1
|
Junaid M, Wong K, Korolainen MA, Amin S, Downs J, Leonard H. Measuring the Burden of Epilepsy Hospitalizations in CDKL5 Deficiency Disorder. Pediatr Neurol 2025; 163:68-75. [PMID: 39705835 DOI: 10.1016/j.pediatrneurol.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Information on the hospital service use among individuals with CDKL5 Deficiency Disorder, an ultrarare developmental epileptic encephalopathy, is limited, evidence of which could assist with service planning. Therefore, using baseline and longitudinal data on 379 genetically verified individuals in the International CDKL5 Disorder Database, we aimed to investigate rates of seizure-related and other hospitalizations and associated length of stay in this cohort. METHODS Outcome variables were lifetime count of family-reported hospitalizations and average length of stay both for seizure- (management and/or investigative) and non-seizure-related causes. These variables were examined according to gender, age group, genetic variant group, and lifetime number of antiseizure medications. Using negative binomial regression associations were expressed as incidence rate ratios and geometric mean ratios for hospitalization rates and length of stay, respectively. RESULTS There were 2880 hospitalizations over 2728.4 person-years with two thirds seizure related. Infants were much more likely to be hospitalized than older individuals, with decreasing effect sizes with increasing age. Males had slightly higher rates of hospitalizations for seizure-related management and for non-seizure-related admissions. Lifetime use of six or more antiseizure medications was associated with a higher hospitalization rate for seizure management than use of three or fewer medications. The median length of stay was five days for seizure and nonseizure reasons. CONCLUSION There is an urgent need for much better seizure management in CDKL5 deficiency disorder given the hospitalization burden especially in the preschool age group and the multiplicity of antiseizure medications being used.
Collapse
Affiliation(s)
- Mohammed Junaid
- The Kids Research Institute Australia, The University of Western Australia, Northern Entrance, Western Australia, Australia
| | - Kingsley Wong
- The Kids Research Institute Australia, The University of Western Australia, Northern Entrance, Western Australia, Australia
| | | | - Sam Amin
- Paediatric Neurology, University Hospitals Bristol and Weston, Bristol, UK
| | - Jenny Downs
- The Kids Research Institute Australia, The University of Western Australia, Northern Entrance, Western Australia, Australia
| | - Helen Leonard
- The Kids Research Institute Australia, The University of Western Australia, Northern Entrance, Western Australia, Australia.
| |
Collapse
|
2
|
Coleman M, Wang M, Snell P, Lee WS, D'Arcy C, Mignone C, Pope K, Gillies G, Maixner W, Wray A, Harvey AS, Simons C, Leventer RJ, Stephenson SEM, Lockhart PJ, Howell KB. The genetic landscape and classification of infantile epileptic spasms syndrome requiring surgery due to suspected focal brain malformations. Brain Commun 2025; 7:fcaf034. [PMID: 39926610 PMCID: PMC11806418 DOI: 10.1093/braincomms/fcaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/17/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Infantile epileptic spasms syndrome is a severe epilepsy of infancy that is often associated with focal malformations of cortical development. This study aimed to elucidate the genetic landscape and histopathologic aetiologies of infantile epileptic spasms syndrome due to focal malformations of cortical development requiring surgery. Fifty-nine children with a history of infantile epileptic spasms syndrome and focal malformations of cortical development on MRI were studied. Genetic testing of resected brain tissue was performed by high-coverage targeted panel sequencing or exome sequencing. Histopathology and MRI were reviewed, and integrated clinico-pathological diagnoses were established. A genetic diagnosis was achieved in 47 children (80% of cohort). Germline pathogenic variants were identified in 27/59 (46%) children, in TSC2 (x19), DEPDC5 (x2), CDKL5 (x2), NPRL3 (x1), FGFR1 (x1), TSC1 (x1), and one child with both a TUBB2A/TUBB2B deletion and a pathogenic variant in COL4A1 (x1). Pathogenic brain somatic variants were identified in 21/59 (36%) children, in SLC35A2 (x9), PIK3CA (x3), AKT3 (x2), TSC2 (x2), MTOR (x2), OFD1 (x1), TSC1 (x1) and DEPDC5 (x1). One child had 'two-hit' diagnosis, with both germline and somatic pathogenic DEPDC5 variants in trans. Multimodal data integration resulted in clinical diagnostic reclassifications in 24% of children, emphasizing the importance of combining genetic, histopathologic and imaging findings. Mammalian target of rapamycin pathway variants were identified in most children with tuberous sclerosis or focal cortical dysplasia type II. All nine children with somatic SLC35A2 variants in brain were reclassified to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Somatic mosaicism was a major cause of focal cortical dysplasia type II/hemimegalencephaly (81%) and mild malformation of cortical development with oligodendroglial hyperplasia (100%). The genetic landscape of infantile epileptic spasms syndrome due to focal malformations comprises germline and somatic variants in a range of genes, with mTORopathies and SLC35A2-related mild malformation of cortical development with oligodendroglial hyperplasia being the major causes. Multimodal data integration incorporating genetic data aids in optimizing diagnostic pathways and can guide surgical decision-making and inform future research and therapeutic interventions.
Collapse
Affiliation(s)
- Matthew Coleman
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Min Wang
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
| | - Penny Snell
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
| | - Wei Shern Lee
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Colleen D'Arcy
- Department of Anatomical Pathology, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Cristina Mignone
- Department of Medical Imaging, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Kate Pope
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
| | - Greta Gillies
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
| | - Wirginia Maixner
- Department of Neurosurgery, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Alison Wray
- Department of Neurosurgery, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - A Simon Harvey
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Centre for Population Genomics, Garvin Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales 2010, Australia
| | - Richard J Leventer
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Sarah E M Stephenson
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Paul J Lockhart
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Katherine B Howell
- Murdoch Children’s Research Institute, Parkville, Victoria 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Haviland I, Hector RD, Swanson LC, Verran AS, Sherrill E, Frazier Z, Denny AM, Lucash J, Zhang B, Dubbs HA, Marsh ED, Weisenberg JL, Leonard H, Crippa M, Cogliati F, Russo S, Suter B, Rajaraman R, Percy AK, Schreiber JM, Demarest S, Benke TA, Chopra M, Yu TW, Olson HE. Deletions in the CDKL5 5' untranslated region lead to CDKL5 deficiency disorder. Am J Med Genet A 2025; 197:e63843. [PMID: 39205479 PMCID: PMC11637933 DOI: 10.1002/ajmg.a.63843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR. All individuals presented characteristic features of CDD, including medically refractory infantile-onset epilepsy, global developmental delay, and visual impairment. We performed RNA sequencing on fibroblast samples from three individuals with small deletions involving exons 1 and/or 1a/1b only. Results demonstrated reduced CDKL5 mRNA expression with no evidence of expression from alternatively spliced first exons. Our study broadens the genotypic spectrum for CDD by adding to existing evidence that deletions affecting the 5' UTR of the CDKL5 gene are associated with the disorder. We propose that smaller 5' UTR deletions may require additional molecular testing approaches such as RNA sequencing to determine pathogenicity.
Collapse
Affiliation(s)
- Isabel Haviland
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aubrie Soucy Verran
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emma Sherrill
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zoë Frazier
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - AnneMarie M Denny
- Division of Pediatric Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenna Lucash
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Holly A Dubbs
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesca Cogliati
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Bernhard Suter
- Division of Child Neurology, Texas Children's Hospital, Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Rajsekar Rajaraman
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John M Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, Children's National Hospital, Washington, DC, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, Precision Medicine Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Maya Chopra
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W Yu
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Saldaris JM, Demarest S, Jacoby P, Olson HE, Maski K, Pestana-Knight E, Price D, Rajaraman R, Suter B, Weisenberg J, Leonard H, Marsh ED, Benke TA, Downs J. Modification of a parent-report sleep scale for individuals with CDKL5 deficiency disorder: a psychometric study. J Clin Sleep Med 2024; 20:1887-1893. [PMID: 38963064 PMCID: PMC11609843 DOI: 10.5664/jcsm.11244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
STUDY OBJECTIVES Sleep difficulties are common in CDKL5 deficiency disorder, a developmental and epileptic encephalopathy. This study evaluated the factor structure of the Disorders of Initiating and Maintaining Sleep (DIMS), Disorders of Excessive Somnolence (DOES), and Sleep Breathing Disorders domains of the Sleep Disturbance Scale for Children for CDKL5 deficiency disorder. METHODS A cross-sectional psychometric study design was used. Data were collected for 125 individuals aged 3 years or older who attended a United States Centers of Excellence clinic or registered with the International CDKL5 Disorder Database. RESULTS The median age was 10.3 years (range 3.2-40.7 years) and 105 (84%) were female. Two of the 3 Sleep Breathing Disorders items were not observed by most respondents and analysis was restricted to the DIMS and DOES domains. Using all items in the initial confirmatory factor analysis, 2 items in the DIMS domain and 1 item in the DOES domain loaded poorly. After deleting these items and repeating the analysis, item loading (.524-.814) and internal consistency (DIMS: .78, DOES: .76) statistics were good. The square of the interdomain correlation coefficient was .17, less than average variance extracted values for both domains and indicating good discriminant validity. The Tucker-Lewis and Comparative Fit indices were slightly lower than the threshold of > .9 for establishing goodness of fit. CONCLUSIONS The modified DIMS and DOES domains from the Sleep Disturbance Scale for Children could be suitable clinical outcome assessments of insomnia and related impairments in CDKL5 deficiency disorder and potentially other developmental and epileptic encephalopathy conditions. CITATION Saldaris JM, Demarest S, Jacoby P, et al. Modification of a parent-report sleep scale for individuals with CDKL5 deficiency disorder: a psychometric study. J Clin Sleep Med. 2024;20 (12):1887-1893.
Collapse
Affiliation(s)
- Jacinta M. Saldaris
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Scott Demarest
- School of Medicine, Depts Pediatrics, Neurology and Pharmacology and Children’s Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Peter Jacoby
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Heather E. Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Kiran Maski
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Dana Price
- New York University Langone Health and Department of Neurology, New York University, New York, New York
| | - Rajsekar Rajaraman
- University of California, Los Angeles Mattel Children’s Hospital, Los Angeles, California
| | - Bernhard Suter
- Department of Pediatrics & Neurology, Baylor College of Medicine, Houston, Texas
| | - Judith Weisenberg
- St. Louis Children’s Hospital and Washington University School of Medicine, St Louis, Missouri
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia and Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tim A. Benke
- School of Medicine, Depts Pediatrics, Neurology and Pharmacology and Children’s Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
6
|
Colarusso A, Lauro C, Canè L, Cozzolino F, Tutino ML. Bacterial Production of CDKL5 Catalytic Domain: Insights in Aggregation, Internal Translation and Phosphorylation Patterns. Int J Mol Sci 2024; 25:8891. [PMID: 39201578 PMCID: PMC11354467 DOI: 10.3390/ijms25168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Translational Medical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Viale Medaglie D’Oro 305, 00136 Roma, Italy
| |
Collapse
|
7
|
Keeley J, Benson-Goldberg S, Saldaris J, Lariviere J, Leonard H, Marsh ED, Demarest ST, Benke TA, Jacoby P, Downs J. Communication of individuals with CDKL5 deficiency disorder as observed by caregivers: A descriptive qualitative study. Am J Med Genet A 2024; 194:e63570. [PMID: 38425131 PMCID: PMC11161303 DOI: 10.1002/ajmg.a.63570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a genetically caused developmental epileptic encephalopathy that causes severe communication impairments. Communication of individuals with CDD is not well understood in the literature and currently available measures are not well validated in this population. Accurate and sensitive measurement of the communication of individuals with CDD is important for understanding this condition, clinical practice, and upcoming interventional trials. The aim of this descriptive qualitative study was to understand how individuals with CDD communicate, as observed by caregivers. Participants were identified through the International CDKL5 Disorder Database and invited to take part if their child had a pathogenic variant of the CDKL5 gene and they had previously completed the Communication and Symbolic Behavior Checklist (CSBS-DP ITC). The sample comprised caregivers of 23 individuals with CDD, whose ages ranged from 2 to 30 years (median 13 years), 15 were female, and most did not use words. Semistructured interviews were conducted via videoconference and analyzed using a conventional content analysis. Three overarching categories were identified: mode, purpose and meaning, and reciprocal exchanges. These categories described the purposes and mechanism of how some individuals with CDD communicate, including underpinning influential factors. Novel categories included expressing a range of emotions, and reciprocal exchanges (two-way interactions that varied in complexity). Caregivers observed many communication modes for multiple purposes. Understanding how individuals with CDD communicate improves understanding of the condition and will guide research to develop accurate measurement for clinical practice and upcoming medication trials.
Collapse
Affiliation(s)
- Jessica Keeley
- Telethon Kids Institute, Perth Western Australia, Australia
| | - Sofia Benson-Goldberg
- Center for Literacy and Disability Studies, Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | | | - Judy Lariviere
- Assistive Tech 4 ALL, Inc., Rancho Cordova, California, United States
| | - Helen Leonard
- Telethon Kids Institute, Perth Western Australia, Australia
| | - Eric D. Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott T. Demarest
- Department of Pediatrics and Neurology, School of Medicine, University of Colorado Precision Medicine Institute, Children’s Hospital Colorado, USA, Aurora, CO
| | - Tim A. Benke
- Children’s Hospital Colorado, Paediatrics and Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter Jacoby
- Telethon Kids Institute, Perth Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, Perth Western Australia, Australia
- Curtin School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
8
|
Downs J, Jacoby P, Specchio N, Cross H, Amin S, Bahi-Buisson N, Rajaraman R, Suter B, Devinsky O, Aimetti A, Busse G, Olson HE, Demarest S, Benke TA, Pestana-Knight E. Effects of ganaxolone on non-seizure outcomes in CDKL5 Deficiency Disorder: Double-blind placebo-controlled randomized trial. Eur J Paediatr Neurol 2024; 51:140-146. [PMID: 38959712 PMCID: PMC11283350 DOI: 10.1016/j.ejpn.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/22/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Ganaxolone, a neuroactive steroid, reduces the frequency of major motor seizures in children with CDD. This analysis explored the effect of ganaxolone on non-seizure outcomes. Children (2-19 years) with genetically confirmed CDD and ≥ 16 major motor seizures per month were enrolled in a double-blind randomized placebo-controlled trial. Ganaxolone or placebo was administered three times daily for 17 weeks. Behaviour was measured with the Anxiety, Depression and Mood Scale (ADAMS), daytime sleepiness with the Child Health Sleep Questionnaire, and quality of life with the Quality of Life Inventory-Disability (QI-Disability) scale. Scores were compared using ANOVA, adjusted for age, sex, number of anti-seizure mediations, baseline 28-day major motor seizure frequency, baseline developmental skills, and behaviour, sleep or quality of life scores. 101 children with CDD (39 clinical sites, 8 countries) were randomized. Median (IQR) age was 6 (3-10) years, 79.2 % were female, and 50 received ganaxolone. After 17 weeks of treatment, Manic/Hyperactive scores (mean difference 1.27, 95%CI -2.38,-0.16) and Compulsive Behaviour scores (mean difference 0.58, 95%CI -1.14,-0.01) were lower (improved) in the ganaxolone group compared with the placebo group. Daytime sleepiness scores were similar between groups. The total change in QOL score for children in the ganaxolone group was 2.6 points (95%CI -1.74,7.02) higher (improved) than in the placebo group but without statistical significance. Along with better seizure control, children who received ganaxolone had improved behavioural scores in select domains compared to placebo.
Collapse
Affiliation(s)
- J Downs
- Telethon Kids Institute, The University of Western Australia, Australia; Curtin School of Allied Health, Curtin University, Perth, Australia.
| | - P Jacoby
- Telethon Kids Institute, The University of Western Australia, Australia
| | - N Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - H Cross
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - S Amin
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - N Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades, Université de Paris, Paris, France
| | - R Rajaraman
- Division of Pediatric Neurology, David Geffen School of Medicine and UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - B Suter
- Pediatrics & Neurology, Baylor College of Medicine & Texas Children's Hospital, Houston, USA
| | - O Devinsky
- Department of Neurology, New York University, New York, NY, USA
| | | | - G Busse
- Marinus Pharmaceuticals, Inc, USA
| | - H E Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - S Demarest
- University of Colorado, Department of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO, USA
| | - T A Benke
- Depts of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of Medicine/Children's Hospital Colorado, Aurora, CO, USA
| | - E Pestana-Knight
- Charles Shor Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
9
|
Lombardo A, Sinibaldi L, Genovese S, Catino G, Mei V, Pompili D, Sallicandro E, Falasca R, Liambo MT, Faggiano MV, Roberti MC, Di Donato M, Vitelli A, Russo S, Giannini R, Micalizzi A, Pietrafusa N, Digilio MC, Novelli A, Fusco L, Alesi V. A Case of CDKL5 Deficiency Due to an X Chromosome Pericentric Inversion: Delineation of Structural Rearrangements as an Overlooked Recurrent Pathological Mechanism. Int J Mol Sci 2024; 25:6912. [PMID: 39000022 PMCID: PMC11241409 DOI: 10.3390/ijms25136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.
Collapse
Affiliation(s)
- Antonietta Lombardo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Unit, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Valerio Mei
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Daniele Pompili
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Ester Sallicandro
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Roberto Falasca
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Teresa Liambo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Vittoria Faggiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Cristina Roberti
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maddalena Di Donato
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Anna Vitelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Serena Russo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Rosalinda Giannini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Medical Genetics Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy
| | - Nicola Pietrafusa
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù, IRCCS Children’s Hospital, 00165 Rome, Italy
| | | | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Fusco
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù, IRCCS Children’s Hospital, 00165 Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
10
|
Simões de Oliveira L, O'Leary HE, Nawaz S, Loureiro R, Davenport EC, Baxter P, Louros SR, Dando O, Perkins E, Peltier J, Trost M, Osterweil EK, Hardingham GE, Cousin MA, Chattarji S, Booker SA, Benke TA, Wyllie DJA, Kind PC. Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder. Mol Autism 2024; 15:28. [PMID: 38877552 PMCID: PMC11177379 DOI: 10.1186/s13229-024-00601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.
Collapse
MESH Headings
- Animals
- Male
- Rats
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Epileptic Syndromes/genetics
- Epileptic Syndromes/metabolism
- Excitatory Postsynaptic Potentials
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/physiopathology
- Hippocampus/metabolism
- Long-Term Potentiation
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Pyramidal Cells/metabolism
- Pyramidal Cells/pathology
- Receptors, AMPA/metabolism
- Receptors, AMPA/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Spasms, Infantile/genetics
- Spasms, Infantile/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Heather E O'Leary
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Rita Loureiro
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | | | - Paul Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emma Perkins
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Julien Peltier
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sumantra Chattarji
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, 560065, India
- Centre for Brain Development and Repair, Instem, Bangalore, India
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK
| | - Tim A Benke
- School of Medicine, University of Colorado, Denver, CO, USA.
- Department of Pharmacology, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, Instem, Bangalore, India.
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
11
|
Silvestre M, Dempster K, Mihaylov SR, Claxton S, Ultanir SK. Cell type-specific expression, regulation and compensation of CDKL5 activity in mouse brain. Mol Psychiatry 2024; 29:1844-1856. [PMID: 38326557 PMCID: PMC11371643 DOI: 10.1038/s41380-024-02434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.
Collapse
Affiliation(s)
- Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Amin S, Møller RS, Aledo‐Serrano A, Arzimanoglou A, Bager P, Jóźwiak S, Kluger GJ, López‐Cabeza S, Nabbout R, Partridge C, Schubert‐Bast S, Specchio N, Kälviäinen R. Providing quality care for people with CDKL5 deficiency disorder: A European expert panel opinion on the patient journey. Epilepsia Open 2024; 9:832-849. [PMID: 38450883 PMCID: PMC11145618 DOI: 10.1002/epi4.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/21/2024] [Indexed: 03/08/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy caused by variants in the CDKL5 gene. The disorder is characterized by intractable early-onset seizures, severe neurodevelopmental delay, hypotonia, motor disabilities, cerebral (cortical) visual impairment and microcephaly. With no disease-modifying therapies available for CDD, treatment is symptomatic with an initial focus on seizure control. Another unmet need in the management of people with CDD is the lack of evidence to aid standardized care and guideline development. To address this gap, experts in CDD and representatives from patient advocacy groups from Denmark, Finland, France, Germany, Italy, Poland, Spain, and the United Kingdom convened to form an Expert Working Group. The aim was to provide an expert opinion consensus on how to ensure quality care in routine clinical practice within the European setting, including in settings with limited experience or resources for multidisciplinary care of CDD and other developmental and epileptic encephalopathies. By means of one-to-one interviews around the current treatment landscape in CDD, insights from the Expert Working Group were collated and developed into a Europe-specific patient journey for individuals with CDD, which was later validated by the group. Further discussions followed to gain consensus of opinions on challenges and potential solutions for achieving quality care in this setting. The panel recognized the benefit of early genetic testing, a holistic personalized approach to seizure control (taking into consideration various factors such as concomitant medications and comorbidities), and age- and comorbidity-dependent multidisciplinary care for optimizing patient outcomes and quality of life. However, their insights and experiences also highlighted much disparity in management approaches and resources across different European countries. Development of standardized European recommendations is required to align realistic diagnostic criteria, treatment goals, and management approaches that can be adapted for different settings. PLAIN LANGUAGE SUMMARY: Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare condition caused by a genetic mutation with a broad range of symptoms apparent from early childhood, including epileptic seizures that do not respond to medication and severe delays in development. Due to the lack of guidance on managing CDD, international experts and patient advocates discussed best practices in the care of people with CDD in Europe. The panel agreed that early testing, a personalized approach to managing seizures, and access to care from different disciplines are beneficial. Development of guidelines to ensure that care is standardized would also be valuable.
Collapse
Affiliation(s)
- Sam Amin
- University Hospitals BristolBristolUK
| | - Rikke S. Møller
- The Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Angel Aledo‐Serrano
- Vithas Madrid La Milagrosa University HospitalVithas Hospital GroupMadridSpain
| | | | | | | | - Gerhard Josef Kluger
- Epilepsy Center for Children and AdolescentsVogtareuthGermany
- Paracelsus Medical University SalzburgSalzburgAustria
| | | | - Rima Nabbout
- Necker‐Enfants Malades HospitalUniversité Paris Cité, Imagine InstituteParisFrance
| | | | - Susanne Schubert‐Bast
- Center of Neurology and NeurosurgeryEpilepsy Center Frankfurt Rhine‐MainGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER)Goethe‐UniversityFrankfurt am MainGermany
- University Children's HospitalGoethe‐University and University Hospital FrankfurtFrankfurt am MainGermany
| | | | - Reetta Kälviäinen
- University of Eastern Finland and Epilepsy CenterKuopio University HospitalKuopioFinland
| |
Collapse
|
13
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Zito A, Lee JT. Variable expression of MECP2, CDKL5, and FMR1 in the human brain: Implications for gene restorative therapies. Proc Natl Acad Sci U S A 2024; 121:e2312757121. [PMID: 38386709 PMCID: PMC10907246 DOI: 10.1073/pnas.2312757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.
Collapse
Affiliation(s)
- Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| |
Collapse
|
15
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
16
|
Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat Commun 2023; 14:7830. [PMID: 38081835 PMCID: PMC10713615 DOI: 10.1038/s41467-023-43475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
| | - Lucas L Baltussen
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory for the Research of Neurodegenerative Diseases (VIB-KU Leuven), Department of Neurosciences, ON5 Herestraat 49, 3000, Leuven, Belgium
| | - André T Lopes
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Liina Sirvio
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jill C Richardson
- Neuroscience, MSD Research Laboratories, 120 Moorgate, London, EC2M 6UR, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
17
|
Ruggiero V, Fagioli C, de Pretis S, Di Carlo V, Landsberger N, Zacchetti D. Complex CDKL5 translational regulation and its potential role in CDKL5 deficiency disorder. Front Cell Neurosci 2023; 17:1231493. [PMID: 37964795 PMCID: PMC10642286 DOI: 10.3389/fncel.2023.1231493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
CDKL5 is a kinase with relevant functions in correct neuronal development and in the shaping of synapses. A decrease in its expression or activity leads to a severe neurodevelopmental condition known as CDKL5 deficiency disorder (CDD). CDD arises from CDKL5 mutations that lie in the coding region of the gene. However, the identification of a SNP in the CDKL5 5'UTR in a patient with symptoms consistent with CDD, together with the complexity of the CDKL5 transcript leader, points toward a relevant translational regulation of CDKL5 expression with important consequences in physiological processes as well as in the pathogenesis of CDD. We performed a bioinformatics and molecular analysis of the 5'UTR of CDKL5 to identify translational regulatory features. We propose an important role for structural cis-acting elements, with the involvement of the eukaryotic translational initiation factor eIF4B. By evaluating both cap-dependent and cap-independent translation initiation, we suggest the presence of an IRES supporting the translation of CDKL5 mRNA and propose a pathogenic effect of the C>T -189 SNP in decreasing the translation of the downstream protein.
Collapse
Affiliation(s)
- Valeria Ruggiero
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fagioli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano de Pretis
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | - Daniele Zacchetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Medvedev KE, Schaeffer RD, Pei J, Grishin NV. Pathogenic mutation hotspots in protein kinase domain structure. Protein Sci 2023; 32:e4750. [PMID: 37572333 PMCID: PMC10464295 DOI: 10.1002/pro.4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
19
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
20
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
21
|
Kontaxi C, Ivanova D, Davenport EC, Kind PC, Cousin MA. Epilepsy-Related CDKL5 Deficiency Slows Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Neurosci 2023; 43:2002-2020. [PMID: 36759195 PMCID: PMC10027047 DOI: 10.1523/jneurosci.1537-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.
Collapse
Affiliation(s)
- Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| |
Collapse
|
22
|
Wong K, Junaid M, Demarest S, Saldaris J, Benke TA, Marsh ED, Downs J, Leonard H. Factors influencing the attainment of major motor milestones in CDKL5 deficiency disorder. Eur J Hum Genet 2023; 31:169-178. [PMID: 35978140 PMCID: PMC9905550 DOI: 10.1038/s41431-022-01163-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
This study investigated the influence of factors at birth and in infancy on the likelihood of achieving major motor milestones in CDKL5 Deficiency Disorder (CDD). Data on 350 individuals with a pathogenic CDKL5 variant was sourced from the International CDKL5 Disorder Database. A first model included factors available at birth (e.g., sex, variant group and mosaicism) and the second additionally included factors available during infancy (e.g., age at seizure onset, number of anti-seizure medications used, experience of a honeymoon period and formal therapy). Cox regression was used to model the time to achieve the milestones. The probability of attaining the outcomes at specific ages was estimated by evaluating the time-to-event function at specific covariate values. Independent sitting and walking were achieved by 177/350 and 57/325 children respectively. By seven years of age, 67.1% of females but only 37.3% of males could sit independently. About a quarter each of females and males achieved independent walking by eight and six years, respectively. When observed from birth, female gender, a late truncating variant and mosaicism impacted most positively on the likelihood of independent sitting. When observed from one year, later seizure onset and experiencing a honeymoon period also improved the likelihood of independent sitting. Factors that favoured sitting (except gender) also improved walking. Having a truncating variant between aa178 and aa781 reduced the likelihood of achieving independent sitting and walking. It is possible to utilise factors occurring early in life to inform the likelihood of future motor development in CDD.
Collapse
Affiliation(s)
- Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Mohammed Junaid
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Scott Demarest
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado School of Medicine, Aurora, USA
| | - Jacinta Saldaris
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Tim A Benke
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado School of Medicine, Aurora, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
23
|
Saldaris JM, Jacoby P, Leonard H, Benke TA, Demarest S, Marsh ED, Downs J. Psychometric properties of QI-Disability in CDKL5 Deficiency Disorder: Establishing readiness for clinical trials. Epilepsy Behav 2023; 139:109069. [PMID: 36634535 PMCID: PMC9899310 DOI: 10.1016/j.yebeh.2022.109069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare genetic disorder with symptoms of epilepsy, developmental impairments, and other comorbidities. Currently, there are no outcome measures for CDD with comprehensive evidence of validation. This study aimed to evaluate the psychometric properties of the Quality of Life Inventory-Disability (QI-Disability) in CDD. Quality of Life Inventory-Disability was administered to 152 parent caregivers registered with the International CDKL5 Disorder Database (ICDD). Confirmatory factor analysis was conducted and the goodness of fit of the factor structure was assessed. Fixed-effects linear regression models examined the responsiveness of QI-Disability to reported changes in child health. A subset of parent caregivers (n = 56) completed QI-Disability, as well as additional health-related questions, on two occasions separated by four weeks to evaluate test-retest reliability. Test-retest reliability was assessed using intra-class correlations (ICCs) calculated from QI-Disability scores. Based upon adjustments for changes in child health, ICCs were recalculated to estimate responsiveness to change. Confirmatory factor analysis, internal consistency, and divergent validity were mostly satisfactory, except divergent validity was not satisfactory for the Social Interactions and Independence domains. The Physical Health, Social Interactions, Leisure, and Total scores responded to changes in the child's Physical health, and the Negative Emotions and Leisure domains responded to changes in the child's behavior. Unadjusted and adjusted ICC values were above 0.8 for the Positive Emotions, Negative Emotions, Social Interactions, Leisure, Independence domains and Total score, and above 0.6 for the Physical Health domain. Findings suggest that QI-Disability is suitable to assess the quality of life of children and adults with CDD and could be of value for upcoming clinical trials.
Collapse
Affiliation(s)
- Jacinta M Saldaris
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Tim A Benke
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Scott Demarest
- Children's Hospital Colorado, Pediatric Neurology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; School of Allied Health, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Darra F, Monchelato M, Loos M, Juanes M, Bernardina BD, Valenzuela GR, Gallo A, Caraballo R. CDKL5-associated developmental and epileptic encephalopathy: A long-term, longitudinal electroclinical study of 22 cases. Epilepsy Res 2023; 190:107098. [PMID: 36739728 DOI: 10.1016/j.eplepsyres.2023.107098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The study was conducted to analyze the possible diagnostic value of the electroclinical semiology of the epileptic seizures. METHODS We evaluated the medical records of 17 females and 5 males with CDKL5 deficiency disorder (CDD) considering the long-term evolution, including the polygraphic video-EEG recordings. RESULTS We recognized three disease phases. We found that the seizure semiology was already recognizable in the first phase of the syndrome. In the short-term evolution, all patients had focal motor and 12/21 hypermotor seizures. Both epileptic spasms and myoclonic seizures were already present in more than half of the cases in the first 2 months after onset. In the second phase, the intermediate period, the polymorphic pattern was maintained, but in eight patients the electroclinical pattern of epileptic encephalopathy with hypsarrhythmia appeared. In the long-term period, the seizure polymorphism continued but myoclonic and epileptic spasms diminished. Tonic seizures appeared in the last 2 phases. Progressively, with the aggravation of seizures and paroxysmal EEG abnormalities impairment of the neurocognitive status was observed. Severe behavioral disturbances were seen in eight and autistic-like features in 14. CONCLUSION CDD is a true developmental and epileptic encephalopathy with a specific etiology characterized by the early appearance of epileptic seizures that quickly become polymorphic and drug resistant in infants that are most often female and already have neurological impairment. Polygraphic video-EEG recordings are important to recognize ictal events of the association of hypermotor seizures, epileptic spasms in clusters, and massive myoclonic jerks, already present at onset.
Collapse
Affiliation(s)
- Francesca Darra
- Unit of Child Neuropsychiatry, Azienda Ospedaliera Universitaria Integrata, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Manuela Monchelato
- Unit of Child Neuropsychiatry, Azienda Ospedaliera Universitaria Integrata, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Mariana Loos
- Department of Neurology, Hospital de Padiatría J.P. Garrahan, Buenos Aires, Argentina
| | - Matias Juanes
- Genomics Laboratory, Hospital de Padiatría J.P. Garrahan, Buenos Aires, Argentina
| | - Bernardo Dalla Bernardina
- Unit of Child Neuropsychiatry, Azienda Ospedaliera Universitaria Integrata, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Adolfo Gallo
- Department of Neurology, Hospital de Padiatría J.P. Garrahan, Buenos Aires, Argentina
| | - Roberto Caraballo
- Department of Neurology, Hospital de Padiatría J.P. Garrahan, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Keehan L, Haviland I, Gofin Y, Swanson LC, El Achkar CM, Schreiber J, VanNoy GE, O’Heir E, O’Donnell-Luria A, Lewis RA, Magoulas P, Tran A, Azamian MS, Chao HT, Pham L, Samaco RC, Elsea S, Thorpe E, Kesari A, Perry D, Lee B, Lalani SR, Rosenfeld JA, Olson HE, Burrage LC. Wide range of phenotypic severity in individuals with late truncations unique to the predominant CDKL5 transcript in the brain. Am J Med Genet A 2022; 188:3516-3524. [PMID: 35934918 PMCID: PMC9669137 DOI: 10.1002/ajmg.a.62940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.
Collapse
Affiliation(s)
- Laura Keehan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Haviland
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Lindsay C. Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Christelle Moufawad El Achkar
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - John Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, 8404 Children's National Hospital, Washington, DC, USA
| | - Grace E. VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emily O’Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Alyssa Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- McNair Medical Institute at the Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lisa Pham
- The Meyer Center for Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA
| | - Rodney C. Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sarah Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heather E. Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Equal contributions
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Equal contributions
| |
Collapse
|
26
|
Colarusso A, Lauro C, Calvanese M, Parrilli E, Tutino ML. Active human full-length CDKL5 produced in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 2022; 21:211. [PMID: 36242022 PMCID: PMC9563788 DOI: 10.1186/s12934-022-01939-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. Results Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. Conclusions Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural–functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce “intractable” proteins, especially those containing large intrinsically disordered regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01939-6.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.,Istituto Nazionale Biostrutture e Biosistemi-I.N.B.B., Viale Medaglie d'Oro, 305-00136, Rome, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.,Istituto Nazionale Biostrutture e Biosistemi-I.N.B.B., Viale Medaglie d'Oro, 305-00136, Rome, Italy
| | - Marzia Calvanese
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, "Federico II" University of Naples, Complesso Universitario Monte S. Angelo-Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
27
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
28
|
McKnight D, Bean L, Karbassi I, Beattie K, Bienvenu T, Bonin H, Fang P, Chrisodoulou J, Friez M, Helgeson M, Krishnaraj R, Meng L, Mighion L, Neul J, Percy A, Ramsden S, Zoghbi H, Das S. Recommendations by the ClinGen Rett/Angelman-like expert panel for gene-specific variant interpretation methods. Hum Mutat 2022; 43:1097-1113. [PMID: 34837432 PMCID: PMC9135956 DOI: 10.1002/humu.24302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 11/11/2022]
Abstract
The genes MECP2, CDKL5, FOXG1, UBE3A, SLC9A6, and TCF4 present unique challenges for current ACMG/AMP variant interpretation guidelines. To address those challenges, the Rett and Angelman-like Disorders Variant Curation Expert Panel (Rett/AS VCEP) drafted gene-specific modifications. A pilot study was conducted to test the clarity and accuracy of using the customized variant interpretation criteria. Multiple curators obtained the same interpretation for 78 out of the 87 variants (~90%), indicating appropriate usage of the modified guidelines the majority of times by all the curators. The classification of 13 variants changed using these criteria specifications compared to when the variants were originally curated and as present in ClinVar. Many of these changes were due to internal data shared from laboratory members however some changes were because of changes in strength of criteria. There were no two-step classification changes and only 1 clinically relevant change (Likely pathogenic to VUS). The Rett/AS VCEP hopes that these gene-specific variant curation rules and the assertions provided help clinicians, clinical laboratories, and others interpret variants in these genes but also other fully penetrant, early-onset genes associated with rare disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Chrisodoulou
- Murdoch Childrens Research Institute and the University of Melbourne,University of Sydney
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amin S, Monaghan M, Aledo-Serrano A, Bahi-Buisson N, Chin RF, Clarke AJ, Cross JH, Demarest S, Devinsky O, Downs J, Pestana Knight EM, Olson H, Partridge CA, Stuart G, Trivisano M, Zuberi S, Benke TA. International Consensus Recommendations for the Assessment and Management of Individuals With CDKL5 Deficiency Disorder. Front Neurol 2022; 13:874695. [PMID: 35795799 PMCID: PMC9251467 DOI: 10.3389/fneur.2022.874695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
CDKL5 Deficiency Disorder (CDD) is a rare, X-linked dominant condition that causes a developmental and epileptic encephalopathy (DEE). The incidence is between ~ 1:40,000 and 1:60,000 live births. Pathogenic variants in CDKL5 lead to seizures from infancy and severe neurodevelopmental delay. During infancy and childhood, individuals with CDD suffer impairments affecting cognitive, motor, visual, sleep, gastrointestinal and other functions. Here we present the recommendations of international healthcare professionals, experienced in CDD management, to address the multisystem and holistic needs of these individuals. Using a Delphi method, an anonymous survey was administered electronically to an international and multidisciplinary panel of expert clinicians and researchers. To provide summary recommendations, consensus was set, a priori, as >70% agreement for responses. In the absence of large, population-based studies to provide definitive evidence for treatment, we propose recommendations for clinical management, influenced by this proposed threshold for consensus. We believe these recommendations will help standardize, guide and improve the medical care received by individuals with CDD.
Collapse
Affiliation(s)
- Sam Amin
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Marie Monaghan
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Angel Aledo-Serrano
- Epilepsy Program, Department of Neurology, Ruber Internacional Hospital, Madrid, Spain
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades, Université de Paris, Paris, France
| | - Richard F. Chin
- Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom
| | - Angus J. Clarke
- University Hospital of Wales, Cardiff University, Cardiff, United Kingdom
| | - J. Helen Cross
- Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Orrin Devinsky
- Department of Neurology, New York University, New York, NY, United States
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Elia M. Pestana Knight
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Learner College of Medicine, Cleveland, OH, United States
| | - Heather Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | | | - Graham Stuart
- Bristol Heart Institute, Bristol Royal Hospital for Children, University of Bristol, Bristol, United Kingdom
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Tim A. Benke
- Department of Pediatrics, Pharmacology, Neurology, and Otolaryngology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
30
|
Leonard H, Downs J, Benke TA, Swanson L, Olson H, Demarest S. CDKL5 deficiency disorder: clinical features, diagnosis, and management. Lancet Neurol 2022; 21:563-576. [PMID: 35483386 PMCID: PMC9788833 DOI: 10.1016/s1474-4422(22)00035-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
CDKL5 deficiency disorder (CDD) was first identified as a cause of human disease in 2004. Although initially considered a variant of Rett syndrome, CDD is now recognised as an independent disorder and classified as a developmental epileptic encephalopathy. It is characterised by early-onset (generally within the first 2 months of life) seizures that are usually refractory to polypharmacy. Development is severely impaired in patients with CDD, with only a quarter of girls and a smaller proportion of boys achieving independent walking; however, there is clinical variability, which is probably genetically determined. Gastrointestinal, sleep, and musculoskeletal problems are common in CDD, as in other developmental epileptic encephalopathies, but the prevalence of cerebral visual impairment appears higher in CDD. Clinicians diagnosing infants with CDD need to be familiar with the complexities of this disorder to provide appropriate counselling to the patients' families. Despite some benefit from ketogenic diets and vagal nerve stimulation, there has been little evidence that conventional antiseizure medications or their combinations are helpful in CDD, but further treatment trials are finally underway.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Tim A Benke
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Pharmacology, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA; Department of Otolaryngology, University of Colorado at Denver, Aurora, CO, USA
| | - Lindsay Swanson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Heather Olson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA; Department of Neurology, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
31
|
Calvanese M, Colarusso A, Lauro C, Parrilli E, Tutino ML. Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125: The Case Study of the Full-Length Human CDKL5 Protein. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:219-232. [PMID: 35089560 DOI: 10.1007/978-1-0716-1859-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is an unconventional protein production host displaying a notable proficiency in the soluble production of difficult proteins, especially of human origin. Furthermore, the accumulation of recombinant products in insoluble aggregates has never been observed in this bacterium, indicating that its cellular physicochemical conditions and/or folding processes are rather different from those observed in mesophilic bacteria. The ability of this cell factory was challenged by producing a human protein, the cyclin-dependent kinase-like 5 (hCDKL5) in the bacterium cytoplasm at 0 °C. Human CDKL5 is a serine/threonine protein kinase characterized by the absence of a defined structure for the last two/third of its sequence, one of the largest intrinsically disordered regions so far observed in a human protein. This large unstructured domain makes difficult its production in most of the conventional hosts since the recombinant product accumulates as insoluble aggregates and/or is heavily proteolyzed. As the full-length hCDKL5 production is of great interest both for basic science and as protein drug for an enzyme replacement therapy, its production in the Antarctic bacterium was tested by combining the use of a regulated psychrophilic gene expression system with the use of a defined growth medium optimized for the host growth at subzero temperature. This is the first report of soluble and full-length recombinant production of hCDKL5 protein in a bacterium.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea Colarusso
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
32
|
Di Nardo A, Rühmkorf A, Award P, Brennecke A, Fagiolini M, Sahin M. Phenotypic characterization of Cdkl5-knockdown neurons establishes elongated cilia as a functional assay for CDKL5 Deficiency Disorder. Neurosci Res 2022; 176:73-78. [PMID: 34624412 PMCID: PMC8960319 DOI: 10.1016/j.neures.2021.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
CDKL5 Deficiency Disorder (CDD) is a severe encephalopathy characterized by intractable epilepsy, infantile spasms, and cognitive disabilities. The detrimental CNS manifestations and lack of therapeutic interventions represent unmet needs, necessitating identification of CDD-dependent phenotypes for in vitro disease modeling and therapeutic testing. Here, we optimized a high-content assay to quantify cilia in CDKL5-deficient neurons. Our work shows that Cdkl5-knockdown neurons have elongated cilia and uncovers cilium lengthening in hippocampi of Cdkl5 knockout mice. Collectively, our findings identify cilia length alterations under CDKL5 activity loss in vitro and in vivo and reveal elongated cilia as a robust functional phenotype for CDD.
Collapse
Affiliation(s)
- Alessia Di Nardo
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA; Genetic and Developmental Disorders Research Unit, Biogen 115 Broadway, Cambridge, MA 02142, USA(1)
| | - Alina Rühmkorf
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia Award
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ashton Brennecke
- Genetic and Developmental Disorders Research Unit, Biogen 115 Broadway, Cambridge, MA 02142, USA(1)
| | - Michela Fagiolini
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Hock E. Tan and K. Lisa Yang Center for Autism Research at Harvard University, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125: The Case Study of the Full-Length Human CDKL5 Protein. Methods Mol Biol 2022. [PMID: 35089560 DOI: 10.1007/978-1-0716-1859-2_132406:219-232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is an unconventional protein production host displaying a notable proficiency in the soluble production of difficult proteins, especially of human origin. Furthermore, the accumulation of recombinant products in insoluble aggregates has never been observed in this bacterium, indicating that its cellular physicochemical conditions and/or folding processes are rather different from those observed in mesophilic bacteria. The ability of this cell factory was challenged by producing a human protein, the cyclin-dependent kinase-like 5 (hCDKL5) in the bacterium cytoplasm at 0 °C. Human CDKL5 is a serine/threonine protein kinase characterized by the absence of a defined structure for the last two/third of its sequence, one of the largest intrinsically disordered regions so far observed in a human protein. This large unstructured domain makes difficult its production in most of the conventional hosts since the recombinant product accumulates as insoluble aggregates and/or is heavily proteolyzed. As the full-length hCDKL5 production is of great interest both for basic science and as protein drug for an enzyme replacement therapy, its production in the Antarctic bacterium was tested by combining the use of a regulated psychrophilic gene expression system with the use of a defined growth medium optimized for the host growth at subzero temperature. This is the first report of soluble and full-length recombinant production of hCDKL5 protein in a bacterium.
Collapse
|
34
|
Dale T, Downs J, Wong K, Leonard H. The perceived effects of cannabis products in the management of seizures in CDKL5 Deficiency Disorder. Epilepsy Behav 2021; 122:108152. [PMID: 34148781 DOI: 10.1016/j.yebeh.2021.108152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION CDKL5 Deficiency Disorder (CDD) is a severe treatment-resistant form of early-onset epilepsy. Current treatment options are often ineffective and associated with adverse effects, forcing families to seek alternative therapies for their children including products derived from cannabis. Reportsof miraculous cures and a public preferencefor 'natural' therapies have resulted in considerable public interest, and so this study aimed to characterize the use of cannabis in these individuals, as well as compare caregiver perceptions of efficacy and safety to objective evidence of seizure control and number of antiepileptic drugs used. METHODS Families from the International CDKL5 Disorder Database were invited to complete questionnaires which included data relating to their child's current and past treatments, including use of any cannabis-derived preparations. Perceived effects on seizure control, as well as additional benefits and adverse effects were reported. Seizure frequency and number of antiepileptic drugs were compared between those actively using cannabis products and those who were not. Longitudinal analysis was performed on a subset of the study population to compare these same variables at pre-treatment and post-treatment time points. RESULTS Three hundred and twelve caregivers answered questions regarding their child's use of antiepileptic medications. Of these, 82 (26%) described use of cannabis preparations either at present, or in the past, with the most common being cannabidiol. Of 70 caregivers that described their perceived effect on seizure control, more than two thirds reported an improvement in seizure control, either temporary (16%) or lasting (54%). Additional benefits included improvements in attention, cognition, and sleep. The majority of responses (78%) described adverse effects as 'none', though some reported an increase in sedation and gastrointestinal upset. There was no reduction in the median seizure frequency nor the number of different antiepileptic drugs, for those who were actively using cannabis products compared to those who were not. Similarly, individuals who were not using cannabis products at an initial time point had no differences in seizure frequency nor number of antiepileptic drugs at a second timepoint when they had started using this treatment. CONCLUSIONS Although this is an observational study, limited by potential participation bias and the unreliable nature of unblinded self-assessment, it suggests that caregivers perceive cannabis products, especially cannabidiol, to have a tolerable adverse effect profile and adequate efficacy. Despite this, cannabis was not associated with a reduction in seizure frequency nor number of antiepileptic drugs when compared to non-users or when compared to pre-treatment. Randomized controlled trials are urgently needed to more reliably assess this treatment's safety and efficacy.
Collapse
Affiliation(s)
- Tristan Dale
- The Faculty of Health, Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Siri B, Varesio C, Freri E, Darra F, Gana S, Mei D, Porta F, Fontana E, Galati G, Solazzi R, Niceta M, Veggiotti P, Alfei E. CDKL5 deficiency disorder in males: Five new variants and review of the literature. Eur J Paediatr Neurol 2021; 33:9-20. [PMID: 33989939 DOI: 10.1016/j.ejpn.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022]
Abstract
The X-linked Cyclin-Dependent Kinase-Like 5 (CDKL5) gene encodes a serine-threonine kinase highly expressed in the developing brain. Loss of function of CDKL5 is pointed out to underlie the CDKL5 Deficiency Disorder (CDD), an X-linked dominant disease characterized by early-onset epileptic encephalopathy and developmental delay, usually affecting females more than males. To the best to our knowledge, only 45 males with CDD have been reported so far. Type and position of CDKL5 variants with different impact on the protein are reported to influence the clinical presentation. X-chromosome inactivation occurring in females and post-zygotic mosaicism in males are also believed to contribute to this variability. Based on these issues, genotype-phenotype correlations are still challenging. Here, we describe clinical features of five additional affected males with unreported CDKL5 variants, expanding the molecular spectrum of the disorder. We also reviewed the clinical profile of the previously reported 45 males with molecularly confirmed CDD. Severe developmental delay, cortical visual impairment, and early-onset refractory epilepsy characterize the CDD picture in males. By assessing the molecular spectrum, we confirm that germ-line truncating CDKL5 variants, equally distributed across the coding sequence, are the most recurrent mutations in CDD, and cause the worsen phenotype. While recurrence and relevance of missense substitutions within C-terminal remain still debated, disease-causing missense changes affecting the N-terminal catalytic domain correlate to a severe clinical phenotype. Finally, our data provide evidence that post-zygotic CDKL5 mosaicism may result in milder phenotypes and, at least in a subset of subjects, in variable response to antiepileptic treatments.
Collapse
Affiliation(s)
- Barbara Siri
- Department of Paediatrics, Ospedale Infantile Regina Margherita, University of Torino, Italy; Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| | - Elena Freri
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Darra
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Italy
| | - Elena Fontana
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Giulia Galati
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Roberta Solazzi
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Pierangelo Veggiotti
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| | - Enrico Alfei
- Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| |
Collapse
|
36
|
Kluckova D, Kolnikova M, Medova V, Bognar C, Foltan T, Svecova L, Gnip A, Kadasi L, Soltysova A, Ficek A. Clinical manifestation of CDKL5 deficiency disorder and identified mutations in a cohort of Slovak patients. Epilepsy Res 2021; 176:106699. [PMID: 34229227 DOI: 10.1016/j.eplepsyres.2021.106699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an independent clinical entity associated with early-onset encephalopathy, which is often considered the type of epileptic encephalopathy with CDKL5 mutation also found in children diagnosed with early-onset seizure (Hanefeld) type of Rett syndrome, epileptic spasms, West syndrome, Lennox-Gastaut syndrome, or autism. Since early seizure onset is a prominent feature, in this study, a cohort of 54 unrelated patients consisting of 26 males and 28 females was selected for CDKL5 screening, with seizures presented before 12 months of age being the only clinical criterion. Five patients were found to have pathogenic or likely pathogenic variants in CDKL5 while 1 was found to have a variant of uncertain significance (p.L522V). Although CDKL5 variants are more frequently identified in female patients, we identified three male and three female patients (11.1 %, 6/54) in this study. Missense variant with unknown inheritance (p.L522V), de novo missense variant (p.E60 K), two de novo splicing (IVS15 + 1G > A, IVS16 + 2 T > A), and one de novo nonsense variant p.W125* were identified using Sanger sequencing. Whole exome analysis approach revealed de novo frameshift variant c.1247_1248delAG in a mosaic form in one of the males. Patient clinical features are reviewed and compared to those previously described in related literature. Variable clinical features were presented in CDKL5 positive patients characterised in this study. In addition to more common features, such as early epileptic seizures, severe intellectual disability, and gross motor impairment, inappropriate laughing/screaming spells and hypotonia appeared at the age of 1 year in all patients, regardless of the type of CDKL5 mutation or sex. All three CDKL5 positive males from our cohort were initially diagnosed with West syndrome, which suggests that the CDKL5 gene mutations are a significant cause of West syndrome phenotype, and also indicate the overlapping characteristics of these two clinical entities.
Collapse
Affiliation(s)
- Daniela Kluckova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Miriam Kolnikova
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Veronika Medova
- Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Csaba Bognar
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Tomas Foltan
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Lucia Svecova
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Andrej Gnip
- Medirex a.s., MEDIREX GROUP, Holubyho 35, 902 01, Pezinok, Slovakia
| | - Ludevit Kadasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia.
| |
Collapse
|
37
|
Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain 2021; 144:32-43. [PMID: 33279965 DOI: 10.1093/brain/awaa371] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Developmental encephalopathies, including intellectual disability and autistic spectrum disorder, are frequently associated with infant epilepsy. Epileptic encephalopathy is used to describe an assumed causal relationship between epilepsy and developmental delay. Developmental encephalopathies pathogenesis more independent from epilepsy is supported by the identification of several gene variants associated with both developmental encephalopathies and epilepsy, the possibility for gene-associated developmental encephalopathies without epilepsy, and the continued development of developmental encephalopathies even when seizures are controlled. Hence, 'developmental and epileptic encephalopathy' may be a more appropriate term than epileptic encephalopathy. This update considers the best studied 'developmental and epileptic encephalopathy' gene variants for illustrative support for 'developmental and epileptic encephalopathy' over epileptic encephalopathy. Moreover, the interaction between epilepsy and developmental encephalopathies is considered with respect to influence on treatment decisions. Continued research in genetic testing will increase access to clinical tests, earlier diagnosis, better application of current treatments, and potentially provide new molecular-investigated treatments.
Collapse
Affiliation(s)
- Nicola Specchio
- Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S, 00165 Rome, Italy
| | - Paolo Curatolo
- Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| |
Collapse
|
38
|
Kobayashi Y, Tohyama J, Takahashi Y, Goto T, Haginoya K, Inoue T, Kubota M, Fujita H, Honda R, Ito M, Kishimoto K, Nakamura K, Sakai Y, Takanashi JI, Tanaka M, Tanda K, Tominaga K, Yoshioka S, Kato M, Nakashima M, Saitsu H, Matsumoto N. Clinical manifestations and epilepsy treatment in Japanese patients with pathogenic CDKL5 variants. Brain Dev 2021; 43:505-514. [PMID: 33436160 DOI: 10.1016/j.braindev.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Patients with pathogenic cyclin-dependent kinase-like-5 gene (CDKL5) variants are designated CDKL5 deficiency disorder (CDD). This study aimed to delineate the clinical characteristics of Japanese patients with CDD and elucidate possible appropriate treatments. METHODS We recruited patients with pathogenic or likely pathogenic CDKL5 variants from a cohort of approximately 1,100 Japanese patients with developmental and epileptic encephalopathies, who underwent genetic analysis. We retrospectively reviewed clinical, electroencephalogram, neuroimaging, and genetic information. RESULTS We identified 29 patients (21 females, eight males). All patients showed severe developmental delay, especially in males. Involuntary movements were observed in 15 patients. No antiepileptic drugs (AEDs) achieved seizure freedom by monotherapy. AEDs achieving ≥ 50% reduction in seizure frequency were sodium valproate in two patients, vigabatrin in one, and lamotrigine in one. Seizure aggravation was observed during the use of lamotrigine, potassium bromide, and levetiracetam. Adrenocorticotrophic hormone (ACTH) was the most effective treatment. The ketogenic diet (KD), corpus callosotomy and vagus nerve stimulation did not improve seizure frequency in most patients, but KD was remarkably effective in one. The degree of brain atrophy on magnetic resonance imaging (MRI) reflected disease severity. Compared with females, males had lower levels of attained motor development and more severe cerebral atrophy on MRI. CONCLUSION Our patients showed more severe global developmental delay than those in previous studies and had intractable epilepsy, likely because previous studies had lower numbers of males. Further studies are needed to investigate appropriate therapy for CDD, such as AED polytherapy or combination treatment involving ACTH, KD, and AEDs.
Collapse
Affiliation(s)
- Yu Kobayashi
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan.
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Takeshi Inoue
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Fujita
- Department of Pediatrics, NHO Aomori Hospital, Aomori, Japan
| | - Ryoko Honda
- Department of Pediatrics, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Masahiro Ito
- Department of Pediatrics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Kanako Kishimoto
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Manabu Tanaka
- Division of General Pediatrics, Saitama Children's Medical Center, Saitama, Japan
| | - Koichi Tanda
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koji Tominaga
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
39
|
Tang Y, Wang ZI, Sarwar S, Choi JY, Wang S, Zhang X, Parikh S, Moosa AN, Pestana-Knight E. Brain morphological abnormalities in children with cyclin-dependent kinase-like 5 deficiency disorder. Eur J Paediatr Neurol 2021; 31:46-53. [PMID: 33621819 PMCID: PMC8026562 DOI: 10.1016/j.ejpn.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND To quantitatively evaluate the brain MRI morphological abnormalities in patients with cyclin-dependent kinase-like 5 deficiency disorder (CDD) on a group level and longitudinally. METHODS We performed surface-based MRI analysis on high-resolution T1-weighted images on three CDD patients scanned at age of three years, and compared with 12 age- and gender-matched healthy controls. We further examined the longitudinal morphological changes in one patient with a follow-up of 5 years. RESULTS CDD patients presented significant reductions in total intracranial volume, total gray matter (GM) volume and subcortical GM volume compared to controls. For subcortical regions, significant GM volume reductions were seen in the brain stem, bilateral thalamus, bilateral hippocampus, bilateral cerebellum and left amygdala. Although GM volume of cortical mantle did not show statistical differences overall, significant reduction was detected in bilateral parietal, left occipital and right temporal lobes. Cortical thickness exhibited significant decreases in bilateral occipital, parietal and temporal lobes, while surface area did not show any significant differences. Longitudinal follow-up in one patient revealed a monotonic downward trend of relative volume in the majority of brain regions. The relative surface area appeared to gain age-related growth, whereas the relative cortical thickness exhibited a striking progressive decline over time. CONCLUSIONS Quantitative morphology analysis in children with CDD showed global volume loss in the cortex and more notably in the subcortical gray matter, with a progressive trend along with the disease course. Cortical thickness is a more sensitive measure to disclose cortical atrophy and disease progression than surface area.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Shaheera Sarwar
- Northeast Ohio Medical University, Rootstown, OH, USA; Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Joon Yul Choi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Shan Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sumit Parikh
- Center for Pediatric Neuroscience, Cleveland Clinic, Cleveland, OH, USA
| | - Ahsan N Moosa
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
40
|
Leonard H, Junaid M, Wong K, Demarest S, Downs J. Exploring quality of life in individuals with a severe developmental and epileptic encephalopathy, CDKL5 Deficiency Disorder. Epilepsy Res 2020; 169:106521. [PMID: 33341033 DOI: 10.1016/j.eplepsyres.2020.106521] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND CDKL5 Deficiency Disorder (CDD) is a rare genetic disorder caused by a mutation in the cyclin-dependent kinase-like 5 (CDKL5) gene. It is now considered to be a developmental and epileptic encephalopathy because of the early onset of seizures in association with severe global delay. Other features include cortical visual impairment, sleep and gastro-intestinal problems. Progress in clinical understanding, especially regarding the spectrum of functional ability, seizure patterns, and other comorbidities was initially slow but accelerated in 2012 with the establishment of the International CDKL5 Database (ICDD). Our aim was to use this data source to investigate quality of life (QOL) and associated factors in this disorder. METHOD A follow-up questionnaire was administered in 2018 to parents of children registered with the ICDD who had a pathogenic CDKL5 variant. QOL was assessed using QI Disability, an instrument, specifically developed to measure total and specific domains of QOL (physical health, positive emotions, negative emotions, social interaction, leisure and the outdoors (leisure) and independence) in children with intellectual disability. Associations with functional abilities, physical health, mental health and family factors were investigated, initially using univariate analyses followed by multivariate analyses for each of these groups with a final composite model which included the important variables identified from previous models. RESULTS Questionnaires were returned by 129/160 families with a child aged >3 years. Functional impairment, including lack of ability to sit, use hands and communicate had the greatest adverse impact on QOL. There were also some relationships with major genotype groupings. Individuals using three or more anti-epileptic medications had poorer QOL than those on one or no medication, particularly in the physical health domain. There was also variation by geographical region with those living in North America typically having the best QOL and those living in middle or lower income countries poorer QOL. CONCLUSION Although lower functional abilities were associated with poorer quality of life further research is needed to understand how environmental supports might mitigate this deficit. Comprehensive care and support for both the child and family have important roles to play in helping families to thrive despite the severity of CDD.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Mohammed Junaid
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | | | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
41
|
Trovò L, Fuchs C, De Rosa R, Barbiero I, Tramarin M, Ciani E, Rusconi L, Kilstrup-Nielsen C. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo. Neurobiol Dis 2020; 138:104791. [PMID: 32032735 PMCID: PMC7152796 DOI: 10.1016/j.nbd.2020.104791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare X-linked neurodevelopmental disorder that is characterised by early-onset seizures, intellectual disability, gross motor impairment, and autistic-like features. CDD is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene that encodes a serine/threonine kinase with a predominant expression in the brain. Loss of CDKL5 causes neurodevelopmental alterations in vitro and in vivo, including defective dendritic arborisation and spine maturation, which most likely underlie the cognitive defects and autistic features present in humans and mice. Here, we show that treatment with epigallatocathechin-3-gallate (EGCG), the major polyphenol of green tea, can restore defects in dendritic and synaptic development of primary Cdkl5 knockout (KO) neurons. Furthermore, defective synaptic maturation in the hippocampi and cortices of adult Cdkl5-KO mice can be rescued through the intraperitoneal administration of EGCG, which is however not sufficient to normalise behavioural CDKL5-dependent deficits. EGCG is a pleiotropic compound with numerous cellular targets, including the dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) that is selectively inhibited by EGCG. DYRK1A controls dendritic development and spine formation and its deregulation has been implicated in neurodevelopmental and degenerative diseases. Treatment with another DYRK1A inhibitor, harmine, was capable of correcting neuronal CDKL5-dependent defects; moreover, DYRK1A levels were upregulated in primary Cdkl5-KO neurons in concomitance with increased phosphorylation of Tau, a well-accepted DYRK1A substrate. Altogether, our results indicate that DYRK1A deregulation may contribute, at least in part, to the neurodevelopmental alterations caused by CDKL5 deficiency.
Collapse
Affiliation(s)
- L Trovò
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Fuchs
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - R De Rosa
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - I Barbiero
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - M Tramarin
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - E Ciani
- Dept. Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - L Rusconi
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - C Kilstrup-Nielsen
- Center of Neuroscience, Dept. Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.
| |
Collapse
|
42
|
Gao Y, Irvine EE, Eleftheriadou I, Naranjo CJ, Hearn-Yeates F, Bosch L, Glegola JA, Murdoch L, Czerniak A, Meloni I, Renieri A, Kinali M, Mazarakis ND. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain 2020; 143:811-832. [DOI: 10.1093/brain/awaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28–30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.
Collapse
Affiliation(s)
- Yunan Gao
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Ioanna Eleftheriadou
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Carlos Jiménez Naranjo
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Francesca Hearn-Yeates
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Leontien Bosch
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Justyna A Glegola
- Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Leah Murdoch
- CBS Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - Ilaria Meloni
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Kinali
- The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK
| | - Nicholas D Mazarakis
- Gene Therapy, Section of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
43
|
Fallah MS, Eubanks JH. Seizures in Mouse Models of Rare Neurodevelopmental Disorders. Neuroscience 2020; 445:50-68. [PMID: 32059984 DOI: 10.1016/j.neuroscience.2020.01.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
44
|
MacKay CI, Bick D, Prokop JW, Muñoz I, Rouse J, Downs J, Leonard H. Expanding the phenotype of the CDKL5 deficiency disorder: Are seizures mandatory? Am J Med Genet A 2020; 182:1217-1222. [DOI: 10.1002/ajmg.a.61504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Conor I. MacKay
- Telethon Kids InstituteThe University of Western Australia Perth Western Australia Australia
| | - David Bick
- HudsonAlpha Institute for Biotechnology Huntsville Alabama
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human MedicineMichigan State University Grand Rapids Michigan
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of Dundee Dundee Scotland
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of Dundee Dundee Scotland
| | - Jenny Downs
- Telethon Kids InstituteThe University of Western Australia Perth Western Australia Australia
- School of Physiotherapy and Exercise ScienceCurtin University Perth Western Australia Australia
| | - Helen Leonard
- Telethon Kids InstituteThe University of Western Australia Perth Western Australia Australia
| |
Collapse
|
45
|
Takeda K, Miyamoto Y, Yamamoto H, Ishii A, Hirose S, Yamamoto H. Clinical features of early myoclonic encephalopathy caused by a CDKL5 mutation. Brain Dev 2020; 42:73-76. [PMID: 31492455 DOI: 10.1016/j.braindev.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND CDKL5 deficiency is caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene and clinically manifests often in females as drug-resistant intractable epilepsy and severe psychomotor retardation. CASE REPORT We report the case of a girl with a CDKL5 mutation born at 39 weeks without neonatal asphyxia. She developed epilepsy at age 1 month with myoclonus of the face and limbs, and non-rhythmic and irregular opsoclonus. She developed tonic seizures and epileptic spasms at 6 months of age and was diagnosed with symptomatic West syndrome and underwent adrenocorticotropic hormone therapy but her seizures were refractory. At the age of 4, she was introduced to our hospital and development was at 2 months of age. We diagnosed her with early myoclonic encephalopathy (EME) due to the remaining suppression-burst pattern observed on an electroencephalogram and her symptoms since onset were mainly myoclonus. At 14 years of age, mutational analysis revealed a CDKL5 mutation (c.380A > G:p.His127Arg). She was diagnosed with epileptic encephalopathy exhibiting clinical features of early myoclonic epilepsy caused by CDKL5 deficiency. CONCLUSIONS Early onset epilepsy with severe psychomotor retardation without a known etiology may be caused by a mutation in CDKL5. More research investigating a genotype-phenotype correlation of CDKL5 mutations is necessary because clinical severity may be associated with the location and type of mutations.
Collapse
Affiliation(s)
- Kanako Takeda
- Kawasaki Municipal Tama Hospital, Japan; Department of Pediatrics, St. Marianna University School of Medicine, Japan.
| | - Yusaku Miyamoto
- Kawasaki Municipal Tama Hospital, Japan; Department of Pediatrics, St. Marianna University School of Medicine, Japan
| | - Hisako Yamamoto
- Kawasaki Municipal Tama Hospital, Japan; Department of Pediatrics, St. Marianna University School of Medicine, Japan
| | - Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Japan
| | - Hitoshi Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Japan
| |
Collapse
|
46
|
Fahmi M, Yasui G, Seki K, Katayama S, Kaneko-Kawano T, Inazu T, Kubota Y, Ito M. In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment. Int J Mol Sci 2019; 20:ijms20225593. [PMID: 31717404 PMCID: PMC6888432 DOI: 10.3390/ijms20225593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.
Collapse
Affiliation(s)
- Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Gen Yasui
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Kaito Seki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
| | - Syouichi Katayama
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Takako Kaneko-Kawano
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Tetsuya Inazu
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (S.K.); (T.K.-K.); (T.I.)
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan;
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; (M.F.); (G.Y.); (K.S.)
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan;
- Correspondence:
| |
Collapse
|
47
|
Fuchs C, Gennaccaro L, Ren E, Galvani G, Trazzi S, Medici G, Loi M, Conway E, Devinsky O, Rimondini R, Ciani E. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder. Neuropharmacology 2019; 167:107746. [PMID: 31469994 DOI: 10.1016/j.neuropharm.2019.107746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Erin Conway
- Department of Neurology, NYU Langone Health, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, USA
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
48
|
Barbiero I, De Rosa R, Kilstrup-Nielsen C. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder? Int J Mol Sci 2019; 20:E4075. [PMID: 31438497 PMCID: PMC6747382 DOI: 10.3390/ijms20174075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy caused by mutations in the X-linked CDKL5 gene that encodes a serine/threonine kinase. CDD is characterised by the early onset of seizures and impaired cognitive and motor skills. Loss of CDKL5 in vitro and in vivo affects neuronal morphology at early and late stages of maturation, suggesting a link between CDKL5 and the neuronal cytoskeleton. Recently, various microtubule (MT)-binding proteins have been identified as interactors of CDKL5, indicating that its roles converge on regulating MT functioning. MTs are dynamic structures that are important for neuronal morphology, migration and polarity. The delicate control of MT dynamics is fundamental for proper neuronal functions, as evidenced by the fact that aberrant MT dynamics are involved in various neurological disorders. In this review, we highlight the link between CDKL5 and MTs, discussing how CDKL5 deficiency may lead to deranged neuronal functions through aberrant MT dynamics. Finally, we discuss whether the regulation of MT dynamics through microtubule-targeting agents may represent a novel strategy for future pharmacological approaches in the CDD field.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Roberta De Rosa
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences, (DBSV), University of Insubria, Via Manara 7, 21052 Busto Arsizio (VA), Italy.
| |
Collapse
|
49
|
Demarest S, Pestana-Knight EM, Olson HE, Downs J, Marsh ED, Kaufmann WE, Partridge CA, Leonard H, Gwadry-Sridhar F, Frame KE, Cross JH, Chin RFM, Parikh S, Panzer A, Weisenberg J, Utley K, Jaksha A, Amin S, Khwaja O, Devinsky O, Neul JL, Percy AK, Benke TA. Severity Assessment in CDKL5 Deficiency Disorder. Pediatr Neurol 2019; 97:38-42. [PMID: 31147226 PMCID: PMC6659999 DOI: 10.1016/j.pediatrneurol.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathologic mutations in cyclin-dependent kinase-like 5 cause CDKL5 deficiency disorder, a genetic syndrome associated with severe epilepsy and cognitive, motor, visual, and autonomic disturbances. This disorder is a relatively common genetic cause of early-life epilepsy. A specific severity assessment is lacking, required to monitor the clinical course and needed to define the natural history and for clinical trial readiness. METHODS A severity assessment was developed based on clinical and research experience from the International Foundation for CDKL5 Research Centers of Excellence consortium and the National Institutes of Health Rett and Rett-Related Disorders Natural History Study consortium. An initial draft severity assessment was presented and reviewed at the annual CDKL5 Forum meeting (Boston, 2017). Subsequently it was iterated through four cycles of a modified Delphi process by a group of clinicians, researchers, industry, patient advisory groups, and parents familiar with this disorder until consensus was achieved. The revised version of the severity assessment was presented for review, comment, and piloting to families at the International Foundation for CDKL5 Research-sponsored family meeting (Colorado, 2018). Final revisions were based on this additional input. RESULTS The final severity assessment comprised 51 items that comprehensively describe domains of epilepsy; motor; cognition, behavior, vision, and speech; and autonomic functions. Parental ratings of therapy effectiveness and child and family functioning are also included. CONCLUSIONS A severity assessment was rapidly developed with input from multiple stakeholders. Refinement through ongoing validation is required for future clinical trials. The consensus methods employed for the development of severity assessment may be applicable to similar rare disorders.
Collapse
Affiliation(s)
- Scott Demarest
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic, Neurological Institute Cleveland, Ohio; Epilepsy Center, Cleveland, Ohio
| | - Heather E Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital Boston, Massachusetts
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walter E Kaufmann
- M.I.N.D. Institute, Department of Neurology, University of California Davis Health System, Sacramento, California; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Helen Leonard
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Femida Gwadry-Sridhar
- Department of Computer Science, University of Western Ontario and Pulse Infoframe, London, Ontario, Canada
| | | | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health & NIHR GOSH BRC, London, UK
| | - Richard F M Chin
- University of Edinburgh and Royal Hospital for Sick Children, Edinburgh, UK
| | | | | | - Judith Weisenberg
- Neurology, Division of Pediatric Neurology, Epilepsy Section, Washington University School of Medicine, St. Louis Children's Hospital, St Louis, Missouri
| | - Karen Utley
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | - Amanda Jaksha
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | | | - Omar Khwaja
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development NORD, Basel, Switzerland
| | - Orrin Devinsky
- Department of Neurology, New York University, New York, New York
| | - Jeffery L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Tennessee
| | - Alan K Percy
- University of Alabama at Birmingham, Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, Birmingham, Alabama
| | - Tim A Benke
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado; Department of Pharmacology, Aurora, Colorado; Department of Neurology, Aurora, Colorado; Department of Otolaryngology, Aurora, Colorado.
| |
Collapse
|
50
|
Demarest ST, Olson HE, Moss A, Pestana-Knight E, Zhang X, Parikh S, Swanson LC, Riley KD, Bazin GA, Angione K, Niestroj LM, Lal D, Juarez-Colunga E, Benke TA. CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia 2019; 60:1733-1742. [PMID: 31313283 PMCID: PMC7098045 DOI: 10.1111/epi.16285] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The cyclin-dependent kinase like 5 (CDKL5) gene is a known cause of early onset developmental and epileptic encephalopathy, also known as CDKL5 deficiency disorder (CDD). We sought to (1) provide a description of seizure types in patients with CDD, (2) provide an assessment of the frequency of seizure-free periods and cortical visual impairment (CVI), (3) correlate these features with genotype and gender, and (4) correlate these features with developmental milestones. METHODS This is a cohort study of patients with CDD. Phenotypic features were explored and correlated with gene variant grouping and gender. A developmental score was created based on achieving seven primary milestones. Phenotypic variables were correlated with the developmental score to explore markers of better developmental outcomes. Multivariate linear regression was used to account for age at last visit. RESULTS Ninety-two patients with CDD were seen during the enrollment period. Eighteen were male (19%); median age at last visit was 5 years (interquartile range = 2.0-11.0). Eighty-one percent of patients developed epileptic spasms, but only 47% of those also had hypsarrhythmia. Previously described hypermotor-tonic-spasms sequence was seen in only 24% of patients, but 56% of patients had seizures with multiple phases (often tonic and spasms). Forty-three percent of patients experienced a seizure-free period ranging from 1 to >12 months, but only 6% were still seizure-free at the last visit. CVI was present in 75% of all CDD patients. None of these features was associated with genotype group or gender. CVI was correlated with reduced milestone achievement after adjusting for age at last visit and a history of hypsarrhythmia. SIGNIFICANCE The most common seizure types in CDD are epileptic spasms (often without hypsarrhythmia) and tonic seizures that may cluster together. CVI is a common feature in CDD and is correlated with achieving fewer milestones.
Collapse
Affiliation(s)
- Scott T Demarest
- Children's Hospital Colorado, Aurora, Colorado
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
- Department of Pediatrics, Colorado School of Public Health, Aurora, Colorado
- Department of Neurology, Colorado School of Public Health, Aurora, Colorado
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Angela Moss
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Lerner Research Institute, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
| | - Xiaoming Zhang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Lerner Research Institute, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
| | - Sumit Parikh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
- Department of Neurogenetics, Lerner Research Institute, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Katherine D Riley
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Grace A Bazin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Katie Angione
- Children's Hospital Colorado, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Cleveland Clinic Children's, Cleveland, Ohio
- Stanley Center for Psychiatric Research, Cambridge, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Elizabeth Juarez-Colunga
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Tim A Benke
- Children's Hospital Colorado, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
- Department of Pediatrics, Colorado School of Public Health, Aurora, Colorado
- Department of Neurology, Colorado School of Public Health, Aurora, Colorado
- Department of Pharmacology, Colorado School of Public Health, Aurora, Colorado
- Department of Otolaryngology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|