1
|
Cicek N, Cobandede Z, Adiguzel S, Yilmaz H, Culha M. Synergistic anti-cancer effects of piezoelectric hexagonal boron nitride nanocarriers for controlled doxorubicin release. Nanomedicine (Lond) 2025; 20:455-466. [PMID: 39887263 PMCID: PMC11875468 DOI: 10.1080/17435889.2025.2459055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS This study aims to develop a piezoelectric drug delivery system based on hexagonal boron nitride nanosheets (hBNs). MATERIALS AND METHODS hBNs were synthesized using the chemical vapor deposition (CVD) method and characterized through imaging and spectroscopic techniques. Their piezoelectric properties were evaluated to confirm their functionality. Subsequently, the potential of hBNs as nanocarriers was assessed through in vitro experiments with doxorubicin (Dox) as a model drug. RESULTS The piezoelectric hBNs were successfully synthesized and exhibited efficient loading and controlled release of Dox. In vitro experiments conducted on PC3 (human prostate cancer) and PNT1A (normal adult prostate epithelial) cell lines demonstrated that ultrasound (US)-induced Dox-loaded hBNs (hBN-Dox) significantly inhibited the proliferation of prostate cancer cells, achieving efficacy at a much lower Dox concentration compared to conventional methods. The system enhanced reactive oxygen species (ROS) generation, impaired cancer cell colony formation, and induced both early and late apoptosis. CONCLUSIONS These findings highlight the potential of piezoelectric hBNs as nanocarriers for efficient drug delivery, leveraging the synergistic effect of piezoelectricity-induced drug release and the degradation products of hBNs in biological media. Their ability to enhance drug efficacy while reducing the required dose holds promise for advanced cancer therapies.
Collapse
Affiliation(s)
- Nilay Cicek
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla Istanbul, Turkey
| | - Zehra Cobandede
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla Istanbul, Turkey
| | - Sevin Adiguzel
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla Istanbul, Turkey
| | - Hulya Yilmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla Istanbul, Turkey
| | - Mustafa Culha
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla Istanbul, Turkey
- Chemistry and Biochemistry Department, College of Science and Mathematics, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y, Fang J. Engineered mesenchymal stem/stromal cells against cancer. Cell Death Dis 2025; 16:113. [PMID: 39971901 PMCID: PMC11839947 DOI: 10.1038/s41419-025-07443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem/stromal cells (MSCs) have garnered attention for their potential in cancer therapy due to their ability to home to tumor sites. Engineered MSCs have been developed to deliver therapeutic proteins, microRNAs, prodrugs, chemotherapy drugs, and oncolytic viruses directly to the tumor microenvironment, with the goal of enhancing therapeutic efficacy while minimizing off-target effects. Despite promising results in preclinical studies and clinical trials, challenges such as variability in delivery efficiency and safety concerns persist. Ongoing research aims to optimize MSC-based cancer eradication and immunotherapy, enhancing their specificity and efficacy in cancer treatment. This review focuses on advancements in engineering MSCs for tumor-targeted therapy.
Collapse
Affiliation(s)
- Yuzhu Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Zhang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200025, China.
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Delgado JF, Negussie AH, Varble NA, Mikhail AS, Arrichiello A, Borde T, Saccenti L, Bakhutashvili I, Owen JW, Morhard R, Karanian JW, Pritchard WF, Wood BJ. In vivo imaging and pharmacokinetics of percutaneously injected ultrasound and X-ray imageable thermosensitive hydrogel loaded with doxorubicin versus free drug in swine. PLoS One 2024; 19:e0310345. [PMID: 39700200 DOI: 10.1371/journal.pone.0310345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Intratumoral injections often lack visibility, leading to unpredictable outcomes such as incomplete tumor coverage, off-target drug delivery and systemic toxicities. This study investigated an ultrasound (US) and x-ray imageable thermosensitive hydrogel based on poloxamer 407 (POL) percutaneously delivered in a healthy swine model. The primary objective was to assess the 2D and 3D distribution of the hydrogel within tissue across three different needle devices and injection sites: liver, kidney, and intercostal muscle region. Secondly, pharmacokinetics of POL loaded with doxorubicin (POLDOX) were evaluated and compared to free doxorubicin injection (DOXSoln) with a Single End Hole Needle. Utilizing 2D and 3D morphometrics from US and x-ray imaging techniques such as Computed Tomography (CT) and Cone Beam CT (CBCT), we monitored the localization and leakage of POLDOX over time. Relative iodine concentrations measured with CBCT following incorporation of an iodinated contrast agent in POL indicated potential drug diffusion and advection transport. Furthermore, US imaging revealed temporal changes, suggesting variations in acoustic intensity, heterogeneity, and echotextures. Notably, 3D reconstruction of the distribution of POL and POLDOX from 2D ultrasound frames was achieved and morphometric data obtained. Pharmacokinetic analysis revealed lower systemic exposure of the drug in various organs with POLDOX formulation compared to DOXSoln formulation. This was demonstrated by a lower area under the curve (852.1 ± 409.1 ng/mL·h vs 2283.4 ± 377.2 ng/mL·h) in the plasma profile, suggesting a potential reduction in systemic toxicity. Overall, the use of POL formulation offers a promising strategy for precise and localized drug delivery, that may minimize adverse effects. Dual modality POL imaging enabled analysis of patterns of gel distribution and morphology, alongside of pharmacokinetics of local delivery. Incorporating hydrogels into drug delivery systems holds significant promise for improving the predictability of the delivered drug and enhancing spatial conformability. These advancements can potentially enhance the safety and precision of anticancer therapy.
Collapse
Affiliation(s)
- Jose F Delgado
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Ayele H Negussie
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Nicole A Varble
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
- Philips Healthcare, Cambridge, Massachusetts, United States of America
| | - Andrew S Mikhail
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Antonio Arrichiello
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
- Department of Diagnostic and Interventional Radiology, UOS of Interventional Ra `1diology, Ospedale Maggiore di Lodi, Lodi, Italy
| | - Tabea Borde
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Laetitia Saccenti
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Joshua W Owen
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert Morhard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - John W Karanian
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - William F Pritchard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Bradford J Wood
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
4
|
Pinho S, Coelho JMP, Gaspar MM, Reis CP. Advances in localized prostate cancer: A special focus on photothermal therapy. Eur J Pharmacol 2024; 983:176982. [PMID: 39260812 DOI: 10.1016/j.ejphar.2024.176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) is a high prevalence disease, per 10000 habitants, that tends to increase with age. This pathology is difficult to detect at an early stage due to the absence of symptoms, hence the importance of monitoring signs for early detection. This disease can be detected by various methods, including plasmatic levels of prostate-specific antigen (PSA) and rectal touch, with biopsy being necessary to confirm the diagnosis. Patients affected by prostate cancer can have localized or advanced disease. There are conventional approaches that have been used as a reference in localized cancer, such as active surveillance, surgery, or radiotherapy. However, the adverse effects might vary and, sometimes, they can be permanent. An overview about the innovative therapeutic approaches to improve outcomes in terms of both tumor remission and side effects for localized PCa is presented. In case of emerging light-based treatment strategies, they aimed at ablating tumor tissue by inducing an external light are non-invasive, localized and, considerably, they are able to reduce lesions in peripheral tissues. One is photodynamic therapy (PDT) and it involves the photooxidation of molecules culminating in the formation of reactive oxygen species (ROS), inducing cell death. On the other hand, photothermal therapy (PTT) is based on inducing hyperthermia in cancer cells by irradiating them with beams of light at a specific wavelength. To improve the heat generated, gold nanoparticles (AuNPs) have those desirable characteristics that have drawn attention to PTT. Various studies point to AuNPs as efficient nanomaterials in PTT for the treatment of tumors, including prostate cancer. This review includes the most representative advances in this research field, dated from 1998 to 2023. It is noticed that several advances have been made and the way to find the effective treatment without impacting adverse side effects is shorter.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
5
|
Rivero-Buceta E, Bernal-Gómez A, Vidaurre-Agut C, Lopez Moncholi E, María Benlloch J, Moreno Manzano V, David Vera Donoso C, Botella P. Prostate cancer chemotherapy by intratumoral administration of Docetaxel-Mesoporous silica nanomedicines. Int J Pharm 2024; 664:124623. [PMID: 39191333 DOI: 10.1016/j.ijpharm.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Docetaxel (DTX) is a recommended treatment in patients with metastasic prostate cancer (PCa), despite its therapeutic efficacy is limited by strong systemic toxicity. However, in localized PCa, intratumoral (IT) administration of DTX could be an alternative to consider that may help to overcome the disadvantages of conventional intravenous (IV) therapy. In this context, we here present the first in vivo preclinical study of PCa therapy with nanomedicines of mesoporous silica nanoparticles (MSN) and DTX by IT injection over a xenograft mouse model bearing human prostate adenocarcinoma tumors. The efficacy and tolerability, the biodistribution and the histopathology after therapy have been investigated for the DTX nanomedicine and the free drug, and compared with the IV administration of DTX. The obtained results demonstrate that IT injection of DTX and DTX nanomedicines allows precise and selective therapy of non-metastatic PCa and minimize systemic diffusion of the drug, showing superior activity than IV route. This allows reducing the therapeutic dose by one order and widens substantially the therapeutic window for this drug. Furthermore, the use of DTX nanomedicines as IT injection promotes strong antitumor efficacy and drug accumulation at the tumor site, improving the results obtained with the free drug by the same route.
Collapse
Affiliation(s)
- Eva Rivero-Buceta
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Adrián Bernal-Gómez
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Carla Vidaurre-Agut
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain
| | - Eric Lopez Moncholi
- Centro Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Jose María Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - César David Vera Donoso
- Escuela de Doctorado, Universidad Católica de Valencia, Plaza de San Agustín 3, 46001 Valencia, Spain; Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Pablo Botella
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
6
|
Delgado JF, Negussie AH, Varble NA, Mikhail AS, Arrichiello A, Borde T, Saccenti L, Bakhutashvili I, Owen JW, Morhard R, Karanian JW, Pritchard WF, Wood BJ. In vivo Imaging and Pharmacokinetics of Percutaneously Injected Ultrasound and X-ray Imageable Thermosensitive Hydrogel loaded with Doxorubicin versus Free Drug in Swine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610710. [PMID: 39282453 PMCID: PMC11398325 DOI: 10.1101/2024.09.01.610710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Intratumoral injections often lack visibility, leading to unpredictable outcomes such as incomplete tumor coverage, off-target drug delivery and systemic toxicities. This study investigated an ultrasound (US) and x-ray imageable thermosensitive hydrogel based on poloxamer 407 (POL) percutaneously delivered in a healthy swine model. The primary objective was to assess the 2D and 3D distribution of the hydrogel within tissue across three different needle devices and injection sites: liver, kidney, and intercostal muscle region. Secondly, pharmacokinetics of POL loaded with doxorubicin (POLDOX) were evaluated and compared to free doxorubicin injection (DOXSoln) with a Single End Hole Needle. Utilizing 2D and 3D morphometrics from US and x-ray imaging techniques such as Computed Tomography (CT) and Cone Beam CT (CBCT), we monitored the localization and leakage of POLDOX over time. Relative iodine concentrations measured with CBCT following incorporation of an iodinated contrast agent in POL indicated potential drug diffusion and advection transport. Furthermore, US imaging revealed temporal changes, suggesting variations in acoustic intensity, heterogeneity, and echotextures. Notably, 3D reconstruction of the distribution of POL and POLDOX from 2D ultrasound frames was achieved and morphometric data obtained. Pharmacokinetic analysis revealed lower systemic exposure of the drug in various organs with POLDOX formulation compared to DOXSoln formulation. This was demonstrated by a lower area under the curve (852.1 ± 409.1 ng/mL·h vs 2283.4 ± 377.2 ng/mL·h) in the plasma profile, suggesting a potential reduction in systemic toxicity. Overall, the use of POL formulation offers a promising strategy for precise and localized drug delivery, that may minimize adverse effects. Dual modality POL imaging enabled analysis of patterns of gel distribution and morphology, alongside of pharmacokinetics of local delivery. Incorporating hydrogels into drug delivery systems holds significant promise for improving the predictability of the delivered drug and enhancing spatial conformability. These advancements can potentially enhance the safety and precision of anticancer therapy.
Collapse
Affiliation(s)
- Jose F. Delgado
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD
| | - Ayele H. Negussie
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nicole A. Varble
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Philips Healthcare, Cambridge, MA
| | - Andrew S. Mikhail
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Antonio Arrichiello
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- UOS of Interventional Radiology, Department of Diagnostic and Interventional Radiology, Ospedale Maggiore di Lodi, Largo Donatori del Sangue, Lodi, Italy
| | - Tabea Borde
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Laetitia Saccenti
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Joshua W. Owen
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Robert Morhard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - John W. Karanian
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - William F. Pritchard
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Bradford J. Wood
- Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, MD
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD
| |
Collapse
|
7
|
Cullen JK, Yap PY, Ferguson B, Bruce ZC, Koyama M, Handoko H, Hendrawan K, Simmons JL, Brooks KM, Johns J, Wilson ES, de Souza MMA, Broit N, Stewart P, Shelley D, McMahon T, Ogbourne SM, Nguyen TH, Lim YC, Pagani A, Appendino G, Gordon VA, Reddell PW, Boyle GM, Parsons PG. Tigilanol tiglate is an oncolytic small molecule that induces immunogenic cell death and enhances the response of both target and non-injected tumors to immune checkpoint blockade. J Immunother Cancer 2024; 12:e006602. [PMID: 38658031 PMCID: PMC11043783 DOI: 10.1136/jitc-2022-006602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jason K Cullen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
- QBiotics Group Limited, Brisbane, Queensland, Australia
| | - Pei-Yi Yap
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Herlina Handoko
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kevin Hendrawan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jacinta L Simmons
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jenny Johns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Emily S Wilson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Praphaporn Stewart
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Daniel Shelley
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tracey McMahon
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Steven M Ogbourne
- QBiotics Group Limited, Brisbane, Queensland, Australia
- University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tam Hong Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yi Chieh Lim
- Danish Cancer Society Research Centre, Copenhagen DK, Denmark
| | - Alberto Pagani
- Dipartimento di Scienze del Farmaco, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | | | | | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - Peter G Parsons
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- QBiotics Group Limited, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Luo T, Jiang X, Li J, Nash GT, Yuan E, Albano L, Tillman L, Lin W. Phosphate Coordination to Metal-Organic Layer Secondary Building Units Prolongs Drug Retention for Synergistic Chemoradiotherapy. Angew Chem Int Ed Engl 2024; 63:e202319981. [PMID: 38381713 DOI: 10.1002/anie.202319981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemoradiotherapy combines radiotherapy with concurrent chemotherapy to potentiate antitumor activity but exacerbates toxicities and causes debilitating side effects in cancer patients. Herein, we report the use of a nanoscale metal-organic layer (MOL) as a 2D nanoradiosensitizer and a reservoir for the slow release of chemotherapeutics to amplify the antitumor effects of radiotherapy. Coordination of phosphate-containing drugs to MOL secondary building units prolongs their intratumoral retention, allowing for continuous release of gemcitabine monophosphate (GMP) for effective localized chemotherapy. In the meantime, the MOL sensitizes cancer cells to X-ray irradiation and provides potent radiotherapeutic effects. GMP-loaded MOL (GMP/MOL) enhances cytotoxicity by 2-fold and improves radiotherapeutic effects over free GMP in vitro. In a colon cancer model, GMP/MOL retains GMP in tumors for more than four days and, when combined with low-dose radiotherapy, inhibits tumor growth by 98 %. The synergistic chemoradiotherapy enabled by GMP/MOL shows a cure rate of 50 %, improves survival, and ameliorates cancer-proliferation histological biomarkers.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Luciana Albano
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
diZerega GS, Maulhardt HA, Verco SJ, Marin AM, Baltezor MJ, Mauro SA, Iacobucci MA. Intratumoral Injection of Large Surface Area Microparticle Taxanes in Carcinomas Increases Immune Effector Cell Concentrations, Checkpoint Expression, and Synergy with Checkpoint Inhibitors: A Review of Preclinical and Clinical Studies. Oncol Ther 2024; 12:31-55. [PMID: 38289576 PMCID: PMC10881942 DOI: 10.1007/s40487-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
This review summarizes development of large surface area microparticle paclitaxel (LSAM-PTX) and docetaxel (LSAM-DTX) for local treatment of primary carcinomas with emphasis on immunomodulation. Intratumoral (IT) delivery of LSAM-PTX and LSAM-DTX provides continuous, therapeutic drug levels for several weeks. Preclinical studies and clinical trials reported a reduction in tumor volume (TV) and immunomodulation in primary tumor and peripheral blood with increases in innate and adaptive immune cells and decreases in suppressor cells. Increased levels of checkpoint expression of immune cells occurred in clinical trials of high-risk non-muscle-invasive bladder cancer (LSAM-DTX) and unresectable localized pancreatic cancer (LSAM-PTX). TV reduction and increases in immune effector cells occurred following IT LSAM-DTX and IT LSAM-PTX together with anti-mCTLA-4 and anti-mPD-1, respectively. Synergistic benefits from combinatorial therapy in a 4T1-Luc breast cancer model included reduction of metastasis with IT LSAM-DTX + anti-mCTLA-4. IT LSAM-PTX and LSAM-DTX are tumoricidal, immune enhancing, and may improve solid tumor response to immune checkpoint inhibitors without additional systemic toxicity.
Collapse
Affiliation(s)
- Gere S diZerega
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA.
- NanOlogy, LLC., 3909 Hulen Street, Fort Worth, TX, 76107, USA.
| | - Holly A Maulhardt
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Shelagh J Verco
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Alyson M Marin
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | | - Samantha A Mauro
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | |
Collapse
|
10
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
11
|
McFarland J, Alečković M, Coricor G, Srinivasan S, Tso M, Lee J, Nguyen TH, Mejía Oneto JM. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS CENTRAL SCIENCE 2023; 9:1400-1408. [PMID: 37521794 PMCID: PMC10375897 DOI: 10.1021/acscentsci.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 08/01/2023]
Abstract
The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.
Collapse
|
12
|
Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102662. [PMID: 36746272 DOI: 10.1016/j.nano.2023.102662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral cancer is a type of cancer that develops in the mouth and is one of the deadliest malignancies in the world. Currently surgical, radiation therapy, and chemotherapy are most common treatments. Better treatment and early detection strategies are required. Chemotherapeutic drugs fail frequently due to toxicity and poor tumor targeting. There are high chances of failure of chemotherapeutic drugs due to toxicity. Active, passive, and immunity-targeting techniques are devised for tumor-specific activity. Nanotechnology-based drug delivery systems are the best available solution and important for precise targeting. Nanoparticles, liposomes, exosomes, and cyclodextrins are nano-based carriers for drug delivery. Nanotechnology is being used to develop new techniques such as intratumoral injections, microbubble mediated ultrasonic therapy, phototherapies, and site-specific delivery. This systematic review delves into the details of such targeted and nano-based drug delivery systems in order to improve patient health and survival rates in oral cancer.
Collapse
Affiliation(s)
- Kunj Vyas
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Maharshsinh Rathod
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
13
|
Maulhardt H, Verco S, Baltezor M, Marin A, diZerega G. Local administration of large surface area microparticle docetaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects: preclinical and clinical studies. Drug Deliv Transl Res 2023; 13:503-519. [PMID: 36058988 PMCID: PMC9794539 DOI: 10.1007/s13346-022-01226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
This report describes local administration of large surface area microparticle docetaxel (LSAM-DTX: ~ 3.5- to 7.5-µm-sized particles with high relative surface area) in preclinical oncology models and in a clinical trial in urothelial carcinoma. Reductions in tumor volumes were found following intratumoral (IT) injection of LSAM-DTX into human urologic carcinoma cell lines and syngeneic murine renal and breast cancer cell lines. Compared to IT injections of docetaxel solution typically administered intravenously, IT LSAM-DTX results in 40-fold more docetaxel retained within the tumor. The long residence time of LSAM-DTX within the tumor acts as a drug depot, allowing for continuous release of docetaxel, exposing tumor cells to high, therapeutic levels of chemotherapeutic for several weeks. Local LSAM-DTX results in tumoricidal effects at the site of deposition as well as in distant tumors, and IT LSAM-DTX in combination with immune checkpoint inhibitor therapy reduces or eliminates metastatic spread. Tumoricidal effects of local LSAM-DTX are accompanied by immunomodulation including increases in innate and adaptive immune cells in the tumor microenvironment and peripheral blood. Encouraging clinical results indicate that local administration of LSAM-DTX may provide therapeutic benefits for non-muscle invasive bladder cancer and muscle invasive bladder cancer patients; treatments were well-tolerated with few local and systemic adverse events and negligible systemic docetaxel exposure. Results of preclinical and clinical investigations summarized here indicate that local administration of LSAM-DTX may augment tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity.
Collapse
Affiliation(s)
- Holly Maulhardt
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Shelagh Verco
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | | - Alyson Marin
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Gere diZerega
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA.
- NanOlogy, LLC, 3909 Hulen Street, Fort Worth, TX, 76107, USA.
| |
Collapse
|
14
|
Park S, Kim J, Lee C. Injectable rapidly dissolving needle-type gelatin implant capable of delivering high concentrations of H2O2 through intratumoral injection. Biomed Pharmacother 2022; 156:113910. [DOI: 10.1016/j.biopha.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
|
15
|
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Deliv Rev 2022; 189:114505. [PMID: 36007674 PMCID: PMC10456124 DOI: 10.1016/j.addr.2022.114505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized the contemporary oncology landscape, with durable responses possible across a range of cancer types. However, the majority of cancer patients do not respond to immunotherapy due to numerous immunosuppressive barriers. Efforts to overcome these barriers and increase systemic immunotherapy efficacy have sparked interest in the local intratumoral delivery of immune stimulants to activate the local immune response and subsequently drive systemic tumor immunity. While clinical evaluation of many therapeutic candidates is ongoing, development is hindered by a lack of imaging confirmation of local delivery, insufficient intratumoral drug distribution, and a need for repeated injections. The use of polymeric drug delivery systems, which have been widely used as platforms for both image guidance and controlled drug release, holds promise for delivery of intratumoral immunoadjuvants and the development of an in situ cancer vaccine for patients with metastatic cancer. In this review, we explore the current state of the field for intratumoral delivery and methods for optimizing controlled drug release, as well as practical considerations for drug delivery design to be optimized for clinical image guided delivery particularly by CT and ultrasound.
Collapse
Affiliation(s)
- Avik Som
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States
| | - Jan-Georg Rosenboom
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Alana Chandler
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, M.D. Anderson Cancer Center, United States
| | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States.
| |
Collapse
|
16
|
Sarkar K, Torregrossa-Allen SE, Elzey BD, Narayanan S, Langer MP, Durm GA, Won YY. Effect of Paclitaxel Stereochemistry on X-ray-Triggered Release of Paclitaxel from CaWO 4/Paclitaxel-Coloaded PEG-PLA Nanoparticles. Mol Pharm 2022; 19:2776-2794. [PMID: 35834797 PMCID: PMC11975462 DOI: 10.1021/acs.molpharmaceut.2c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 μg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 μg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.
Collapse
Affiliation(s)
- Kaustabh Sarkar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Bennett D. Elzey
- Purdue University Center of Cancer Research, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjeev Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Mark P. Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gregory A. Durm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center of Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Huang G, Li W, Meng M, Ni Y, Han X, Wang J, Zou Z, Zhang T, Dai J, Wei Z, Yang X, Ye X. Synchronous Microwave Ablation Combined With Cisplatin Intratumoral Chemotherapy for Large Non-Small Cell Lung Cancer. Front Oncol 2022; 12:955545. [PMID: 35965525 PMCID: PMC9369018 DOI: 10.3389/fonc.2022.955545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Microwave ablation (MWA) and intratumoral chemotherapy (ITC) are useful for treating tumors in animal models; however, their clinical use in patients with large non-small cell lung cancer (NSCLC) remains unknown. This retrospective study aimed to evaluate preliminary outcomes of MWA + ITC for large NSCLC. METHODS From November 2015 to April 2020, a total of 44 NSCLC patients with a mean lesion diameter of 6.1 ± 1.5 cm were enrolled and underwent synchronous MWA + ITC procedures. The primary endpoint was local progression-free survival (LPFS); secondary endpoints were progression-free survival (PFS), complications, overall survival (OS), and associated prognostic factors. RESULTS The median follow-up time was 19.0 months. At the 1-month CT scan, complete tumor ablation was observed in 47.7% of cases. Median LPFS was 12.1 months; 1-, 2-, and 3-year LPFS rates were 51.2%, 27.9%, and 13.6%, respectively. A shorter LPFS was significantly associated with large lesions (HR 1.23, 95% CI 1.02-1.49; p = 0.032). Median PFS was 8.1 months; 1-, 2-, and 3-year PFS rates were 29.5%, 18.2%, and 9.1%, respectively. LPFS was significantly superior to PFS (p = 0.046). Median OS was 18.8 months. The 1-, 2-, 3-, and 5-year OS rates were 65.9%, 43.2%, 26.4%, and 10.0%, respectively. In univariate comparisons, high performance status (PS) score, smoking, and larger lesions were significantly correlated with poor survival. In multivariate analysis, advanced age, higher PS score, higher stage, larger lesion, and prior systematic treatment were independent prognostic factors for shorter OS. Adverse events were well tolerated and all patients recovered after appropriate intervention. CONCLUSIONS MWA + ITC is a safe and effective new modality of local treatment for large NSCLC and can significantly prolong LPFS.
Collapse
Affiliation(s)
- Guanghui Huang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Meng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Ni
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoying Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigeng Zou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tiehong Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianjian Dai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Wei
-
Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xia Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Ye
-
Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
18
|
Synchronizing the release rates of topotecan and paclitaxel from a self-eroding crosslinked chitosan - PLGA platform. Int J Pharm 2022; 623:121945. [PMID: 35738334 DOI: 10.1016/j.ijpharm.2022.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
This study is a continuation of a previous study in which two model drugs, sodium salicylate (highly water-soluble) and indomethacin (low water-soluble) were loaded into an erodible hydrogel, made of ionically crosslinked chitosan (x-Ct). The erosion rate of the x-Ct matrix was controlled by its immersion in calcium chloride solutions (de-crosslinker) of different concentrations, leading to synchronization of the release rates of the two drugs over 2 h. In the present study, a modified platform was developed in order to (a) synchronize the release rates of the two cytotoxic drugs, topotecan (TT, highly water soluble) and paclitaxel (PTX, poorly water soluble); (b) prolong the erosion duration and the derived concomitant release of the two drugs to several days. TT was loaded into a PLGA sphere, which was co-loaded with calcium chloride (CaCl2). The sphere was then placed in an aqueous solution of chitosan (Ct) in which PTX was dispersed. A PLGA core-containing hydrogel was then produced by ionically crosslinking the Ct. The formulation screening section of the study includes a statistically designed Fractional Factorial experiment. It was comprised of the following five experimental factors: (a) the type of Ct and (b) its relative amount in the formulation, (c) the type of ionic crosslinker (citric acid or oxalic acid), (d) the concentration of the ionic crosslinker and (e) the co-loaded amounts of CaCl2 (the constitutional de-crosslinking agent). The difference factor, f1, and the similarity factor, f2, of the TT and PTX release profiles into water, were used as the experimental responses. The computerized prediction models were employed to assess the collective effects of the pre-determined experimental factors on the difference factor, f1, and the similarity factor, f2 (the response factors), by employing a fractional factorial design and multifactorial analysis, without the need to account for the exact mechanisms of the release processes involved. The final composite platform was capable of releasing TT and PTX, at similar (concomitant) rates, over a period of 7 days, a finding which suggests that the novel polymeric platform may serve as a multi-drug implant. An attractive medical application for such a device would be post-operative local treatment that could benefit from localized combination chemotherapy after the removal of malignant tissues, in the surgical treatment of breast cancer, ovarian cancer, glioma and peritoneal carcinomatosis.
Collapse
|
19
|
Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractBone cancer is a critical health problem on a global scale, and the associated huge clinical and economic burdens are still rising. Although many clinical approaches are currently used for bone cancer treatment, these methods usually affect the normal body functions and thus present significant limitations. Meanwhile, advanced materials and additive manufacturing have opened up promising avenues for the development of new strategies targeting both bone cancer treatment and post-treatment bone regeneration. This paper presents a comprehensive review of bone cancer and its current treatment methods, particularly focusing on a number of advanced strategies such as scaffolds based on advanced functional materials, drug-loaded scaffolds, and scaffolds for photothermal/magnetothermal therapy. Finally, the main research challenges and future perspectives are elaborated.
Collapse
|
20
|
Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, Kim J, Shim N, Cho H, Shim MK, Jeon S, Lim DK, Yoon HY, Kim K. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics 2022; 14:pharmaceutics14030474. [PMID: 35335852 PMCID: PMC8954063 DOI: 10.3390/pharmaceutics14030474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Immunogenic cell death (ICD) is a powerful trigger eliciting strong immune responses against tumors. However, traditional chemoimmunotherapy (CIT) does not last long enough to induce sufficient ICD, and also does not guarantee the safety of chemotherapeutics. To overcome the disadvantages of the conventional approach, we used doxorubicin (DOX) as an ICD inducer, and poly(lactic-co-glycolic acid) (PLGA)-based nanomedicine platform for controlled release of DOX. The diameter of 138.7 nm of DOX-loaded PLGA nanoparticles (DP-NPs) were stable for 14 days in phosphate-buffered saline (PBS, pH 7.4) at 37 °C. Furthermore, DOX was continuously released for 14 days, successfully inducing ICD and reducing cell viability in vitro. Directly injected DP-NPs enabled the remaining of DOX in the tumor site for 14 days. In addition, repeated local treatment of DP-NPs actually lasted long enough to maintain the enhanced antitumor immunity, leading to increased tumor growth inhibition with minimal toxicities. Notably, DP-NPs treated tumor tissues showed significantly increased maturated dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) population, showing enhanced antitumor immune responses. Finally, the therapeutic efficacy of DP-NPs was maximized in combination with an anti-programmed death-ligand 1 (PD-L1) antibody (Ab). Therefore, we expect therapeutic efficacies of cancer CIT can be maximized by the combination of DP-NPs with immune checkpoint blockade (ICB) by achieving proper therapeutic window and continuously inducing ICD, with minimal toxicities.
Collapse
Affiliation(s)
- Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yongwhan Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jaewan Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yujeong Moon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Nayeon Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Hanhee Cho
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
- Correspondence: ; Tel.: +82-2-958-5916
| |
Collapse
|
21
|
Saklani R, Yadav PK, Nengroo MA, Gawali SL, Hassan PA, Datta D, Mishra DP, Dierking I, Chourasia MK. An Injectable In Situ Depot-Forming Lipidic Lyotropic Liquid Crystal System for Localized Intratumoral Drug Delivery. Mol Pharm 2022; 19:831-842. [PMID: 35191706 DOI: 10.1021/acs.molpharmaceut.1c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection. The transformed depot system can be preprogrammed to provide tailored drug release intratumorally, over a period of one week to one month. To establish the efficacy of the developed L3CS, doxorubicin is used as a model drug. The drug release mechanism is studied in detail both in vitro and in vivo, and the efficacy of the developed system is investigated in the murine 4T1 tumor model. The direct intratumoral injection of the L3CS provided localized delivery of doxorubicin inside the tumor and restricted its access within the tumor only for a sustained period of time. This led to an over 10-fold reduction in tumor burden, reduced cardiotoxicity, and a significant increase in the median survival rate, compared to the control group. The developed L3CS thus provides an efficient strategy for localized chemotherapy against unresectable solid tumors with a great degree of spatial and temporal control over drug delivery.
Collapse
Affiliation(s)
- Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mushtaq A Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Santosh L Gawali
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Puthusserickal A Hassan
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durga P Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ingo Dierking
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Mori V, Bates JHT, Jantz M, Mehta HJ, Kinsey CM. A computational modeling approach for dosing endoscopic intratumoral chemotherapy for advanced non-small cell lung cancer. Sci Rep 2022; 12:44. [PMID: 34996946 PMCID: PMC8741990 DOI: 10.1038/s41598-021-03849-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
We recently developed a computational model of cisplatin pharmacodynamics in an endobronchial lung tumor following ultrasound-guided transbronchial needle injection (EBUS-TBNI). The model suggests that it is more efficacious to apportion the cisplatin dose between injections at different sites rather than giving it all in a single central injection, but the model was calibrated only on blood cisplatin data from a single patient. Accordingly, we applied a modified version of our original model in a set of 32 patients undergoing EBUS-TBNI for non-small cell lung cancer (NSCLC). We used the model to predict clinical responses and compared them retrospectively to actual patient outcomes. The model correctly predicted the clinical response in 72% of cases, with 80% accuracy for adenocarcinomas and 62.5% accuracy for squamous-cell lung cancer. We also found a power-law relationship between tumor volume and the minimal dose needed to induce a response, with the power-law exponent depending on the number of injections administered. Our results suggest that current injection strategies may be significantly over- or under-dosing the agent depending on tumor size, and that computational modeling can be a useful planning tool for EBUS-TBNI of cisplatin in lung cancer.
Collapse
Affiliation(s)
- Vitor Mori
- Division of Pulmonary and Critical Care, University of Vermont Medical Center, 89 Beaumont Avenue, Given D208, Burlington, VT, 05401, USA
| | - Jason H T Bates
- Division of Pulmonary and Critical Care, University of Vermont Medical Center, 89 Beaumont Avenue, Given D208, Burlington, VT, 05401, USA
| | - Michael Jantz
- Division of Pulmonary and Critical Care, University of Florida, Gainesville, FL, USA
| | - Hiren J Mehta
- Division of Pulmonary and Critical Care, University of Florida, Gainesville, FL, USA
| | - C Matthew Kinsey
- Division of Pulmonary and Critical Care, University of Vermont Medical Center, 89 Beaumont Avenue, Given D208, Burlington, VT, 05401, USA.
| |
Collapse
|
23
|
Du Y, Zhang Y, Huang M, Wang S, Wang J, Liao K, Wu X, Zhou Q, Zhang X, Wu YD, Peng T. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem Sci 2021; 12:13857-13869. [PMID: 34760171 PMCID: PMC8549814 DOI: 10.1039/d1sc04387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biological processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiological and pathological relevance and functions of FA, fluorescent probes for FA imaging in live biological samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theoretical calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-infrared probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chemical tools for fluorescence imaging and biological investigation of FA in living systems.
Collapse
Affiliation(s)
- Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
24
|
Brown GK, Campbell JE, Jones PD, De Ridder TR, Reddell P, Johannes CM. Intratumoural Treatment of 18 Cytologically Diagnosed Canine High-Grade Mast Cell Tumours With Tigilanol Tiglate. Front Vet Sci 2021; 8:675804. [PMID: 34513966 PMCID: PMC8429927 DOI: 10.3389/fvets.2021.675804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
Canine high-grade mast cell tumours (HGMCT) are associated with a poor prognosis, are inherently more invasive, and have higher rates of local recurrence. The primary aim of this retrospective study was to assess the efficacy of intratumoural tigilanol tiglate (TT) as a local treatment option. Eighteen dogs with mast cell tumours (MCT) cytologically diagnosed by veterinary pathologists as either high-grade or suspected high-grade MCT were treated with TT. The TT dose was based on tumour volume (0.5 mg TT/cm3 tumour volume) and delivered intratumourally using a Luer lock syringe and a fanning technique to maximise distribution throughout the tumour mass. Efficacy was assessed on the presence/absence of a complete response (CR) to therapy at days 28 and 84 using response evaluation criteria in solid tumours (RECIST). For dogs not achieving a CR after 28 days, the protocol was repeated with a second intratumoural TT injection. Ten out of 18 dogs (56%) in this study achieved and maintained a CR to at least 84 days after their first or second treatment. Six patients were alive and available for evaluation at 2 years, three of those were recurrence free, and a further three patients were recurrence free following a second treatment cycle. Tigilanol tiglate shows efficacy for local treatment of HGMCT, with higher efficacy noted with a second injection if a CR was not achieved following the first treatment. In the event of treatment site recurrence (TSR), the tumour may be controlled with additional treatment cycles. Tigilanol tiglate provides an alternative local treatment approach to dogs with HGMCT that would either pose an unacceptable anaesthetic risk or the tumour location provides a challenge when attempting surgical excision.
Collapse
Affiliation(s)
| | | | | | | | - Paul Reddell
- QBiotics Group Limited, Yungaburra, QLD, Australia
| | - Chad M Johannes
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|
25
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
26
|
Maulhardt H, Marin A, Hesseltine H, diZerega G. Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions. Med Oncol 2021; 38:106. [PMID: 34331595 PMCID: PMC8325653 DOI: 10.1007/s12032-021-01555-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
We describe here characterization of the response of local and metastatic disease and immunomodulation following intratumoral (IT) injection of submicron particle docetaxel (SPD) administered alone or in combination with systemic antibody anti-mCTLA-4 (anti-mCTLA-4) in the metastatic 4T1-Luc2-1A4 (4T1) murine breast cancer model. In-life assessments of treatment tolerance, tumor volume (TV), and metastasis were performed (n = 10 animals/group). At study end, immune cell populations in tumor-site tissues and peripheral blood were analyzed using flow cytometry. Signs of distress typical of this aggressive tumor model occurred across all animals except for the combination treated which were asymptomatic and gained weight. TV at study end was significantly reduced in the combination group versus untreated [43% reduced (p < 0.05)] and vehicle controls [54% reduced (p < 0.0001)]. No evidence of thoracic metastasis was found in 40% of combination group animals and thoracic bioluminescence imaging (BLI) was reduced vs. untreated controls (p < 0.01). Significant elevations (p < 0.05) in CD4 + T, CD4 + helper T, Treg, and NKT cells were found in tumor and blood in SPD or combination treatment compared to controls or anti-mCTLA-4. Combination treatment increased tumor-associated CD8 + T cells (p < 0.01), peripheral B cells (p < 0.01), and tumor associated and circulating dendritic cells (DC) (p < 0.05). Tumor-associated NK cells were significantly increased in SPD ± anti-mCTLA-4 treatments (p < 0.01). Myeloid-derived suppressor cells (MDSC) were reduced in bloods in SPD ± anti-mCTLA-4 groups (p < 0.05). These data demonstrate that both SPD and anti-mCTLA-4 produce local anti-tumor effects as well as reductions in metastasis which are significantly enhanced when administered in combination.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Combined Modality Therapy
- Docetaxel/administration & dosage
- Docetaxel/chemistry
- Docetaxel/pharmacology
- Female
- Immune Checkpoint Inhibitors/pharmacology
- Injections, Intralesional
- Killer Cells, Natural/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphocytes, Tumor-Infiltrating/immunology
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Myeloid-Derived Suppressor Cells/immunology
- Particle Size
- T-Lymphocytes, Regulatory/immunology
- Tumor Burden
Collapse
Affiliation(s)
- Holly Maulhardt
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Alyson Marin
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Holly Hesseltine
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Gere diZerega
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA.
- NanOlogy, LLC., 3909 Hulen Street, Fort Worth, TX, USA.
| |
Collapse
|
27
|
Wu C, Yi X, Xu R, Zhang M, Xu Y, Ma Y, Gao L, Zha Z. Biodistribution of etoposide via intratumoral chemotherapy with etoposide-loaded implants. Drug Deliv 2021; 27:974-982. [PMID: 32611260 PMCID: PMC8216434 DOI: 10.1080/10717544.2020.1787558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Etoposide (VP16) is the traditional antitumor agent which has been widely used in a variety of cancers. However, intravenous administration of VP16 was limited in clinical application because of its low aqueous solubility, poor bioavailability and dose-limiting adverse effects. Local chemotherapy with VP16-loaded drug delivery systems could provide a continuous release of drug at the target site, while minimizing the systemic toxicity. In this study, we prepared the poly-l-lactic acid (PLLA) based VP16-loaded implants (VP16 implants) by the direct compression method. The VP16 implants were characterized with regards to drug content, micromorphology, drug release profiles, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) analyses. Furthermore, the biodistribution of VP16 via intratumoral chemotherapy with VP16 implants was investigated using the murine Lewis lung carcinoma model. Our results showed that VP16 dispersed homogenously in the polymeric matrix. Both in vitro and in vivo drug release profiles of the implants were characterized by high initial burst release followed by sustained release of VP16. The VP16 implants showed good compatibility between VP16 and the excipients. Intratumoral chemotherapy with VP16 implants resulted in significantly higher concentration and longer duration of VP16 in tumor tissues compared with single intraperitoneal injection of VP16 solution. Moreover, we found the low level of VP16 in plasma and normal organ tissues. These results suggested that intratumoral chemotherapy with VP16 implants enabled high drug concentration at the target site and has the potential to be used as a novel method to treat cancer.
Collapse
Affiliation(s)
- Chunsheng Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Xiangting Yi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Renzhi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Maokuan Zhang
- Laboratory of Pharmaceutical Research, Anhui Zhongren Science and Technology Co., Ltd, Hefei, PR China
| | - Yan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Li Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| |
Collapse
|
28
|
Lang L, Xiong Y, Prieto-Dominguez N, Loveless R, Jensen C, Shay C, Teng Y. FGF19/FGFR4 signaling axis confines and switches the role of melatonin in head and neck cancer metastasis. J Exp Clin Cancer Res 2021; 40:93. [PMID: 33691750 PMCID: PMC7945659 DOI: 10.1186/s13046-021-01888-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. METHODS Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. RESULTS The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. CONCLUSIONS Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuanping Xiong
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Present address: Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nestor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, USA.
| |
Collapse
|
29
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
30
|
Wu K, Yee NA, Srinivasan S, Mahmoodi A, Zakharian M, Mejia Oneto JM, Royzen M. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation. Chem Sci 2021; 12:1259-1271. [PMID: 34163888 PMCID: PMC8179178 DOI: 10.1039/d0sc06099b] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The CAPAC platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)-modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels–Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapies. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. In mice, the maximum tolerated dose (MTD) of SQP33 in combination with locally injected tetrazine-modified biopolymer (SQL70) was determined to be 19.1-times the MTD of conventional doxorubicin. Pharmacokinetics studies in rats show that a single injection of SQL70 efficiently captures multiple SQP33 protodrug doses given cumulatively at 10.8-times the MTD of conventional doxorubicin with greatly reduced systemic toxicity. Finally, combined treatment with SQL70 and SQP33 (together called SQ3370) showed antitumor activity in a syngeneic tumor model in mice. The Click Activated Protodrugs Against Cancer (CAPAC) platform uses click chemistry to activate cytotoxic drugs directly at a target site with minimal toxicity, overcoming limitations of conventional chemotherapy and traditional targeted therapies.![]()
Collapse
Affiliation(s)
- Kui Wu
- University at Albany, SUNY 1400 Washington Ave., LS-1136 Albany NY 12222 USA
| | - Nathan A Yee
- Shasqi, Inc. 665 3rd St., Suite 501 San Francisco CA 94107 USA
| | | | - Amir Mahmoodi
- Shasqi, Inc. 665 3rd St., Suite 501 San Francisco CA 94107 USA
| | | | | | - Maksim Royzen
- University at Albany, SUNY 1400 Washington Ave., LS-1136 Albany NY 12222 USA
| |
Collapse
|
31
|
Rossi SM, Murray T, McDonough L, Kelly H. Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities. Expert Opin Drug Deliv 2020; 18:607-623. [PMID: 33253052 DOI: 10.1080/17425247.2021.1856074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Drug-based treatment regimens for cancer are often associated with off-target toxic side effects and low penetration of the drug at the tumor site leading to patient morbidity and limited efficacy. Loco-regional drug delivery has the potential to increase efficacy while concomitantly reducing toxicity.Areas covered: Clinical applications using loco-regional delivery include intra-arterial drug delivery in retinoblastoma, direct intra-tumoral (IT) injection of ethanol for ablation in hepatocellular carcinoma (HCC) and the use of HIPEC in peritoneal carcinomas. In recent years, there has been a significant increase in both approved products and clinical trials, with a particular emphasis on drug delivery platforms such as drug-eluting beads for HCC and hydrogel platforms for intravesical delivery in bladder cancer.Expert opinion: Development of loco-regional drug-delivery systems has been slow, limited by weak clinical data for early applications and challenges relating to dosing, delivery and retention of drugs at the site of action. However, there is increasing focus on the potential of loco-regional drug delivery when combined with bespoke drug-delivery platforms. With the growth in immunotherapies, the use of IT delivery to drive priming of the anti-tumor response has opened up a new field of opportunity for loco-regional drug delivery.
Collapse
Affiliation(s)
- Seona M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Timothy Murray
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam McDonough
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
32
|
Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: preclinical and clinical studies. Drug Deliv Transl Res 2020; 11:1806-1817. [PMID: 33159289 PMCID: PMC8421313 DOI: 10.1007/s13346-020-00868-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
This report describes local administration of submicron particle paclitaxel (SPP) (NanoPac®: ~ 800-nm-sized particles with high relative surface area with each particle containing ~ 2 billion molecules of paclitaxel) in preclinical models and clinical trials evaluating treatment of carcinomas. Paclitaxel is active in the treatment of epithelial solid tumors including ovarian, peritoneal, pancreatic, breast, esophageal, prostate, and non-small cell lung cancer. SPP has been delivered directly to solid tumors, where the particles are retained and continuously release the drug, exposing primary tumors to high, therapeutic levels of paclitaxel for several weeks. As a result, tumor cell death shifts from primarily apoptosis to both apoptosis and necroptosis. Direct local tumoricidal effects of paclitaxel, as well as stimulation of innate and adaptive immune responses, contribute to antineoplastic effects. Local administration of SPP may facilitate tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity. Results of preclinical and clinical investigations described here suggest that local administration of SPP achieves clinical benefit with negligible toxicity and may complement standard treatments for metastatic disease.
Collapse
|
33
|
Alghamdi M, Chierchini F, Eigel D, Taplan C, Miles T, Pette D, Welzel PB, Werner C, Wang W, Neto C, Gumbleton M, Newland B. Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. NANOSCALE ADVANCES 2020; 2:4498-4509. [PMID: 36132909 PMCID: PMC9418774 DOI: 10.1039/d0na00471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/20/2020] [Indexed: 06/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumour, which is associated with a poor two-year survival rate and a high rate of fatal recurrence near the original tumour. Focal/local drug delivery devices hold promise for improving therapeutic outcomes for GBM by increasing drug concentrations locally at the tumour site, or by facilitating the use of potent anti-cancer drugs that are poorly permeable across the blood brain barrier (BBB). For inoperable tumours, stereotactic delivery to the tumour necessitates the development of nanoscale/microscale injectable drug delivery devices. Herein we assess the ability of a novel class of polymer nanotube (based on poly(ethylene glycol) (PEG)) to load doxorubicin (a mainstay breast cancer therapeutic with poor BBB permeability) and release it slowly. The drug loading properties of the PEG nanotubes could be tuned by varying the degree of carboxylic acid functionalisation and hence the capacity of the nanotubes to electrostatically bind and load doxorubicin. 70% of the drug was released over the first seven days followed by sustained drug release for the remaining two weeks tested. Unloaded PEG nanotubes showed no toxicity to any of the cell types analysed, whereas doxorubicin loaded nanotubes decreased GBM cell viability (C6, U-87 and U-251) in a dose dependent manner in 2D in vitro culture. Finally, doxorubicin loaded PEG nanotubes significantly reduced the viability of in vitro 3D GBM models whilst unloaded nanotubes showed no cytotoxicity. Taken together, these findings show that polymer nanotubes could be used to deliver alternative anti-cancer drugs for local therapeutic strategies against brain cancers.
Collapse
Affiliation(s)
- Majed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
- School of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Filippo Chierchini
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Christian Taplan
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Thomas Miles
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Dagmar Pette
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin Ireland
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| |
Collapse
|
34
|
Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. ADVANCED THERAPEUTICS 2020; 3:2000027. [PMID: 33072860 PMCID: PMC7567411 DOI: 10.1002/adtp.202000027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Abstract
The fundamental limitations of systemic therapeutic administration have prompted the development of local drug delivery platforms as a solution to increase effectiveness and reduce side effects. By confining therapeutics to the site of disease, local delivery technologies can enhance therapeutic index. This review highlights recent advances and opportunities in local drug delivery strategies for cancer treatment in addition to challenges that need to be addressed to facilitate clinical translation. The benefits of local cancer treatment combined with technological advancements and increased understanding of the tumor microenvironment, present a prime breakthrough opportunity for safer and more effective therapies.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- School of Medicine, Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mauro Ferrari
- University of Washington, Box 357630, H375 Health Science Building, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
35
|
Mullany S, Miller DS, Robison K, Levinson K, Lee YC, Yamada SD, Walker J, Markman M, Marin A, Mast P, diZerega G. Phase II study of intraperitoneal submicron particle paclitaxel (SPP) plus IV carboplatin and paclitaxel in patients with epithelial ovarian cancersurgery. Gynecol Oncol Rep 2020; 34:100627. [PMID: 32953961 PMCID: PMC7486435 DOI: 10.1016/j.gore.2020.100627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/30/2023] Open
Abstract
Patients with ovarian cancer were treated with intraperitoneal submicron particle paclitaxel after debulking surgery. Following surgery, patients received IV chemotherapy without evidence of enhanced systemic toxicity. By RECIST 1.1 criteria, 66% of patients had progression free survival at 6 months and 1-year following surgery.
Submicron particles (~800 nm) of paclitaxel (SPP) contain 1–2 billion molecules of pure drug that release tumoricidal levels of paclitaxel over many weeks. This study compared two dose-levels of SPP instilled into the peritoneal cavity (IP) in 200 ml of saline post-cytoreductive surgery. Eligible patients with primary (n = 6) or recurrent (n = 4) epithelial ovarian cancer who underwent complete cytoreductive surgery were enrolled to receive a single instillation of IP SPP followed by standard IV carboplatin and paclitaxel. Endpoints were PFS and evaluation of treatment emergent adverse events. Clinical response was determined by symptoms, physical exams, CT scans, and serum CA-125 measurements. Of the 24 subjects screened, 10 were enrolled and received treatment: seven patients received 100 mg/m2 and three received 200 mg/m2. Seven subjects completed the 12-month follow-up period. Six patients were evaluable due to one subject who had unevaluable scans throughout the follow-up period and was thus excluded from PFS determination. Upon completion of planned chemotherapy post-SPP instillation, the PFS at 6 months was 66% (4/6) and at 12-months 66% (4/6) using RECIST 1.1. One subject had a complete response at the end of IV treatment but died (unrelated to study treatment) before PFS evaluation. There was one case of incision dehiscence and one case of vaginal cuff leakage after surgery. This pilot study supports further evaluation of IP SPP to treat peritoneal carcinomas.
Collapse
Affiliation(s)
- Sally Mullany
- University of Minnesota Medical Center, 2450 Riverside Ave, Minneapolis, MN 55454, USA
| | - David Scott Miller
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Katina Robison
- Women & Infants Hospital, 101 Dudley St, Providence, RI 02905, USA
| | - Kimberly Levinson
- Johns Hopkins Gynecologic Oncology at GBMC, 6569 Charles St #306, Towson, MD 21204, USA
| | - Yi-Chun Lee
- SUNY DownState Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - S Diane Yamada
- University of Chicago Medical Center, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | - Joan Walker
- University of Oklahoma, Stephenson Cancer Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Maurie Markman
- Cancer Treatment Centers of America, 1331 E Wyoming Ave, Philadelphia, PA 19124, USA
| | - Alyson Marin
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA
| | - Peter Mast
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA
| | - Gere diZerega
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA.,NanOlogy, 3909 Hulen St, Fort Worth, TX 76107, USA
| |
Collapse
|
36
|
Rossi SM, Ryan BK, Kelly HM. Evaluation of the activity of a chemo-ablative, thermoresponsive hydrogel in a murine xenograft model of lung cancer. Br J Cancer 2020; 123:369-377. [PMID: 32457364 PMCID: PMC7403591 DOI: 10.1038/s41416-020-0904-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Minimally invasive intratumoural administration of thermoresponsive hydrogels, that transition from liquid to gel in response to temperature, has been proposed as a potential treatment modality for solid tumours. The aim of this study was to assess the inherent cytotoxicity of a poloxamer-based thermoresponsive hydrogel in a murine xenograft model of lung cancer. METHODS In vitro viability assessment was carried out in a lung cancer (A549) and non-cancerous (Balb/c 3T3 clone A31) cell line. Following intratumoural administration of saline or the thermoresponsive hydrogel to an A549 xenograft model in female Athymic Nude-Foxn1nu mice (n = 6/group), localisation was confirmed using IVIS imaging. Tumour volume was assessed using callipers measurements over 14 days. Blood serum was analysed for liver and kidney damage and ex vivo tissue samples were histologically assessed. RESULTS The thermoresponsive hydrogel demonstrated a dose-dependent cancer cell-specific toxicity in vitro and was retained in situ for at least 14 days in the xenograft model. Tumour volume increase was statistically significantly lower than saline treated control at day 14 (n = 6, p = 0.0001), with no associated damage of hepatic or renal tissue observed. CONCLUSIONS Presented is a poloxamer-based thermoresponsive hydrogel, suitable for intratumoural administration and retention, which has demonstrated preliminary evidence of local tumour control, with minimal off-site toxicity.
Collapse
Affiliation(s)
- Seóna M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin 2, Ireland
| | - Benedict K Ryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland
| | - Helena M Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Ireland.
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
37
|
Huang A, Pressnall MM, Lu R, Huayamares SG, Griffin JD, Groer C, DeKosky BJ, Forrest ML, Berkland CJ. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J Control Release 2020; 326:203-221. [PMID: 32673633 DOI: 10.1016/j.jconrel.2020.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Cancer therapies aim to kill tumor cells directly or engage the immune system to fight malignancy. Checkpoint inhibitors, oncolytic viruses, cell-based immunotherapies, cytokines, and adjuvants have been applied to prompt the immune system to recognize and attack cancer cells. However, systemic exposure of cancer therapies can induce unwanted adverse events. Intratumoral administration of potent therapies utilizes small amounts of drugs, in an effort to minimize systemic exposure and off-target toxicities. Here, we discuss the properties of the tumor microenvironment and transport considerations for intratumoral drug delivery. Specifically, we consider various tumor tissue factors and physicochemical factors that can affect tumor retention after intratumoral injection. We also review approved and clinical-stage intratumoral therapies and consider how the molecular and biophysical properties (e.g. size and charge) of these therapies influences intratumoral transport (e.g. tumor retention and cellular uptake). Finally, we offer a critical review and highlight several emerging approaches to promote tumor retention and limit systemic exposure of potent intratumoral therapies.
Collapse
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | | | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
38
|
Pizzuti VJ, Viswanath D, Torregrosa-Allen SE, Currie MP, Elzey BD, Won YY. Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4858-4872. [PMID: 35021730 DOI: 10.1021/acsabm.0c00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincenzo J. Pizzuti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra E. Torregrosa-Allen
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Melanie P. Currie
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bennett D. Elzey
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
| |
Collapse
|
39
|
DeMaio A, Sterman D. Bronchoscopic intratumoural therapies for non-small cell lung cancer. Eur Respir Rev 2020; 29:200028. [PMID: 32554757 PMCID: PMC9488902 DOI: 10.1183/16000617.0028-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
The past decade has brought remarkable improvements in the treatment of non-small cell lung cancer (NSCLC) with novel therapies, such as immune checkpoint inhibitors, although response rates remain suboptimal. Direct intratumoural injection of therapeutic agents via bronchoscopic approaches poses the unique ability to directly target the tumour microenvironment and offers several theoretical advantages over systemic delivery including decreased toxicity. Increases in understanding of the tumour microenvironment and cancer immunology have identified many potential options for intratumoural therapy, especially combination immunotherapies. Herein, we review advances in the development of novel bronchoscopic treatments for NSCLC over the past decade with a focus on the potential of intratumoural immunotherapy alone or in combination with systemic treatments.
Collapse
Affiliation(s)
- Andrew DeMaio
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Langone Health/NYU Grossman School of Medicine, New York, NY, United States
| | - Daniel Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Langone Health/NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
40
|
Bender LH, Abbate F, Walters IB. Intratumoral Administration of a Novel Cytotoxic Formulation with Strong Tissue Dispersive Properties Regresses Tumor Growth and Elicits Systemic Adaptive Immunity in In Vivo Models. Int J Mol Sci 2020; 21:E4493. [PMID: 32599852 PMCID: PMC7349938 DOI: 10.3390/ijms21124493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
The recent development of immune-based therapies has improved the outcome for cancer patients; however, adjuvant therapies remain an important line of treatment for several cancer types. To maximize efficacy, checkpoint inhibitors are often combined with cytotoxic agents. While this approach often leads to increased tumor regression, higher off target toxicity often results in certain patients. This report describes a novel formulation comprising a unique amphiphilic molecule, 8-((2-hydroxybenzoyl)amino)octanoate (SHAO), that non-covalently interacts with payloads to increase drug dispersion and diffusion when dosed intratumorally (IT) into solid tumors. SHAO is co-formulated with cisplatin and vinblastine (referred to as INT230-6). IT dosing of the novel formulation achieved greater tumor growth inhibition and improved survival in in vivo tumor models compared to the same drugs without enhancer given intravenously or IT. INT230-6 treatment increased immune infiltrating cells in injected tumors with 10% to 20% of the animals having complete responses and developing systemic immunity to the cancer. INT230-6 was also shown to be synergistic with programmed cell death protein 1 (PD-1) antibodies at improving survival and increasing complete responses. INT230-6 induced significant tumor necrosis potentially releasing antigens to induce the systemic immune-based anti-cancer attack. This research demonstrates a novel, local treatment approach for cancer that minimizes systemic toxicity while stimulating adaptive immunity.
Collapse
Affiliation(s)
- Lewis H. Bender
- Intensity Therapeutics, Inc., Westport, CT 06880, USA; (F.A.); (I.B.W.)
| | | | | |
Collapse
|
41
|
Antitumor Effects of Curcumin and Glycyrrhetinic Acid-Modified Curcumin-Loaded Cationic Liposome by Intratumoral Administration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4504936. [PMID: 32565859 PMCID: PMC7277028 DOI: 10.1155/2020/4504936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023]
Abstract
Curcumin is a hydrophobic polyphenolic compound extracted from the rhizome of Curcuma longa and shows a line of active biological functions, but its application has been limited and questioned because of its low solubility, low bioavailability, and rapid metabolism. In terms of antitumor effect, these disadvantages can be overcome by intratumoral injection. In this study, we present the intratumoral injection of curcumin and glycyrrhetinic acid-modified curcumin-loaded cationic liposome (GAMCLCL) in H22 tumor-bearing mice. The experimental results demonstrated that curcumin exhibited positive antitumor activities in vitro and in vivo by intratumoral injection, but its activities were much weaker than GAMCLCL and adriamycin. Compared with free curcumin, GAMCLCL showed much better effects in improving the blood parameters (WBC, RBC, PLT, ALT, CRE, and LDH), inhibiting tumor growth, reducing tumor microvascular density, downregulating the expression of VEGF-protein and mRNA, and upregulating the expression of caspase-3 protein and mRNA in H22 tumor tissues. Under the experimental conditions of this study, the antitumor effect of high-dose GAMCLCL was similar to adriamycin. In conclusion, the experimental results demonstrated that free curcumin possessed definite antitumor efficacy, but its antitumor activities were weaker, and some strategies should be adopted to overcome its disadvantages, improve, and ensure its clinical efficacy.
Collapse
|
42
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
43
|
Adams MR, Moody CT, Sollinger JL, Brudno Y. Extracellular-Matrix-Anchored Click Motifs for Specific Tissue Targeting. Mol Pharm 2020; 17:392-403. [PMID: 31829613 DOI: 10.1021/acs.molpharmaceut.9b00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Local presentation of cancer drugs by injectable drug-eluting depots reduces systemic side effects and improves efficacy. However, local depots deplete their drug stores and are difficult to introduce into stiff tissues, or organs, such as the brain, that cannot accommodate increased pressure. We present a method for introducing targetable depots through injection of activated ester molecules into target tissues that react with and anchor themselves to the local extracellular matrix (ECM) and subsequently capture systemically administered small molecules through bioorthogonal click chemistry. A computational model of tissue-anchoring depot formation and distribution was verified by histological analysis and confocal imaging of cleared tissues. ECM-anchored click groups do not elicit any noticeable local or systemic toxicity or immune response and specifically capture systemically circulating molecules at intradermal, intratumoral, and intracranial sites for multiple months. Taken together, ECM anchoring of click chemistry motifs is a promising approach to specific targeting of both small and large therapeutics, enabling repeated local presentation for cancer therapy and other diseases.
Collapse
Affiliation(s)
- Mary R Adams
- Joint Department of Biomedical Engineering , University of North Carolina, Chapel Hill and North Carolina State University , Raleigh. 911 Oval Drive , Raleigh , North Carolina 27695 , United States
| | - Christopher T Moody
- Joint Department of Biomedical Engineering , University of North Carolina, Chapel Hill and North Carolina State University , Raleigh. 911 Oval Drive , Raleigh , North Carolina 27695 , United States
| | - Jennifer L Sollinger
- Joint Department of Biomedical Engineering , University of North Carolina, Chapel Hill and North Carolina State University , Raleigh. 911 Oval Drive , Raleigh , North Carolina 27695 , United States
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering , University of North Carolina, Chapel Hill and North Carolina State University , Raleigh. 911 Oval Drive , Raleigh , North Carolina 27695 , United States.,Lineberger Comprehensive Cancer Center , University of North Carolina, Chapel Hill , 450 West Dr. , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
44
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Panizza BJ, de Souza P, Cooper A, Roohullah A, Karapetis CS, Lickliter JD. Phase I dose-escalation study to determine the safety, tolerability, preliminary efficacy and pharmacokinetics of an intratumoral injection of tigilanol tiglate (EBC-46). EBioMedicine 2019; 50:433-441. [PMID: 31810818 PMCID: PMC6921293 DOI: 10.1016/j.ebiom.2019.11.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tigilanol tiglate, a short-chain diterpene ester, is being developed as intratumoral treatment of a broad range of cancers. We conducted the first-in-human study of intratumoral tigilanol tiglate in patients with solid tumors. METHODS Tigilanol tiglate was administered in a multicentre, non randomized, single-arm study, with escalating doses beginning with 0·06 mg/m2 in tumors estimated to be at least twice the volume of injection (dose-escalation cohorts). Patients with smaller tumors were assigned to the local effects cohort and received the appropriate dose for tumor size. FINDINGS Twenty-two patients were enrolled. The maximum dose was 3·6 mg/m2 and the maximum tolerated dose was not reached. There was one report of dose-limiting toxicity (upper airway obstruction), two serious adverse events (upper airway obstruction and septicemia), 160 treatment-emergent adverse events, and no deaths. Injection site reactions in all tumors and tumor types occurred even at the lowest dose. Six of the 22 patients experienced a treatment response, with four of the six patients achieving complete response. INTERPRETATION Intratumoral tigilanol tiglate was generally well tolerated, the maximum tolerated dose was not reached, and clinical activity was observed in 9 tumor types including complete response in four patients. These results support the continued development of tigilanol tiglate for intratumoral administration. FUNDING QBiotics Group Limited Brisbane, Queensland, Australia was the sponsor of the study.
Collapse
Affiliation(s)
- Benedict J Panizza
- Department of Otolaryngology-Head and Neck Surgery, Princess Alexandra Hospital and Faculty of Medicine, University of Queensland, Brisbane, Australia.
| | - Paul de Souza
- Medical Oncology, University of Western Sydney, Sydney, Australia
| | - Adam Cooper
- Medical Oncology, University of Western Sydney, Sydney, Australia
| | - Aflah Roohullah
- Medical Oncology, University of Western Sydney, Sydney, Australia
| | - Christos S Karapetis
- Department of Medical Oncology, Flinders Medical Center and Flinders Center for Innovation in Cancer, Flinders University, Adelaide, Australia
| | | |
Collapse
|
46
|
Lundberg J, Grankvist R, Holmin S. The creation of an endovascular exit through the vessel wall using a minimally invasive working channel in order to reach all human organs. J Intern Med 2019; 286:309-316. [PMID: 31108016 DOI: 10.1111/joim.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the establishment of the Seldinger technique for secure entry to the vascular system, there has been a rapid evolution in imaging and catheters that has made the arteries and veins internal routes to any place in the body for interventions. It is curious that a general exit from the vasculature in a similar manner has not been proposed earlier. Possibly, the simplest reason is that accidental perforation of the vasculature by guide wire or catheter is a feared adverse event in endovascular intervention. Most places in the body can be reached by ultrasonography or computed tomography-guided intervention. Some organs such as the central nervous system, the heart and pancreas are harder to access and, in some organs, like the kidney, repeated percutaneous punctions to cover large areas is not suitable. We present a new general purpose micro-endovascular device creating a working channel to these 'hard to reach' organs by an inverted Seldinger technique. This review details this trans-vessel wall technique, which has been studied in pancreas for transplantation of insulin-producing cells, for injection of contrast agent to the heart and to the brain, bowels and kidney in rat, rabbit, swine and macaque monkeys with up to one year of follow-up without adverse events. Furthermore, the payloads that can be given through such a system are briefly discussed. Drugs, cells, gene vectors and other therapeutic substances may be injected directly to the tissue to increase efficacy and decrease risk of off-site adverse effects.
Collapse
Affiliation(s)
- J Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - R Grankvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - S Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Bloom AC, Bender LH, Tiwary S, Pasquet L, Clark K, Jiang T, Xia Z, Morales-Kastresana A, Jones JC, Walters I, Terabe M, Berzofsky JA. Intratumorally delivered formulation, INT230-6, containing potent anticancer agents induces protective T cell immunity and memory. Oncoimmunology 2019; 8:e1625687. [PMID: 31646070 DOI: 10.1080/2162402x.2019.1625687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
The benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx. 300mm3) subcutaneous murine Colon26 tumors. Treatment resulted in regression from baseline in 100% of the tumors and complete response in up to 90%. CD8+ or CD8+/CD4+ T cell double-depletion at treatment onset prevented complete responses, indicating a critical role of T cells in promoting complete tumor regression. Mice with complete response were protected from subcutaneous and intravenous re-challenge of Colon26 cells in a CD4+/CD8+ dependent manner. Thus, immunological T cell memory was induced by INT230-6. Colon26 tumors express the endogenous retroviral protein gp70 containing the CD8+ T-cell AH-1 epitope. AH-1-specific CD8+ T cells were detected in peripheral blood of tumor-bearing mice and their frequency increased 14 days after treatment onset. AH-1-specific CD8+ T cells were also significantly enriched in tumors of untreated mice. These cells had an activated phenotype and highly expressed Programmed cell-death protein-1 (PD-1) but did not lead to tumor regression. CD8+ T cell tumor infiltrate also increased 11 days after treatment. INT230-6 synergized with checkpoint blockade, inducing a complete remission of the primary tumors and shrinking of untreated contralateral tumors, which demonstrates not only a local but also systemic immunological effect of the combined therapy. Similar T-cell dependent inhibition of tumor growth was also found in an orthotopic 4T1 breast cancer model.
Collapse
Affiliation(s)
- Anja C Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Shweta Tiwary
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katharine Clark
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tianbo Jiang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jennifer C Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Misra R, Sarkar K, Lee J, Pizzuti VJ, Lee DS, Currie MP, Torregrosa-Allen SE, Long DE, Durm GA, Langer MP, Elzey BD, Won YY. Radioluminescent nanoparticles for radiation-controlled release of drugs. J Control Release 2019; 303:237-252. [PMID: 31026550 DOI: 10.1016/j.jconrel.2019.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023]
Abstract
The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30-40 fractions of 2-3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle ("PEG-PLA/CWO/PTX") formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.
Collapse
Affiliation(s)
- Rahul Misra
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Kaustabh Sarkar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Jaewon Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Vincenzo J Pizzuti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Deborah S Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Melanie P Currie
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Sandra E Torregrosa-Allen
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - David E Long
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gregory A Durm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mark P Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
49
|
Local Injection of Submicron Particle Docetaxel is Associated with Tumor Eradication, Reduced Systemic Toxicity and an Immunologic Response in Uro-Oncologic Xenografts. Cancers (Basel) 2019; 11:cancers11040577. [PMID: 31022918 PMCID: PMC6520999 DOI: 10.3390/cancers11040577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Intratumoral (IT) administration of submicron particle docetaxel (NanoDoce®, NanOlogy LLC, Fort Worth, TX, USA) and its efficacy against genitourinary-oncologic xenografts in rats and mice, xenograft-site docetaxel concentrations and immune-cell infiltration were studied. IT-NanoDoce®, IV-docetaxel and IT-vehicle were administered to clear cell renal carcinoma (786-O: rats), transitional cell bladder carcinoma (UM-UC-3: mice) and prostate carcinoma (PC-3: mice). Treatments were given every 7 days with 1, 2, or 3 doses administered. Animals were followed for tumor growth and clinical signs. At necropsy, 786-O and UM-UC-3 tumor-site tissues were evaluated by H&E and IHC and analyzed by LC-MS/MS for docetaxel concentration. Two and 3 cycles of IT-NanoDoce® significantly reduced UM-UC-3 tumor volume (p < 0.01) and eliminated most UM-UC-3 and 786-O tumors. In both models, NanoDoce® treatment was associated with (peri)tumor-infiltrating immune cells. Lymphoid structures were observed in IT-NanoDoce®-treated UM-UC-3 animals adjacent to tumor sites. IT-vehicle and IV-docetaxel exhibited limited immune-cell infiltration. In both studies, high levels of docetaxel were detected in NanoDoce®-treated animals up to 50 days post-treatment. In the PC-3 study, IT-NanoDoce® and IV-docetaxel resulted in similar tumor reduction. NanoDoce® significantly reduced tumor volume compared to IT-vehicle in all xenografts (p < 0.0001). We hypothesize that local, persistent, therapeutic levels of docetaxel from IT-NanoDoce® reduces tumor burden while increasing immune-cell infiltration. IT NanoDoce® treatment of prostate, renal and bladder cancer may result in enhanced tumoricidal effects.
Collapse
|
50
|
Kim MS, Hong HP, Park K, Kang KA, Lee SR. In Vitro Bovine Liver Experiment of Cisplatin-Infused and Normal Saline-Infused Radiofrequency Ablation with an Internally Cooled Perfusion Electrode. Cardiovasc Intervent Radiol 2019; 42:886-892. [PMID: 30761412 DOI: 10.1007/s00270-019-02178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the efficacy of cisplatin-infused and normal saline-infused radiofrequency ablation (RFA) with internally cooled perfusion (ICP) electrode. MATERIALS AND METHODS Using a 200 W generator, thirty ablation zones were created and divided into three groups of 10 each as follows: group A, RFA alone with 16 gauge monopolar internally cooled (IC) electrode; group B, cisplatin-infused RFA with 16 gauge ICP electrode; and group C, normal saline-infused RFA with 16 gauge ICP electrode. Radiofrequency was applied to the explanted bovine liver for 12 min. During RFA, cisplatin and normal saline were injected into tissue at a rate of 0.5 mL/min through the ICP electrode by injection pump. Dimensions of the ablation zone and technical parameters were compared between the three groups. RESULT In the cisplatin-infused RFA group, the ablation zone size was significantly larger than that of the RFA-alone group but significantly smaller than normal saline-infused RFA group. The width of longitudinal section and volume were 3.39 ± 0.22 cm2 and 26.55 ± 4.62 cm3 in RFA-alone group, 3.88 ± 0.32 cm2 and 36.45 ± 5.46 cm3 in cisplatin-infused RFA group, and 4.52 ± 0.50 cm2 and 49.44 ± 7.55 cm3 in normal saline-infused RFA group, respectively (p < 0.05 between any two groups). The mean impedance in group A, B, and C were 60.0 ± 7.2, 50.3 ± 2.5, and 40.3 ± 4.0 Ω, respectively (p < 0.05 between any two groups). CONCLUSION Cisplatin-infused RFA with ICP electrode created the larger size of ablation zone than that of monopolar RFA with an IC electrode, but created the smaller size of ablation zone than that of normal saline-infused RFA.
Collapse
Affiliation(s)
- Myung Sub Kim
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Hyun Pyo Hong
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
| | - Kyungmin Park
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Kyung A Kang
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|