that Htt and HAP1 facilitate the activation of ND by MLK2. To our knowledge, ND is the first example of a neuron-specific transcription factor involved in neuronal development and survival whose activity is modulated by Htt. We propose that Htt, together with HAP1, may function as a scaffold for the activation of ND by MLK2.
Collapse
Affiliation(s)
- Edoardo Marcora
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | | | | |
Collapse
|