1
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
2
|
Lewis JE, McDaniel HR, Woolger JM, Anzola E, Kraft G. The Characterization of the Th1/Th2 Ratio in Multiple Sclerosis Patients and its Response to a Dietary Supplement Regimen. J Diet Suppl 2024; 21:771-790. [PMID: 39140744 DOI: 10.1080/19390211.2024.2386259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a debilitating neurodegenerative disease affecting the central nervous system, causing disability and life-threatening complications. The interplay between immune cells and signaling pathways is a topic for investigating novel therapies. Past research has shown how the Th1/Th2 ratio plays a key role in the pathogenesis of MS lesions. Modulating the Th1/Th2 ratios with an efficacious dietary supplement may improve some of the consequences of MS. METHODS Participants (n = 15) diagnosed with MS for an average of 12.4 years (standard deviation = 7.4; range = 2, 25) were enrolled in a clinical trial in which they consumed a dietary supplement regimen daily for 12 months. Venous blood was drawn at baseline and 12-month follow-up and peripheral blood mononuclear cells, cytokines, and growth factors were quantified. Infections, physical functioning, and quality of life were also assessed at baseline and 12 months. RESULTS The IL-2/IL-10 and IFN-γ/IL-10 ratios were significantly higher than those of the healthy adults, and while only IFN-γ/IL-10 increased significantly at 12 months, all ratios other than IFN-γ/TNF-α increased over the course of the intervention. The decrease in yeast infections was inversely correlated with IL-2/TNF-α and IFN-γ/TNF-α. Significant improvements in physical functioning and quality of life correlated with changes in the Th1/Th2 ratios in response to the dietary supplement regimen. CONCLUSIONS The results show that dietary supplementation somewhat impacted the Th1/Th2 ratios over the course of the intervention (toward more Th1 dominance), and those changes were related to various clinical improvements of the participants' symptoms in cognitive, motor, and psychosocial dimensions.
Collapse
Affiliation(s)
| | | | | | - Enrique Anzola
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Garrett Kraft
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
4
|
Vakrakou AG, Brinia ME, Alexaki A, Koumasopoulos E, Stathopoulos P, Evangelopoulos ME, Stefanis L, Stadelmann-Nessler C, Kilidireas C. Multiple faces of multiple sclerosis in the era of highly efficient treatment modalities: Lymphopenia and switching treatment options challenges daily practice. Int Immunopharmacol 2023; 125:111192. [PMID: 37951198 DOI: 10.1016/j.intimp.2023.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The expanded treatment landscape in relapsing-remitting multiple sclerosis (MS) has resulted in highly effective treatment options and complexity in managing disease- or drug-related events during disease progression. Proper decision-making requires thorough knowledge of the immunobiology of MS itself and an understanding of the main principles behind the mechanisms that lead to secondary autoimmunity affecting organs other than the central nervous system as well as opportunistic infections. The immune system is highly adapted to both environmental and disease-modifying agents. Immune reconstitution following cell depletion or cell entrapment therapies eliminates pathogenic aspects of the disease but can also lead to distorted immune responses with harmful effects. Atypical relapses occur with second-line treatments or after their discontinuation and require appropriate clinical decisions. Lymphopenia is a result of the mechanism of action of many drugs used to treat MS. However, persistent lymphopenia and cell-specific lymphopenia could result in disease exacerbation, secondary autoimmunity, or the emergence of opportunistic infections. Clinicians treating patients with MS should be aware of the multiple faces of MS under novel, efficient treatment modalities and understand the intricate brain-immune cell interactions in the context of an altered immune system. MS relapses and disease progression still occur despite the current treatment modalities and are mediated either by failure to control effector mechanisms inherent to MS pathophysiology or by new drug-related mechanisms. The multiple faces of MS due to the highly adapted immune system of patients impose the need for appropriate switching therapies that safeguard disease remission and further clinical improvement.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany.
| | - Maria-Evgenia Brinia
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Alexaki
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Koumasopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panos Stathopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
5
|
Iske J, Cao Y, Roesel MJ, Shen Z, Nian Y. Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation. Cytotherapy 2023; 25:789-797. [PMID: 37204374 DOI: 10.1016/j.jcyt.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are naturally occurring leukocytes that develop from immature myeloid cells under inflammatory conditions that were discovered initially in the context of tumor immunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapies for transplant tolerance induction. Indeed, various pre-clinical studies have introduced in vivo expansion or adoptive transfer of MDSC as a promising therapeutic strategy leading to a profound extension of allograft survival due to suppression of alloreactive T cells. However, several limitations of cellular therapies using MDSCs remain to be addressed, including their heterogeneous nature and limited expansion capacity. Metabolic reprogramming plays a crucial role for differentiation, proliferation and effector function of immune cells. Notably, recent reports have focused on a distinct metabolic phenotype underlying the differentiation of MDSCs in an inflammatory microenvironment representing a regulatory target. A better understanding of the metabolic reprogramming of MDSCs may thus provide novel insights for MDSC-based treatment approaches in transplantation. In this review, we will summarize recent, interdisciplinary findings on MDSCs metabolic reprogramming, dissect the underlying molecular mechanisms and discuss the relevance for potential treatment approaches in solid-organ transplantation.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yu Cao
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Maximilian J Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yeqi Nian
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Sánchez-Sanz A, García-Martín S, Sabín-Muñoz J, Moreno-Torres I, Elvira V, Al-Shahrour F, García-Grande A, Ramil E, Rodríguez-De la Fuente O, Brea-Álvarez B, García-Hernández R, García-Merino A, Sánchez-López AJ. Dimethyl fumarate-related immune and transcriptional signature is associated with clinical response in multiple sclerosis-treated patients. Front Immunol 2023; 14:1209923. [PMID: 37483622 PMCID: PMC10360655 DOI: 10.3389/fimmu.2023.1209923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background and objective Dimethyl fumarate (DMF) is an immunomodulatory drug approved for the therapy of multiple sclerosis (MS). The identification of response biomarkers to DMF is a necessity in the clinical practice. With this aim, we studied the immunophenotypic and transcriptomic changes produced by DMF in peripheral blood mononuclear cells (PBMCs) and its association with clinical response. Material and methods PBMCs were obtained from 22 RRMS patients at baseline and 12 months of DMF treatment. Lymphocyte and monocyte subsets, and gene expression were assessed by flow cytometry and next-generation RNA sequencing, respectively. Clinical response was evaluated using the composite measure "no evidence of disease activity" NEDA-3 or "evidence of disease activity" EDA-3 at 2 years, classifying patients into responders (n=15) or non-responders (n=7), respectively. Results In the whole cohort, DMF produced a decrease in effector (TEM) and central (TCM) memory T cells in both the CD4+ and CD8+ compartments, followed by an increase in CD4+ naïve T cells. Responder patients presented a greater decrease in TEM lymphocytes. In addition, responder patients showed an increase in NK cells and were resistant to the decrease in the intermediate monocytes shown by non-responders. Responder patients also presented differences in 3 subpopulations (NK bright, NK dim and CD8 TCM) at baseline and 4 subpopulations (intermediate monocytes, regulatory T cells, CD4 TCM and CD4 TEMRA) at 12 months. DMF induced a mild transcriptional effect, with only 328 differentially expressed genes (DEGs) after 12 months of treatment. The overall effect was a downregulation of pro-inflammatory genes, chemokines, and activators of the NF-kB pathway. At baseline, no DEGs were found between responders and non-responders. During DMF treatment a differential transcriptomic response was observed, with responders presenting a higher number of DEGs (902 genes) compared to non-responders (189 genes). Conclusions Responder patients to DMF exhibit differences in monocyte and lymphocyte subpopulations and a distinguishable transcriptomic response compared to non-responders that should be further studied for the validation of biomarkers of treatment response to DMF.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Julia Sabín-Muñoz
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Irene Moreno-Torres
- Demyelinating Diseases Unit, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Víctor Elvira
- School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aranzazu García-Grande
- Flow Cytometry Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Elvira Ramil
- Sequencing Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | | | - Beatriz Brea-Álvarez
- Radiodiagnostic Division, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
- Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
7
|
Zhu C, Kalincik T, Horakova D, Zhou Z, Buzzard K, Skibina O, Alroughani R, Izquierdo G, Eichau S, Kuhle J, Patti F, Grand’Maison F, Hodgkinson S, Grammond P, Lechner-Scott J, Butler E, Prat A, Girard M, Duquette P, Macdonell RAL, Weinstock-Guttman B, Ozakbas S, Slee M, Sa MJ, Van Pesch V, Barnett M, Van Wijmeersch B, Gerlach O, Prevost J, Terzi M, Boz C, Laureys G, Van Hijfte L, Kermode AG, Garber J, Yamout B, Khoury SJ, Merlo D, Monif M, Jokubaitis V, van der Walt A, Butzkueven H. Comparison Between Dimethyl Fumarate, Fingolimod, and Ocrelizumab After Natalizumab Cessation. JAMA Neurol 2023; 80:739-748. [PMID: 37273217 PMCID: PMC10242509 DOI: 10.1001/jamaneurol.2023.1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 06/06/2023]
Abstract
Importance Natalizumab cessation is associated with a risk of rebound disease activity. It is important to identify the optimal switch disease-modifying therapy strategy after natalizumab to limit the risk of severe relapses. Objectives To compare the effectiveness and persistence of dimethyl fumarate, fingolimod, and ocrelizumab among patients with relapsing-remitting multiple sclerosis (RRMS) who discontinued natalizumab. Design, Setting, and Participants In this observational cohort study, patient data were collected from the MSBase registry between June 15, 2010, and July 6, 2021. The median follow-up was 2.7 years. This was a multicenter study that included patients with RRMS who had used natalizumab for 6 months or longer and then were switched to dimethyl fumarate, fingolimod, or ocrelizumab within 3 months after natalizumab discontinuation. Patients without baseline data were excluded from the analysis. Data were analyzed from May 24, 2022, to January 9, 2023. Exposures Dimethyl fumarate, fingolimod, and ocrelizumab. Main Outcomes and Measures Primary outcomes were annualized relapse rate (ARR) and time to first relapse. Secondary outcomes were confirmed disability accumulation, disability improvement, and subsequent treatment discontinuation, with the comparisons for the first 2 limited to fingolimod and ocrelizumab due to the small number of patients taking dimethyl fumarate. The associations were analyzed after balancing covariates using an inverse probability of treatment weighting method. Results Among 66 840 patients with RRMS, 1744 had used natalizumab for 6 months or longer and were switched to dimethyl fumarate, fingolimod, or ocrelizumab within 3 months of natalizumab discontinuation. After excluding 358 patients without baseline data, a total of 1386 patients (mean [SD] age, 41.3 [10.6] years; 990 female [71%]) switched to dimethyl fumarate (138 [9.9%]), fingolimod (823 [59.4%]), or ocrelizumab (425 [30.7%]) after natalizumab. The ARR for each medication was as follows: ocrelizumab, 0.06 (95% CI, 0.04-0.08); fingolimod, 0.26 (95% CI, 0.12-0.48); and dimethyl fumarate, 0.27 (95% CI, 0.12-0.56). The ARR ratio of fingolimod to ocrelizumab was 4.33 (95% CI, 3.12-6.01) and of dimethyl fumarate to ocrelizumab was 4.50 (95% CI, 2.89-7.03). Compared with ocrelizumab, the hazard ratio (HR) of time to first relapse was 4.02 (95% CI, 2.83-5.70) for fingolimod and 3.70 (95% CI, 2.35-5.84) for dimethyl fumarate. The HR of treatment discontinuation was 2.57 (95% CI, 1.74-3.80) for fingolimod and 4.26 (95% CI, 2.65-6.84) for dimethyl fumarate. Fingolimod use was associated with a 49% higher risk for disability accumulation compared with ocrelizumab. There was no significant difference in disability improvement rates between fingolimod and ocrelizumab. Conclusion and Relevance Study results show that among patients with RRMS who switched from natalizumab to dimethyl fumarate, fingolimod, or ocrelizumab, ocrelizumab use was associated with the lowest ARR and discontinuation rates, and the longest time to first relapse.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Tomas Kalincik
- Clinical Outcomes Research Unit (CORe), Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Dana Horakova
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Zhen Zhou
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Katherine Buzzard
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Olga Skibina
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Jens Kuhle
- University Hospital and University of Basel, Basel, Switzerland
| | - Francesco Patti
- Multiple Sclerosis Center, University of Catania, Catania, Italy
| | | | | | | | | | - Ernest Butler
- Monash Medical Centre, Melbourne, Victoria, Australia
| | - Alexandre Prat
- CHUM MS Center and Université de Montréal, Montréal, Québec, Canada
| | - Marc Girard
- CHUM MS Center and Université de Montréal, Montréal, Québec, Canada
| | - Pierre Duquette
- CHUM MS Center and Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Mark Slee
- Flinders University, Adelaide, South Australia, Australia
| | - Maria Jose Sa
- Centro Hospitalar Universitario de São João, Porto, Portugal
| | | | | | - Bart Van Wijmeersch
- Rehabilitation and MS-Centre Overpelt and Hasselt University, Hasselt, Belgium
| | - Oliver Gerlach
- Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | | | | | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
| | | | | | - Allan G. Kermode
- University of Western Australia, Nedlands, Western Australia, Australia
| | - Justin Garber
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Bassem Yamout
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J. Khoury
- American University of Beirut Medical Center, Beirut, Lebanon
| | - Daniel Merlo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Maślanka T. Effect of IL-27, Teriflunomide and Retinoic Acid and Their Combinations on CD4 + T Regulatory T Cells-An In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238471. [PMID: 36500570 PMCID: PMC9739213 DOI: 10.3390/molecules27238471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Loan JJM, Al-Shahi Salman R, McColl BW, Hardingham GE. Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage. Biomolecules 2022; 12:1438. [PMID: 36291647 PMCID: PMC9599325 DOI: 10.3390/biom12101438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH.
Collapse
Affiliation(s)
- James J. M. Loan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - Barry W. McColl
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute at Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
11
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
12
|
High-dimensional immune profiling identifies a biomarker to monitor dimethyl fumarate response in multiple sclerosis. Proc Natl Acad Sci U S A 2022; 119:e2205042119. [PMID: 35881799 PMCID: PMC9351505 DOI: 10.1073/pnas.2205042119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dimethyl fumarate (DMF) is an immunomodulatory treatment for multiple sclerosis (MS). Despite its wide clinical use, the mechanisms underlying clinical response are not understood. This study aimed to reveal immune markers of therapeutic response to DMF treatment in MS. For this purpose, we prospectively collected peripheral blood mononuclear cells (PBMCs) from a highly characterized cohort of 44 individuals with MS before and at 12 and 48 wk of DMF treatment. Single cells were profiled using high-dimensional mass cytometry. To capture the heterogeneity of different immune subsets, we adopted a bioinformatic multipanel approach that allowed cell population-cluster assignment of more than 50 different parameters, including lineage and activation markers as well as chemokine receptors and cytokines. Data were further analyzed in a semiunbiased fashion implementing a supervised representation learning approach to capture subtle longitudinal immune changes characteristic for therapy response. With this approach, we identified a population of memory T helper cells expressing high levels of neuroinflammatory cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon γ [IFNγ]) as well as CXCR3, whose abundance correlated with treatment response. Using spectral flow cytometry, we confirmed these findings in a second cohort of patients. Serum neurofilament light-chain levels confirmed the correlation of this immune cell signature with axonal damage. The identified cell population is expanded in peripheral blood under natalizumab treatment, substantiating a specific role in treatment response. We propose that depletion of GM-CSF-, IFNγ-, and CXCR3-expressing T helper cells is the main mechanism of action of DMF and allows monitoring of treatment response.
Collapse
|
13
|
Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022; 46:1539-1556. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Diebold M, Galli E, Kopf A, Sanderson N, Callegari I, Ingelfinger F, Núñez NG, Benkert P, Kappos L, Kuhle J, Becher B, Claassen M, Derfuss T. Immunological predictors of dimethyl fumarate-induced lymphopenia. Ann Neurol 2022; 91:676-681. [PMID: 35170072 PMCID: PMC9314128 DOI: 10.1002/ana.26328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Treatment with dimethyl fumarate (DMF) leads to lymphopenia and infectious complications in a subset of patients with multiple sclerosis (MS). Here, we aimed to reveal immune markers of DMF‐associated lymphopenia. This prospective observational study longitudinally assessed 31 individuals with MS by single‐cell mass cytometry before and after 12 and 48 weeks of DMF therapy. Employing a neural network‐based representation learning approach, we identified a CCR4‐expressing T helper cell population negatively associated with relevant lymphopenia. CCR4‐expressing T helper cells represent a candidate prognostic biomarker for the development of relevant lymphopenia in patients undergoing DMF treatment. ANN NEUROL 2022;91:676–681
Collapse
Affiliation(s)
- Martin Diebold
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland.,Institute of Neuropathology, Neurozentrum, University Hospital Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Edoardo Galli
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland.,Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Andreas Kopf
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Zurich, 8093, Switzerland.,Life Science Graduate School Zurich, PhD Program Systems Biology, Winterthurerstr. 190, Zurich, 8057, Switzerland
| | - Nicholas Sanderson
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland
| | - Ilaria Callegari
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | - Pascal Benkert
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland.,Clinical Trial Unit, University Hospital Basel, University of Basel, Switzerland
| | - Ludwig Kappos
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland
| | - Jens Kuhle
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Manfred Claassen
- Division of Clinical Bioinformatics, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Tobias Derfuss
- MS Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel(RC2NB), University Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
16
|
Pinto BF, Ribeiro LNB, da Silva GBRF, Freitas CS, Kraemer L, Oliveira FMS, Clímaco MC, Mourão FAG, Santos GSPD, Béla SR, Gurgel ILDS, Leite FDL, de Oliveira AG, Vilela MRSDP, Oliveira-Lima OC, Soriani FM, Fujiwara RT, Birbrair A, Russo RC, Carvalho-Tavares J. Inhalation of dimethyl fumarate-encapsulated solid lipid nanoparticles attenuate clinical signs of experimental autoimmune encephalomyelitis and pulmonary inflammatory dysfunction in mice. Clin Sci (Lond) 2022; 136:81-101. [PMID: 34904644 DOI: 10.1042/cs20210792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
RATIONALE The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.
Collapse
Affiliation(s)
- Bárbara Fernandes Pinto
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lorena Natasha Brito Ribeiro
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Gisela Bevilacqua Rolfsen Ferreira da Silva
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marianna Carvalho Clímaco
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Center for Technology and Research in Magneto-Resonance (CTPMAG), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Samantha Ribeiro Béla
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isabella Luísa da Silva Gurgel
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fábio de Lima Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| | - Anselmo Gomes de Oliveira
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Maura Regina Silva da Páscoa Vilela
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Frederico Marianetti Soriani
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliana Carvalho-Tavares
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Liebmann M, Korn L, Janoschka C, Albrecht S, Lauks S, Herrmann AM, Schulte-Mecklenbeck A, Schwab N, Schneider-Hohendorf T, Eveslage M, Wildemann B, Luessi F, Schmidt S, Diebold M, Bittner S, Gross CC, Kovac S, Zipp F, Derfuss T, Kuhlmann T, König S, Meuth SG, Wiendl H, Klotz L. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain 2021; 144:3126-3141. [PMID: 34849598 PMCID: PMC8634070 DOI: 10.1093/brain/awab307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023] Open
Abstract
Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Sarah Lauks
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Alexander M Herrmann
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, Münster 48149, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg 69120, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | | | - Martin Diebold
- Laboratory of Clinical Neuroimmunology, Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, University Hospital Basel, and University of Basel, Basel 4031, Switzerland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Tobias Derfuss
- Laboratory of Clinical Neuroimmunology, Neurologic Clinic and Policlinic, Departments of Biomedicine and Clinical Research, University Hospital Basel, and University of Basel, Basel 4031, Switzerland
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Clinical Research Center, University of Münster, Münster 48149, Germany
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| |
Collapse
|
19
|
Barešić M, Reihl Crnogaj M, Zadro I, Anić B. Demyelinating disease (multiple sclerosis) in a patient with psoriatic arthritis treated with adalimumab: a case-based review. Rheumatol Int 2021; 41:2233-2239. [PMID: 34557936 DOI: 10.1007/s00296-021-04995-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Over the past two decades, tumor necrosis factor-α (TNF-α) inhibitors became one of the most important drugs in the treatment of patients with psoriatic arthritis. Unfortunately, some of the patients exhibit unwanted side effects of the treatment. We describe a patient with psoriasis, psoriatic arthritis and uveitis who was treated with adalimumab and after 4 months of the treatment developed clinical and neuroradiological signs of demyelinating disease of the central nervous system. She experienced no signs and symptoms of neurological disease prior to adalimumab administration. After a detailed neurological work-up she was diagnosed with relapsing-remitting type of multiple sclerosis and treated with oral and pulse glucocorticoids and later with dimethyl fumarate. Adalimumab was discontinued. The question remains was the demyelination induced by the TNF-α blockade or was it unmasked by the introduction of the cytokine blocking agent. In patients suffering from inflammatory arthritis, treating disease to target as well as a close follow-up and knowledge of potential side effects of treatment remains crucial in good clinical practice.
Collapse
Affiliation(s)
- Marko Barešić
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia.
| | - Mirna Reihl Crnogaj
- Division of Physical Medicine, Rehabilitation and Rheumatology, National Memorial Hospital Vukovar, Vukovar, Croatia
| | - Ivana Zadro
- Department of Neurology, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Branimir Anić
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
21
|
Derakhshani A, Asadzadeh Z, Safarpour H, Leone P, Shadbad MA, Heydari A, Baradaran B, Racanelli V. Regulation of CTLA-4 and PD-L1 Expression in Relapsing-Remitting Multiple Sclerosis Patients after Treatment with Fingolimod, IFNβ-1α, Glatiramer Acetate, and Dimethyl Fumarate Drugs. J Pers Med 2021; 11:jpm11080721. [PMID: 34442365 PMCID: PMC8400811 DOI: 10.3390/jpm11080721] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (A.D.); (Z.A.); (M.A.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (A.D.); (Z.A.); (M.A.S.)
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (A.D.); (Z.A.); (M.A.S.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Ali Heydari
- Department of Applied Mathematics, University of California, Merced, CA 95343, USA;
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (A.D.); (Z.A.); (M.A.S.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (B.B.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (B.B.); (V.R.)
| |
Collapse
|
22
|
Pfeuffer S, Rolfes L, Hackert J, Kleinschnitz K, Ruck T, Wiendl H, Klotz L, Kleinschnitz C, Meuth SG, Pul R. Effectiveness and safety of cladribine in MS: Real-world experience from two tertiary centres. MULTIPLE SCLEROSIS (HOUNDMILLS, BASINGSTOKE, ENGLAND) 2021; 28:257-268. [PMID: 33975489 PMCID: PMC8795224 DOI: 10.1177/13524585211012227] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Oral cladribine has been approved for the treatment of relapsing multiple sclerosis (MS) yet real-world evidence regarding its effectiveness and safety remains scarce. Objective: To evaluate efficacy and safety outcomes of MS patients following induction of cladribine. Methods: We evaluated our prospective cohort of cladribine-treated MS patients from two tertiary centres in Germany. Relapses, disability worsening and occurrence of new or enlarging T2-hyperintense magnetic resonance imaging (MRI) lesions were assessed as well as lymphocyte counts and herpes virus infections. Results: Among 270 patients treated with cladribine, we observed a profound reduction of both relapses and new or enlarging MRI lesions. Treatment appeared more efficacious, especially in patients without previous therapy or following platform substances. Patients switching from natalizumab were prone to re-emerging disease activity. Among patients following dimethyl fumarate pre-treatment, severe lymphopenia was common and associated with increased rates of herpes virus manifestations. Conclusion: Overall, we observed an efficacy and safety profile of cladribine consistent with data from the phase 3 clinical trial. However, patients switching from natalizumab experienced suboptimal disease control beyond rebound activity following cessation of natalizumab. Furthermore, dimethyl fumarate pre-treatment was associated with a profound risk of developing severe lymphopenia and subsequent herpes virus infections.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jana Hackert
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Konstanze Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany/Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany/Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| |
Collapse
|
23
|
Haase S, Linker RA. Inflammation in multiple sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211007687. [PMID: 33948118 PMCID: PMC8053832 DOI: 10.1177/17562864211007687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterised pathologically by demyelination, gliosis, neuro-axonal damage and inflammation. Despite intense research, the underlying pathomechanisms driving inflammatory demyelination in MS still remain incompletely understood. It is thought to be caused by an autoimmune response towards CNS self-antigens in genetically susceptible individuals, assuming autoreactive T cells as disease-initiating immune cells. Yet, B cells were recognized as crucial immune cells in disease pathology, including antibody-dependent and independent effects. Moreover, myeloid cells are important contributors to MS pathology, and it is becoming increasingly evident that different cell types act in concert during MS immunopathology. This is supported by the finding that the beneficial effects of actual existing disease-modifying therapies cannot be attributed to one single immune cell-type, but rather involve immunological cooperation. The current strategy of MS therapies thus aims to shift the immune cell repertoire from a pro-inflammatory towards an anti-inflammatory phenotype, involving regulatory T and B cells and anti-inflammatory macrophages. Although no existing therapy actually exists that directly induces an enhanced regulatory immune cell pool, numerous studies identified potential net effects on these cell types. This review gives a conceptual overview on T cells, B cells and myeloid cells in the immunopathology of relapsing-remitting MS and discusses potential contributions of actual disease-modifying therapies on these immune cell phenotypes.
Collapse
Affiliation(s)
- Stefanie Haase
- Neuroimmunologie, Klinik und Poliklinik für Neurologie, Universitätsklinik Regensburg, Franz-Josef-Strauss Allee, Regensburg, 93053, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Morrison PJ, Suhrkamp I, Gerdes S, Mrowietz U. Oral dimethyl fumarate induces changes within the peripheral neutrophil compartment of patients with psoriasis that are linked with skin improvement. Br J Dermatol 2021; 185:605-615. [PMID: 33657656 DOI: 10.1111/bjd.19899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a treatment for moderate-to-severe psoriasis and multiple sclerosis. DMF therapy typically improves skin inflammation within the first 3 months of treatment. DMF is a prodrug that generates the hydroxycarboxylic acid receptor 2 (HCA2) agonist, monomethyl fumarate (MMF). Despite widespread clinical use, DMF's mechanism of action is not fully understood. OBJECTIVES We wished to characterize the changes induced by DMF in peripheral neutrophils within the first 3 months of treatment to better understand its early antipsoriatic effects. METHODS Flow cytometry was used to assess T-cell and neutrophil frequencies, apoptosis and activation phenotype. In vitro culture of neutrophils with DMF and MMF was used to evaluate apoptosis and HCA2 internalization. Serum levels of neutrophil degranulation products were measured by enzyme-linked immunosorbent assay. RESULTS Patients with psoriasis had significantly higher leucocyte counts at baseline compared with controls, with a large population of pro-inflammatory CD62Llo CD11bbright neutrophils. Analysis revealed that DMF treatment reduced the frequency of CD62Llo CD11bbright neutrophils and serum levels of neutrophil activation markers. This reduction was not linked to increased apoptosis. CONCLUSIONS Our results reveal a novel in vivo effect of DMF therapy on pro-inflammatory neutrophils that likely contributes to this treatment's antipsoriatic efficacy.
Collapse
Affiliation(s)
- P J Morrison
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - I Suhrkamp
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - S Gerdes
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - U Mrowietz
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| |
Collapse
|
25
|
Dietrich M, Hecker C, Nasiri M, Samsam S, Issberner A, Kohne Z, Hartung HP, Albrecht P. Neuroprotective Properties of Dimethyl Fumarate Measured by Optical Coherence Tomography in Non-inflammatory Animal Models. Front Neurol 2021; 11:601628. [PMID: 33519681 PMCID: PMC7838501 DOI: 10.3389/fneur.2020.601628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
While great advances have been made in the immunomodulatory treatment of multiple sclerosis (MS), there is still an unmet need for drugs with neuroprotective potential. Dimethyl fumarate (DMF) has been suggested to exert both immunomodulatory and neuroprotective effects in MS. To investigate if DMF has neuroprotective effects independent of immunomodulation we evaluated its effects in the non-inflammatory animal models of light-induced photoreceptor loss and optic nerve crush. This might also reveal applications for DMF besides MS, such as age related macular degeneration. Retinal neurodegeneration was longitudinally assessed by in vivo retinal imaging using optical coherence tomography (OCT), and glutathione (GSH) measurements as well as histological investigations were performed to clarify the mode of action. For light-induced photoreceptor loss, one eye of C57BL/6J mice was irradiated with a LED cold light lamp while for optic nerve crush the optic nerve was clamped behind the eye bulb. The other eye served as control. GSH was measured in the optic nerve, choroid and retina and immunohistological staining of retinal microglia (Iba1) was performed. Mice were treated with 15 or 30 mg DMF/kg bodyweight or vehicle. While no protective effects were observed in optic nerve crush, in the light-induced retinal degeneration model DMF treatment significantly reduced retinal degeneration. In these mice, GSH levels in the retina and surrounding choroid were increased and histological investigations revealed less microglial activation in the outer retinal layers, suggesting both antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Milad Nasiri
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sogol Samsam
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Issberner
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Zippora Kohne
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
27
|
Abstract
Background: Only progressive multifocal leukoencephalopathy (PML) is currently described in the dimethyl fumarate (DMF) prescribing information. Objectives: To describe opportunistic infections (OIs), other than PML, reported in association with DMF. Methods: The FDA Adverse Event Reporting System (FAERS) and medical literature were searched. Results: We retrieved 34 cases of serious OIs with a causal association with DMF, including 11 central nervous system (CNS) infections and 23 extra-CNS infections. Six OIs occurred with normal circulating absolute lymphocyte counts. The median latency from DMF initiation was 13 months and was variable. Conclusion: DMF is associated with the development of OIs that require invasive diagnostic and/or therapeutic procedures. Patients should be monitored for OIs when treated with DMF regardless of circulating absolute lymphocyte counts.
Collapse
|
28
|
Gelibter S, Orrico M, Moiola L, Dagna L, Filippi M, Yacoub MR. Allergy and dimethyl fumarate treatment in a patient with multiple sclerosis. J Neurol Sci 2020; 418:117104. [PMID: 32871512 DOI: 10.1016/j.jns.2020.117104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Stefano Gelibter
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Orrico
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Mona Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Park SJ, Choi JW. Brain energy metabolism and multiple sclerosis: progress and prospects. Arch Pharm Res 2020; 43:1017-1030. [PMID: 33119885 DOI: 10.1007/s12272-020-01278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease accompanied with nerve pain and paralysis. Although various pathogenic causes of MS have been suggested, including genetic and environmental factors, how MS occurs remains unclear. Moreover, MS should be diagnosed based on clinical experiences because of no disease-specific biomarker and currently available treatments for MS just can reduce relapsing frequency or severity with little effects on disease disability. Therefore, more efforts are required to identify pathophysiology of MS and diagnosis markers. Recent evidence indicates another aspect of MS pathogenesis, energy failure in the central nervous system (CNS). For instance, inflammation that is a characteristic MS symptom and occurs frequently in the CNS of MS patients can result into energy failure in mitochondria and cytosol. Indeed, metabolomics studies for MS have reported energy failure in oxidative phosphorylation and alteration of aerobic glycolysis. Therefore, studies on the metabolism in the CNS may provide another insight for understanding complexity of MS and pathogenesis, which would facilitate the discovery of promising strategies for developing therapeutics to treat MS. This review will provide an overview on recent progress of metabolomic studies for MS, with a focus on the fluctuation of energy metabolism in MS.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| |
Collapse
|
30
|
Dello Russo C, Scott KA, Pirmohamed M. Dimethyl fumarate induced lymphopenia in multiple sclerosis: A review of the literature. Pharmacol Ther 2020; 219:107710. [PMID: 33091427 DOI: 10.1016/j.pharmthera.2020.107710] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Dimethyl fumarate (DMF) is a first line medication for multiple sclerosis. It has a favourable safety profile, however, there is concern regarding the occurrence of moderate-severe and sustained lymphopenia and the associated risk of progressive multifocal leukoencephalopathy. We carried out an extensive literature review to understand the molecular mechanisms underlying this adverse reaction. Dynamic changes in certain components of the immune system are likely to be important for the therapeutic effects of DMF, including depletion of memory T cells and decrease in activated T cells together with expansion of naïve T cells. Similar modifications were reported for the B cell components. CD8+ T cells are particularly susceptible to DMF-induced cell death, with marked reductions observed in lymphopenic subjects. The reasons underlying such increased sensitivity are not known, nor it is known how expansion of other lymphocyte subsets occurs. Understanding the molecular mechanisms underlying DMF action is challenging: in vivo DMF is rapidly metabolized to monomethyl fumarate (MMF), a less potent immunomodulator in vitro. Pharmacokinetics indicate that MMF is the main active species in vivo. However, the relative importance of DMF and MMF in toxicity remains unclear, with evidence presented in favour of either of the compounds as toxic species. Pharmacogenetic studies to identify genetic predictors of DMF-induced lymphopenia are limited, with inconclusive results. A role of the gut microbiome in the pharmacological effects of DMF is emerging. It is clear that further investigations are necessary to understand the mechanisms of DMF-induced lymphopenia and devise preventive strategies. Periodic monitoring of absolute lymphocyte counts, currently performed in clinical practise, allows for the early detection of lymphopenia as a risk-minimization strategy.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK; Dept. of Healthcare Surveillance and Bioethics, Section of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Kathryn Anne Scott
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK.
| |
Collapse
|
31
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Dimethyl Fumarate and Its Esters: A Drug with Broad Clinical Utility? Pharmaceuticals (Basel) 2020; 13:ph13100306. [PMID: 33066228 PMCID: PMC7602023 DOI: 10.3390/ph13100306] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fumaric acid esters (FAEs) are small molecules with anti-oxidative, anti-inflammatory and immune-modulating effects. Dimethyl fumarate (DMF) is the best characterised FAE and is approved and registered for the treatment of psoriasis and Relapsing-Remitting Multiple Sclerosis (RRMS). Psoriasis and RRMS share an immune-mediated aetiology, driven by severe inflammation and oxidative stress. DMF, as well as monomethyl fumarate and diroximel fumarate, are commonly prescribed first-line agents with favourable safety and efficacy profiles. The potential benefits of FAEs against other diseases that appear pathogenically different but share the pathologies of oxidative stress and inflammation are currently investigated.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia;
| | - Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
| | - Judy B. de Haan
- Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Basic Science Domain, Melbourne, VIC 3004, Australia;
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
- Correspondence: ; Tel.: +61-383-958-226
| |
Collapse
|
32
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020; 53:496-509. [PMID: 32937151 PMCID: PMC7491485 DOI: 10.1016/j.immuni.2020.08.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
34
|
Jordan AL, Yang J, Fisher CJ, Racke MK, Mao-Draayer Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult Scler 2020; 28:7-15. [PMID: 32808554 DOI: 10.1177/1352458520949158] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dimethyl fumarate (DMF), a fumaric acid with antioxidant and immunomodulatory properties, is among the most commonly used oral therapies for relapsing multiple sclerosis (MS). Progressive multifocal leukoencephalopathy (PML) has been associated with several disease-modifying therapies (DMTs), including DMF in treating MS. We present detailed clinical characteristics of nine PML cases and show that the PML incidence in DMF-treated patients is 0.02 per 1000 patients. In addition to persistent severe lymphopenia, older age appears to be a potential risk for PML. However, younger patients without lymphopenia were also observed to develop PML. DMF-associated PML has occurred in patients with absolute lymphocyte counts (ALCs) above the guideline threshold, suggesting that changes in specific subsets might be more important than total ALC. Furthermore, since DMF has been found to decrease immune cell migration by decreasing the expression of adhesive molecules, the cerebrospinal fluid (CSF) immune profile may also be useful for assessing PML risk in DMF-treated patients. This review provides an up-to-date assessment of PML cases occurring in DMF-treated patients and discusses other potential considerations in light of our current understanding of DMF's mechanism of action on the immune system in the periphery and in the central nervous system (CNS).
Collapse
Affiliation(s)
- Allison Lm Jordan
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennifer Yang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlyn J Fisher
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael K Racke
- The Consortium of Multiple Sclerosis Centers, Hackensack, NJ, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA/Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Michalska P, León R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080740. [PMID: 32806679 PMCID: PMC7463521 DOI: 10.3390/antiox9080740] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons in the brain or spinal cord that leads to a loss of function of the affected areas. The lack of effective treatments and the ever-increasing life expectancy is raising the number of individuals affected, having a tremendous social and economic impact. The brain is particularly vulnerable to oxidative damage given the high energy demand, low levels of antioxidant defenses, and high levels of metal ions. Driven by age-related changes, neurodegeneration is characterized by increased oxidative stress leading to irreversible neuronal damage, followed by cell death. Nevertheless, neurodegenerative diseases are known as complex pathologies where several mechanisms drive neuronal death. Herein we discuss the interplay among oxidative stress, proteinopathy, and neuroinflammation at the early stages of neurodegenerative diseases. Finally, we discuss the use of the Nrf2-ARE pathway as a potential therapeutic strategy based on these molecular mechanisms to develop transformative medicines.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| |
Collapse
|
36
|
Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy O, Moran B, Sweeney C, Malara A, McNicholas N, McGuigan C, Kirby B, Fletcher J. Dimethyl fumarate modulates the Treg–Th17 cell axis in patients with psoriasis*. Br J Dermatol 2020; 184:495-503. [DOI: 10.1111/bjd.19229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- J. Sulaimani
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - D. Cluxton
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - J. Clowry
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Petrasca
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - O.E. Molloy
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - B. Moran
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - C.M. Sweeney
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Malara
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - N. McNicholas
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - C. McGuigan
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - B. Kirby
- Department of Dermatology St. Vincent's University Hospital Dublin 4 Ireland
| | - J.M. Fletcher
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| |
Collapse
|
37
|
Recent advances of long noncoding RNAs involved in the development of multiple sclerosis. Chin J Nat Med 2020; 18:36-46. [PMID: 31955822 DOI: 10.1016/s1875-5364(20)30003-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Given the rapid increase of patients with autoimmune diseases and the lack of satisfactory therapies, the discovery of novel and effective therapeutic targets have been in an urgent demand. Recent studies have revealed that long noncoding RNAs (lncRNAs) play crucial roles in the development of multiple sclerosis (MS), which provides a new opportunity of uncovering novel mechanism associated with the progression of MS. This review highlights the dysregulation of lncRNAs in the development of MS in patients and animal models. Additionally, the potential clinical relevance of lncRNAs severed as therapeutic targets and diagnostic markers are discussed.
Collapse
|
38
|
Carlström KE, Chinthakindi PK, Espinosa B, Al Nimer F, Arnér ESJ, Arvidsson PI, Piehl F, Johansson K. Characterization of More Selective Central Nervous System Nrf2-Activating Novel Vinyl Sulfoximine Compounds Compared to Dimethyl Fumarate. Neurotherapeutics 2020; 17:1142-1152. [PMID: 32394330 PMCID: PMC7609514 DOI: 10.1007/s13311-020-00855-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1-CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform. The novel sulfoximine CH-3 was the most promising candidate and selected for further comparison in vivo and later an experimental model for traumatic brain injury (TBI). CH-3 and DMF displayed comparable capacity to activate Nrf2 and downstream transcripts in vitro, but with less off-target effects on HIF1 from CH-3. This was verified in cultured microglia and oligodendrocytes (OLs) and subsequently in vivo in rats. Following TBI, DMF lowered the number of leukocytes in blood and also decreased axonal degeneration. CH-3 preserved or increased the number of pre-myelinating OL. While both CH-3 and DMF activated Nrf2, CH-3 showed less off-target effects and displayed more selective OL associated effects. Further studies with Nrf2-acting compounds are promising candidates to explore potential myelin protective or regenerative effects in demyelinating disorders.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Praveen K Chinthakindi
- Catalysis and Peptide Research Unit, University of KwaZulu Natal, Durban, 4000, South Africa
- Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Box 574, 75123, Uppsala, Sweden
| | - Belén Espinosa
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Elias S J Arnér
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu Natal, Durban, 4000, South Africa
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology, Karolinska Institutet, 171 21, Solna, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Katarina Johansson
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, 17177, Stockholm, Sweden
- Pfizer Innovation AB, 19190, Sollentuna, Sweden
| |
Collapse
|
39
|
Giovannelli I, Heath P, Shaw PJ, Kirby J. The involvement of regulatory T cells in amyotrophic lateral sclerosis and their therapeutic potential. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:435-444. [PMID: 32484719 DOI: 10.1080/21678421.2020.1752246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, meaning the establishment of a diffuse inflammatory condition in the CNS, is one of the main hallmarks of amyotrophic lateral sclerosis (ALS). Recently, a crucial role of regulatory T cells (Tregs) in this disease has been outlined. Tregs are a T cell subpopulation with immunomodulatory properties. In this review, we discuss the physiology of Tregs and their role in ALS disease onset and progression. Evidence has demonstrated that in ALS patients Tregs are dramatically and progressively reduced in number and are less effective in promoting immune suppression. In addition, Tregs levels correlate with the rate of disease progression and patient survival. For this reason, Tregs are now considered a promising therapeutic target for neuroprotection in ALS. In this review, the clinical impact of these cells will be discussed and an overview of the current clinical trials targeting Tregs is also provided.
Collapse
Affiliation(s)
- I Giovannelli
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P Heath
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Kirby
- Sheffield Institute of Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Safavi F, Thome R, Li Z, Zhang GX, Rostami A. Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e729. [PMID: 32371548 PMCID: PMC7217662 DOI: 10.1212/nxi.0000000000000729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Objective To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs). Methods We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-γ–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily. Results DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN-γ pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors. Conclusions We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-γ–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.
Collapse
Affiliation(s)
- Farinaz Safavi
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Rodolfo Thome
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Zichen Li
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Guang-Xian Zhang
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Abdolmohamad Rostami
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD.
| |
Collapse
|
41
|
Bouley AJ, Baber U, Egnor E, Samaan S, Sloane JA. Prevalence of Latent Tuberculosis in the Multiple Sclerosis Clinic and Effect of Multiple Sclerosis Treatment on Tuberculosis Testing. Int J MS Care 2020; 23:26-30. [PMID: 33658903 DOI: 10.7224/1537-2073.2019-015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Patients with a compromised immune system are at risk for converting from latent tuberculosis infection (LTBI) to active tuberculosis (TB) infection. Multiple sclerosis (MS) therapies may put individuals with LTBI at higher risk of TB. Methods Patients at the Beth Israel Deaconess Medical Center MS Clinic were screened for TB as part of routine testing with the QuantiFERON-TB Gold In-Tube (QFT-GIT) assay (Cellestis Ltd) from 2013 to 2017. Patients were tested either before or during immunomodulatory therapy. Results Four of 222 patients (1.8%; 95% CI, 0.1%-3.6%) had positive QFT-GIT results; three patients had risk factors for TB, having emigrated from TB-endemic countries or worked in the health care industry. Twenty-eight of 222 patients (12.6%) had an indeterminate assay result, and 75.0% of these occurred in patients taking dimethyl fumarate. Fingolimod, natalizumab, or anti-CD20 treatments showed 0% to 7.7% indeterminate results. Conclusions The prevalence of LTBI was 1.8% in the Beth Israel Deaconess Medical Center MS Clinic. Not all LTBI cases were associated with known risk factors for TB. Screening for LTBI before starting immunosuppressive agents for MS could help prevent activation of TB. Dimethyl fumarate use is associated with indeterminate QFT-GIT results, possibly due to functional effects on lymphocytes and levels of cytokines, such as interferon gamma. In contrast, fingolimod use was rarely associated with indeterminate QFT-GIT results despite a high rate of lymphopenia in virtually all patients.
Collapse
|
42
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|
43
|
Kornberg MD. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1486. [PMID: 32105390 PMCID: PMC7507184 DOI: 10.1002/wsbm.1486] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Pro‐inflammatory signals induce metabolic reprogramming in innate and adaptive immune cells of both myeloid and lymphoid lineage, characterized by a shift to aerobic glycolysis akin to the Warburg effect first described in cancer. Blocking the switch to aerobic glycolysis impairs the survival, differentiation, and effector functions of pro‐inflammatory cell types while favoring anti‐inflammatory and regulatory phenotypes. Glycolytic reprogramming may therefore represent a selective vulnerability of inflammatory immune cells, providing an opportunity to modulate immune responses in autoimmune disease without broad toxicity in other tissues of the body. The mechanisms by which aerobic glycolysis and the balance between glycolysis and oxidative phosphorylation regulate immune responses have only begun to be understood, with many additional insights expected in the years to come. Immunometabolic therapies targeting aerobic glycolysis include both pharmacologic inhibitors of key enzymes and glucose‐restricted diets, such as the ketogenic diet. Animal studies support a role for these pharmacologic and dietary therapies for the treatment of autoimmune diseases, and in a few cases proof of concept has been demonstrated in human disease. Nonetheless, much more work is needed to establish the clinical safety and efficacy of these treatments. This article is categorized under:Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Translational Medicine Biological Mechanisms > Cell Signaling
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells 2020; 9:cells9020482. [PMID: 32093011 PMCID: PMC7072830 DOI: 10.3390/cells9020482] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
45
|
Vucic S, Ryder J, Mekhael L, RD H, Mathers S, Needham M, DW S, MC K. Phase 2 randomized placebo controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic lateral sclerosis (TEALS Study): Study protocol clinical trial (SPIRIT Compliant). Medicine (Baltimore) 2020; 99:e18904. [PMID: 32028398 PMCID: PMC7015658 DOI: 10.1097/md.0000000000018904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder of the human motor system. Neuroinflammation appears to be an important modulator of disease progression in ALS. Specifically, reduction of regulatory T cell (Treg) levels, along with an increase in pro-inflammatory effector T cells, macrophage activation and upregulation of co-stimulatory pathways have all been associated with a rapid disease course in ALS. Autologous infusion of expanded Tregs into sporadic ALS patients, resulted in greater suppressive function, slowing of disease progression and stabilization of respiratory function. Tecfidera (dimethyl fumarate) increases the ratio of anti-inflammatory (Treg) to proinflammatory T-cells in patients with relapsing remitting multiple sclerosis and rebalances the regulatory: inflammatory axis towards a neuroprotective phenotype. Consequently, the aim of this study was to assess the efficacy, safety, and tolerability of Tecfidera in sporadic ALS. METHODS The study is an investigator led Phase 2 multi-center, randomized, placebo controlled, double blind clinical trial assessing the efficacy and safety of Tecfidera in patients with sporadic ALS. The study duration is 40 weeks, with a 36-week study period and end of study visit occurring at 40 weeks or at early termination/withdrawal from study. The TEALS study has been registered with the Australian and New Zealand Clinical Trials registry (ANZCTR) under the trials registration number ACTRN12618000534280 and has been approved by the Human Research Ethics Committee and Research Governance Office at the lead site (Westmead Hospital) with the ethics number HREC/17/WMEAD/353. The participating sites have obtained site specific ethics and governance approvals from the local institution. RESULTS The primary endpoint is slowing of disease progression as reflected by the differences in the ALS Functional Rating Score-Revised (ALSFRS-R) score at Week 36. The secondary endpoints will include effects in survival, lower motor neuron function, respiratory function, quality of life and safety. CONCLUSION This Phase 2 multi-center, randomized, placebo controlled, double blind clinical trial will provide evidence of efficacy and safety of Tecfidera in sporadic ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Department of neurology, Westmead Hospital
- Westmead Clinical School University of Sydney, Sydney
| | | | | | - Henderson RD
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane
| | - Susan Mathers
- Department of Neurology, Calvary Health Care Bethlehem, Melbourne
| | - Merilee Needham
- Fiona Stanley Hospital, IIID Murdoch University, Notre Dame University and Perron Institute for Neurological and Neurosciences Translational Research
| | - Schultz DW
- Department of Neurology, Flinders Medical Centre, Adelaide
| | - Kiernan MC
- Brain and Mind Center, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Warabi Y, Takahashi T, Isozaki E. Dimethyl Fumarate Was Ineffective but Not Harmful for a Patient with Myelin Oligodendrocyte Glycoprotein Antibody Disease. Cureus 2019; 11:e6040. [PMID: 31824807 PMCID: PMC6886657 DOI: 10.7759/cureus.6040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We treated a myelin oligodendrocyte glycoprotein (MOG) antibody disease patient who had been prescribed dimethyl fumarate because she was thought to have been suffering from multiple sclerosis (MS). Mild optic neuritis relapsed at one year and four months after the administration of dimethyl fumarate. Therefore, dimethyl fumarate was ineffective for preventing relapse of MOG antibody disease. However, dimethyl fumarate for MOG antibody disease was not harmful compared with when disease-modifying drugs (DMDs) of MS were used for anti-aquaporin-4 antibody-positive neuromyelitis optica. If MS patients repeat relapses even after the start of DMDs, a differential diagnosis including MOG antibody disease should be made.
Collapse
Affiliation(s)
- Yoko Warabi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine and National Hospital Organization Yonezawa National Hospital, Sendai, JPN
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, JPN
| |
Collapse
|
47
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|
48
|
Galli E, Hartmann FJ, Schreiner B, Ingelfinger F, Arvaniti E, Diebold M, Mrdjen D, van der Meer F, Krieg C, Nimer FA, Sanderson N, Stadelmann C, Khademi M, Piehl F, Claassen M, Derfuss T, Olsson T, Becher B. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat Med 2019; 25:1290-1300. [PMID: 31332391 PMCID: PMC6689469 DOI: 10.1038/s41591-019-0521-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Cytokine dysregulation is a central driver of chronic inflammatory diseases such as multiple sclerosis (MS). Here we sought to determine the characteristic cellular and cytokine polarization profile in patients with relapsing-remitting multiple sclerosis (RRMS) by high-dimensional single-cell mass cytometry (CyTOF). Using a combination of neural network-based representation learning algorithms, we identified an expanded T helper cell subset in MS patients, characterized by the expression of GM-CSF and the C-X-C chemokine receptor type 4. This cellular signature, which includes expression of very late antigen 4 (VLA4) in peripheral blood, was also enriched in the central nervous system of RRMS patients. In independent validation cohorts, we confirmed that this cell population is increased in MS patients compared to other inflammatory and non-inflammatory conditions. Lastly, we also found the population to be reduced under effective disease-modifying therapy, suggesting that the identified T cell profile represents a specific therapeutic target in MS.
Collapse
Affiliation(s)
- Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Felix J Hartmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Eirini Arvaniti
- Institute for Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Martin Diebold
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dunja Mrdjen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Franziska van der Meer
- Institut für Neuropathologie, Klinik für Neurologie, Universitätsmedizin Göttingen, Gottingen, Germany
| | - Carsten Krieg
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nicholas Sanderson
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Christine Stadelmann
- Institut für Neuropathologie, Klinik für Neurologie, Universitätsmedizin Göttingen, Gottingen, Germany
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Claassen
- Institute for Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Marastoni D, Buriani A, Pisani AI, Crescenzo F, Zuco C, Fortinguerra S, Sorrenti V, Marenda B, Romualdi C, Magliozzi R, Monaco S, Calabrese M. Increased NK Cell Count in Multiple Sclerosis Patients Treated With Dimethyl Fumarate: A 2-Year Longitudinal Study. Front Immunol 2019; 10:1666. [PMID: 31379857 PMCID: PMC6658905 DOI: 10.3389/fimmu.2019.01666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Dimethyl fumarate (DMF) is a disease-modifying drug for relapsing-remitting multiple sclerosis. Among others, DMF impedes immune activation by shifting the balance between inflammatory and regulatory cell types and by inducing apoptosis-triggered lymphopenia. Although the decrease in lymphocyte count is an early effect of the drug in several patients, the long-term impact on lymphocyte subsets is largely unknown. Methods: We performed a 2-years observational study on total lymphocyte count and subsets thereof by flow cytometry of peripheral blood of 38 multiple sclerosis patients in treatment with DMF. Data were collected at the beginning and after 3, 6, 12, and 24 months of therapy. Results: Total lymphocyte count decreased in relation to time of exposure to DMF. Mean absolute B cell count decreased by 34.1% (p < 0.001) within the first 3 months of therapy and then remained stable over time. Mean absolute CD3+ T cells count decrement reached 47.5% after 12 months of treatment (p < 0.001). NK cells count showed a heterogeneous trend, increasing by 85.9% (p < 0.001) after 2 years of treatment. CD4+ T cells and CD8+ T cells substantially decreased, with a significant increase of CD4+/CD8+ ratio during the first year of therapy. Conclusions: NK cells showed a heterogeneous behavior during DMF treatment with a significant increase over time. Since NK cells may also have a regulatory effect on immune system modulation, their increase during DMF treatment might play a role in the efficacy and safety of the drug.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Buriani
- Data Medica Group, Maria Paola Belloni Center for Personalized Medicine, Synlab Limited, Padova, Italy
| | - Anna Isabella Pisani
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Crescenzo
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmela Zuco
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Fortinguerra
- Data Medica Group, Maria Paola Belloni Center for Personalized Medicine, Synlab Limited, Padova, Italy
| | - Vincenzo Sorrenti
- Data Medica Group, Maria Paola Belloni Center for Personalized Medicine, Synlab Limited, Padova, Italy
| | - Bruno Marenda
- Data Medica Group, Maria Paola Belloni Center for Personalized Medicine, Synlab Limited, Padova, Italy
| | | | - Roberta Magliozzi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Salvatore Monaco
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
50
|
Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, Checa A, Badam TVS, Huang J, Gomez-Cabrero D, Gustafsson M, Al Nimer F, Wheelock CE, Kockum I, Olsson T, Jagodic M, Piehl F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun 2019; 10:3081. [PMID: 31300673 PMCID: PMC6626021 DOI: 10.1038/s41467-019-11139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden.
| | - Ewoud Ewing
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Granqvist
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gyllenberg
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Lind Enoksson
- Department of Clinical Immunology Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tejaswi V S Badam
- Department of Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden.,Department of Physics, Chemistry & Biology (IFM), Bioinformatics, Linköping University, Linköping, Sweden
| | - Jesse Huang
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Publica de Nevarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|