1
|
Kawabata K, Banno F, Mizutani Y, Maeda T, Nagao R, Shima S, Murayama K, Ohno Y, Maeda T, Sasaki M, Ueda A, Ito M, Watanabe H. Flattened red nucleus in progressive supranuclear palsy detected by quantitative susceptibility mapping. Parkinsonism Relat Disord 2025; 131:107251. [PMID: 39721339 DOI: 10.1016/j.parkreldis.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) involves midbrain structures, including the red nucleus (RN), an iron-rich region that appears as a high-contrast area on quantitative susceptibility mapping (QSM). RN may serve as a promising biomarker for differentiating parkinsonism. However, RN deformation in PSP remains elusive. This study aimed to evaluate RN deformation in PSP using coronal QSM images and compare them with those of Parkinson's disease (PD) and healthy controls (HC). METHODS We evaluated the QSM images of 22 patients with PSP, 37 patients with PD, and 43 HC. We developed a grading system to assess RN deformation on coronal QSM images and classified them into three grades. The midbrain and RN volumes were extracted using distinct approaches, and their relationship with grading was investigated. For validation, coronal QSM images of 16 PSP patients from a different institution were assessed. RESULTS In PSP, 59 % of the patients displayed a flattened RN of grade 3, which we termed a Rice-Grain Appearance. The volume reductions in midbrain and RN were associated with deformation. Differentiation based on the presence of this appearance yielded a specificity of 1.000 (CI: 1.000-1.000) and sensitivity of 0.591 (0.385-0.796) for distinguishing PSP from others. Secondary dataset also showed that 56 % of patients with PSP were classified as grade 3. CONCLUSION In coronal QSM images, the flattened RN shape appears to be specific to PSP compared to PD and HC and may serve as a marker to help differentiate PSP in future clinical settings.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Division of BrainTheraInformatics, International Center for Brain Science, Fujita Health University, Toyoake, Japan.
| | - Fumihiko Banno
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan; Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Neurology, Fujita Health University Okazaki Medical Center, Okazaki, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Neurology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
2
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
3
|
Planche V, Mansencal B, Manjon JV, Meissner WG, Tourdias T, Coupé P. Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan. Brain Commun 2024; 6:fcae055. [PMID: 38444913 PMCID: PMC10914441 DOI: 10.1093/braincomms/fcae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.
Collapse
Affiliation(s)
- Vincent Planche
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, UMR 5293, F-33000 Bordeaux, France
- Centre Mémoire Ressources Recherches, Service de Neurologie des Maladies Neurodégénératives, Pôle de Neurosciences Cliniques, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Boris Mansencal
- CNRS, Univ. Bordeaux, Bordeaux INP, Laboratoire Bordelais de Recherche en Informatique (LABRI), UMR5800, F-33400 Talence, France
| | - Jose V Manjon
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, UMR 5293, F-33000 Bordeaux, France
- Service de Neurologie des Maladies Neurodégénératives, Réseau NS-Park/FCRIN, CHU Bordeaux, F-33000, Bordeaux, France
- Department of Medicine, Christchurch, and New Zealand Brain Research Institute, Christchurch, 8011, New Zealand
| | - Thomas Tourdias
- Inserm U1215—Neurocentre Magendie, Bordeaux F-33000, France
- Service de Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Pierrick Coupé
- CNRS, Univ. Bordeaux, Bordeaux INP, Laboratoire Bordelais de Recherche en Informatique (LABRI), UMR5800, F-33400 Talence, France
| |
Collapse
|
4
|
Uchida W, Kamagata K, Andica C, Takabayashi K, Saito Y, Owaki M, Fujita S, Hagiwara A, Wada A, Akashi T, Sano K, Hori M, Aoki S. Fiber-specific micro- and macroscopic white matter alterations in progressive supranuclear palsy and corticobasal syndrome. NPJ Parkinsons Dis 2023; 9:122. [PMID: 37591877 PMCID: PMC10435458 DOI: 10.1038/s41531-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterized by progressive white matter (WM) alterations associated with the prion-like spreading of four-repeat tau, which has been pathologically confirmed. It has been challenging to monitor the WM degeneration patterns underlying the clinical deficits in vivo. Here, a fiber-specific fiber density and fiber cross-section, and their combined measure estimated using fixel-based analysis (FBA), were cross-sectionally and longitudinally assessed in PSP (n = 20), CBS (n = 17), and healthy controls (n = 20). FBA indicated disease-specific progression patterns of fiber density loss and subsequent bundle atrophy consistent with the tau propagation patterns previously suggested in a histopathological study. This consistency suggests the new insight that FBA can monitor the progressive tau-related WM changes in vivo. Furthermore, fixel-wise metrics indicated strong correlations with motor and cognitive dysfunction and the classifiability of highly overlapping diseases. Our findings might also provide a tool to monitor clinical decline and classify both diseases.
Collapse
Affiliation(s)
- Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mana Owaki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsuhiro Sano
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Ota-ku, Tokyo, 143-8541, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, 279-0013, Japan
| |
Collapse
|
5
|
Miyata M, Kakeda S, Yoneda T, Ide S, Okada K, Adachi H, Korogi Y. Superior cerebellar peduncle atrophy of progressive supranuclear palsy on phase difference enhanced imaging: a comparison with Parkinson's disease. Neuroradiology 2023; 65:719-727. [PMID: 36670276 DOI: 10.1007/s00234-023-03119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Phase difference enhanced (PADRE) imaging can enhance myelin density and delineate the superior cerebellar peduncle (SCP). We aimed to determine if SCP atrophy was distinguishable on PADRE imaging and evaluate its diagnostic performance compared with previous MRI progressive supranuclear palsy (PSP) findings. METHODS Two reviewers measured the SCP widths on PADRE in 20 PSP and 31 Parkinson's disease (PD) patients. The SCP and middle cerebellar peduncle (MCP) widths and the pons and midbrain areas were measured on 3D-T1WI, and the ratio of the area of the pons to the area of the midbrain, the MCP/SCP ratio, and the magnetic resonance parkinsonism index (MRPI) were calculated. We used the Steel-Dwass test to compare PSP, PD, and HS, and receiver operating characteristic curve (ROC) analyses to assess the sensitivity and specificity for diagnosing PSP from PD. A comparison of ROC curves was performed between the SCP on PADRE and these 3D-T1WI parameters. RESULTS In radiologist 1, the SCP on PADRE in PSP (1.1 ± 0.3 mm) was significantly smaller than those in PD (2.4 ± 0.4 mm) (P < 0.001); the area under the curve (AUC) was 0.97. At a 1.75-mm cutoff value, the diagnostic sensitivity and specificity for differentiating PSP from PD were 93.5% and 100%, respectively. The AUC of the SCP on PADRE was significantly higher than the 3D-T1WI parameters (the SCP, MCP, pons area, MCP/SCP ratio, and MRPI). CONCLUSION Assessing SCP with PADRE imaging may yield high diagnostic accuracy for discriminating PSP from PD.
Collapse
Affiliation(s)
- Mari Miyata
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazumasa Okada
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
6
|
Koizumi R, Akagi A, Riku Y, Sone J, Miyahara H, Tanaka F, Yoshida M, Iwasaki Y. Clinicopathological features of progressive supranuclear palsy with asymmetrical atrophy of the superior cerebellar peduncle. Neuropathology 2022. [PMID: 36222051 DOI: 10.1111/neup.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Progressive supranuclear palsy (PSP) can be diagnosed despite the presence of asymmetrical parkinsonism depending on the clinical diagnostic criteria. Some studies have reported that atrophy of the superior cerebellar peduncle (SCP) is more frequent in PSP than in Parkinson's disease. There have also been reports of PSP cases with an asymmetrically atrophic SCP. Therefore, we analyzed 48 specimens from consecutive autopsy cases that were neuropathologically diagnosed as PSP to investigate the laterality of brain lesions, including the SCP. We measured the width of the SCP and evaluated the laterality of atrophy. We semi-quantitatively evaluated neuronal loss, atrophy/myelin pallor, and tau pathology in three steps. Asymmetrical atrophy of the SCP was present in seven (14.6%) of 48 cases. The atrophic side of the SCP corresponded to the dominant side of the tau pathology in the cerebellar dentate nucleus. It was opposite to the dominant side of the myelin pallor and tau pathology in the red nucleus and of the tau pathology in the central tegmental tract and inferior olivary nucleus, coinciding with the neurologically systematic anatomy of the Guillain-Mollaret triangle. Neurodegeneration of PSP can progress asymmetrically from one side to the initially intact side in PSP with an initial predominance of Richardson's syndrome, progressive gait freezing, ocular motor dysfunction, parkinsonism, or corticobasal syndrome. To our knowledge, no previous study has reported asymmetrical PSP neuropathology; this is the first study to report the presence of PSP cases with asymmetrical SCP atrophy and systematically asymmetrical degeneration of the Guillain-Mollaret triangle.
Collapse
Affiliation(s)
- Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan.,Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
7
|
Magnetic Resonance Planimetry in the Differential Diagnosis between Parkinson’s Disease and Progressive Supranuclear Palsy. Brain Sci 2022; 12:brainsci12070949. [PMID: 35884755 PMCID: PMC9313181 DOI: 10.3390/brainsci12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
The clinical differential diagnosis between Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) is often challenging. The description of milder PSP phenotypes strongly resembling PD, such as PSP-Parkinsonism, further increased the diagnostic challenge and the need for reliable neuroimaging biomarkers to enhance the diagnostic certainty. This review aims to summarize the contribution of a relatively simple and widely available imaging technique such as MR planimetry in the differential diagnosis between PD and PSP, focusing on the recent advancements in this field. The development of accurate MR planimetric biomarkers, together with the implementation of automated algorithms, led to robust and objective measures for the differential diagnosis of PSP and PD at the individual level. Evidence from longitudinal studies also suggests a role of MR planimetry in predicting the development of the PSP clinical signs, allowing to identify PSP patients before they meet diagnostic criteria when their clinical phenotype can be indistinguishable from PD. Finally, promising evidence exists on the possible association between MR planimetric measures and the underlying pathology, with important implications for trials with new disease-modifying target therapies.
Collapse
|
8
|
Tsujikawa K, Hamanaka K, Riku Y, Hattori Y, Hara N, Iguchi Y, Ishigaki S, Hashizume A, Miyatake S, Mitsuhashi S, Miyazaki Y, Kataoka M, Jiayi L, Yasui K, Kuru S, Koike H, Kobayashi K, Sahara N, Ozaki N, Yoshida M, Kakita A, Saito Y, Iwasaki Y, Miyashita A, Iwatsubo T, Ikeuchi T, Miyata T, Sobue G, Matsumoto N, Sahashi K, Katsuno M. Actin-binding protein filamin-A drives tau aggregation and contributes to progressive supranuclear palsy pathology. SCIENCE ADVANCES 2022; 8:eabm5029. [PMID: 35613261 PMCID: PMC9132466 DOI: 10.1126/sciadv.abm5029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While amyloid-β lies upstream of tau pathology in Alzheimer's disease, key drivers for other tauopathies, including progressive supranuclear palsy (PSP), are largely unknown. Various tau mutations are known to facilitate tau aggregation, but how the nonmutated tau, which most cases with PSP share, increases its propensity to aggregate in neurons and glial cells has remained elusive. Here, we identified genetic variations and protein abundance of filamin-A in the PSP brains without tau mutations. We provided in vivo biochemical evidence that increased filamin-A levels enhance the phosphorylation and insolubility of tau through interacting actin filaments. In addition, reduction of filamin-A corrected aberrant tau levels in the culture cells from PSP cases. Moreover, transgenic mice carrying human filamin-A recapitulated tau pathology in the neurons. Our data highlight that filamin-A promotes tau aggregation, providing a potential mechanism by which filamin-A contributes to PSP pathology.
Collapse
Affiliation(s)
- Koyo Tsujikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
- Department of Neurology , National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Miyazaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Li Jiayi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Satoshi Kuru
- Department of Neurology , National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Corresponding author.
| |
Collapse
|
9
|
Diffusion tractography of superior cerebellar peduncle and dentatorubrothalamic tracts in two autopsy confirmed progressive supranuclear palsy variants: Richardson syndrome and the speech-language variant. Neuroimage Clin 2022; 35:103030. [PMID: 35597031 PMCID: PMC9123268 DOI: 10.1016/j.nicl.2022.103030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
Different changes in DTI metrics in SCP and DRTT can be seen across PSP subtypes. DRTT tractography reconstructions demonstrated specific changes in PSP-RS. DTI and clinical PSP scores are specifically linked across each PSP variant.
Background Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy with neurodegeneration typically observed in the superior cerebellar peduncle (SCP) and dentatorubrothalamic tracts (DRTT). However, it is unclear how these tracts are differentially affected in different clinical variants of PSP. Objectives To determine whether diffusion tractography of the SCP and DRTT can differentiate autopsy-confirmed PSP with Richardson’s syndrome (PSP-RS) and PSP with predominant speech/language disorder (PSP-SL). Methods We studied 22 autopsy-confirmed PSP patients that included 12 with PSP-RS and 10 with PSP-SL. We compared these two groups to 11 patients with autopsy-confirmed Alzheimer’s disease with SL problems, i.e., logopenic progressive aphasia (AD-LPA) (disease controls) and 10 healthy controls. Whole brain tractography was performed to identify the SCP and DRTT, as well as the frontal aslant tract and superior longitudinal fasciculus. We assessed fractional anisotropy and mean diffusivity for each tract. Hierarchical linear modeling was used for statistical comparisons, and correlations were assessed with clinical disease severity, ocular motor impairment, and parkinsonism. DRTT connectomics matrix analysis was also performed across groups. Results The SCP showed decreased fractional anisotropy for PSP-RS and PSP-SL and increased mean diffusivity in PSP-RS, compared to controls and AD-LPA. Right DRTT fibers showed lower fractional anisotropy in PSP-RS and PSP-SL compared to controls and AD-LPA, with PSP-RS also showing lower values compared to PSP-SL. Reductions in connectivity were observed in infratentorial DRTT regions in PSP-RS vs cortical regions in PSP-SL. PSP-SL showed greater abnormalities in the frontal aslant tract and superior longitudinal fasciculus compared to controls, PSP-RS, and AD-LPA. Significant correlations were observed between ocular motor impairment and SCP in PSP-RS (p = 0.042), and DRTT in PSP-SL (p = 0.022). In PSP-SL, the PSP Rating Scale correlated with the SCP (p = 0.045) and DRTT (p = 0.008), and the Unified Parkinson’s Disease Rating Scale correlated with the DRTT (p = 0.014). Conclusions Degeneration of the SCP and DRTT are diagnostic features of both PSP-RS and PSP-SL and associations with clinical metrics validate the role of these tracts in PSP-related clinical features, particularly in PSP-SL.
Collapse
|
10
|
Mitchell T, Wilkes BJ, Archer DB, Chu WT, Coombes SA, Lai S, McFarland NR, Okun MS, Black ML, Herschel E, Simuni T, Comella C, Afshari M, Xie T, Li H, Parrish TB, Kurani AS, Corcos DM, Vaillancourt DE. Advanced diffusion imaging to track progression in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Neuroimage Clin 2022; 34:103022. [PMID: 35489192 PMCID: PMC9062732 DOI: 10.1016/j.nicl.2022.103022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
Advanced diffusion imaging which accounts for complex tissue properties, such as crossing fibers and extracellular fluid, may detect longitudinal changes in widespread pathology in atypical Parkinsonian syndromes. We implemented fixel-based analysis, Neurite Orientation and Density Imaging (NODDI), and free-water imaging in Parkinson's disease (PD), multiple system atrophy (MSAp), progressive supranuclear palsy (PSP), and controls longitudinally over one year. Further, we used these three advanced diffusion imaging techniques to investigate longitudinal progression-related effects in key white matter tracts and gray matter regions in PD and two common atypical Parkinsonian disorders. Fixel-based analysis and free-water imaging revealed longitudinal declines in a greater number of descending sensorimotor tracts in MSAp and PSP compared to PD. In contrast, only the primary motor descending sensorimotor tract had progressive decline over one year, measured by fiber density (FD), in PD compared to that in controls. PSP was characterized by longitudinal impairment in multiple transcallosal tracts (primary motor, dorsal and ventral premotor, pre-supplementary motor, and supplementary motor area) as measured by FD, whereas there were no transcallosal tracts with longitudinal FD impairment in MSAp and PD. In addition, free-water (FW) and FW-corrected fractional anisotropy (FAt) in gray matter regions showed longitudinal changes over one year in regions that have previously shown cross-sectional impairment in MSAp (putamen) and PSP (substantia nigra, putamen, subthalamic nucleus, red nucleus, and pedunculopontine nucleus). NODDI did not detect any longitudinal white matter tract progression effects and there were few effects in gray matter regions across Parkinsonian disorders. All three imaging methods were associated with change in clinical disease severity across all three Parkinsonian syndromes. These results identify novel extra-nigral and extra-striatal longitudinal progression effects in atypical Parkinsonian disorders through the application of multiple diffusion methods that are related to clinical disease progression. Moreover, the findings suggest that fixel-based analysis and free-water imaging are both particularly sensitive to these longitudinal changes in atypical Parkinsonian disorders.
Collapse
Affiliation(s)
- Trina Mitchell
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Winston T Chu
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Song Lai
- Department of Radiation Oncology & CTSI Human Imaging Core, University of Florida, Gainesville, FL, USA
| | - Nikolaus R McFarland
- Department of Neurology and the Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology and the Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mieniecia L Black
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ellen Herschel
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, USA
| | - Hong Li
- Department of Public Health Sciences, Medical College of South Carolina, Charleston, SC, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ajay S Kurani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology and the Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Riley KJ, Graner BD, Veronesi MC. The tauopathies: Neuroimaging characteristics and emerging experimental therapies. J Neuroimaging 2022; 32:565-581. [PMID: 35470528 PMCID: PMC9545715 DOI: 10.1111/jon.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.
Collapse
Affiliation(s)
- Kalen J Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian D Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael C Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Saito Y, Kamagata K, Wijeratne PA, Andica C, Uchida W, Takabayashi K, Fujita S, Akashi T, Wada A, Shimoji K, Hori M, Masutani Y, Alexander DC, Aoki S. Temporal Progression Patterns of Brain Atrophy in Corticobasal Syndrome and Progressive Supranuclear Palsy Revealed by Subtype and Stage Inference (SuStaIn). Front Neurol 2022; 13:814768. [PMID: 35280291 PMCID: PMC8914081 DOI: 10.3389/fneur.2022.814768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Differentiating corticobasal degeneration presenting with corticobasal syndrome (CBD-CBS) from progressive supranuclear palsy with Richardson's syndrome (PSP-RS), particularly in early stages, is often challenging because the neurodegenerative conditions closely overlap in terms of clinical presentation and pathology. Although volumetry using brain magnetic resonance imaging (MRI) has been studied in patients with CBS and PSP-RS, studies assessing the progression of brain atrophy are limited. Therefore, we aimed to reveal the difference in the temporal progression patterns of brain atrophy between patients with CBS and those with PSP-RS purely based on cross-sectional data using Subtype and Stage Inference (SuStaIn)—a novel, unsupervised machine learning technique that integrates clustering and disease progression modeling. We applied SuStaIn to the cross-sectional regional brain volumes of 25 patients with CBS, 39 patients with typical PSP-RS, and 50 healthy controls to estimate the two disease subtypes and trajectories of CBS and PSP-RS, which have distinct atrophy patterns. The progression model and classification accuracy of CBS and PSP-RS were compared with those of previous studies to evaluate the performance of SuStaIn. SuStaIn identified distinct temporal progression patterns of brain atrophy for CBS and PSP-RS, which were largely consistent with previous evidence, with high reproducibility (99.7%) under cross-validation. We classified these diseases with high accuracy (0.875) and sensitivity (0.680 and 1.000, respectively) based on cross-sectional structural brain MRI data; the accuracy was higher than that reported in previous studies. Moreover, SuStaIn stage correctly reflected disease severity without the label of disease stage, such as disease duration. Furthermore, SuStaIn also showed the genialized performance of differentiation and reflection for CBS and PSP-RS. Thus, SuStaIn has potential for improving our understanding of disease mechanisms, accurately stratifying patients, and providing prognoses for patients with CBS and PSP-RS.
Collapse
Affiliation(s)
- Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Koji Kamagata
| | - Peter A. Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshitaka Masutani
- Department of Biomedical Information Sciences, Hiroshima City University Graduate School of Information Sciences, Hiroshima, Japan
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Fearon C, Rawal S, Olszewska D, Alcaide‐Leon P, Kern DS, Sharma S, Jaiswal SK, Murthy JM, Ha AD, Schwartz RS, Fung VS, Spears C, Tholanikunnel T, Almeida L, Hatano T, Oji Y, Hattori N, Shubham S, Kumar H, Bhidayasiri R, Laohathai C, Lang AE. Neuroimaging Pearls from the MDS Congress Video Challenge. Part 2: Acquired Disorders. Mov Disord Clin Pract 2022; 9:311-325. [PMID: 35402651 PMCID: PMC8974867 DOI: 10.1002/mdc3.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The MDS Video Challenge continues to be the one of most widely attended sessions at the International Congress. Although the primary focus of this event is the presentation of complex and challenging cases through videos, a number of cases over the years have also presented an unusual or important neuroimaging finding related to the case. We reviewed the previous Video Challenge cases and present here a selection of those cases which incorporated such imaging findings. We have compiled these "imaging pearls" into two anthologies. The first focuses on pearls where the underlying diagnosis was a genetic condition. This second anthology focuses on imaging pearls in cases where the underlying condition was acquired. For each case we present brief clinical details along with neuroimaging findings, the characteristic imaging findings of that disorder and, finally, the differential diagnosis for the imaging findings seen.
Collapse
Affiliation(s)
- Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Sapna Rawal
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Diana Olszewska
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| | - Paula Alcaide‐Leon
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Drew S. Kern
- Department of Neurology and NeurosurgeryUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Soumya Sharma
- Department of Clinical Neurological Sciences, London Health Sciences CentreWestern UniversityLondonOntarioCanada
| | | | | | - Ainhi D. Ha
- Movement Disorders UnitWestmead HospitalWestmeadNew South WalesAustralia
| | - Raymond S. Schwartz
- Southern NeurologyKoharahNew South WalesAustralia,Sydney Medical SchoolThe University of SydneyCamperdownNew South WalesAustralia
| | - Victor S.C. Fung
- Movement Disorders UnitWestmead HospitalWestmeadNew South WalesAustralia,Sydney Medical SchoolThe University of SydneyCamperdownNew South WalesAustralia
| | - Chauncey Spears
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tracy Tholanikunnel
- Department of Neurology, Normal Fixel Institute for Neurological DiseasesUniversity of FloridaGainesvilleFloridaUSA
| | - Leonardo Almeida
- Department of Neurology, Normal Fixel Institute for Neurological DiseasesUniversity of FloridaGainesvilleFloridaUSA
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo UniversityTokyoJapan
| | - Yutaka Oji
- Department of Neurology, Faculty of Medicine, Juntendo UniversityTokyoJapan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo UniversityTokyoJapan
| | | | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand,The Academy of Science, The Royal Society of ThailandBangkokThailand
| | | | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital–UHN, Division of NeurologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
14
|
Carlos AF, Tosakulwong N, Weigand SD, Buciuc M, Ali F, Clark HM, Botha H, Utianski RL, Machulda MM, Schwarz CG, Reid RI, Senjem ML, Jack CR, Ahlskog JE, Dickson DW, Josephs KA, Whitwell JL. OUP accepted manuscript. Brain Commun 2022; 4:fcac108. [PMID: 35663380 PMCID: PMC9155234 DOI: 10.1093/braincomms/fcac108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Primary four-repeat tauopathies are characterized by depositions of the four-repeat isoform of the microtubule binding protein, tau. The two most common sporadic four-repeat tauopathies are progressive supranuclear palsy and corticobasal degeneration. Because tau PET tracers exhibit poor binding affinity to four-repeat pathology, determining how well in vivo MRI findings relate to underlying pathology is critical to evaluating their utility as surrogate markers to aid in diagnosis and as outcome measures for clinical trials. We studied the relationship of cross-sectional imaging findings, such as MRI volume loss and diffusion tensor imaging white matter tract abnormalities, to tau histopathology in four-repeat tauopathies. Forty-seven patients with antemortem 3 T MRI volumetric and diffusion tensor imaging scans plus post-mortem pathological diagnosis of a four-repeat tauopathy (28 progressive supranuclear palsy; 19 corticobasal degeneration) were included in the study. Tau lesion types (pretangles/neurofibrillary tangles, neuropil threads, coiled bodies, astrocytic lesions) were semiquantitatively graded in disease-specific cortical, subcortical and brainstem regions. Antemortem regional volumes, fractional anisotropy and mean diffusivity were modelled using linear regression with post-mortem tau lesion scores considered separately, based on cellular type (neuronal versus glial), or summed (total tau). Results showed that greater total tau burden was associated with volume loss in the subthalamic nucleus (P = 0.001), midbrain (P < 0.001), substantia nigra (P = 0.03) and red nucleus (P = 0.004), with glial lesions substantially driving the associations. Decreased fractional anisotropy and increased mean diffusivity in the superior cerebellar peduncle correlated with glial tau in the cerebellar dentate (P = 0.04 and P = 0.02, respectively) and red nucleus (P < 0.001 for both). Total tau and glial pathology also correlated with increased mean diffusivity in the midbrain (P = 0.02 and P < 0.001, respectively). Finally, increased subcortical white matter mean diffusivity was associated with total tau in superior frontal and precentral cortices (each, P = 0.02). Overall, results showed clear relationships between antemortem MRI changes and pathology in four-repeat tauopathies. Our findings show that brain volume could be a useful surrogate marker of tau pathology in subcortical and brainstem regions, whereas white matter integrity could be a useful marker of tau pathology in cortical regions. Our findings also suggested an important role of glial tau lesions in the pathogenesis of neurodegeneration in four-repeat tauopathies. Thus, development of tau PET tracers selectively binding to glial tau lesions could potentially uncover mechanisms of disease progression.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen D. Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Robert I. Reid
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Correspondence to: Jennifer L. Whitwell, PhD Professor of Radiology, Department of Radiology Mayo Clinic, 200 1st St SW Rochester, MN 55905, USA E-mail:
| |
Collapse
|
15
|
Ferreira F, Akram H, Ashburner J, Zrinzo L, Zhang H, Lambert C. Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. Neuroimage 2021; 238:118231. [PMID: 34089871 PMCID: PMC8960999 DOI: 10.1016/j.neuroimage.2021.118231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.
Collapse
Affiliation(s)
- Francisca Ferreira
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Hui Zhang
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
16
|
Deciphering the saccade velocity profile of progressive supranuclear palsy: A sign of latent cerebellar/brainstem dysfunction? Clin Neurophysiol 2021; 141:147-159. [PMID: 33632587 DOI: 10.1016/j.clinph.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study whether the velocity profile of horizontal saccades could be used as an indicator of brainstem and cerebellar output dysfunction, depending on progressive supranuclear palsy (PSP) subtype. METHODS We compared the velocity profiles in 32 PSP patients of various subtypes with 38 age-matched normal subjects, including Richardson syndrome (RS), PSP-parkinsonism (PSPp), and pure akinesia (PAGF), and cerebellar subtypes of PSP (PSPc). RESULTS PSP patients showed reduced peak velocity along with increased duration, especially in the deceleration phase. This alteration was more prominent for larger target eccentricities (20-30 degrees), and correlated with disease severity. The changes were most pronounced in PSPc patients, with irregular increases and decreases in velocity profile, followed by RS patients, whereas the change was smaller in PSPp and normal in PAGF patients. CONCLUSIONS Saccade velocity profile can be an indicator of brainstem and/or cerebellar output. Altered velocity profile of PSP patients may reflect the pathology in the brainstem, but may also reflect cerebellar dysfunction, most prominently in PSPc. SIGNIFICANCE Saccade velocity profile may be used as an indicator of latent cerebellar/brainstem dysfunction.
Collapse
|
17
|
Zhao P, Zhang B, Gao S, Li X. Clinical, MRI and 18F-FDG-PET/CT analysis of progressive supranuclear palsy. J Clin Neurosci 2020; 80:318-323. [DOI: 10.1016/j.jocn.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
18
|
Dentatorubrothalamic tract reduction using fixel-based analysis in corticobasal syndrome. Neuroradiology 2020; 63:529-538. [PMID: 32989557 DOI: 10.1007/s00234-020-02559-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The word "fixel" refers to the specific fiber population within each voxel, and fixel-based analysis (FBA) is a recently developed technique that facilitates fiber tract-specific statistical analysis. The aim of the paper is to apply FBA to detect impaired fibers for corticobasal syndrome (CBS) especially in regions that contain multiple crossed fibers. METHODS FBA was performed in cohorts of participants clinically diagnosed with CBS (n = 10) and Parkinson's disease (n = 15) or in healthy controls (n = 9). The parameters of the diffusion weighted image were echo time, 83 ms; time, 8123.6 ms; flip angle, 90°; section thickness, 2 mm; b = 1000 s/mm2; and 32 axes. Diffusion tensor analysis was conducted using tract-based spatial statistics (TBSS), and white matter volume was estimated via voxel-based morphometry. RESULTS A comparison of PD or HC to CBS revealed a significant difference in the dentatorubrothalamic tract of the brainstem in FBA in addition to the affected regions in voxel-based morphometry and TBSS (family-wise error-corrected p < 0.05). Reduction of the white matter fibers crossing the brainstem could not be detected via microstructural changes identified using TBSS, but it was detected using FBA. CONCLUSION FBA has some advantages in determining the distribution of corticobasal syndrome lesions.
Collapse
|
19
|
Choi JH, Kim H, Shin JH, Lee JY, Kim HJ, Kim JM, Jeon B. Eye movements and association with regional brain atrophy in clinical subtypes of progressive supranuclear palsy. J Neurol 2020; 268:967-977. [PMID: 32959131 DOI: 10.1007/s00415-020-10230-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate oculomotor impairment in subtypes of progressive supranuclear palsy (PSP) and its associations with clinical features and regional brain volumes in PSP. METHODS We compared the video-oculography (VOG) findings of 123 PSP patients, consisting of 66 PSP-Richardson syndrome (PSP-RS), 28 PSP-parkinsonism (PSP-P), and 29 PSP-progressive gait freezing (PSP-PGF), along with 80 Parkinson's disease (PD) patients. We also investigated the associations of the VOG results with clinical features (disease duration, PSP rating scales [PSPRS] scores for dysphagia and postural stability) in the subtypes of PSP patients and with regional volumes in the brainstem, including the midbrain, pons, medulla, and the superior cerebellar peduncle (SCP), among the patients who had MRI images at the time of VOG (30 PSP). RESULTS All of the three subtypes of PSP patients showed slower vertical saccades and smooth pursuit than that of the PD patients (adjusted p < 0.05). Among the PSP subtypes, saccadic peak velocity, saccadic accuracy, and pursuit gain were significantly decreased in patients with the PSP-RS compared to those with the PSP-PGF (adjusted p < 0.05). In multiple linear regression model, vertical saccadic velocity, latency, accuracy, and pursuit gain were associated with the PSPRS score for dysphagia (adjusted p < 0.05), and a decrease in vertical saccadic speed and accuracy was associated with SCP atrophy (corrected p < 0.05). CONCLUSIONS This study demonstrated the severity of oculomotor dysfunction in differentiating the subtypes of PSP and its significant relationships with the dysphagia symptom and SCP volume in PSP.
Collapse
Affiliation(s)
- Ji-Hyun Choi
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hwan Shin
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
20
|
Potrusil T, Krismer F, Beliveau V, Seppi K, Müller C, Troger F, Göbel G, Steiger R, Gizewski ER, Poewe W, Scherfler C. Diagnostic potential of automated tractography in progressive supranuclear palsy variants. Parkinsonism Relat Disord 2020; 72:65-71. [DOI: 10.1016/j.parkreldis.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
|
21
|
Abstract
Objectives: Recently, new criteria for sensitive and specific clinical diagnosis of progressive supranuclear palsy (PSP) have been addressed while distinct clinical phenotypes of the disorder have been increasingly described in the literature. This study aimed to describe past and present aspects of the disease as well as to highlight the cognitive and behavioral profile of PSP patients in relation to the underlying pathology, genetics and treatment procedures.Methods: A Medline and Scopus search was performed to identify articles published on this topic. Articles published solely in English were considered.Results: The most common clinical characteristics of PSP included early postural instability and falls, vertical supranuclear gaze palsy, parkinsonism with poor response to levodopa and pseudobulbar palsy. Frontal dysfunction and verbal fluency deficits were the most distinct cognitive impairments in PSP while memory, visuospatial and social cognition could also be affected. Apathy and impulsivity were also present in PSP patients and had significant impact on relatives and caregivers.Conclusions: PSP is a neurodegenerative disorder with prominent tau neuropathology. Movement, motivation and communication impairments in patients with PSP may limit participation in everyday living activities. Comprehensive neuropsychological assessments are of significant importance for PSP cognitive evaluation. Pharmacologic and non-pharmacologic approaches could be applied in order to relieve patients and improve quality of life.Clinical Implications: Executive dysfunction is the most notable cognitive impairment and dominates the neuropsychological profile of patients with PSP.
Collapse
Affiliation(s)
| | - Kleopatra H Schulpis
- Institute of Child Health, Research Center, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
22
|
Mitchell T, Archer DB, Chu WT, Coombes SA, Lai S, Wilkes BJ, McFarland NR, Okun MS, Black ML, Herschel E, Simuni T, Comella C, Xie T, Li H, Parrish TB, Kurani AS, Corcos DM, Vaillancourt DE. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Hum Brain Mapp 2019; 40:5094-5107. [PMID: 31403737 DOI: 10.1002/hbm.24760] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) uses a three-compartment model to probe brain tissue microstructure, whereas free-water (FW) imaging models two-compartments. It is unknown if NODDI detects more disease-specific effects related to neurodegeneration in Parkinson's disease (PD) and atypical Parkinsonism. We acquired multi- and single-shell diffusion imaging at 3 Tesla across two sites. NODDI (using multi-shell; isotropic volume [Viso]; intracellular volume [Vic]; orientation dispersion [ODI]) and FW imaging (using single-shell; FW; free-water corrected fractional anisotropy [FAt]) were compared with 44 PD, 21 multiple system atrophy Parkinsonian variant (MSAp), 26 progressive supranuclear palsy (PSP), and 24 healthy control subjects in the basal ganglia, midbrain/thalamus, cerebellum, and corpus callosum. There was elevated Viso in posterior substantia nigra across Parkinsonisms, and Viso, Vic, and ODI were altered in MSAp and PSP in the striatum, globus pallidus, midbrain, thalamus, cerebellum, and corpus callosum relative to controls. The mean effect size across regions for Viso was 0.163, ODI 0.131, Vic 0.122, FW 0.359, and FAt 0.125, with extracellular compartments having the greatest effect size. A key question addressed was if these techniques discriminate PD and atypical Parkinsonism. Both NODDI (AUC: 0.945) and FW imaging (AUC: 0.969) had high accuracy, with no significant difference between models. This study provides new evidence that NODDI and FW imaging offer similar discriminability between PD and atypical Parkinsonism, and FW had higher effect sizes for detecting Parkinsonism within regions across the basal ganglia and cerebellum.
Collapse
Affiliation(s)
- Trina Mitchell
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Winston T Chu
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Song Lai
- Department of Radiation Oncology & CTSI Human Imaging Core, University of Florida, Gainesville, Florida
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nikolaus R McFarland
- Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, Florida
| | - Michael S Okun
- Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, Florida
| | - Mieniecia L Black
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ellen Herschel
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois
| | - Hong Li
- Department of Public Health Sciences, Medical College of South Carolina, Charleston, South Carolina
| | - Todd B Parrish
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Ajay S Kurani
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida.,Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Kataoka H, Nishimori Y, Kiriyama T, Nanaura H, Izumi T, Eura N, Iwasa N, Sugie K. Increased Signal in the Superior Cerebellar Peduncle of Patients with Progressive Supranuclear Palsy. J Mov Disord 2019; 12:166-171. [PMID: 31390857 PMCID: PMC6763720 DOI: 10.14802/jmd.19002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022] Open
Abstract
Objective The provisional diagnosis of progressive supranuclear palsy (PSP) depends on a combination of typical clinical features and specific MRI findings, such as atrophy of the tegmentum in the midbrain. Atrophy of the superior cerebellar peduncle (SCP) distinguishes PSP from other types of parkinsonism. Histological factors affect the conventional fluid-attenuated inversion recovery (FLAIR) signals, such as the extent of neuronal loss and gliosis. Methods We investigated patients with PSP to verify the percentage of patients with various PSP phenotypes presenting a high signal intensity in the SCP. Three interviewers, who were not informed about the clinical data, visually inspected the presence or absence of a high signal intensity in the SCP on the FLAIR images. We measured the pixel value in the SCP of each patient. Clinical characteristics were evaluated using the Mann-Whitney test, followed by the χ2 test. Results Ten of the 51 patients with PSP showed a high signal intensity in the SCP on FLAIR MRI. Higher pixel values were observed within the SCP of patients with a high signal intensity in the SCP than in patients without a high signal intensity (p < 0.001). The sensitivity and specificity of the high signal intensity in the SCP of patients with PSP was 19.6% and 100%, respectively. This finding was more frequently observed in patients with PSP with Richardson’s syndrome (PSP-RS) (25.7%) than other phenotypes (6.2%). Conclusion The high signal intensity in the SCP on FLAIR MRI might be an effective diagnostic tool for PSP-RS.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Yukako Nishimori
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Tesseki Izumi
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Naoki Iwasa
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
24
|
Quattrone A, Caligiuri ME, Morelli M, Nigro S, Vescio B, Arabia G, Nicoletti G, Nisticò R, Salsone M, Novellino F, Barbagallo G, Vaccaro MG, Sabatini U, Vescio V, Stanà C, Rocca F, Caracciolo M, Quattrone A. Imaging counterpart of postural instability and vertical ocular dysfunction in patients with PSP: A multimodal MRI study. Parkinsonism Relat Disord 2019; 63:124-130. [PMID: 30803901 DOI: 10.1016/j.parkreldis.2019.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/09/2019] [Accepted: 02/16/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION We investigated the imaging counterpart of two functional domains (ocular motor dysfunction and postural instability) in progressive supranuclear palsy (PSP) patients classified according to the new clinical diagnostic criteria. METHODS Forty-eight patients with probable PSP-Richardson's syndrome (PSP-RS), 30 with probable PSP-parkinsonism (PSP-P), 37 with Parkinson's disease (PD), and 38 controls were enrolled. For each functional domain, PSP patients were stratified by two certainty levels: vertical supranuclear gaze palsy (O1) and slowness of vertical saccades (O2) for ocular motor dysfunction; early unprovoked falls and tendency to fall on the pull-test for postural instability. Voxel-based morphometry (VBM), whole-brain fractional anisotropy (FA) and MR planimetric measurements were analysed and compared across patient groups. RESULTS O1 was present in 64%, and O2 in 36% of all PSP patients. All PSP-RS patients showed early unprovoked falls. TBSS whole-brain analysis revealed that superior cerebellar peduncles (SCPs) were the only structures with significantly lower FA values in PSP-RS compared with PSP-P patients. PSP/O1 patients had lower FA values in midbrain than PSP/O2 patients. By contrast, VBM revealed no differences in grey matter volume between PSP patient groups. MR Planimetric measurements confirmed atrophy of midbrain and SCPs, in line with DTI findings. CONCLUSIONS Our study demonstrates that SCPs were significantly more damaged in patients with PSP-RS in comparison with PSP-P patients, thus suggesting the role of SCPs in developing postural instability. Midbrain damage was less severe in O2 than in O1 patients, suggesting that the degree of vertical ocular dysfunction reflects the severity of midbrain atrophy.
Collapse
Affiliation(s)
- Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Maria Eugenia Caligiuri
- Neuroscience Center, Magna Graecia University, Catanzaro, Italy; Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Maurizio Morelli
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Salvatore Nigro
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | | | - Gennarina Arabia
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Giuseppe Nicoletti
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Rita Nisticò
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Maria Salsone
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Fabiana Novellino
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Gaetano Barbagallo
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Maria Grazia Vaccaro
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Umberto Sabatini
- Institute of Neuroradiology, Magna Graecia University, Catanzaro, Italy
| | - Virginia Vescio
- Institute of Neuroradiology, Magna Graecia University, Catanzaro, Italy
| | - Carlo Stanà
- Institute of Neuroradiology, Magna Graecia University, Catanzaro, Italy
| | - Federico Rocca
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Manuela Caracciolo
- Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Center, Magna Graecia University, Catanzaro, Italy; Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy.
| |
Collapse
|
25
|
Çavdar S, Özgür M, Kuvvet Y, Bay H, Aydogmus E. Cortical, subcortical and brain stem connections of the cerebellum via the superior and middle cerebellar peduncle in the rat. J Integr Neurosci 2018; 17:609-618. [PMID: 30056432 DOI: 10.3233/jin-180090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Hüsniye Bay
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Evren Aydogmus
- Department of Neurosurgery, Dr. Lütfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Nigro S, Bianco MG, Arabia G, Morelli M, Nisticò R, Novellino F, Salsone M, Augimeri A, Quattrone A. Track density imaging in progressive supranuclear palsy: A pilot study. Hum Brain Mapp 2018; 40:1729-1737. [PMID: 30474903 DOI: 10.1002/hbm.24484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by white matter (WM) changes in different supra- and infratentorial brain structures. We used track density imaging (TDI) to characterize WM microstructural alterations in patients with PSP-Richardson's Syndrome (PSP-RS). Moreover, we investigated the diagnostic utility of TDI in distinguishing patients with PSP-RS from those with Parkinson's disease and healthy controls (HC). Twenty PSP-RS patients, 21 PD patients, and 23 HC underwent a 3 T MRI diffusion-weighted (DW) imaging. Then, we combined constrained spherical deconvolution and WM probabilistic tractography to reconstruct track density maps by calculating the number of WM streamlines traversing each voxel. Voxel-wise analysis was performed to assess group differences in track density maps. A support vector machine (SVM) approach was also used to evaluate the performance of TDI for discriminating between groups. Relative to PD patients, decreases in track density in PSP-RS patients were found in brainstem, cerebellum, thalamus, corpus callosum, and corticospinal tract. Similar findings were obtained between PSP-RS patients and HC. No differences in TDI were observed between PD and HC. SVM approach based on whole-brain analysis differentiated PD patients from PSP-RS with an area under the curve (AUC) of 0.82. The AUC reached a value of 0.98 considering only the voxels belonging to the superior cerebellar peduncle. This study shows that TDI may represent a useful approach for characterizing WM alterations in PSP-RS patients. Moreover, track density decrease in PSP could be considered a new feature for the differentiation of patients with PSP-RS from those with PD.
Collapse
Affiliation(s)
- Salvatore Nigro
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Gennarina Arabia
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Fabiana Novellino
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | - Maria Salsone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy
| | | | - Aldo Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy.,Neuroscience Center, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
27
|
Çavdar S, Özgur M, Kuvvet Y, Bay HH. The Cerebello-Hypothalamic and Hypothalamo-Cerebellar Pathways via Superior and Middle Cerebellar Peduncle in the Rat. THE CEREBELLUM 2018; 17:517-524. [PMID: 29637507 DOI: 10.1007/s12311-018-0938-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20-50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7-10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey.
| | - Merve Özgur
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | | |
Collapse
|
28
|
Agosta F, Caso F, Ječmenica-Lukić M, Petrović IN, Valsasina P, Meani A, Copetti M, Kostić VS, Filippi M. Tracking brain damage in progressive supranuclear palsy: a longitudinal MRI study. J Neurol Neurosurg Psychiatry 2018; 89:696-701. [PMID: 29348302 DOI: 10.1136/jnnp-2017-317443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In this prospective, longitudinal, multiparametric MRI study, we investigated clinical as well as brain grey matter and white matter (WM) regional changes in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). METHODS Twenty-one patients with PSP-RS were evaluated at baseline relative to 36 healthy controls and after a mean follow-up of 1.4 years with clinical rating scales, neuropsychological tests and MRI scans. RESULTS Relative to controls, patients with PSP-RS showed at baseline a typical pattern of brain damage, including midbrain atrophy, frontal cortical thinning and widespread WM involvement of the main infratentorial and supratentorial tracts that exceeded cortical damage. Longitudinal study showed that PSP-RS exhibited no further changes in cortical thinning, which remained relatively focal, while midbrain atrophy and WM damage significantly progressed. Corpus callosum and frontal WM tract changes correlated with the progression of both disease severity and behavioural dysfunction. CONCLUSIONS This study demonstrated the feasibility of carrying out longitudinal diffusion tensor MRI in patients with PSP-RS and its sensitivity to identifying the progression of pathology. Longitudinal midbrain volume loss and WM changes are associated with PSP disease course.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Caso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Igor N Petrović
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vladimir S Kostić
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Ali F, Josephs K. The diagnosis of progressive supranuclear palsy: current opinions and challenges. Expert Rev Neurother 2018; 18:603-616. [DOI: 10.1080/14737175.2018.1489241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Keith Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2018; 10:a033118. [PMID: 28716886 PMCID: PMC5880171 DOI: 10.1101/cshperspect.a033118] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a common cause of morbidity and cognitive impairment in older adults. Most clinicians who care for the elderly are not trained to diagnose these conditions, perhaps other than typical Alzheimer's disease (AD). Each of these disorders has varied epidemiology, clinical symptomatology, laboratory and neuroimaging features, neuropathology, and management. Thus, it is important that clinicians be able to differentiate and diagnose these conditions accurately. This review summarizes and highlights clinical aspects of several of the most commonly encountered neurodegenerative diseases, including AD, frontotemporal dementia (FTD) and its variants, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and Huntington's disease (HD). For each condition, we provide a brief overview of the epidemiology, defining clinical symptoms and diagnostic criteria, relevant imaging and laboratory features, genetics, pathology, treatments, and differential diagnosis.
Collapse
Affiliation(s)
- Michael G Erkkinen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| | - Mee-Ohk Kim
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
31
|
Tetzloff KA, Duffy JR, Clark HM, Strand EA, Machulda MM, Schwarz CG, Senjem ML, Reid RI, Spychalla AJ, Tosakulwong N, Lowe VJ, Jack, Jr CR, Josephs KA, Whitwell JL. Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain 2018; 141:302-317. [PMID: 29228180 PMCID: PMC5837339 DOI: 10.1093/brain/awx293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/11/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
The agrammatic variant of primary progressive aphasia affects normal grammatical language production, often occurs with apraxia of speech, and is associated with left frontal abnormalities on cross-sectional neuroimaging studies. We aimed to perform a detailed assessment of longitudinal change on structural and molecular neuroimaging to provide a complete picture of neurodegeneration in these patients, and to determine how patterns of progression compare to patients with isolated apraxia of speech (primary progressive apraxia of speech). We assessed longitudinal structural MRI, diffusion tensor imaging and 18F-fluorodeoxyglucose PET in 11 agrammatic aphasia subjects, 20 primary progressive apraxia of speech subjects, and 62 age and gender-matched controls with two serial assessments. Rates of change in grey matter volume and hypometabolism, and white matter fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were assessed at the voxel-level and for numerous regions of interest. The greatest rates of grey matter atrophy in agrammatic aphasia were observed in inferior, middle, and superior frontal gyri, premotor and motor cortices, as well as medial temporal lobe, insula, basal ganglia, and brainstem compared to controls. Longitudinal decline in metabolism was observed in the same regions, with additional findings in medial and lateral parietal lobe. Diffusion tensor imaging changes were prominent bilaterally in inferior and middle frontal white matter and superior longitudinal fasciculus, as well as right inferior fronto-occipital fasciculus, superior frontal and precentral white matter. More focal patterns of degeneration of motor and premotor cortex were observed in primary progressive apraxia of speech. Agrammatic aphasia showed greater rates of grey matter atrophy, decline in metabolism, and white matter degeneration compared to primary progressive apraxia of speech in the left frontal lobe, predominantly inferior and middle frontal grey and white matter. Correlations were also assessed between rates of change on neuroimaging and rates of clinical decline. Progression of aphasia correlated with rates of degeneration in frontal and temporal regions within the language network, while progression of parkinsonism and limb apraxia correlated with degeneration of motor cortex and brainstem. These findings demonstrate that disease progression in agrammatic aphasia is associated with widespread neurodegeneration throughout regions of the language network, as well as connecting white matter tracts, but also with progression to regions outside of the language network that are responsible for the development of motor symptoms. The fact that patterns of progression differed from primary progressive apraxia of speech supports the clinical distinction of these syndromes.
Collapse
Affiliation(s)
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | | | - Nirubol Tosakulwong
- Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
32
|
Huppertz HJ, Möller L, Südmeyer M, Hilker R, Hattingen E, Egger K, Amtage F, Respondek G, Stamelou M, Schnitzler A, Pinkhardt EH, Oertel WH, Knake S, Kassubek J, Höglinger GU. Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord 2017; 31:1506-1517. [PMID: 27452874 DOI: 10.1002/mds.26715] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Clinical differentiation of parkinsonian syndromes is still challenging. OBJECTIVES A fully automated method for quantitative MRI analysis using atlas-based volumetry combined with support vector machine classification was evaluated for differentiation of parkinsonian syndromes in a multicenter study. METHODS Atlas-based volumetry was performed on MRI data of healthy controls (n = 73) and patients with PD (204), PSP with Richardson's syndrome phenotype (106), MSA of the cerebellar type (21), and MSA of the Parkinsonian type (60), acquired on different scanners. Volumetric results were used as input for support vector machine classification of single subjects with leave-one-out cross-validation. RESULTS The largest atrophy compared to controls was found for PSP with Richardson's syndrome phenotype patients in midbrain (-15%), midsagittal midbrain tegmentum plane (-20%), and superior cerebellar peduncles (-13%), for MSA of the cerebellar type in pons (-33%), cerebellum (-23%), and middle cerebellar peduncles (-36%), and for MSA of the parkinsonian type in the putamen (-23%). The majority of binary support vector machine classifications between the groups resulted in balanced accuracies of >80%. With MSA of the cerebellar and parkinsonian type combined in one group, support vector machine classification of PD, PSP and MSA achieved sensitivities of 79% to 87% and specificities of 87% to 96%. Extraction of weighting factors confirmed that midbrain, basal ganglia, and cerebellar peduncles had the largest relevance for classification. CONCLUSIONS Brain volumetry combined with support vector machine classification allowed for reliable automated differentiation of parkinsonian syndromes on single-patient level even for MRI acquired on different scanners. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Leona Möller
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Martin Südmeyer
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Hilker
- Department of Neurology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical University Center Freiburg, Freiburg, Germany
| | - Florian Amtage
- Department of Neurology, Medical University Center Freiburg, Freiburg, Germany
| | - Gesine Respondek
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany.,Department of Neurology, Technische Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Wolfgang H Oertel
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Susanne Knake
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany.
| | - Günter U Höglinger
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany.,Department of Neurology, Technische Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
33
|
Josephs KA. Current Understanding of Neurodegenerative Diseases Associated With the Protein Tau. Mayo Clin Proc 2017; 92:1291-1303. [PMID: 28778262 PMCID: PMC5613938 DOI: 10.1016/j.mayocp.2017.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/11/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Primary tauopathies are a group of neurodegenerative diseases in which tau is believed to be the major contributing factor of the neurodegenerative process. In primary tauopathies, there is a disassociation between tau (a microtubule-associated protein) and microtubules as a result of tau hyperphosphorylation. This disassociation between tau and microtubules results in tau fibrillization and inclusion formation as well as in microtubule dysfunction. There are different clinical syndromes associated with different primary tauopathies, and some clinical syndromes can be associated with multiple primary tauopathies. Hence, although some clinical syndromes are highly specific and almost diagnostic of a primary tauopathy, many are not, making it difficult to diagnose a primary tauopathy. Recently, radioligands that bind to tau and can be combined with positron emission tomography to detect fibrillary tau antemortem have been developed, although preliminary data suggest that these ligands may not be sensitive in detecting tau associated with many primary tauopathies. Another recent advancement in the field is evidence suggesting that tau may exhibit properties similar to those of prions, although infective transmission has not been shown. There have been a few clinical trials targeting tau and microtubule dysfunction, although none have had any disease-modifying effects. Understanding tau biology is critical to the development of pharmacological agents that could have disease-modifying effects on primary tauopathies.
Collapse
|
34
|
Power BD, Jakabek D, Hunter-Dickson M, Wilkes FA, van Westen D, Santillo AF, Walterfang M, Velakoulis D, Nilsson C, Looi JCL. Morphometric analysis of thalamic volume in progressive supranuclear palsy: In vivo evidence of regionally specific bilateral thalamic atrophy. Psychiatry Res Neuroimaging 2017; 265:65-71. [PMID: 28550719 DOI: 10.1016/j.pscychresns.2017.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/11/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022]
Abstract
We investigated whether differences were detectable in the volume and shape of the dorsal thalamus on magnetic resonance imaging in patients with progressive supranuclear palsy (PSP). Manual segmentation of the left and right thalami on magnetic resonance imaging scans occurred in 22 patients with clinically diagnosed PSP and 23 healthy controls; thalamic volumes (left, right, total) were calculated. Between group differences were explored by multivariate analysis of co-variance, using age and intracranial volume as covariates. Analysis of the shape of the thalamus was performed using the spherical harmonic point distribution method software package. Patients with PSP were found to have significant bilateral thalamic atrophy on magnetic resonance imaging; there was significant shape deflation over the anterior-lateral and anterior-ventral surfaces bilaterally, and over the right caudal thalamus. Recognizing decreased thalamic morphology in PSP patients in vivo may be an important component of an ensemble of diagnostic biomarkers in the future, particularly given the difficulty of distinguishing PSP from other Parkinsonian conditions early in the disease course.
Collapse
Affiliation(s)
- Brian D Power
- School of Medicine Fremantle, The University of Notre Dame Australia, Fremantle, Australia; Clinical Research Centre, North Metropolitan Health Service - Mental Health, Perth, Australia.
| | - David Jakabek
- University of Wollongong, Wollongong, NSW, Australia.
| | - Mitchell Hunter-Dickson
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia.
| | - Fiona A Wilkes
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia.
| | - Danielle van Westen
- Center for Medical Imaging and Physiology, Skåne University Hospital, and Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Melbourne, Australia.
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Melbourne, Australia.
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia; Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| |
Collapse
|
35
|
Sako W, Murakami N, Izumi Y, Kaji R. Usefulness of the superior cerebellar peduncle for differential diagnosis of progressive supranuclear palsy: A meta-analysis. J Neurol Sci 2017; 378:153-157. [PMID: 28566154 DOI: 10.1016/j.jns.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
|
36
|
McFarland NR, Hess CW. Recognizing Atypical Parkinsonisms: "Red Flags" and Therapeutic Approaches. Semin Neurol 2017; 37:215-227. [PMID: 28511262 DOI: 10.1055/s-0037-1602422] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The overlap of signs and symptoms between Parkinson's disease and the atypical parkinsonian syndromes, such as progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome and dementia with Lewy bodies, can render clinical diagnoses challenging. The continued evolution of diagnostic criteria to reflect the increasingly recognized heterogeneous presentations of these diseases further complicates timely recognition and diagnosis. In this review, we provide a diagnostic approach to the classic atypical parkinsonian syndromes, with an emphasis on the key clinical and pathological features of each and the recognition of “red flags” in the setting of recent advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Nikolaus R McFarland
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher W Hess
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
37
|
Nicoletti G, Caligiuri ME, Cherubini A, Morelli M, Novellino F, Arabia G, Salsone M, Quattrone A. A Fully Automated, Atlas-Based Approach for Superior Cerebellar Peduncle Evaluation in Progressive Supranuclear Palsy Phenotypes. AJNR Am J Neuroradiol 2016; 38:523-530. [PMID: 28034996 DOI: 10.3174/ajnr.a5048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE The superior cerebellar peduncle is damaged in progressive supranuclear palsy. However, alterations differ between progressive supranuclear palsy with Richardson syndrome and progressive supranuclear palsy-parkinsonism. In this study, we propose an automated tool for superior cerebellar peduncle integrity assessment and test its performance in patients with progressive supranuclear palsy with Richardson syndrome, progressive supranuclear palsy-parkinsonism, Parkinson disease, and healthy controls. MATERIALS AND METHODS Structural and diffusion MRI was performed in 21 patients with progressive supranuclear palsy with Richardson syndrome, 9 with progressive supranuclear palsy-parkinsonism, 20 with Parkinson disease, and 30 healthy subjects. In a fully automated pipeline, the left and right superior cerebellar peduncles were first identified on MR imaging by using a tractography-based atlas of white matter tracts; subsequently, volume, mean diffusivity, and fractional anisotropy were extracted from superior cerebellar peduncles. These measures were compared across groups, and their discriminative power in differentiating patients was evaluated in a linear discriminant analysis. RESULTS Compared with those with Parkinson disease and controls, patients with progressive supranuclear palsy with Richardson syndrome showed alterations of all superior cerebellar peduncle metrics (decreased volume and fractional anisotropy, increased mean diffusivity). Patients with progressive supranuclear palsy-parkinsonism had smaller volumes than those with Parkinson disease and controls and lower fractional anisotropy than those with Parkinson disease. Patients with progressive supranuclear palsy with Richardson syndrome had significantly altered fractional anisotropy and mean diffusivity in the left superior cerebellar peduncle compared with those with progressive supranuclear palsy-parkinsonism. Discriminant analysis with the sole use of significant variables separated progressive supranuclear palsy-parkinsonism from progressive supranuclear palsy with Richardson syndrome with 70% accuracy and progressive supranuclear palsy-parkinsonism from Parkinson disease with 74% accuracy. CONCLUSIONS We demonstrate the feasibility of an automated approach for extracting multimodal MR imaging metrics from the superior cerebellar peduncle in healthy subjects and patients with parkinsonian. We provide evidence that structural and diffusion measures of the superior cerebellar peduncle might be valuable for computer-aided diagnosis of progressive supranuclear palsy subtypes and for differentiating patients with progressive supranuclear palsy-parkinsonism from with those with Parkinson disease.
Collapse
Affiliation(s)
- G Nicoletti
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy
| | - M E Caligiuri
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy
| | - A Cherubini
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy
| | - M Morelli
- Institute of Neurology (M.M., G.A., A.Q.), University "Magna Graecia", Catanzaro, Italy
| | - F Novellino
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy
| | - G Arabia
- Institute of Neurology (M.M., G.A., A.Q.), University "Magna Graecia", Catanzaro, Italy
| | - M Salsone
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy
| | - A Quattrone
- From the Institute of Bioimaging and Molecular Physiology (G.N., M.E.C., A.C., F.N., M.S., A.Q.), National Research Council, Catanzaro, Italy.,Institute of Neurology (M.M., G.A., A.Q.), University "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
38
|
Tipton PW, Konno T, Broderick DF, Dickson DW, Wszolek ZK. Cerebral peduncle angle: Unreliable in differentiating progressive supranuclear palsy from other neurodegenerative diseases. Parkinsonism Relat Disord 2016; 32:31-35. [PMID: 27553513 DOI: 10.1016/j.parkreldis.2016.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The significant symptom overlap between progressive supranuclear palsy (PSP) and other parkinsonian neurodegenerative diseases frequently results in misdiagnosis. However, neuroimaging can be used to quantify disease-related morphological changes and specific markers. The cerebral peduncle angle (CPA) has been shown to differentiate clinically diagnosed PSP from other parkinsonian diseases but this result has yet to be confirmed in autopsy-proven disease. METHODS Magnetic resonance imaging (MRI) scans were obtained for 168 patients representing 69 medical facilities. Following randomization, the images were divided into two groups (Type 1 and Type 2) based upon midbrain morphological differences. Two readers were blinded and independently measured the CPA of 146 patients with autopsy-proven progressive supranuclear palsy (PSP; n = 54), corticobasal degeneration (n = 16), multiple system atrophy (MSA; n = 11) and Lewy body disease (n = 65). RESULTS Applying two separate measurement techniques revealed no statistically significant differences in CPA measurements among any study groups regardless of classification measurement approach. The interobserver agreement showed significant differences in measurements using the Type 2 approach. CONCLUSION Measuring the CPA on MRI is not a reliable way of differentiating among patients with PSP, corticobasal degeneration, MSA, or Lewy body disease.
Collapse
Affiliation(s)
- Philip W Tipton
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takuya Konno
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Daniel F Broderick
- Department of Radiology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
39
|
Caso F, Agosta F, Volonté MA, Ferraro PM, Tiraboschi P, Copetti M, Valsasina P, Falautano M, Comi G, Falini A, Filippi M. Cognitive impairment in progressive supranuclear palsy-Richardson's syndrome is related to white matter damage. Parkinsonism Relat Disord 2016; 31:65-71. [PMID: 27453032 DOI: 10.1016/j.parkreldis.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/27/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Beside motor symptoms, patients with progressive supranuclear palsy syndrome (PSPs) commonly present cognitive and behavioral disorders. In this study we aimed to assess the structural brain correlates of cognitive impairment in PSPs. METHODS We enrolled 23 patients with probable PSP Richardson's syndrome and 15 matched healthy controls. Patients underwent an extensive clinical and neuropsychological evaluation. Cortical thickness measures and diffusion tensor metrics of white matter tracts were obtained. Random forest analysis was used to identify the strongest MRI predictors of cognitive impairment in PSPs at an individual patient level. RESULTS PSPs patients were in a moderate stage of the disease showing mild cognitive deficits with prominent executive dysfunction. Relative to controls, PSPs patients had a focal, bilateral cortical thinning mainly located in the prefrontal/precentral cortex and temporal pole. PSPs patients also showed a distributed white matter damage involving the main tracts including the superior cerebellar peduncle, corpus callosum, corticospinal tract, and extramotor tracts, such as the inferior fronto-occipital, superior longitudinal and uncinate fasciculi, and cingulum, bilaterally. Regional cortical thinning measures did not relate with cognitive features, while white matter damage showed a significant impact on cognitive impairment (r values ranging from -0.80 to 0.74). CONCLUSIONS PSPs patients show both focal cortical thinning in dorsolateral anterior regions and a distributed white matter damage involving the main motor and extramotor tracts. White matter measures are highly associated with cognitive deficits. Diffusion tensor MRI metrics are likely to be the most sensitive markers of extramotor deficits in PSPs.
Collapse
Affiliation(s)
- Francesca Caso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Antonietta Volonté
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology V and Neuropathology, IRCCS Foundation, Carlo Besta Neurologic Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Falautano
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
40
|
Progression of Microstructural Degeneration in Progressive Supranuclear Palsy and Corticobasal Syndrome: A Longitudinal Diffusion Tensor Imaging Study. PLoS One 2016; 11:e0157218. [PMID: 27310132 PMCID: PMC4911077 DOI: 10.1371/journal.pone.0157218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are both 4 microtubule binding repeat tauopathy related disorders. Clinical trials need new biomarkers to assess the effectiveness of tau-directed therapies. This study investigated the regional distribution of longitudinal diffusion tensor imaging changes, measured by fractional anisotropy, radial and axial diffusivity over 6 months median interval, in 23 normal control subjects, 35 patients with PSP, and 25 patients with CBS. A mixed-effects framework was used to test longitudinal changes within and between groups. Correlations between changes in diffusion variables and clinical progression were also tested. The study found that over a 6 month period and compared to controls, the most prominent changes in PSP were up to 3±1% higher rates of FA reduction predominantly in superior cerebellar peduncles, and up to 18±6% higher rates of diffusivity increases in caudate nuclei. The most prominent changes in CBS compared to controls were up to 4±1% higher rates of anisotropy reduction and 18±6% higher rates of diffusivity increase in basal ganglia and widespread white matter regions. Compared to PSP, CBS was mainly associated with up to 3±1% greater rates of anisotropy reduction around the central sulci, and 11±3% greater rates of diffusivity increase in superior fronto-occipital fascicules. Rates of diffusivity increases in the superior cerebellar peduncle correlated with rates of ocular motor decline in PSP patients. This study demonstrated that longitudinal diffusion tensor imaging measurement is a promising surrogate marker of disease progression in PSP and CBS over a relatively short period.
Collapse
|
41
|
Koga S, Josephs KA, Ogaki K, Labbé C, Uitti RJ, Graff-Radford N, van Gerpen JA, Cheshire WP, Aoki N, Rademakers R, Wszolek ZK, Ross OA, Dickson DW. Cerebellar ataxia in progressive supranuclear palsy: An autopsy study of PSP-C. Mov Disord 2016; 31:653-62. [PMID: 26841329 DOI: 10.1002/mds.26499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cerebellar ataxia is an exclusion criterion for the clinical diagnosis of progressive supranuclear palsy, but a variant with predominant cerebellar ataxia has been reported. The aims of this study were to estimate the frequency of progressive supranuclear palsy with predominant cerebellar ataxia in an autopsy series from the United States and to compare clinical, pathologic, and genetic differences between progressive supranuclear palsy with and without predominant cerebellar ataxia. METHOD We selected 100 consecutive patients with pathologically confirmed progressive supranuclear palsy who had been evaluated at the Mayo Clinic (referred to as the Mayo Clinic patient series) from our brain bank database (N = 1085). We next enriched in cases likely to have cerebellar ataxia by searching the remaining 985 cases for (1) an antemortem diagnosis of multiple system atrophy or (2) neuropathologic evidence of prominent degeneration of the cerebellum or cerebellar afferent nuclei. Subsequently, clinical, pathologic, and genetic features were compared between the two groups. RESULTS One patient in the Mayo Clinic patient series (1%) met criteria for progressive supranuclear palsy with predominant cerebellar ataxia and had both cerebellar and mild midbrain atrophy on MRI. Four patients were identified with the targeted search. Four of the five patients were clinically misdiagnosed as multiple system atrophy. The severity of tau-related pathology and cerebellar degeneration were not different between the two groups. No differences were detected in tau genotypes. CONCLUSION Although our data cannot provide definitive information about how to make an accurate clinical diagnosis, they should serve to raise awareness of progressive supranuclear palsy with predominant cerebellar ataxia in the differential diagnosis of multiple system atrophy. © 2016 Movement Disorder Society.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology (Behavioural Neurology & Movement Disorders), Mayo Clinic, Rochester, Minnesota, USA
| | - Kotaro Ogaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Catherine Labbé
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jay A van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Naoya Aoki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
42
|
Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, Okun MS, McFarland NR, Vaillancourt DE. Free-water imaging in Parkinson's disease and atypical parkinsonism. Brain 2015; 139:495-508. [PMID: 26705348 DOI: 10.1093/brain/awv361] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Conventional single tensor diffusion analysis models have provided mixed findings in the substantia nigra of Parkinson's disease, but recent work using a bi-tensor analysis model has shown more promising results. Using a bi-tensor model, free-water values were found to be increased in the posterior substantia nigra of Parkinson's disease compared with controls at a single site and in a multi-site cohort. Further, free-water increased longitudinally over 1 year in the posterior substantia nigra of Parkinson's disease. Here, we test the hypothesis that other parkinsonian disorders such as multiple system atrophy and progressive supranuclear palsy have elevated free-water in the substantia nigra. Equally important, however, is whether the bi-tensor diffusion model is able to detect alterations in other brain regions beyond the substantia nigra in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy and to accurately distinguish between these diseases. Free-water and free-water-corrected fractional anisotropy maps were compared across 72 individuals in the basal ganglia, midbrain, thalamus, dentate nucleus, cerebellar peduncles, cerebellar vermis and lobules V and VI, and corpus callosum. Compared with controls, free-water was increased in the anterior and posterior substantia nigra of Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Despite no other changes in Parkinson's disease, we observed elevated free-water in all regions except the dentate nucleus, subthalamic nucleus, and corpus callosum of multiple system atrophy, and in all regions examined for progressive supranuclear palsy. Compared with controls, free-water-corrected fractional anisotropy values were increased for multiple system atrophy in the putamen and caudate, and increased for progressive supranuclear palsy in the putamen, caudate, thalamus, and vermis, and decreased in the superior cerebellar peduncle and corpus callosum. For all disease group comparisons, the support vector machine 10-fold cross-validation area under the curve was between 0.93-1.00 and there was high sensitivity and specificity. The regions and diffusion measures selected by the model varied across comparisons and are consistent with pathological studies. In conclusion, the current study used a novel bi-tensor diffusion analysis model to indicate that all forms of parkinsonism had elevated free-water in the substantia nigra. Beyond the substantia nigra, both multiple system atrophy and progressive supranuclear palsy, but not Parkinson's disease, showed a broad network of elevated free-water and altered free-water corrected fractional anisotropy that included the basal ganglia, thalamus, and cerebellum. These findings may be helpful in the differential diagnosis of parkinsonian disorders, and thereby facilitate the development and assessment of targeted therapies.
Collapse
Affiliation(s)
- Peggy J Planetta
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA
| | - Edward Ofori
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA
| | - Ofer Pasternak
- 2 Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Roxana G Burciu
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA
| | - Priyank Shukla
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA
| | - Jesse C DeSimone
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA
| | - Michael S Okun
- 3 Center for Movement Disorders and Neurorestoration, University of Florida, USA 4 Department of Neurology, University of Florida, USA 5 Department of Neurosurgery, University of Florida, USA
| | - Nikolaus R McFarland
- 3 Center for Movement Disorders and Neurorestoration, University of Florida, USA 4 Department of Neurology, University of Florida, USA
| | - David E Vaillancourt
- 1 Department of Applied Physiology and Kinesiology, University of Florida, USA 4 Department of Neurology, University of Florida, USA 6 Department of Biomedical Engineering, University of Florida, USA
| |
Collapse
|
43
|
Wang G, Wang J, Zhan J, Nie B, Li P, Fan L, Zhu H, Feng T, Shan B. Quantitative assessment of cerebral gray matter density change in progressive supranuclear palsy using voxel based morphometry analysis and cerebral MR T1-weighted FLAIR imaging. J Neurol Sci 2015; 359:367-72. [PMID: 26671144 DOI: 10.1016/j.jns.2015.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the gray matter (GM) atrophy in Progressive supranuclear palsy (PSP) using T1-weighted Fluid-Attenuated Inversion Recovery (FLAIR) images based on voxel based morphometry (VBM) method. MATERIALS AND METHODS In this study, we firstly modified the conventional VBM method to make it can process the T1-weighted FLAIR brain images. Then, we used this method on the 24 PSP patients and 23 healthy age- and sex-matched control subjects to find the local gray matter density changes of PSP patients. RESULTS Compared with healthy controls, GM reductions of PSP patients mainly located in the thalamus, basal ganglia, pons, midbrain, insular cortex, frontal cortex, temporal lobe, cerebellum, cingulate cortex and hippocampus. CONCLUSION We used the modified VBM technique into T1 FLAIR data to study the brain gray matter atrophy in PSP, and found some new atrophy areas, including pallidum, middle and posterior cingulum, lingual, fusiform gyrus and the post part of inferior temporal gyrus. These areas have not been described in the former VBM studies, but they revealed abnormity in the pathologic and other studies on PSP. Our results might be expected to provide significant underlining neurology information and diagnostic value for PSP.
Collapse
Affiliation(s)
- Guihong Wang
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Jingjuan Wang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Jiong Zhan
- Neuroscience Imaging Center, Beijing Tiantan Hospital, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Binbin Nie
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Panlong Li
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450052, China
| | - Lidan Fan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450052, China
| | - Haitao Zhu
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
| | - Tao Feng
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China.
| |
Collapse
|
44
|
Dąbrowska M, Schinwelski M, Sitek EJ, Muraszko-Klaudel A, Brockhuis B, Jamrozik Z, Sławek J. The role of neuroimaging in the diagnosis of the atypical parkinsonian syndromes in clinical practice. Neurol Neurochir Pol 2015; 49:421-31. [PMID: 26652877 DOI: 10.1016/j.pjnns.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022]
Abstract
Atypical parkinsonian disorders (APD) are a heterogenous group of neurodegenerative diseases such as: progressive supranuclear palsy (PSP), multiple system atrophy (MSA), cortico-basal degeneration (CBD) and dementia with Lewy bodies (DLB). In all of them core symptoms of parkinsonian syndrome are accompanied by many additional clinical features not typical for idiopathic Parkinson's disease (PD) like rapid progression, gaze palsy, apraxia, ataxia, early cognitive decline, dysautonomia and usually poor response to levodopa therapy. In the absence of reliably validated biomarkers the diagnosis is still challenging and mainly based on clinical criteria. However, robust data emerging from routine magnetic resonance imaging (MRI) as well as from many advanced MRI techniques such as: diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), voxel-based morphometry (VBM), susceptibility-weighted imaging (SWI) may help in differential diagnosis. The main aim of this review is to summarize briefly the most important and acknowledged radiological findings of conventional MRI due to its availability in standard clinical settings. Nevertheless, we present shortly other methods of structural (like TCS - transcranial sonography) and functional imaging (like SPECT - single photon emission computed tomography or PET - positron emission tomography) as well as some selected advanced MRI techniques and their potential future applications in supportive role in distinguishing APD.
Collapse
Affiliation(s)
- Magda Dąbrowska
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland.
| | - Michał Schinwelski
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Emilia J Sitek
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Muraszko-Klaudel
- Radiology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland
| | - Bogna Brockhuis
- Nuclear Medicine Department, Medical University of Gdańsk, Gdańsk, Poland
| | - Zygmunt Jamrozik
- Neurology Department, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Sławek
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
45
|
Cerebral Peduncle Angle: An Objective Criterion for Assessing Progressive Supranuclear Palsy Richardson Syndrome. AJR Am J Roentgenol 2015. [DOI: 10.2214/ajr.14.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Burciu RG, Ofori E, Shukla P, Planetta PJ, Snyder AF, Li H, Hass CJ, Okun MS, McFarland NR, Vaillancourt DE. Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson's disease. Mov Disord 2015; 30:1248-58. [PMID: 26148135 PMCID: PMC4578977 DOI: 10.1002/mds.26294] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 11/05/2022] Open
Abstract
The basal ganglia-thalamo-cortical and cerebello-thalamo-cortical circuits are important for motor control. Whether their functioning is affected in a similar or different way by progressive supranuclear palsy (PSP) and Parkinson's disease (PD) is not clear. A functional magnetic resonance imaging (fMRI) force production paradigm and voxel-based morphometry were used to assess differences in brain activity and macrostructural volumes between PSP, PD, and healthy age-matched controls. We found that PSP and PD share reduced functional activity of the basal ganglia and cortical motor areas, but this is more pronounced in PSP than in PD. In PSP the frontal regions are underactive, whereas the posterior parietal and occipital regions are overactive as compared with controls and PD. Furthermore, lobules I through IV, V, and VI of the cerebellum are hypoactive in PSP and PD, whereas Crus I and lobule IX are hyperactive in PSP only. Reductions in gray and white matter volume are specific to PSP. Finally, the functional status of the caudate as well as the volume of the superior frontal gyrus predict clinical gait and posture measures in PSP. PSP and PD share hypoactivity of the basal ganglia, motor cortex, and anterior cerebellum. These patients also display a unique pattern, such that anterior regions of the cortex are hypoactive and posterior regions of the cortex and cerebellum are hyperactive. Together, these findings suggest that specific structures within the basal ganglia, cortex, and cerebellum are affected differently in PSP relative to PD.
Collapse
Affiliation(s)
- Roxana G. Burciu
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Priyank Shukla
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Peggy J. Planetta
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Amy F. Snyder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Hong Li
- Department of Preventive Medicine, Rush University Medical Center, Chicago, IL, 60612
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, 32607, USA
| | - Michael S. Okun
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, 32610, USA
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, 32607, USA
| | - Nikolaus R. McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, 32607, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, 32607, USA
| |
Collapse
|
47
|
Kitagaki H. [5. Diagnostic imaging for neurodegenerative disease]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2015; 71:380-90. [PMID: 25892426 DOI: 10.6009/jjrt.2015_jsrt_71.4.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism. Neuroradiology 2015; 57:655-69. [PMID: 25845807 PMCID: PMC4495265 DOI: 10.1007/s00234-015-1515-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022]
Abstract
Introduction The aim of this study is to evaluate whether the diagnostic accuracy of 3 T brain MRI is improved by region of interest (ROI) measures of diffusion tensor imaging (DTI), to differentiate between neurodegenerative atypical parkinsonism (AP) and Parkinson’s disease (PD) in early stage parkinsonism. Methods We performed a prospective observational cohort study of 60 patients presenting with early stage parkinsonism and initial uncertain diagnosis. At baseline, patients underwent a 3 T brain MRI including DTI. After clinical follow-up (mean 28.3 months), diagnoses could be made in 49 patients (30 PD and 19 AP). Conventional brain MRI was evaluated for regions of atrophy and signal intensity changes. Tract-based spatial statistics and ROI analyses of DTI were performed to analyze group differences in mean diffusivity (MD) and fractional anisotropy (FA), and diagnostic thresholds were determined. Diagnostic accuracy of conventional brain MRI and DTI was assessed with the receiver operating characteristic (ROC). Results Significantly higher MD of the centrum semiovale, body corpus callosum, putamen, external capsule, midbrain, superior cerebellum, and superior cerebellar peduncles was found in AP. Significantly increased MD of the putamen was found in multiple system atrophy–parkinsonian form (MSA-P) and increased MD in the midbrain and superior cerebellar peduncles in progressive supranuclear palsy (PSP). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by ROI measures of MD, though the diagnostic accuracy to identify MSA-P was slightly increased (AUC 0.82 to 0.85). Conclusion The diagnostic accuracy of brain MRI to identify AP as a group was not improved by the current analysis approach to DTI, though DTI measures could be of added value to identify AP subgroups.
Collapse
|
49
|
|
50
|
Worker A, Blain C, Jarosz J, Chaudhuri KR, Barker GJ, Williams SCR, Brown RG, Leigh PN, Dell’Acqua F, Simmons A. Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study. PLoS One 2014; 9:e112638. [PMID: 25405990 PMCID: PMC4236070 DOI: 10.1371/journal.pone.0112638] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Although often clinically indistinguishable in the early stages, Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD.
Collapse
Affiliation(s)
- Amanda Worker
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Camilla Blain
- Institute of Psychiatry, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | | | - K. Ray Chaudhuri
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | - Gareth J. Barker
- Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Steve C. R. Williams
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Richard G. Brown
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
| | - P. Nigel Leigh
- Trafford Centre for Biomedical Research, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, United Kingdom
| | - Flavio Dell’Acqua
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Andrew Simmons
- Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|